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The Discrete Sources Method (DSM) has been extended to model non-spherical, axisymmetric core-shell
particles by taking into account the Non-local Effect (NLE). For this purpose, the Generalized Non-local
Optical Response (GNOR) model of the NLE has been employed. By using the extended DSM numerical
scheme, prolate and oblate core-shell spheroidal particles have been examined. The simulation results
show that the influence of the NLE on both the far and the near field properties of plasmonic core-shell
particles is essential. In particular it has been found that the plasmon resonance amplitude is decreased
by about 40%, the near field intensity is reduced up to one order of a magnitude, and the blue shift of
the plasmon resonance can reach value of 15 nm. Besides, it has been demonstrated that a larger shell
refractive index leads to a higher value of the plasmon resonance.

© 2019 Published by Elsevier Ltd.

1. Introduction

The optical properties of surface plasmons have been very suc-
cessfully described in recent years within the framework of classi-
cal electromagnetic approaches that consider the dynamics of va-
lence electrons in a metal as aggregate harmonic fluctuation of
the electron charge density, whose behavior can be described by
a classical polarizability. The electromagnetic fields associated with
this collective movement of electrons are then analyzed based on
the classic Maxwell’'s equations. This description assumes classical
behavior of both electrons and electromagnetic fields to consider
the electromagnetic properties of the near and far fields of metal-
lic nanostructures, operating as optical nanoantennas [1,2]. Surface
plasmons make it possible to confine the electromagnetic fields
to subwavelength scale, which exceeds the conventional limit of
optical diffraction. Plasmons, which refer to the hybridization be-
tween surface charges and electromagnetic fields, have catalyzed
the emerging subject of plasmonics as an independent part of
nanophotonics [3-5]. Due to this development, it became possi-
ble to obtain ultrahigh field enhancement and subwavelength field
confinement far beyond the diffraction limit.

The metal nanoshell was first made in the latter 90s and since
that time various structures of shells of increasing complexity
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have been obtained [6]. Such structures provide a greater flexi-
bility in tuning plasmon resonances, as well as in realizing the
needed amplification of electromagnetic fields. Core-shell nanopar-
ticles have attracted increasing research interest due to their out-
standing properties: [7]: (1) Versatility: a core-shell nanoparticle
consists of an inner core and an outer shell made of different
material; therefore, the combination of different properties of dif-
ferent materials leads to several novel properties, thus expand-
ing their application; (2) Tunability: the properties of core-shell
nanoparticles can be easily and dramatically tuned by changing the
size, shape, morphology, and components of the core, as well as
the thickness, shape, and material of the shell; (3) Stability and
dispersibility: the coated shell can protect the nanoparticles from
aggregation, sintering, or the effect of other reagents; (4) Biocom-
patibility: the biocompatibility is one of the important issues from
the perspective of practical bioapplication, and the biocompatibil-
ity of nanoparticles can be improved by coating with silica (SiO,),
polymer, etc. Multilayered structures include, the “nanomatreshka”
[8], which in the recent years attracted a great interest of re-
searchers in the field of nanoplasmonics. In particular, core-shell
particles constructed from composite nanomaterials have emerged
as valuable nanomaterials for imaging and therapy [9], energy stor-
age and conversion [10], photothermal enhancement [11], solar cell
elements [12], SERS [8] and cloaking [13], owing to their com-
plementary enhanced properties compared to their homogeneous
counterparts. Among others, the most interest has been focused
on cylindrical and spherical nanostructures due to the simplicity
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of their geometry for a detailed theoretical investigation. Although
the optical properties of these new plasmon structures are intrigu-
ing, the main attention was paid to the theoretical study of its
spectral far field properties especially such characteristics as ab-
sorption cross-section, scattering and extinction. It is well known
that due to the small size of these structures compared to the in-
cident optical wavelength, the dipole approximation for the fields
seem to be sufficient to describe scattering in the far zone, which
makes theoretical study relatively simple. However, there are some
optical phenomena, such as molecular fluorescence observed near
these nanostructures, or catalysis [14]| and photothermal enhance-
ment [11], which are related to the near field of the structures. In
these cases, more advanced theoretical approaches are required to
describe all occurring physical processes.

