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Abstract 

This bachelor thesis analyses the influence of Mercury’s gravity field on the orbit of the Mercury 

Planetary Orbiter (MPO) which is the part of the European-Japanese mission BepiColombo launched 

in October 2018. The gravity field of Mercury was determined from radio tracking data of the NASA’s 

spacecraft MESSENGER which was orbiting the planet until 2015. Due to the highly eccentric orbit of 

MESSENGER, the calculated gravitational harmonic coefficients are afflicted with uncertainties. 

Therefore, the orbital evolution of MPO is predictable but with some inaccuracy. For this reason, 

different plausible gravity fields were generated using a Monte Carlo Method. The generation of the 

random gravity fields was performed using the gravitational coefficients up to degree and order of 

100 and their uncertainties, which were determined by MESSENGER. For that, a function, based on 

Gaussian distribution, was used. This function was implemented in a numerical orbit integrator 

developed by DLR, Berlin.  Furthermore, scale factors 1, 3, 5 and 10 were used for generating the 

gravity fields.  

Before performing the simulations for orbital prediction of MPO, the boundary conditions were 

determined. The number of the simulations was set to 10,000 per scale factor, the degree and order 

of the gravity field was limited to 50. The time frame of the mission was set to 2 Earth years, which 

covers the nominal and the extended mission phases. The distribution of some important harmonic 

coefficients was checked and the impact of the gravitational and non-gravitational forces affecting 

the motion of MPO was determined. As expected, the main accelerations are caused by the gravity 

field of Mercury, followed by the gravity force of the Sun. The third and fourth disturbing forces are 

the solar radiation pressure and indirect radiation pressure. The smallest perturbations are caused by 

the remaining solar system bodies.  

The simulations of the orbital evolution of MPO were performed using the generated gravity fields of 

Mercury with the scale factors 1, 3, 5 and 10. The results of the simulations were analyzed and 

compared with each other. The evolution of the orbit of MPO is expressed in the orbital elements. 

The analysis is mainly focused on the periherm as the minimal distance to the surface of Mercury is 

critical for the mission. The results show that the geopotential of Mercury causes an increase in the 

eccentricity and a decrease in the periherm altitude. The semi-major axis and the inclination have a 

periodic character but remain almost constant. The longitude of ascending node decreases slowly 

with periodic fluctuations. The argument of periapsis falls almost linear. The standard deviations, as 

well as the difference between the minimal and maximal values get larger with a growing scale factor 

and over time. The values of the elements are still in an acceptable range after the first year. The 

change in the periherm after 2 years could already be considered as critical in some cases for the 

scale factor 1 because the periherm falls below critical value of 200 km. Moreover, the likelihood that 

the periherm is below 200 km after 2 years increases with the rising scale factor. Furthermore, there 

is a possibility that the satellite collides with the planet in the simulations for the scale factor 5 and 

10.  

The influence of the harmonic coefficients 𝐽2, 𝐽3 and 𝐽4 on the longitude of ascending node, 

argument of periapsis and the eccentricity was investigated analytically which allows for an 

estimation of the effect of these coefficients, assuming the linear tendency.  

In addition, the influence of the gravity of the Sun was investigated. The results show that the Sun 

has positive effect on the evolution of the periherm after 2 years. Taking into account Mercury’s 

gravity field, the gravity of the Sun, radiation pressure and the solar system bodies, the results of the 

simulations are very similar to the case with the consideration of the geopotential of Mercury and of 

the Sun. Thus, the orbital evolution of MPO in mainly affected by the gravity of Mercury and the Sun. 
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Zusammenfassung  

Die vorliegende Bachelorarbeit untersucht die Auswirkungen des Schwerefeldes des Merkurs auf die 

Umlaufbahn des Mercury Planetary Orbiters (MPOs). Der MPO ist Teil der europäisch-japanischen 

Mission BepiColombo, die im Oktober 2018 startete. Das Schwerefeld von Merkur wurde durch die 

NASA’s Mission MESSENGER vermessen, welche den Merkur bis zum Jahr 2015 umkreiste. Wegen 

der hoch elliptischen Umlaufbahn von MESSENGER sind die Koeffizienten der Multipolentwicklung 

des Schwerefeldes mit Fehlern behaftet. Somit ist die Bahnentwicklung des MPOs nicht eindeutig 

vorhersagbar. Aus diesem Grund wurden verschiedene mögliche Schwerefelder mit einer Monte 

Carlo Methode erzeugt. Zur Erzeugung der zufälligen Schwerefelder wurden die Koeffizienten des 

von MESSENGER bestimmten 100x100 Schwerefeldes und deren Unsicherheiten verwendet. Die 

dafür verwendete normalverteilte Funktion, wurde in einen nummerischen Integrator implementiert, 

der am DLR Berlin entwickelt und für den durchgeführten Simulationen benutzt wurde. Außerdem 

wurden Skalierungsfaktoren von 1, 3, 5 und 10 für die Erzeugung der Schwerefelder genutzt. 

Vor der Durchführung der Simulationen für die Bahnbestimmung von MPO wurden zuerst die 

Randbedingungen bestimmt. Die Anzahl an Simulationen wurde auf Grund der Berechnungsdauer 

auf 10000 festgelegt. Grad und Ordnung des Schwerefeldes wurden ebenfalls auf Grund der 

Berechnungsdauer und der geringen Relevanz der höheren Terme auf 50 begrenzt. Die 

Missionsdauer wurde auf 2 Erdenjahre festgelegt, da dieser Zeitraum die nominale und erweiterte 

Mission abdeckt. Die Verteilung von relevanten Koeffizienten wurde überprüft und der Einfluss von 

gravitativen sowie nicht gravitativen Kräften bestimmt. Wie erwartet werden die größten 

Störbeschleunigungen durch das Schwerefeld des Merkurs und durch die Sonne verursacht. Weitere 

relevante Störbeschleunigungen sind der Sonnenstrahlungsdruck und der indirekte Strahlungsdruck. 

Die kleinesten Störungen werden durch die Planeten des Sonnensystems verursacht.  

Mit den verschiedenen Schwerefeldern konnten dann die Simulationen der Bahnentwicklung 

durchgeführt und die Auswirkungen der einzelnen Skalierungsfaktoren analysiert und miteinander 

verglichen werden.  

Die Bahnentwicklung wird in dieser Arbeit mit Bahnelementen beschrieben. Der Schwerpunkt der 

Analyse liegt dabei auf dem Periherm. Die Ergebnisse zeigen, dass das Geopotential von Merkur 

einen Anstieg der Exzentrizität und somit einen Abfall des Periherms verursacht. Die große Halbachse 

und die Inklination haben einen periodischen Charakter, bleiben aber nahezu konstant. Die Länge des 

aufsteigenden Knoten sinkt langsam mit periodischen Oszillationen. Das Argument der Periapsis fällt 

nahezu linear. Die Standardabweichungen, sowie die Differenz zwischen den maximalen und 

minimalen Werten werden breiter mit steigendem Skalierungsfaktor und zunehmender Zeit. Die 

Werte der Bahnelemente liegen nach einem Jahr im Orbit in einem unkritischen Bereich. Nach 2 

Jahren fällt das Periherm selbst bei einem Skalierungsfaktor von 1 in einigen Fällen allerdings schon 

unter den kritischen Wert von 200 km. Dieses Risiko nimmt mit steigendem Skalierungsfaktor zu. 

Darüber hinaus ist es sogar möglich, dass die Raumsonde mit dem Planeten kollidiert, was in den 

Simulationen ab Skalierungsfaktor 5 teilweise aufgetreten ist.  

Der Einfluss der Koeffizienten 𝐽2, 𝐽3 and 𝐽4 auf die Länge des aufsteigenden Knoten, das Argument 

der Periapsis und die Exzentrizität wurde analytisch untersucht. Diese Analyse dient nur zur 

Einschätzung des Effekts der Koeffizienten, ausgehend von einer linearen Tendenz.  

