UV Raman Spectroscopy for Explosives Detection

E. Gallo, C. Kölbl, A. Walter, A. Köhntopp, F. Duscheck
W. Schweikert, F. Schnürer

DLR Lampoldshausen, Institute of Technical Physics
Fraunhofer Institute for Chemical Technology

Objective:
• Identification of explosive traces at a safe distance using UV Raman spectroscopy
 • Determination of the detection limits for samples on glass substrates. μg amounts resemble a chemical trace left by a fingerprint

Lab setup:
• Portable 355 nm, 224 nm lasers
• Collecting optics: UV lens ~ 60 cm in front of the sample - spectrometer (liquid N\textsubscript{2} cooled CCD, grating 2400 grooves/mm, laser line filter)
• Photo degradation minimized (laser energy < 10 mW/cm2)
UV Laser beam features:
 1 mW, 3 s minimum acquisition time

Sample preparation:
• Standardized samples of milligrams and traces (μg range) were ink-jet printed on a glass substrate
• Samples simulate possible explosive trace amount adhering on a surface

Results:

• PETN (red) and RDX (blue), samples < 100 μg, 20 s, 355 nm:

 • Minimized acquisition time 3 s, 355 nm, < 100 μg and < 50 μg:

Findings:
• A UV Raman setup for measuring explosive traces was successfully tested
• Lowest detection limit was < 50 μg for 0.6 m distance for 3 s, at 355 nm
• No distinguishable signal for laser at 224 nm: too close to absorption peaks
• Tested compounds successfully identified

Future developments:
• Find the optimum excitation wavelength for later applications (i.e. miniaturization)
• Test different surfaces, inhomogeneous contamination, low concentrations
• Eye safe range