Another important fundamental scientific problem within the
framework of quantum plasmonics is the problem of creating
nanoscale sources of coherent radiation. A fundamentally new ap-
proach seems to be using plasmon fields instead of photon fields.
In fact plasmon fields allow to overcome the diffraction limitation
in the size of a laser. A plasmonic nanolaser is called: SPASER (Sur-
face Plasmon Amplification by Simulated Emission of Radiation)
[15-17]. The concept of the spaser was first proposed by Stockman
and Bergman in 2003 [18]. A spaser consists of nanoparticles of a
noble metal, acting as nanoresonators, and an amplifying medium
formed by resonantly coupled emitters [19]. In the first experimen-
tal implementation of the spaser, a core-shell nanostructure con-
sisting of a gold nanosphere D = 14nm with a SiO, spherical shell
with an outer diameter of 44nm doped with a laser dye was used
[20]. Until now, a real laser consisting of noble metal nanostruc-
tures has not been experimentally implemented, although remark-
able studies were devoted to the development of various promising
nanoscale 3D structures of core-shell or core-metal type [16,21,22].

A laser resonator is a combination of an optical element that
creates the spatial and spectral modes for photons. Similarly, a
plasmon nanolaser resonator is a set of metal-dielectric nanostruc-
tures that form spatial and spectral modes for plasmons. An es-
sential difference and advantage of a plasmon nanolaser compared
to other existing sources of localized fields is that the plasmon
nanolaser can operate in the regime, that is only weakly coupled
to electromagnetic fields in the far zone. In other words, the plas-
mon nanolaser generates coherent, strongly localized near fields.
This seems to be a considerable technological advantage. There ex-
ists two types of plasmons: localized surface plasmons and sur-
face plasmon polaritons. These two types of plasmons are gener-
ated in a plasmon nanolaser using different types of resonators.
There are three types of plasmon resonators: a 3D resonator for
localized surface plasmons and 2D and 1D resonators for surface
plasmon polaritons [23]. The most thoroughly studied type of 3D
resonator is the nano-shell structure, which is one of the most
promising geometric forms of nanostructures for a spaser [24]. The
active medium in such a hybrid structure can be located both in
the inner and outer regions of the nano-shell. In between non-
spherical nanoparticles used as 3D resonators the more studied
and frequently used are nanorods [22]. Elongated particles provide
simple control of the center frequency of the plasmon resonance
(PR) by changing the length of the particles, thereby adjusting the
frequency of the PR of the nanoparticle to the required condition
of the resonator [25].

The study of the quantum nature of electrons in metals and
their collective optical response has a long tradition in condensed
matter physics. Accounting for the influence of surfaces adds an
additional degree of complexity, which requires special methods
of solid state physics to adequately describe quantum interactions
and the dynamics of electrons under the influence of external
fields. In this context, the surface response of the electron gas was
considered within the framework of various quantum approaches,

including different quasiclassical hydrodynamic models [26,27], as
well as methods based on time dependent density functional the-
ory (TDDFT) [28]. The latter allows for a proper quantization of
electrons which captures important aspects in plasmonics, such as
the quantum size effect, dynamic screening of the electron gas,
and the possibility of electron tunneling at optical frequencies [29].
Consideration of all these quantum effects provides a critical un-
derstanding of the fundamental limits of localization and field am-
plification in plasmonics, as well as the correct description of op-
toelectronic properties in metal nanoconstructions.