Zusätzlich wurde der Einfluss der Gravitation der Sonne untersucht. Die Ergebnisse zeigen, dass die 

Sonne in allen Fällen einen positiven Effekt auf die Entwicklung des Periherms hat. Darüber hinaus 

wurde eine Untersuchung über den Einfluss des Strahlungsdrucks sowie die Planeten des 
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Sonnensystems durchgeführt. Die Ergebnisse zeigen, dass die Umlaufbahnentwicklung des MPOs 

hauptsächlich vom Schwerefeld des Merkurs und durch die Gravitationskraft der Sonne beeinflusst 

wird. Der Strahlungsdruck und die Planeten des Sonnensystems haben einen vernachlässigbaren 

Effekt.  
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1. Introduction 

Mercury is the innermost and smallest planet in the Solar System which is difficult to explore because 

it is very close to the Sun. The first mission to Mercury was Mariner 10 by National Aeronautics and 

Space Administration (NASA). During the three flybys of the planet, 45 per cent of the surface area 

was mapped and the first measured values for the gravity field as well as for the magnetic field of 

Mercury were provided.  

MESSENGER was the second NASA-Mission that succeeded to research the planet from a high 

elliptical polar Mercury orbit. MESSENGER was able to carry out global mapping, analysis of the 

interior structure and of the polar caps, as well as to explore the exosphere and the magnetosphere. 

Mercury’s gravity field was determined from radio tracking data of the three Mercury flybys in 2008 

and 2009 and orbital observation between 2011 and 2015. This data serves as foundation for this 

bachelor thesis.  

However, there were questions left to be answered by MESSENGER. Therefore, the European Space 

Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) decided to join forces and sent the 

space mission BepiColombo to Mercury. The Mission started with the Ariane-5 rocket on October 20, 

2018.  BepiColombo will swing into the Mercury orbit after flybys of Earth, Venus and Mercury in 

2025. BepiColombo consists of two spacecrafts: The Mercury Planetary Orbiter (MPO) by ESA, and 

the Mercury Magnetospheric Orbiter (MMO) by JAXA.  

BepiColombo will investigate planet characteristics, the composition and dynamics of the exosphere, 

the structure and origin of the magnetic field of Mercury. The objectives of MPO are surface mapping 

and the exploration of the interior composition of the planet. The aim of MMO is to research the 

magnetic field and its interaction with the Solar wind.  

The MPO carries a payload of 11 science instruments, i.a. Laser Altimeter BELA, developed by 

German Aerospace Center Adlershof (Deusches Zentrum für Luft- and Raumfahrt, abbreviated DLR). 

A low polar orbit is planned for the MPO, one that will change because of different perturbations. 

The major orbit perturbations will be caused by the gravitational potential of Mercury. By means of 

MESSENGER gathering data, a model of the gravity field was determined.  

The objective of this bachelor thesis is the investigation of the consequences of the gravity field of 
Mercury on the orbit of MPO. Since the gravity field wasn’t determined accurately, the gravitational 
harmonic coefficients are afflicted with uncertainties. Therefore, the orbital evolution of MPO is 
predictable, but with some inaccuracies. Within the framework of this bachelor thesis, different 
possible gravity fields were generated which lie within the margin of error of the gravity field, 
obtained by MESSENGER. The possible consequences on the orbital evolution of MPO were defined 
and analysed using a Monte Carlo Method. The analysis may help improving future predictions made 
about the evolution of MPO. It could also assist in estimating the possible operating time.  
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2. Mercury 

Mercury is the innermost planet in the solar system which is locked with the Sun in a 3:2 spin-orbit 

resonance. It means that Mercury rotates on its axis three times during the two revolutions around 

the Sun [Stark, 2015]. The rotation of Mercury amounts to 58.646 Earth days [Mazarico et al., 2014] 

with rotational rate of 6.1385° per day [Archinal et al., 2018], whereas one Mercury’s year lasts 

87.969 Earth days [Mazarico et al, 2014]. As a consequence of the 3:2 spin-orbit resonance, the 

Mercury day, which is defined as the time between successive sunrises, is twice longer than the 

Mercury’s year [Rothery, 2015]. Such rotational motion can be explained by “the Sun’s torque on the 

asymmetric mass distribution of Mercury” [Stark, 2015]. The planet follows a highly elliptical orbit 

with the eccentricity of 0.206 [Tresaco et al., 2018]. Therefore, the difference between Mercury’s 

perihelion (the closest point to the Sun) and aphelion (the farthest point) is large. The distance at 

perihelion accounts for 0.31 AU from the Sun, but at aphelion, it is 0.47 AU [Strom, 1987], the semi-

major axis is 56.7 million km [Stark, 2015]. The inclination of the orbit of Mercury amounts to 7° to 

the ecliptic plane (plane of Earth’s orbit), whereas its axial tilt is almost zero and accounts for 

2.036+/-0.058 arcminutes [Margot et al., 2017] 

Mercury is the smallest terrestrial planet in the solar system which like Venus has no moons. Its 

mean radius amounts to 2439.36 +/- 0.02 km [Perry et al., 2015] which is a little bigger than the 

mean radius of the Earth’s Moon with 1734.4 km [Williams et al., 2017]. The mass of the planet 

accounts for 3.30111 +/-0.00015∙1023 kg [Margot et al., 2017]. Mercury’s bulk density is anomalously 

high with 5,429.30 +/- 0.28 kg/m3 and similar to the Earth’s with ρ = 5,514 kg/m3, although the size of 

the both planets is different [Margot et al., 2017]. The explanation of the high uncompressed density 

of the planet lies in a large core almost dominated by iron which “should by alloyed with one or more 

light elements” [Hauck et al., 2013] such as silicon and sulfur. Mercury interior structure can be 

represented as a 4-shell model in which there are inner solid core, outer liquid core with the radius 

of 1,985+/-39 km, mantle and crust [Genova et al, 2018] (see Figure 1).  

 

Figure 1. Mercury’s interior structure [Genova et al, 2018] 

Mercury is heavily cratered planet. The Caloris basin is one of the largest impact basins on Mercury 
with the diameter of 1,550 km.  The planet also demonstrates an effusive volcanism based on 
extensive lava flows [Rothery, 2015].  

Mercury like Earth possesses a large-scale magnetic field [Johnson et al., 2012] with a north-south 

asymmetry [Rothery, 2015]. The planet presents a dipolar internal field of dynamo origin with the 
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same polarity as Earth’s field [Johnson et al., 2012]. The strength of Mercury’s surface magnetic field 

accounts for about 1 % of the Earth’s. The magnetosphere of Mercury is about 8 times smaller than 

the Earth’s because of high solar wind pressure and Mercury’s weak dipole moment [Johnson et al., 

2012].  

Mercury has no atmosphere, but ‘surface-bounded’ exosphere which contents calcium, sodium, 

magnesium, potassium, oxygen, hydrogen and helium. Mercury’s exosphere is about 1013 times 

smaller than the Earth’s atmosphere, while the atmospheric pressure at the Mercury’s surface is 

approximately only 10-15 of the Earth’s. The temperature on the surface of Mercury varies very strong 

and is between 100 K on night side and 700 K on the sunward side [Rothery, 2015].   

The exploration of Mercury is important for understanding of formation and evolution of other 

terrestrial planets in our Solar System [Kato et al., 2012], but the investigation of this planet is very 

challenging. At first, it is difficult to observe the planet telescopically and to photograph it from the 

Earth due to “Mercury’s small size, low reflectivity, and close proximity to the Sun” [Perry et al., 

2015]. Secondly, it is hard to orbit the planet by space probe due to gravitational potential of the 

Sun. Thirdly, the thermal environment, consisting of increased solar radiance and the thermal 

radiation from the planet, is hostile [Balogh et al., 2007]. For this reason, only two spacecraft visited 

the planet: Mariner 10, which performed three flybys of Mercury, and MESSENGER which was 

orbiting the planet between 2011 and 2015 after three flybys of Mercury. The third mission, 

BepiColombo is on the way to Mercury and will swing into the orbit approximately in 2025. 
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3. Missions to Mercury 

3.1. Mariner 10 

The first spacecraft to visit Mercury was Mariner 10 led by NASA. It was launched on November 3, 

1973 by an Atlas/Centaur rocket with seven scientific instruments on board. Mariner 10 was the first 

spacecraft to use gravity-assist for speed reduction and for changing the trajectory without using 

valuable fuel [Strom, 1987]. It had three flybys around Mercury in March and September 1974 and 

March 1975 [Rothery, 2015]. During the encounters with the planet, the space probe succeeded in 

mapping the surface area covered heavily with craters. The obtained data gave new information 

about the origin of the magnetic field which is “internally generated and similar in form to the Earth’s 

field”. [Strom, 1987] The first measurements of the low-degree gravity were also provided. The 

gravitational coefficient GM and the gravitational harmonic coefficients 𝐶20 and 𝐶22 were estimated 

[Mazarico et al., 2014]. The radius and the mass of Mercury were measured more accurately than 

“previous Earth-based determinations” [Strom, 1987]. Furthermore, the probe was able to 

determine that Mercury has no atmosphere but possesses an “exosphere”.  

