Trends in the manufacturing of Composite Aerospace Components and resulting demands for Machining Technologies

Dr. Jan Stüve, Dr. Markus Kleineberg

Machining Innovations Conference 2019 Hannover, 28th of November 2019

Knowledge for Tomorrow

DLR – German Aerospace Center

Tasks Publicly funded non-profit organisation

- Research Institution
- Space Agency
- Project Management Agency

Research Areas and Cross-link-fields

- Aerospace
- Space Research and Technology
- Energy
- Transport
- • Security
- -- **Digitization** (e.g. "Factory of the Future", "Condition Monitoring")

Motivated by the Digitization Initiative of the German Government

DLR.de • Chart 3 > Trends in the manufacturing of Composite Aerospace Components and resulting demands for Machining Technologies > Jan Stüve > 28th of November 2019

DLR – German Aerospace Center

Center for Lightweight-Production-Technology (ZLP®) in Research Center "CFK Nord"

DLR.de • Chart 5 > Trends in the manufacturing of Composite Aerospace Components and resulting demands for Machining Technologies > Jan Stüve > 28th of November 2019

Trend No. 1 in the manufacturing of Composite Aerospace Components

Accurate digital models re-present both the product and the optimized production processes, saving costs, time and engineering efforts.

DIGITAL GUIDANCE 6

Mass customization is a cornerstone in future manufacturing. Digital Guidance helps to minimize set-up-times by autonomously adapting facili-ties and controlling workflows

B AUTONOMOUS ASSEMBLY

Intelligent autonomous ro-bots assemble individually customized products using ad-vanced planning algorithms, sensors and modular adaptive robotic skills.

2 MANIE

Mobile autonomous production units fitted for carrying out a variety of back-work like tasks help to overcome static shop floor layouts.

Intelligent robotic assistants and their human co-workers interact via intuitive, multi-modal programming inter-faces and share their work-space in safe and efficient in-

Data analysis and digital tools improve manufacturing methods resulting in complex and individual parts with optimized geometries and improved component properties.

dustrial applications.

HUMAN-ROBOT COLLABORATION

ถ

Future Factory for Composites How does it look like?

Smart machine control for Multi-Head Automated Fiber Placement

Digital twins as enabler for efficient composite processing

• The Virtual Autoclave – a digital twin of the real process

Simulation of heat flow inside the autoclave

Human Aided Automation by Virtual and Augmented Reality

- Reinvolve Human into Automation
- Smart Remote Maintenance
 - VR-login for service provider
 - AR for on-site worker
- Process Monitoring
 - Process data displayed in the right context
- Colaborative Troubleshooting
 - Multi User VR/AR
- "Replay" as process documentation
 - Review process as happened
 - Walk through instead of oneperspective video

Trend No. 2 in the manufacturing of Composite Aerospace Components

Fully automated textile preforming and RTM-production

Global Wing Box Design Modification

Detailed Rib Design Modification

Geometrical Accuracy and Weight

	0	U	
	Nominal	Measured	Delta
Angle 1	90,00	89,95	-0,05
Angle 2	90,00	90,08	0,08
Angle 3	90,00	90,07	0,07
Angle 4	90,00	90,08	0,08
Angle 5	88,88	88,99	0,11
Angle 6	88,86	88,92	0,06
Angle 7	88,81	88,90	0,09
Angle 8	88,72	88,72	0,00
Angle 9	88,66	88,67	0,01
Angle 10	88,55	88,58	0,03
Angle 11	88,53	88,56	0,03
Angle 12	88,52	88,59	0.07

Flange Angle

Geometrical accuracy requirements of flanges met

Global geometrical accuracy requirements met

Production Cost Estimation

Trend No. 3 in the manufacturing of Composite Aerospace Components

Carbon Fiber Reinforced Thermoplastic (CFRT) material for aerospace components

Faster processing of components

Automated Fiber Placement of CFRT using HUMM3-Flashlamp

and weldability for assembly without riveting

Induction welding of PEEK-CFRT as an example

Use Carbon Fiber Reinforced Thermoplastic (CFRT) material for aerospace components

Current product developments: Rear pressure bulkhead made of CFRT in automated production

Realized by DLR Center for Lightweight-Production-Technology Augsburg and Premium Aerotec GmbH, Augsburg

Source: https://www.compositesworld.com/blog/post/new-horizons-in-welding-thermoplastic-composites

Conclusion

Automation in composite production is needed to enable rate and constancy of quality ark Igroup

Digitization enables smart processing and the creation of digital Life-Data-Sheets

I hermoplastic composites enable joining without riveting