As a rule, for particle sizes smaller than 10nm, a complete
quantum mechanical description is required. For example, the
TDDFT, which describes the collective motion of electrons, simu-
lating the behavior of each electron, works well for explaining the
experimental results for particle sizes of several nanometers [28].
As the size of plasmonic structures becomes less than the mean
free path of the excited electrons, collisions between electrons can-
not be neglected. Therefore, the motion of the conductive electrons
is related not only to the field applied at the local position, but
also depends on the fields at other positions. This defines the ap-
pearance of the non-local effect. To describe the optical properties
of metal nanoparticles, various treatments accounting for quan-
tum effects but within the framework of classical electromagnetic
theory, also known as semi-classical approaches, have been de-
veloped [30,31]. For example, one such semiclassical method that
takes into account non-local effects is the non-local hydrodynamic
model, which takes into account the presence of longitudinal elec-
tric fields inside nanoparticles [32,33].

For the size-dependent plasmon damping, a geometry-
dependent dielectric function is usually adopted [34], where
the damping frequency in the Hydrodynamic Drude Model (HDM)
is corrected according to the reduced mean free path of electrons.
Alternatively, by simply correcting the nonlocal parameter by
incorporation of a diffusion constant, the HDM has been extended
to the Generalized Nonlocal Optical Response (GNOR) model [35].
In the frame of GNOR, size-dependent plasmon damping ap-
pears naturally via an additional constituent of the hydrodynamic
description of induced charges in the metal, namely electron diffu-
sion. GNOR has recently achieved considerable success in the areas
of nanophotonics and nanoplasmonics [36-38]. GNOR has proven
particularly efficient in recent years in simultaneously describing
both nonlocal screening and Landau damping through a relatively
simple correction of the wave equation that is straightforward
to be implemented to any plasmonic geometry model [30,39].
Besides, GNOR has been completely justified by matching with
TDDFT results [40] and comparison with experimental measure-
ments [41]. We would like also to mention some publications in
which the analysis of the optical properties of core-shell particles
was investigated taking into account the non-local effect. However,
in all these papers, researchers restricted to the consideration of
spherical surfaces [42-44].

In this paper we will employ an extension of the discrete
sources method. The DSM is a semi-analytical surface based mesh-
less method. In the frame of DSM, the electromagnetic fields are
constructed as finite linear combinations of discrete sources (DS)
fields analytically satisfying the Maxwell equations in each domain
and additionally the radiation conditions at infinity. The DS ampli-
tudes are determined from the transmission conditions enforced at
the interfaces of the media discontinuities. Compared to other sur-
face based approaches, the DSM has some preferences: (I) it does
not require any mesh generation or an integration procedure over
the interfaces, (II) it provides the near and far fields in clear analyt-
ical form, (III) it simultaneously solves the scattering problem for
all external excitations and polarizations at once, (IV) it can handle
media with high refractive indices, and (V) it allows the estimation
of the computational errors via estimation of the residual of the
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shell

Fig. 1. Scattering geometry of a core-shell particles.

surface fields, which enables a near field computation with guar-
anteed accuracy [45]. These theoretical and numerical advantages
recommend the discrete sources method for analyzing plasmonic
structures in the presence of nonlocal response [46,47]. A detailed
description of the numerical methods used in plasmonics can be
found in the paper by Eremin et al. [47].

In this paper we present an extended scheme of the DSM that
enables to analyze polarized light excitation of axial symmetric
non-spherical core-shell plasmonic particles. For demonstration we
choose the geometrical model of 3D spaser resonator consisting
of a purely dielectric shell and a plasmonic core accounting for
GNOR inside. This choice is due to the fact that for a 3D resonator
it is important to provide near field amplification. The paper is
organized as follows. In Section 2 we summarize the generalized
nonlocal optical response model, and formulate the mathematical
statement of the transmission boundary value scattering problem
for the core-shell particle. Section 3 is devoted to the detailed de-
scription of the extended scheme of the discrete sources method,
while in Section 4, computer-simulated results are reported and
discussed.

2. Generalized nonlocal optical response model

Let us consider scattering of an electromagnetic plane wave (E°,
HO) by an axisymmetric core-shell particle placed in an isotropic
homogeneous medium as shown in Fig. 1. The particle consists of
a metal core occupying the domain D. with a smooth boundary
dD., and a dielectric shell occupying the domain Ds with a smooth
boundary dDs. By assumption, all media are nonmagnetic and the
surfaces dD. s have a common axis of symmetry Oz. The incident
electromagnetic plane wave propagates in the Oxz plane and along
a direction which encloses the angle 7 — 6y with the Oz axis.