Mariner 10 provided important information about the structure, the interior, the gravity field, as well 

as the magnetic field of Mercury.  

3.2. MESSENGER 

The NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) was the 

first probe to orbit and Mercury launched on August 3, 2004 on a Delta II rocket [Rothery, 2015]. 

MESSENGER carried a payload of seven instruments and radio science [Solomon et al., 2007] which 

are listed in Table 1. MLA and RS were the most relevant for the investigation of the planet’s interior 

in that they obtained data, which allowed for a determination of Mercury’s gravitational field, 

rotation and tides [Genova et al., 2018].  

Acronym Description 

GRNS Gamma-Ray and Neutron Spectrometer 
XRS X-Ray Spectrometer 
MDIS Mercury Dual Imaging System 
MAG MAGnetometer 
MLA Mercury Laser Altimeter 
MASCS Mercury Atmospheric and Surface Composition Spectrometer 
EPPS Energetic Particle and Plasma Spectrometer 
RS Radio Science 
Table 1. Scientific instruments on board of MESSENGER [Solomon et al., 2007] 

After one Earth flyby in 2005 and two Venus flybys in 2006 and 2007, MESSENGER executed Mercury 

flyby 1 and in January and October 2008. During both encounters, MESSENGER succeeded in: 

- imaging about 90 % of the planet with a 2-km resolution; 

- mapping the neutral-atom tails of sodium and calcium; 

- discovering tail structure of exospheric magnesium; 

- the first laser ranging; 

- the observing the internal magnetic field of Mercury under different solar-wind conditions, 

etc [McNutt et al., 2010].  
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After the third encounter in 2009, 98 % of the planet was imaged, seasonal changes in exosphere 

observed and the magnetic field confirmed. “Each flyby passed within 200 km of the surface of 

Mercury” [Rothery, 2015]. 

MESSENGER was inserted into orbit about Mercury in March 2011 [Mazarico et al., 2014]. Its initial 

orbit of 200 km × 15,200 km was highly eccentric with an orbital period of 12.07 hours. It led to that 

the northern hemisphere was mainly covered, while the southern part was poorly studied [Schuster 

and Jehn, 2014]. The mission was set to one Earth year and then extended by four Earth years until it 

ran out of fuel and crashed into the planet in April 2015 [Rothery, 2015].  

During the orbiting of Mercury, MESSENGER mapped the landforms and the surface topography of 

the planet [ESA, 2019a], examined the mineralogy of the surface and content of the exosphere, 

measured and identified the impact craters, provided evidence of volcanism in Mercury’s past, and 

discovered the youngest shallows, called “hollows” [ESA, 2019a], [McNutt et al., 2010], [Rothery, 

2015]. Furthermore, the spacecraft measured the magnetic field and identified its north-south 

asymmetry and explored that the magnetosphere of Mercury is remarkably dynamic [Rothery, 2015]. 

Moreover, the data gathered from the spacecraft helped to determine accurate values for the radius, 

mass, density, moment of inertia, as well as the thickness and structure of the crust [ESA, 2019a]. 

Thanks to MESSNGER's radio tracking data, the gravitational coefficient GM and gravitational 

harmonic coefficients in the degree and order of 100 (see Figure 6), together with their improved 

uncertainties were estimated [Mazarico, 2018]. The gravitational harmonic coefficients are important 

for understanding the structure of Mercury’s interior and the long-term evolution of a spacecraft 

orbit [Mazarico et al., 2014].  

3.3. BepiColombo 

BepiColombo is the third mission to go to Mercury which started with the Ariane-5 rocket from the 

European Spaceport in Kourou on October 20, 2018. The BepiColombo mission is a joint project of 

ESA and JAXA which consists of two spacecrafts: The Mercury Planetary Orbiter (MPO) led by ESA 

and the Mercury Magnetic Orbiter (MMO) led by the Institute of Space Astronautical Science (ISAS) 

at JAXA [ESA, 2019b]. MPO and MMO are transported to Mercury by a Mercury Transfer Module 

(MTM) which provides solar-electric propulsion and all services required en route after separation 

from the launcher. MTM will be jettisoned shortly before Mercury orbit insertion. The MMO 

Sunshield and Interface Structure (MOSIF) provides the thermal protection as well as mechanical and 

electrical interfaces for MMO. The European Space Operations Centre (ESOC) in Darmstadt, 

Germany, coordinates the mission using the Cebreros 35 m antenna in Spain. After swinging into final 

orbits, MMO will be operated by the ISAS/JAXA Sagamihara Space Operation Centre while ECOS will 

continue to coordinate MPO [Rothery, 2015], [ESA, 2019b].  

After one Earth flyby, two encounters with Venus and six Mercury flybys, BepiColombo will arrive the 

planet in December 2025, at which point MMO will be released. MPO will swing into orbit in March 

2026. The MMO will have a polar 590 km × 11640 km orbit with a period of about 9.3 hours. The 

orbit of MMO will coplanar with of MPO’s orbit. During the mission, which was set to one Earth year, 

with a possible extension by one further Earth year, MPO will image and map Mercury, while MMO 

will explore the magnetic environment of the planet and its interactions with the solar wind [ESA, 

2019e].  

Sine there were questions left to be answered by MESSENGER, BepiColombo has the following goals: 

• Exploration of the origin and the evolution of Mercury close to the Sun; 
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• Research of the interior structure and the composition of the planet, inter alia the size and 

the composition of the core; 

• Investigation of the surface geology and the crater history; 

• Examination of the composition and the dynamics of the exosphere; 

• Exploration of the structure and the dynamics of the magnetosphere and determination of 

its origin; 

• Test of Einstein’s theory of general relativity; 

• Examination of the composition and the origin of polar deposits; 

• Investigation of cosmic environment [ESA, 2019c]. 

3.4. MPO 

As mentioned above, the MPO’s main goal is to investigate the surface and the interior of Mercury. 
In order to achieve the science objectives, MPO has 11 science instruments on board, inter alia the 
laser altimeter BELA developed by DLR in Adlershof, Berlin. BELA will map the global shape and the 
topography of Mercury, determine the tidal deformation of the surface, explore the surface 
roughness and albedo, as well as support the navigation [Lüdicke, 2019], [Rothery, 2015]. The 
instruments of MPO are summarized in Table 2. 

Acronym Description 

BELA BepiColombo Laser Altimeter 
ISA Italian Spring Accelerometer 
MPO-MAG Mercury Planetary Orbiter MAGnetometer 
MERTIS MErcury Radiometer and Thermal Infrared Spectrometer 
MGNS Mercury Gamma-ray and Neutron Spectrometer 
MIXS Mercury Imaging X-ray Spectrometer 
MORE Mercury Orbiter Radio-science Experiment 
PHEBUS Probing of Hermean Exosphere by Ultraviolet Spectroscopy 
SERENA Search for Exospheric Refilling and Emitted Natural Abundance 
SIMBIO-SYS Spectrometer and Imagers for MPO BepiColombo Integrated Observatory SYStem 
SIXS Solar Intensity X-ray and particle Spectrometer 
Table 2. The instruments on board of MPO [ESA c, 2019] 

MPO is a three-axis stabilized and nadir pointing spacecraft whose ‘dry mass’ accounts for 1,150 kg, 

whereas its payload weight is 80 kg. The spacecraft is insulated by a heat pipes feeding radiator panel 

in order to cope with the thermal environment in Mercury orbit [Rothery, 2015]. The three-panel 

solar array will provide the electrical power of about 1,000 W and there will be a battery capable of 

similar support for approximately an hour. The telecommunications are performed via two fixed in 

MPO Low-Gain Antennas, a steerable Medium-Gain Antenna and a steerable High-Gain Antenna. The 

rate of data transmission will depend on the Earth-Mercury distance and the visibility of ground 

stations. The downlinked data volume will amount to about 1,550 Gbits per year. The principal 

Altitude and Orbit Control System comprises Star Trackers, Inertial Measurement Units, Fine Sun 

sensors, reaction wheal assemblies, sets of 22-Newton hydrazine/MON-3 (Mixed Oxides of Nitrogen) 

thrusters needed for the change in velocity, as well as 10-Newton monopropellant thruster for 

altitude control and reaction wheel momentum [ESA, 2019e], [ESA, 2019f], [Rothery, 2019].  
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Figure 2. MPO in the orbit about Mercury [ESA, 2019g] 

MPO will have a polar eccentric 480 km × 1500 km orbit with a period of about 2.3 Earth hours (see 
Figure 2). This orbit will allow for the study the southern hemisphere from low latitude. The detailed 
information about the orbit parameter and dimensions of MPO are represented below in Table 4, 
Table 9 and Table 10.   
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4. Theoretical background  

4.1. Unperturbed orbit 

The motion of a spacecraft under the space conditions is fundamentally defined by the gravity. The 

Newton’s gravity law is the source of every calculation for the spacecraft around a central body 

which can be formulated as: 

𝐹 = −
𝐺𝑀𝑚

𝑟2
 (1) 

Here F denotes the gravitational force, G depicts the universal gravitational constant with 6.6729 ±

0.00085 ⋅
10−11𝑚3

𝑘𝑔⋅𝑠2 , M is the mass of the central body, m represents the mass of the satellite and r is 

the distance between the centres of mass [Ley et al., 2011]. This inverse-square law describes the 

gravitation attraction of the central body, in following a planet, which is considered as a point-like 

mass built up of concentric shell of constant density.  

Hence, unperturbed motion of the satellite under the influence of the force F (equation 1) with an 

assumption, that the total mass of the planet is concentrated in the center of the coordinate system, 

can be described by the following equation: 

𝑟̈ = −
𝐺𝑀

𝑟3
𝒓 (2) 

Here, the fraction – 𝒓 / 𝑟 denotes a unit vector pointing from the satellite to the center of the planet 

in a non-rotating geocentric coordinate system [Montenbruck and Gill, 2000]. 

 

Figure 3. Angular orbital elements of a satellite around the central body [Schuster and Jehn, 2014] 

The equation of the satellite motion is described by a sixth-order scalar differential equation which 

requires six initial conditions in order to determine the six constants of integration. These will be the 

three components of position (𝑥, 𝑦, 𝑧) and of velocity (𝑣𝑥, 𝑣𝑦, 𝑣𝑧). A standard way of specifying an 

orbit is to use the six orbital elements, so-called Kepler’s elements, which define the orbit and 

position of the body along it in an inertial reference frame [Fortescue et al., 2011]. The first group 

comprises three elements: inclination i, longitude of ascending node Ω, and argument of periapsis ω, 

which all three describe the orientation of the orbit with regard to an inertial reference system. 

Eccentricity e and semi-major axis a give information about the type and size of the orbit. The last 

element, mean anomaly M, represents the position of the body along the orbit. The angular orbital 
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elements of the satellite orbit are shown in Figure 3. The definition of the orbital element is 

summarized in Table 3. 

Orbital elements 
Definition 

Acronym Description 

a Semi-major axis The mean value of the maximum and minimum distance 
of the satellite to the central body.  

e Eccentricity Determination of the type of the orbit: 

• Circle when e = 0; 

• Ellipse when 0 < e < 1; 

• Parabola when e = 1; 

• Hyperbola when e > 1. 
i Inclination Angle of intersection of the equatorial plane and the 

satellite’s orbit. 
Ω Longitude of ascending 

node 
Angle between X-axis and the point on the orbit, at which 
the satellite crosses the equator from south to north. 

ω Argument of periapsis Angle between the direction of the ascending node and 
the direction of the perigee.  

M Mean anomaly M is defined as M = n∙(t – tp) where n is mean motion and 
tp denotes the time of perigee passage; it changes by 
360° during one revolution and increases uniformly with 
the time [Montenbruck and Gill, 2000]. 

Table 3. The definition of the satellite’s Kepler’s elements  

4.2. Orbit perturbations 

Section 4.1 considers unperturbable Kepler orbit elements with regards to the physics of Newton and 

Kepler. These elements remain constant over time. The reference frame used by this consideration is 

an inertial coordinate system, i.e. non-rotating with respect to stars.  

Since the realistic distribution of the mass of planets is non-uniform and aspheric, the equation 2 is 

not valid for the realistic consideration. Furthermore, there are additional perturbing forces which 

act on the spacecraft, e.g. the gravity forces of additional masses that provide secondary 

gravitational fields [Fortescue et al., 2011], in case of Mercury orbit, the Sun provides such force.  

The equation of motion for the spacecraft around the planet taken into account perturbative 

influence can be formulated detailed [Damme, 2011]: 

𝒓̈ = −
𝐺𝑀

𝑟3
𝒓 + 𝛴𝒓̈𝑃𝐵(𝑟, 𝑡) + 𝒓̈𝐺𝑒𝑜𝑝(𝒓, 𝑡) + 𝒓̈𝑅𝑃(𝒓, 𝑡) + 𝒓̈𝐴𝑡𝑚(𝒓, 𝒓̇, 𝑡) + 𝑟̈𝑇𝑖𝑙𝑡(𝒓, 𝑡) (3) 

The first term shows the gravity acceleration due to the central term of the central body, the second 

term summarizes the acceleration caused by the gravity forces of other bodies considering as a 

point-like mass. The third term describes the perturbations due to the higher term of the gravity field 

of the planet, about which the spacecraft orbits. The fourth term represents the influence of the 

radiation pressure which comprises the solar radiation pressure, the thermal radiation pressure and 

the albedo of the planet. The fifth term denotes the acceleration because of the atmospheric drags. 

The sixth term encompasses the effect of the tidal forces on the orbit evolution of the spacecraft. 

Moreover, the motion of the space probe may be also affected by the action of an onboard thruster 

system. Furthermore, relativistic effects should be taken into account by the prediction of orbital 

evolution of the satellite [Montenbruck and Gill, 2000]. 
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4.2.1. Geopotential 

The force induced by the gravity field of the planet can be expressed as the gradient of a certain 

potential U. It is written in terms of the position vector r of the spacecraft with regards to the central 

planet [Tresaco et al., 2018]: 

𝑟̈ = 𝛻𝑈 (4) 
with 

𝑈 =
𝐺𝑀

𝑟
  (5) 

The potential can be expressed by an arbitrary mass distribution which comprises the sum of the 

contributions created by individual mass element ⅆ𝑚 = 𝜌(𝑠) ⅆ3𝑠 according to  

𝑈 = 𝐺∫
𝜌(𝑠) ⅆ3𝑠

|𝑟 − 𝑠|
  (6) 

Here ρ(s) denotes the density at some point s inside the planet and |r-s| is the spacecraft’s distance 

from this place (see Figure 4).  

 

Figure 4. The mass element in the geopotential (adapted from [Montenbruck and Gill, 2000]) 

The inverse of the distance can be expanded in series of Legendre polynomials:  

1

|𝑟 − 𝑠|
=

1

𝑟
∑ (

𝑠

𝑟
)

𝑛

𝑃𝑛(𝑐𝑜𝑠𝛾)

∞

𝑛=0

 (7) 

with r > s and 𝑐𝑜𝑠 𝛾 =
𝑟⋅𝑠

𝑟𝑠
, where 𝑃𝑛(𝑢) is the Legendre polynomial of degree n and γ denotes the 

angle between r and s. The Legendre polynomial is defined as: 

 𝑃𝑛(𝑢) =
1

2𝑛𝑛!

ⅆ𝑛

ⅆ𝑢𝑛
(𝑢2 − 1)𝑛 (8) 

For this consideration, the geographic longitude λ, which is counted positively towards the East, and 

the geographic latitude 𝜙 for the position of the spacecraft r, as well as 𝜆′ and 𝜙′ for the position of 

the mass element s will be introduced. The vectors 𝑟̅ and 𝑠̅ are expressed by:  

𝑟̅ = (
𝑥
𝑦
𝑧

) = (

𝑟𝑐𝑜𝑠𝜙 cos 𝜆 
𝑟𝑐𝑜𝑠𝜙 𝑠𝑖𝑛 𝜆

𝑟𝑠𝑖𝑛𝜙
)        (9) 𝑠̅ = (

𝑥′ 
𝑦′

𝑧′

) = (

𝑠𝑐𝑜𝑠𝜙′ 𝑐𝑜𝑠 𝜆′

𝑠𝑐𝑜𝑠𝜙′ 𝑠𝑖𝑛 𝜆′

𝑠 𝑠𝑖𝑛𝜙′ 
)      (10) 
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Using the addition theorem of Legendre polynomials, the Legendre polynomial can be expressed as: 

𝑃𝑛(𝑐𝑜𝑠 𝛾) = ∑ (2 − 𝛿0𝑚)
(𝑛−𝑚)!