Referring to the GNOR model, the following statements are rel-
evant for our further analysis:

1. The local-response Ohm’s law J(r) = o E(r) is corrected for
non-local response as [48]

2
SVIV 140 = 0B, (1)

where for the time dependence of the fields exp (jwt),
2
2B -2]
is the length scale of the GNOR model, ¢, the permittivity
associated to bound charges, @ the exciting frequency, B2 =

(3/5)v2, vp the Fermi velocity, y the Drude damping rate, D
the diffusion constant, and o the Drude conductivity.

2. The Maxwell equation for the magnetic field inside a metal

core is
V x H(r) = jwgo[ec + E2V (V-)]E(r), (3)
where
Ec=8&p — ﬁ (4)

is the Drude permittivity, €9 the permittivity in vacuum, and
wp the plasma frequency of the metal.

3. The field inside the metal core E consists of the contri-
butions of a divergence-free transverse field Er, V.Er =
0 and a curl-free longitudinal field Ep, V x EL =0 solv-
ing the vector Helmholtz equation with the corresponding
wavenumbers k% = k2e. and k? = e./£2, respectively, where
ko = w./€oftg is the wavenumber in vacuum.

4. The amplitude of the longitudinal wave is computed from
the additional boundary condition [47]

&pN. - Ec = &.n. - Eq, (5)

which is imposed at the interface dD. separating the metal-
lic core D. and the dielectric shell D,. Here, n. is the out-
ward normal unit vector to the surface dD., and &g is the
relative permittivity of the dielectric shell. The additional
boundary condition is used together with the conventional
boundary conditions namely, the continuity of the tangen-
tial components of the electric and magnetic fields at the
corresponding interfaces.

Considering the scattering problem illustrated in Fig. 1, we are
faced with the solution of the following boundary value scattering
problem: Given the incident electromagnetic field (E°, H?), com-
pute the scattered field (E.,H.) in D, = R3 \ Dc UDs and the inter-
nal fields (E.s,H.s) in D, satisfying the Maxwell equations

V x Hg e = jkoseEse, V x Ege = —jkoH; in Ds. (6)

V x H, = jko[ec + 2V (V)]E., V x E. = —jkoH, in D, (7)
and the transmission conditions for the fields

ﬁc X (Ec_Es)zos ﬁc X (HC_HS)ZOs
epl - Ec = £, - E; on 9D,

(8)

and

~

n, x (E; —E.) =n; xE%, N, x (H; —H.) =0, x H° on aD,. |
9)

In addition, the scattered field must satisfy the Silver-Miiller radia-
tion condition at infinity. Here, &, is the relative permittivity of the
ambient dielectric medium, and n; is outward normal unit vector
to the surface 9Ds.

Note that the field inside the core is decomposed as

Ec = E'l'c + ELcn (10)
where Er. and E;. are the transverse and longitudinal fields, satis-
fying

V~ETc=0 and V XELC =0.

3. Extended scheme of the discrete sources method

In the framework of the discrete sources method, the electro-
magnetic fields are constructed as finite linear combinations of the
fields produced by dipoles and multipoles distributed inside the
core-shell particle. Thus, the solution satisfies the Maxwell equa-
tions and the radiation condition at infinity. The unknown ampli-
tudes of the discrete sources are determined from the transmission
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conditions enforced at the interfaces dD. and dD;. In this section
we describe an extended scheme of the discrete sources method
for modeling the nonlocal optical response for a core-shell parti-
cle.