(𝑛+𝑚)!

𝑛

𝑚=0
 𝑃𝑛𝑚 (𝑠𝑖𝑛 𝜙) 𝑃𝑛𝑚 (𝑠𝑖𝑛 𝜙′)𝑐𝑜𝑠(𝑚(𝜆 − 𝜆′)) (11) 

 

Here  𝑃𝑛𝑚 is the associated Legendre polynomial of degree n and order m, which is defined as 

[Montenbruck and Gill, 2000]: 

𝑃𝑛𝑚 (𝑢) = (1 − 𝑢2)
𝑚

2   
ⅆ𝑚

ⅆ𝑢𝑚 𝑃𝑛(𝑢) (12) 

 

The symbol 𝛿0𝑚 represents the Kronecker delta which is equal 1 for m = 0 and 0 for m ≠ 0 [Kaula, 

2000]. 

Using equation 11, the gravity potential of the planet can be described by the following formula: 

𝑈 =
𝐺𝑀

𝑟
 ∑ ∑

𝑅𝑛

𝑟𝑛 𝑃𝑛𝑚

𝑛

𝑚=0

∞

𝑛=0

(𝑠𝑖𝑛𝜙)(𝐶𝑛𝑚 𝑐𝑜𝑠(𝑚𝜆) +  𝑆𝑛𝑚 𝑠𝑖𝑛(𝑚𝜆)) (13) 

Here R denotes the average radius of the planet,  𝐶𝑛𝑚  and 𝑆𝑛𝑚 are the geopotential harmonic 

coefficients which describe the dependency on the planet’s internal mass distribution. These 

coefficients are defined as: 

𝐶𝑛𝑚 = 
2−𝛿0𝑚

𝑀
 
(𝑛−𝑚)!

(𝑛+𝑚)!
 ∫

𝑠𝑛

𝑅𝑛  𝑃𝑛𝑚 (𝑠𝑖𝑛 𝜙′) 𝑐𝑜𝑠(𝑚 𝜆′) 𝜌(𝑠) ⅆ3𝑠 (14) 

 

𝑆𝑛𝑚 = 
2−𝛿0𝑚

𝑀
 
(𝑛−𝑚)!

(𝑛+𝑚)!
 ∫

𝑠𝑛

𝑅𝑛  𝑃𝑛𝑚 (𝑠𝑖𝑛 𝜙′) 𝑠𝑖𝑛(𝑚 𝜆′) 𝜌(𝑠) ⅆ3𝑠 (15) 

In order to make the harmonic coefficients more readable [Kaula, 2000], they are normally used in a 

normalized form: 

𝐶𝑛̅𝑚 =   √
(𝑛 + 𝑚)!

(2 − 𝛿0𝑚)(2 ⋅ 𝑛 + 1)(𝑛 − 𝑚)!
 𝐶𝑛𝑚 (16) 

 

𝑆𝑛̅𝑚 =   √
(𝑛 + 𝑚)!

(2 − 𝛿0𝑚)(2 ⋅ 𝑛 + 1)(𝑛 − 𝑚)!
 𝑆𝑛𝑚 (17) 

The acceleration due to the gravity potential of the planet, using the normalized harmonic 

coefficients, can be rewritten as: 

𝑟̈ = 𝛻
𝐺𝑀

𝑟
 ∑ ∑

𝑅𝑛

𝑟𝑛 𝑃̅𝑛𝑚

𝑛

𝑚=0

∞

𝑛=0

(𝑠𝑖𝑛𝜙)(𝐶𝑛̅𝑚 𝑐𝑜𝑠(𝑚𝜆) +  𝑆𝑛̅𝑚 𝑠𝑖𝑛(𝑚𝜆)) (18) 

where 𝑃̅𝑛𝑚 are the normalized associated Legendre functions, which are defined as [Montenbruck 

and Gill, 2000]: 

𝑃̅𝑛𝑚 =  √
(2 − 𝛿0𝑚)(2 ⋅ 𝑛 + 1)(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
 𝑃𝑛𝑚 (19) 
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As it can be seen in equation 13, the gravity potential depends on the universal gravitational constant 

G, the planet’s mass M and radius r and harmonic coefficients 𝐶𝑛𝑚 and 𝑆𝑛𝑚. 

 

4.2.2. Geopotential coefficients 

The gravitational harmonic coefficients 𝐶𝑛𝑚 and 𝑆𝑛𝑚 with m = 0 are called zonal coefficients and 

independent of the longitude [Tresaco et al., 2018]. The coefficients 𝐶𝑛0 are usually expressed by 𝐽𝑛 

with 𝐽𝑛= - 𝐶𝑛0. All 𝑆𝑛0 vanish because of their definition [Montenbruck and Gill, 2000]. The even 

zonal coefficients are symmetric about the equator while the odd zonal coefficients are 

antisymmetric about the equator and describe the pear-shape asymmetry of the planet [Tresaco et 

al., 2018]. The geopotential coefficients with m < n are called tesseral coefficients and with m = n 

sectorial coefficients [Montenbruck and Gill, 2000]. They depend on longitude [Tresaco et al., 2018]. 

Furthermore, the harmonic coefficient 𝐶00  is always equal to 1, so the first term in the expansion of 

the planet’s potential represents the potential reduced to that of a point-like mass [Montenbruck 

and Gill, 2000]. 

Moreover, the coefficient 𝐶22, which describes the equatorial flattening of the planet [Verma and 

Margot, 2016], plays a key role in the gravity field of Mercury. The coefficients 𝐽2  and 𝐽3 show the 

non-sphericity of Mercury [Tresaco et al., 2018]. In particular, 𝐽2 represents the oblateness of the 

planet while 𝐽3 encompasses the North-South mass asymmetry (pear-shape) of Mercury [Khan and 

Rocchi, 2018]. Some types of the spherical harmonics are presented in Figure 5. 

 

Figure 5. Spherical harmonics [Tresaco et al., 2018] 
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5. Data and methods 

5.1. Data used to generate random gravity fields  

Generating random gravity fields was performed using the updated and extended 100×100 gravity 
field determined by Erwan Mazarico and his team at NASA GSFC (Goddard Space Flight Center) on 
June 18, 2018 and released by the Geosciences Node of NASA's Planetary Data System (PDS). The 
gravity field data is based on 7 years of the MESSENGER radio tracking data obtained from the three 
Mercury flybys in 2008 and 2009 [Mazarico et al., 2014] and orbital observation between March 

2011 and April 2015. For the calculation of the gravity field, a Kaula rule1 of 
3.0⋅10−5

𝐿2  was applied, 

where L is degree of the gravity field. The file with data is represented in binary form and consists of 
four binary tables: a header table with descriptive information about the spherical harmonic 
coefficients, a names table with the names of the coefficients, a coefficients table with coefficient 
values and a covariance table with the covariance values for the spherical harmonic model 
coefficients [Mazarico, 2018].  
The file with the gravity field for Mercury was obtained from the binary file by DLR and has a form 
represented in Figure 6. It consists of a header containing additional information and a list of data 
with spherical harmonic coefficients.  
The header has eight units:  

• Reference radius of Mercury 𝑟𝑀 in km, proceeding from sphericity of the planet; 

• Gravitational coefficient GM of Mercury in  
𝑘𝑚3

𝑠2  for a gravity field model; 

• Uncertainty in gravitational coefficient GM in 
𝑘𝑚3

𝑠2  for a gravity field model; 

• Degree of the gravity field; 

• Order of the gravity field; 

• Normalization state that shows whether the harmonic coefficients are normalized or not:  

- 0 if coefficients are not normalized; 

- 1 if coefficients are normalized; 

• Reference longitude of the spherical harmonic expansion; 

• Reference latitude of the spherical harmonic expansion. 

The table of coefficients includes the coefficients for the spherical harmonic model in degree and 
order of 100. The first and the second columns in this table represent the degree index m and the 
order index n respectively. The next two columns denote the coefficients 𝐶𝑛𝑚 and 𝑆𝑛𝑚.  

 
Figure 6. An excerpt from the file with data for spherical harmonic model of the gravity field for Mercury 

                                                           
1 If the data needed for the determination of the spherical harmonic gravity field is not globally distributed, like 
in the case of MESSENGER, the usage of a priori constraint is necessary. For example, in the determination of 
gravity fields of planets, the “Kaula rule” is “used for a smoothing constraint, whereby each coefficient 𝐶𝑙𝑛 or 
𝑆𝑙𝑛 is assigned an a priori uncertainty on the basis of its expected variance at degree l” [Mazarico et al., 2014].  

https://pds.nasa.gov/
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Figure 7 A shows the covariance matrix for the gravitational harmonic coefficients up to degree and 

order 100. It is represented in 10201×10201 matrix. Each cell depicts the covariances between the 

coefficients beginning with 𝐶𝑛𝑚 from left to right and from top to bottom and following with 𝑆𝑛𝑚 

from the middle of the square. The diagonal comprises the variances, i.e. squared uncertainties in 

𝐶𝑛𝑚 and 𝑆𝑛𝑚. The dark cells denote weak covariances and the light cells represent strong 

covariances. In order to do the covariances lucidly due to large variation of their values, the matrix 

was plotted logarithmically on the basis of 10 using absolute values of covariances. It can be seen, 

that the low-degree zonal coefficients are highly correlated due to the eccentric orbit of MESSENGER 

[Mazarico et al., 2014]. 

 

Figure 7. A) The covariance matrix for the 100x100 gravity field of Mercury; B) The excerpt from the covariance matrix for 
the 100x100 gravity field of Mercury 

Figure 7 B presents an excerpt from the covariance matrix for low-degree of 𝐶𝑛𝑚 (see section 6.4).  

5.2. Data for input state vector of MPO 

The values for input state vector of MPO and its associated mission start date, used in Integrator for 

orbit propagation, were taken from the BepiColombo Mercury Cornerstone Consolidated Report on 

Mission Analysis (CREMA), updated on June 11, 2018. Table 4 lists the elements for target orbit of 

MPO. Since the information about mean anomaly wasn’t available in CREMA, it was set to 0°.   

The orbital period of MPO is 2.362 h which means that the satellite will orbit Mercury 10.16 times 

per Earth day.  

The arrival date in the target orbit is given in MJD2000 time epoch. MJD means Modified Julian Date 

and refers to a time frame, defined as the number of days since 01-01-2000, 12:00 noon UTC. MPO 

will presumably arrive the orbit on March 14, 2026 at 15:40:19.2 UTC that corresponds to MJD2000 = 

9,569.653 and to J2000 = 826,774,888.3855518 respectively. 

The data is put in relation to the inertial Mercury equatorial system (MercuryIAU), expressed in J2000 

Earth equator system. MercuryIAU is defined as follows: 
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- z-axis points in direction of the angular momentum of Mercury with coordinates α = 

281.0097 ° and δ = 61.4155°, where α and δ denote right ascension and declination 

respectively [Seidelmann et al., 2007]; 

- x-axis: intersection between Mercury equator system, meaning orbital plane, and Earth 

equator system in J2000 [Khan and Rocchi, 2018]; 

- y-axis: 𝑍 ⋅ 𝑋, using right-hand system [Khan and Rocchi, 2018]. 

Parameter Value Unit 

Periherm altitude, hp 480 𝑘𝑚 
Apoherm altitude, ha 1500 𝑘𝑚 
Semi-major axis, a 3430 𝑘𝑚 

Velocity in periherm, vp 2.944 
𝑘𝑚

𝑠
 

Velocity in apoherm, va 2.182 
𝑘𝑚

𝑠
 

Orbital period, T 2.362 ℎ 
Eccentricity, e 0.148688 - 
Inclination, i 90 ° 
Longitude of ascending node  67.8 ° 
Argument of periapsis, ω 16 ° 
Mean anomaly, M 0 ° 
Date (MJD2000) 9569.653 days 
Table 4. Initial orbital elements of MPO in the inertial Mercury equatorial system (adapted from [Khan and Rocchi, 2018]) 

5.3. The numerical Integrator 

The simulations for the orbital evolution of MPO were performed with numerical Integrator 

developed by DLR Adlershof in Berlin. The Integrator provides the solution for an equation of motion 

of a satellite and allows to predict the trajectory of the spacecraft orbiting about a central body or 

during the flybys considering gravitational and as well as non-gravitational perturbing forces. The 

Integrator is written in program language Fortran 77 and uses the software platform SPICE (see 

section 5.4) which provided the data sets called kernels with information about e.g. rotation and 

shape size of natural bodies, ephemerides, leap seconds etc. The Integrator was configured and 

controlled using a Python interface. Furthermore, the Python modules numpy, scipy and matplotlib 

were used for the analysis and visualization of the results. 

The input state vector in the Integrator can be keyed as state vector in cartesian coordinates (𝑥, 𝑦, 

𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧) or in orbital elements (a, e, i, Ω, ω, M). The state vector comprises the three-

dimensional coordinates (𝑥, 𝑦, 𝑧) given in km and corresponding velocity vector (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) given in 
𝑘𝑚

𝑠
. The orbital elements contain semi-major axis a [km], eccentricity e, inclination i [°], the longitude 

of the ascending node Ω [°], argument of periapsis ω [°] and mean anomaly M [°]. The input state 

vector can be specified in three different reference frames: J2000, inertial PlanetIAU and body-fixed 

IAUPlanet. The step size for output has to be specified. 

The Integrator allows to include the following disturbing forces acting on the orbit of the spacecraft: 

1. Gravity field and higher terms of the geopotential of the central body; 

2. Additional perturbing bodies, for example, the Sun, all planets of the Solar system 

acting as point mass and the geopotential of one additional body;  

3. Solar radiation pressure (SRP); 

4. Atmospheric drag; 
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5. Tidal potential; 

6. Indirect radiation pressure comprises the thermal radiation pressure and radiation 

due to bond albedo of the central body. 

The file with gravitational coefficient GM and the harmonic coefficients needs to have a specific 

structure to be readable for the program which was described in (section 5.1). The uncertainties in 

GM and 𝐶𝑛𝑚 and 𝑆𝑛𝑚 are not taking into account by propagation of the trajectory of the spacecraft 

in the Integrator (see Section 5.5).  

Note that the spacecraft is considered as massless body. Only for calculations including atmospheric 

drag and/or SRP, a spacecraft mass given in kg is assumed. In this case, the surface-to-mass ratio of 

the satellite is used. The orbiter is modelled as a cuboid consisting of six surfaces 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6 

and with a solar panel 𝑠7 which is always perpendicular to the Sun. The surface 𝑠4 is always nadir 

pointing. The area is given in 𝑚2 and its reflectivity of each surface is entered in the input file of the 

Integrator.  

For the simulation, indirect radiation pressure (the thermal radiation and reflected radiation due to 

the bond albedo), the central body is assumed as a sphere. Therefore, the visible area of the planet 

for the satellite is assumed as a circle that is divided into k discrete surface segments, so-called 

concentric rings and one central cap. The rings in turn are divided into surface segments 𝑛𝑖 with 

i=1,…,k. Moreover, the parameter 𝑛𝑎represents the number of additional surface segments in the 

outer rings.  

The available methods for solving the numerical integration are RK4 (Runge-Kutta method of order 

four), RKFB (Runge-Kutta-Fehlberg method of order five), dop853 (Runge-Kutta method of order 

eight), dlsode (Adam multi-step method of order 12 with a double precision) and dop853 with 

projection. Note that the method dlsode was used for the simulations in this bachelor thesis.  

The output file with calculated results is returned either as state vector (𝑥, 𝑦, 𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧) or orbital 

elements (𝑟𝑝, e, i, Ω, ω, M) where 𝑟𝑝 encompasses the pericenter altitude from the centre of the 

body. Furthermore, the output reference frame can be either J2000, planetIAU or IAUplanet. The 

accelerations due to selected perturbing forces are presented in the output file and can be 

summarized and returned in a figure.  

See [Damme, 2011] and [Bahloul, 2013] for more detailed description of the Integrator.  