For the incident electromagnetic plane wave

Eo(r) = €pe JKeT (11)

propagating along the direction (7 —6p,7) and being character-
ized by the wave vector Kk, = k.K., ke = ko./€. and the polariza-
tion unit vector €y, the corresponding P- and S-polarized incident
fields are given respectively, by

E% (r) = (cos 6pe, + sin6e,) - x (X, 2), (12)
H (r) = —J&.€,- x(x,2), (13)
and

E%(r) =6, x(x,2), (14)
HOS (1) = /€, (cos Bpe, + sinBpe,) - x (x,2), (15)

where (€,, €, €,) are the Cartesian unit vectors and

X (X, Z) — e—jke(xsinﬂo—zcos(?o)‘ (16)

For an axisymmetric particle, the P- and S-polarized excitations are
treated separately [45]. To account for axial symmetry, we expand
each polarized plane wave into a Fourier series in the azimuthal
angle ¢ by using the relation

o0
=) (2= 8m0) (&))" (x) cos mg, (17)

m=0

etJxcosy

where ], are the cylindrical Bessel functions, and &, is the Kro-
necker delta symbol. The scattering problem then decouples over
the azimuthal modes m, and a separate solution for each m is ob-
tained.

The discrete sources are distributed along the axis Oz (the axis
of symmetry of the core-shell particle), and in this regard, we de-

m
note by {zﬁ}gil the positions of the discrete sources for repre-

m
senting the scattered field, by {Zﬁ}ﬁ’i] the positions of the dis-
crete sources for representing the field inside the dielectric shell,
m
by {zﬁc}ﬁl;“] the positions of the discrete sources for representing

the transverse field inside the metal core, and finally, by {ZLC}QI ]

the positions of the discrete sources for representing the longitudi-
nal field inside the core. Note that the numbers of discrete sources
NI, NI', Nf. and N{%: may depend on the azimuthal mode order m.
It is important to mention that the field inside the shell is repre-
sented as a superposition of incoming and outgoing waves.

For approximation of the transverse fields, the fields of the dis-
crete sources are constructed from the vector potentials

Aji(r) = Yii (@. Zy) cos[(m + 1)g]e,
~ Y5 (e.zy) sin[(m + 1gJe,, (18)

A2 (r) = Y2 (0.2%)sin[(m + 1)gp]€,

+Y51 (0, 2) cos[(m + 1)g]ey, (19)
Aﬁi’,ﬁ(l') =Yy (0.2; )e,, « =e,c,s+. (20)
where
. o \"
Vi(0.25) = (ki) () 1)
Zji

2 o \"
Vi@ ) = hiP (k) (1) (22)
Zj
m
Yef(e.25) = hipV (ke Rz,.)( p) : (23)
Zﬁ

the plus sign corresponds to the outgoing waves h,(,f). the minus
sign corresponds to the incoming waves h,ﬂ}’. kes = ko /Ees O =
(p.2), p> =x*+y%, and

R: = p*+(z—2zn)% (24)

Here we would like to emphasize that we use Hankel functions of
1st and 2nd kinds h,‘nz'” instead of Bessel and Neuman functions
which is a common choice for the core-shell particle [43].

For approximation of longitudinal fields, the fields of the dis-
crete sources are constructed from the scalar potentials\W,,, and
W, as given below. So, for a P-polarized excitation, the approxi-
mate solution is given by

M Nm

BN = Y ok LV VAl +afs LV Ak
m=0n=1

+ ZI’T" AX(r), a=c,e, s, (25)
n=1
Efc(r) = Z Z Plrin V' Winn (1) + Z VW (r), (26)
m=0n=1 n=1
HY (1) = kiv x EN (D), 27)
0
where the scalar potentials Wy and W, are defined as
. 0 m+1
Wi (0) = jon (kR ) (E) cos[(m + ], (28)
lec
Wi (1) = jo(kiRye ). (29)

k? = e./€2, and M is the maximum number of azimuthal modes.
For an S-polarized excitation, we have

M NP
B =Y Zpﬁg,kjg V x V x A% (1) + g 2 V x Al (r)
m=0n=1
+ZI’TO[ VxAﬁ"(r) o =c,e, sk, (30)
n=1
R Le
EL@) =) > PrinV¥m(D), (31)
m=0 n=1
HY (r) = kiov x EX (1), (32)

where the scalar potentials W, are now defined by

m+1
() = (ki Rge) () sinl(m+ 1l (33)

Zi¢
Note that the basis functions Y% (@,z,) and Wy,(r) are the so-
called lowest-order distributed multipoles [49].