5.4. SPICE 

As mentioned above, the Integrator uses the SPICE information system provided by NAIF (NASA's 

Navigation and Ancillary Information Facility). SPICE includes data sets called kernels which include 

information to help scientists and engineers design missions, plan scientific observations, analysis 

science data and conduct various engineering functions associated with flight projects. [Acton, 2019] 

The main eponymous components of the SPICE system  are presented in Table 5. In addition, there 

are also important data products of SPICE not included in the “SPICE” acronym. A frames kernel (FK) 

comprises “specifications for the assortment of reference frames used by flight projects”. The 

spacecraft clock (SCLK) and leap second (LSK) are used “in converting time tags between various time 

measurement systems”. Therefore, a digital shape model kernel (DSK) provides the “higher fidelity 

shape models” for “small irregularly shaped bodies such as asteroids and comet nuclei” and “large, 

more uniformly shaped bodies such as Moon, Earth and Mars” [Acton, 2019].  
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Furthermore, the SPICE system provides also a large collection of software called SPICE Toolkit whose 

principal component is a library of subroutines “needed to read the kernel files and to then calculate 

observation geometry parameters of interest to scientists” [Acton, 2019]. The SPICE Toolkit can be 

integrated by users into their own programs.   

S Spacecraft ephemeris as a function of time (SPK). 

P Planet, satellite, comet, asteroid ephemerides and location of bodies (SPK); certain 
physical, dynamical and cartographic constants for bodies (PCK). 

I Instrument information about descriptive data to the geometric aspects of a particular 
scientific instrument, e.g. field-of-view size, shape and orientation parameter (IK). 

C Orientation information with a transformation called the “C-Matrix”, which provides 
time-tagged pointing (orientation) angles for a spacecraft bus or spacecraft structure 
(CK)   

E Events information, summarizing mission activities which is contained in the SPICE E-
kernel file set comprising three components: Science Plans, Sequences, and Notes (EK) 

Table 5. SPICE system components [Acton, 2019] 

The most relevant kernels used in the simulations are depicted in Table 6. 

Name of kernel Description of kernel 

pck00010.tpc  Orientation and size/shape data for natural 
bodies; 

de432s.bsp SPK-Kernel providing ephemerides for the 
planets and satellites; 

naif0012.tls Leap seconds; 
gm_de431.tpc Mass parameter to planets and satellites. 
Table 6. Description of the most relevant kernels used in the simulations  

5.5. Generating random gravity fields 

As described in section 5.3, the Integrator doesn’t take the uncertainties of the gravitational 

coefficient GM and as well as in gravitational harmonic coefficients 𝐶𝑛𝑚 and 𝑆𝑛𝑚 into account. In 

order to take these uncertainties into account, it was decided to generate random gravity fields on 

the basis of the 100x100 gravity field with nominal values for GM, 𝐶𝑛𝑚 and 𝑆𝑛𝑚 and their associated 

uncertainties.  

In order to check as many variations as possible, it was decided to use the Monte Carlo Method (see 

section 6.5) and generate random gravity fields which lie within the margin of error of 100X100 

gravity field using covariance matrix for uncertainties. These random gravity fields were generated 

using the function “random multivariate normal” which was implemented in the class Geopotential 

into the Integrator. This function represents Gaussion distribution as a generalization of the one-

dimensional normal distribution to higher dimensions [The SciPy community, 2018]. The distribution 

is specified by its nominal values for GM, 𝐶𝑛𝑚 and 𝑆𝑛𝑚 and covariance matrix. Furthermore, this 

function has a parameter k depicting the number of generating fields. The option “seed” was used to 

assure the fixing random state for reproducibility of the gravity fields. Therefore, the parameter scale 

factor was integrated in this function. The scale factor is usually used “to obtain conservative error 

estimates for the gravity field coefficients” [Mazarico et al., 2014]. The scale factor was multiplied 

with the standard deviation 𝜎 that was limited to 5 𝜎 to avoid the generating extreme and unrealistic 

fields.  
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Note that the generation of GM and coefficients was executed separately, i.e. without correlations 

between each other.  

Table 7 represents the summary of the main parameters used for generating the gravity fields.   

Description of parameter Value 

Number of generating gravity fields per scale factor 10000 
Number of using “seed” 1 
Value of chosen “seed” 7 
Scale factors  1, 3, 5, 10 
Limit for standard deviations 5 𝜎 
Table 7. Parameter used by the generating random gravity fields.  
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6. Determination of boundary conditions for simulations 

Before performing the simulations for orbital prediction of MPO, the boundary conditions were 

determined which are presented in this section.   

6.1. Number of simulations 

Since a Monte Carlo Method was decided to use for the simulations, the number of the attempts 

have to be large enough to allow the statistical consideration. On the other hand, the limited time 

and resources had to be considered. As a compromise, the number of the simulations was set to 

10,000 (see next section).   

6.2. Time duration of the simulations 

In order to estimate the time needed for the simulations, the orbital evolution was simulated for one 

gravity field with different degrees and orders, output time steps and mission duration. The degree 

and order were taken from 0 to 100. The output time step was set to 60 s and 3,600 s. The orbital 

evolution was simulated over 1 year and 2 years.  Figure 8 demonstrates the time duration of one 

simulation considering different conditions. It can be seen, that the time duration grows exponential 

with the increasing degree and order, rising mission duration and smaller output time step.   

 

Figure 8. Time duration of one simulation dependent on degree and order, mission duration and output time step.   

6.3. Output time step 

Since the output time step doesn’t affect the quality of the integrated trajectory and the orbital 

elements don’t evolve rapidly, the output time step was set to 10,000 (1.7 h per step) from the 

reason of data size because to big data size leads to the long processing time.  
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6.4. Degree and order  

In order to analysis the effect of the degree and order on the evolution of orbital elements of MPO 

and to define the reasonable degree and order in the scope of this bachelor thesis, ten simulations 

were performed using nominals values of the 100×100 gravity field without considering the 

uncertainties. The degree and order were varied from 0 to 100 in step of 10. 

 

Figure 9. Evolution of the periherm dependent on the degree and order of gravitational harmonic coefficients considering 
from the Mercury’s centre over 2 years (left); Zooming of Figure 4 (right).  

 

Figure 10. Further zooming of Figure 4 with evolution of periherm of MPO depended on degree and order of gravitational 
harmonic coefficients considering from the Mercury’s centre over 2 years  

Figure 9 shows the evolution of periherm of MPO depended on degree and order of gravitational 

harmonic coefficients considering from the surface of Mercury. The legend of the plot depicts the 

colour lines corresponding to degree and order from 0 to 100. According to the plot, the periherm 

doesn’t change for degree and order of zero over time because the orbital elements are 

unperturbable due to considering only the central GM of Mercury. The influence of the degree and 

order up to 10, which leads to the periherm decrease, is clearly seen. Furthermore, the gravity field 

in the degree and order up to 20 presenting with the gold line causes stronger decline of the 

periherm than in the order and degree of 10 depicted as the blue line, the difference is in km and 

accounts for 5 km after 1 year and 12 km after 2 years.  

As demonstrated in Figure 10, the difference between degree and order up to 50 and 40 is in the 

range of m. The interesting point is, that the gravity field in degree and order of 20 decreases the 𝑟𝑝 
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more than in degree and order up to 30. Since the change in the periherm by considering the 

difference between degree and order of 50 and higher is in the range of mm, it was decided to take 

into consideration the change in the periherm accuracy within m under scope of this bachelor thesis.  

The decision about degree and order was made through the example of periherm because it is the 

most important parameter for considering in the scope of this bachelor thesis. The plots with the 

evolution of other elements e, 𝑟𝑎, a, i, Ω and ω dependent on degree and order of gravitational 

harmonic coefficients can be found in Appendix.   

In the following, all simulations were performed using the gravity field up to degree and order 50.  

6.5. Monte Carlo Method 

The generation of gravity fields for the simulations was performed with the Monte Carlo Method, 

which is based on random selection of parameter values and subsequent evolution of function 

values. This method was used due to its simple implementation. Note that usage of the Monte Carlo 

Method requires a large number of simulations. As described in section 6.1, the number of 

simulations was set to 10,000.  

  

 

Figure 11. Normal distribution of normalized gravitational coefficient GM, gravitational harmonic coefficients 𝐶20, 𝐶22 and 
𝐶30  for the generated gravity fields with scale factor 1 

Although the generating random gravity fields was performed with the function multivariate which is 

based on the normal distribution, in order to review the consistent filling of the generating harmonic 

coefficients in the margin of error, the histograms with normal distribution, shown in Figure 11, were 
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created for the gravitational coefficient GM and gravitational harmonic coefficients 𝐶20, 𝐶22 and 𝐶30. 

These coefficients were selected because they mainly affect the evolution of the orbital elements.  

The green bars denote the real normalized distribution of GM and harmonic coefficients, the red line 

represents probability density which was calculated with the probability density function (PDF) on 

basis of the nominal value (µ) and standard deviation (𝜎). The values of µ and 𝜎 for GM, 𝐶20, 𝐶22 and 

𝐶30 are represented in Table 8.  