Some remarks are in order:

1. AV is a multi-index incorporating both the maximum num-
ber of azimuthal modes M, and the number of discrete
sources N NI and N

e.c,st’
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Sphere Au core D=14nm, SiO,, shell t=15nm, in CTAB.
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Sphere Ag core D=14nm, SiO2 shell t=15nm, in CTAB.
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Fig. 2. Absorption and scattering cross sections computed by LRA and GNOR (NLR). The diameter of the spherical core is D = 14 nm, and the thickness of the SiO, shell is
t = 15 nm. The results corresponding to the gold and silver cores are illustrated in the left (a) and right (b) panels, respectively.

2. From (27) and (32) it is apparent that only the transverse
field E contributes to the magnetic field H inside the metal-
lic core of the particle.

3. In the case of an S-polarized excitation, the azimuthal inde-
pendent harmonic does not contain the nonlocal term VWV,
appearing in (26). The reason for this is that in this case,
there is no normal component of the electric field, and so,
the additional boundary condition is not required.

As the electromagnetic fields given by (25)-(27) and (30)-
(32) solve the Maxwell Eqs (6)-(7), we have to determine the am-
plitudes of DS

{Pimn- Gmne T P T
such that the boundary conditions (8)-(9) are fulfilled. By means of
the generalized point matching technique, we obtain the following
relations for computing the amplitudes of the discrete sources:

},(x =e,c, st

2 .
fi. x A (EY.(p1. @) +E). (0. 9) —EY (p. 9)]e ™ de = 0, (34)

2 .
i, x A (1Y (p,. ) — H'(p,. ) ]e ™ dg =0, (35)

2 .
n. - A [SbE'Ilys (o1, 9) + SbE{.Vs pr,@) — gSE’sV (0. 90)]e_Jm¢d(p -0,
(36)

2m . 2 .
n, x/ [EY(¢). ) — EY (0. ¢)]e ™ dg =1, X/ E°(g;. ¢)e ™ dg,
0 0
(37)

2m . 2r .
i, / [HY(0,. ¢) — HY (g, ¢)]eImdg = A, x / HO(g,, p)eImvdy,
0 0
(38)

where {Q,}IL;, {p f;are the sets of matching points distributed
in the azimuthal plane ¢ = const over the meridians of the sur-
faces dD; .. Let us remind that inside the shell EN = EN, +EN and

HY = HY, + HY . For each order m, the numbers of DS and match-
ing points are chosen such that

2NI 4 NI 4+ 4N 4 2N™ < 5L, + 4L, (39)

in which case, we are led to an overdetermined system of equa-
tions for computing the amplitudes of the DS. This system of equa-
tions is solved in the least squares sense by using a QR matrix fac-
torization for a given set of incident angles 6, and simultaneously
for both P- and S-polarized excitation.

Once the amplitudes of the discrete sources are known, the
components of the far-field pattern

F(0,9)=F(0,¢)e; +F, (0, p)e,, (40)
defined through the relation [50]
eJker 1
E.(n) = F(9,¢)+O<F), r — oo, (41)
are computed for a P-polarized excitation as
M
E(0.9) = jke Y (jsin6)™ cos[(m + 1)¢]
m=0
Ng' .
Z(p?nn cos6 + q;m)ei'lkezﬁ cost
n=1
Ng
— jkesin® Y " reJkeri cos?, (42)
n=1
M
F(0.¢) = —jk. Y (jsin®)™sin[(m + 1)¢]
m=0
NI .
3 (Phun + G cO5 0 e €050 (43)
n=1
and for an S-polarized excitation as
M
FGS(O, @) = jke Z(j sin®)™sin[(m + 1)¢]
m=0
Ng' .
D (P €OS O — Gy e Ie7i 050 (44)
n=1
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Prolate Au D=15nm, SiO, shell t=10nm, in CTAB, eo=90°.
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Fig. 3. Absorption cross section (a) and relative intensity computed by LRA and GNOR (NLR) (b,c). I

Prolate core Au D=15nm, in CTAB, r=3.0, eo=90°.
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n (a) and (b), the core-shell particle is a prolate spheroid with a gold

core, and a SiO, shell. The equivolumetric diameter is D = 15 nm, the shell thickness is t = 10nm, and the aspect ratios are r = 2.0, 2.5, 3.0. In (c), the relative intensity
corresponds to a SiO, and a PSL shell, the shell thicknesses are t =5, 10 nm, and the aspect ratio is r = 3.0.

M
FS©.9) = jke Y (jsin®)" cos[(m + 1)g]
m=0
Ng' .
3 (Plun €00 — e T 050
n=1
Ng
+jke sin@ " rpe-Jkezicost (45)
n=1
The differential scattering cross section is then calculated as
a"5(0,9) = |F;* 0, 9>+ |F, 56, )%, (46)
the scattering cross section as [51]
2 pm
oPS = [ / o?3(0, ) sin6dOdg, (47)
o Jo

and the extinction cross sections for P- and S-polarized excitations
as

0L =~ o m{E} G — 65.70)] (48)
and
0% = S tmIF G — b, )], (49)

respectively. According to the optical theorem [51], the absorption
cross-section can be then computed as Oaps = Oext — Oscs. From
(42)-(45) it is readily seen that the components of the far-field
pattern are expressed through finite linear combinations of ele-
mentary functions, and so, that no integration procedure is re-
quired for their computation. Besides, the errors in the solution
can be estimated by computing the residual norm of the boundary
condition of the surface fields at the core and the shell interfaces
9D s [45].
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Fig. 4. Absorption cross section (a) and relative intensity computed by LRA and GNOR (NLR) (b), incident angle is 8, = 0°. In (), the core-shell particle is an oblate spheroid
with a gold core, and a SiO, shell. The equivolumetric diameter is D, = 15 nm, the shell thickness is t = 10 nm, and the aspect ratios are r = 0.5, 0.33. In (b), the relative
intensity corresponds to a SiO, and a PSL shell, the shell thicknesses are t = 5, 10 nm, and the aspect ratio is r = 0.33.
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Fig. 5. The same as in Fig. 4 but for an oblate spheroid with a silver core.

4. Computer simulation results

In this section we consider the scattering of a plasmonic
spheroidal core-shell particle, consisting of a metallic gold (Au)
or silver (Ag) core and a dielectric silica SiO, (ng = 1.46) or PSL
(polystyrene latex) (ns = 1.6) shell, placed in a hexadecyltrimethy-
lammonium bromide (CTAB) background (ambient) medium with
the refractive index n, = 1.336 [17]. For gold and silver, the fre-
quency dependent refractive index n. = /€. is taken from [52].
The corresponding GNOR parameters for Au have been chosen as
[48]:

hw, = 9.02eV, hy =0.071eV, v; = 1.39 um/s, D =8.62-10® um?/s
and for Ag
hw, = 8.99eV, hy =0.025eV, vy =1.39um/s, D=9.62-10% um?/s

We start by considering a spherical core-shell resonator, which
has been analyzed in multiple reviews [16] starting from Noginov

paper (see Fig. 2 of [20]). Fig. 2a shows the absorption and scat-
tering cross-sections computed with the local response (LRA) and
nonlocal response (NLR) - GNOR models. It is apparent that the
plasmon resonance amplitude decreases up to 40%, and that there
is a small blue shift when the NLE is considered. A similar observa-
tion can be made for the scattering cross section. For a silver core,
the corresponding results are illustrated in Fig. 2b. In this case, the
PR damping exceeds 60% with a larger blue shift. It is clear that the
corresponding silver curve seems to be blue shifted in comparison
to the gold curve and that it is a bit sharper.

Next, we investigate the influence of the NLE on a nonspherical
core-shell particle. For this purpose, we consider a prolate core-
shell particle with the equivolumetric diameter D. = 15nm, and
the shell thickness t = 10nm [17,53]. The simulation results, cor-
responding to a gold core and the incidence angle 6y =90°, are
depicted in Fig. 3a. Note that for this incidence angle, the electric
field vector EC is parallel to the larger axis of the metallic core [47].
The results show a PR damping up to 40%, a blue shift of about
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NLE: oblate core Au D=15nm, SiO,, shell, in CTAB, r=0.33.
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Fig. 6. Relative intensity computed by GNOR only. In (a), the core-shell particle is an oblate spheroid with a gold core, and a SiO, shell. The equivolumetric diameter is
D. = 15nm, the shell thicknesses are t = 3, 5, 10nm, and the aspect ratio is r = 0.33. In (b), the core-shell particle is an oblate spheroid with a silver core, the materials of
the shell are SiO, and PSL, the equivolumetric diameter is D, = 15 nm, the shell thicknesses are t = 5, 10 nm, and the aspect ratio is r = 0.33.

12 nm, and a plasmon resonance curve broadening. In Fig. 3b we

plot the averaged relative intensity [E. +E°|2 / |E°|2 in the vicinity
of the shell surface. The results are similar to those obtained in
Fig. 3a. In Fig. 3c we analyzed the influence of the shell material
and its thickness on the relative intensity for a gold core with an
aspect ratio of r=3.0. As it is clear, a PSL shell of smaller thick-
ness, leads to an increase of the near field relative intensity of up
to 60%. It is worth to mention that in a spaser model, the nanorods
are usual randomly oriented with respect to the polarization of the
exciting E® [53] (see Fig. 1d). Because the P-polarized amplitude
of the PR exceeds the S-polarized amplitudes by an order of mag-
nitude, by averaging the relative intensity over the angle of polar-
ization, it may happen that the PR amplitude decreases by 50%. For
this reason, we repeat the previous simulations but for an oblate
core-shell particle. The simulation results are shown in Fig. 4. In
this case, the incidence angle is 8y = 0° so that the larger axis of
the metallic core is parallel to the E° vector. The same features that
we already observed for a prolate core-shell particle are visible.

The results in Fig. 5 correspond to a silver core [54]. In this case,
the relative intensity decreases by almost one order of magnitude,
the blue shift is about 15nm, and there is a large broadening of
the PR curve. The results in Fig. 6 demonstrate that a reduction of
the shell thickness increases the relative intensity. Besides, a silver
core provides higher intensity then a gold core but there is a res-
onance shift to shorter wavelength. In summary of our computer
simulation, we can conclude that an oblate particle does not pro-
vide higher field enhancement as compared to a prolate particle.

Metal-dielectric nanoparticles can be used for multiple practical
applications via their enhanced plasmon resonance due to stronger
Coulombic interactions between polarization charges of the dielec-
tric shell and the free electrons in the plasmonic core as a result
of the dielectric shell having larger refractive index than the metal
core [55]. That is probably the reason that a PSL shell demonstrates
larger intensity peaks then a SiO, shell.

5. Conclusions

The Discrete Sources Method in conjunction with the GNOR
model has been extended to analyze the influence of the non-local
effect on the scattering and near field properties of non-spherical,
core-shell particle. In particular, the absorption and the scatter-

ing cross sections, as well as the relative near field intensity for
such kind of scatterers have been computed. The numerical results
demonstrate the large influence of the non-local effect on both
far field and near field properties of plasmonic nano-particles. We
found that the plasmon resonance amplitude is decreased about
40%, the near field intensity is reduced up to one order of a mag-
nitude, and the blue shift of the plasmon resonance can reach the
value of 15nm in case of the non-local effect accounting for. Be-
sides, it has been demonstrated that larger shell refractive index
leads to high value of the plasmon resonance.
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