According to the plots, GM and the coefficients are generally spread well, the distribution is 

approximately symmetrical.  

Parameter µ 𝝈 

GM [ 
𝑘𝑚3

𝑠2 ] 2.2031815411154894 ⋅ 104 1.9361909444154922 ∙ 10−4 

𝐶20 -2.2508016774 ⋅ 10−5 3.8394711196316993 ⋅ 10−10 

𝐶22 1.2461628084 ⋅ 10−5 2.4395099417725768 ⋅ 10−10 

𝐶30 -4.7542281665 ⋅ 10−6 8.8860037567489276 ⋅ 10−10 

Table 8. The nominal values and standard deviations for gravitational coefficient GM and harmonic coefficients 𝐶20, 𝐶22, 𝐶30  

6.6. Time duration of the mission of MPO for simulations 

As mentioned in section 3.3, the primary mission of MPO was set up to one Earth year with 

additional option of extending it by one Earth year. Therefore, it was decided to predict and analyse 

the evolution of the orbital elements of MPO in the gravity field of Mercury over 2 Earth years.   

6.7. Accelerations acting on MPO due to perturbing forces 

In order to estimate the impact of different perturbing forces which affect the trajectory of the 

orbiter, a simulation was performed using nominal values for the gravity field without considering 

the uncertainties and taking gravitational as well as non-gravitational effects into account. The 

additional input data needed for this simulation is listed in Table 9 and Table 10. The output time 

step was set to 100,000 that correspond to 631.152 s and 0.17532 h per step respectively.   

Surface of MPO Surface size [𝒎𝟐] Surface reflectivity 

𝑠1 2.852 0.8 
𝑠2 4.692 0.8 
𝑠3 2.852 0.8 
𝑠4 4.692 0.8 
𝑠5 4.6375 0.9 
𝑠6 3.9525 0.8 
𝑠7 2.7008 0.21 
Table 9. Input data for considering of the accelerations caused by solar pressure radiation [Lüdicke, 2008] 

Figure 12 shows the order of the magnitude of accelerations acting on MPO. As expected, the main 

accelerations are caused by the central term GM of Mercury, followed by higher terms of 

gravitational potential of Mercury, the gravity force of the Sun considered as a point mass and the 

solar radiation pressure. The next important perturbing force is indirect radiation pressure which is 

represented as the sum of thermal radiation pressure and reflected albedo radiation. Both effects 

are also shown in Figure 7 separately. The smallest perturbations are the gravity forces of Venus, the 
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Earth-Moon barycentre, Jupiter, Saturn and Mars, which are taken into consideration as a point 

mass.  

Parameter Value Units 

Mass of MPO 1,150 [ESA, 2018] kg 
Bond albedo of Mercury 0.12 [Kato et al., 2012] - 
Minimal temperature 100 [Rothery, 2015]  K 
Number of concentric rings 2 - 
Number of elements in the 
innermost ring 

6 - 

Addition of ring elements to 
each ring, starting after 
innermost ring 

6 - 

Table 10. Input data for considering of the accelerations caused by indirect radiation pressure.  

As it can be seen in Figure 12, the accelerations due to the higher terms of the geopotential of 

Mercury have a periodic character. These accelerations are caused by the rotation of Mercury on its 

axis and vary between 6.36 ⋅ 10−7  
𝑘𝑚

𝑠2   and 1.223 ⋅ 10−9  
𝑘𝑚

𝑠2 . 

Furthermore, the influence of the gravity of the Sun is associated with the proximity of Mercury to 

the Sun. The accelerations caused by the Sun are in the range of 1.108 ⋅ 10−8 
𝑘𝑚

𝑠2  in perihelion and 

1.115 ⋅ 10−9  
𝑘𝑚

𝑠2  in aphelion. The solar radiation pressure and indirect radiation pressure depend 

also on the position of Mercury relative to the Sun. When Mercury is located in the pericenter, the 

solar radiation and corresponding accelerations are stronger. The maximal value for SRP is 4.923 ⋅

10−10  
𝑘𝑚

𝑠2 , for indirect RP amounts to 3.413 ⋅ 10−11 𝑘𝑚

𝑠2 . The minimal value for SPR and albedo is 0 
𝑘𝑚

𝑠2  

when the satellite is over the dark hemisphere of Mercury whereas the accelerations due to the 

thermal radiation accounts for  4.173 ⋅ 10−15 𝑘𝑚

𝑠2 . 

 

Figure 12. The accelerations acting on the orbit of MPO over 2 years 
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Figure 13. The accelerations acting on MPO during the first day in the orbit 

Figure 13 shows a more detailed look on the accelerations during the first day of the spacecraft in the 

orbit. Hence, the perturbations due to the central GM of Mercury are periodic and depend on the 

position of the satellite. MPO experiences the maximal accelerations of 3.03 ⋅ 10−3 𝑘𝑚

𝑠2  in the 

periherm and 1.27 ⋅ 10−3 𝑘𝑚

𝑠2  in the apoherm. This can be explained with the inverse-square law for 

the gravitational attraction of a point-like mass. The accelerations due to the geopotential have also 

a periodic character and depend on the proximity of the spacecraft to the planet. The indirect 

radiation pressure has a stronger influence on MPO in the periherm than in apoherm. The gravity 

force of the Sun has an opposite effect depending to the distance the satellite to the Sun due to 

Newton’s gravitational law.  
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7. Results 

7.1. Effect of geopotential of Mercury 

In this section, the influence of the geopotential of Mercury on the evolution of the orbital elements 

of MPO was investigated.  

7.1.1. Evolution of the orbital elements of MPO 

By preparation of the space mission, it is very important to be able to predict and analysis the 

changes in the orbital elements of a spacecraft over time. Not all changes in the orbit have a negative 

effect, but changes in some elements are desirable. For example, the movement of the argument of 

periapsis is welcome by DLR for operating the BELA altimeter. By this, more surface area can be 

covered from the lower distance without additional expense of fuel for manoeuvres.  

In order to investigate the effect of the gravity field of Mercury on the evolution of orbital elements 

of MPO systematically and to analysis their consequences, the simulations were performed using 

gravity fields generated on basis of the scale factors 1, 3, 5 and 10. 10,000 simulations per each scale 

factor were carried out. Note that only 9,851 simulations from 10,000 were successfully executed for 

the scale factor 10 due to the collision of the satellite with the planet. In the simulations, only the 

gravity field of Mercury was taken into account because the gravity field causes the largest 

perturbations which affect the trajectory of a spacecraft, as shown above in Figure 12. The nominal 

values for every orbit element were obtained from the simulations based on the nominal values of 

the gravity field without considering uncertainties.  

7.1.2. Evolution of the periherm of MPO  

A critical point for the instruments on board of MPO, among other things for BELA altimeter, is the 

spacecraft altitude. If the periherm falls below 200 km [Khan and Rocchi, 2018], the thermal stress on 

the instruments may cause an overheating and could damage them. Therefore, this analysis focuses 

on the changes in periherm 𝑟𝑝.  

Figure 14 demonstrates the evolution of the periherm of MPO for the scale factors = 1, 3, 5 and 10 

over 2 years. The black line represents the periherm for nominal values without considering the 

uncertainties. The blue and green lines denote the minimal and maximal values of periherm based on 

the standard deviations. The yellow and red lines encompass the maximal and minimal values of 

periherm of all simulations. Note that minimal and maximal values of 𝑟𝑝 could belong to different 

gravity fields per output time step. All values are given in km above ground. The reference radius of 

Mercury 𝑟𝑀 was taken from the input file for generating gravity fields and amounts to 2439.4 km (see 

section 5.2). The time is given in Earth days and Earth years respectively and is designated shortly as 

days and years.    

The standard deviations were calculated with following formula: 

𝜎 = √
∑(𝑥 − 𝑥̅)2

𝑁
 

 
(20) 
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where 𝜎 denotes standard deviation, 𝑥 is each value of the data set, 𝑥̅ represents nominal value and 

N presents the number of simulations.  

The maximal and minimal values of periherm based on the standard deviations (𝑟𝑝,𝜎,𝑚𝑎𝑥 and 𝑟𝑝,𝜎,𝑚𝑖𝑛) 

are the sum of nominal value of periherm plus/minus standard deviation.  

In some cases, the periherm falls below 0 km, i.e. the satellite collides with the planet. The Integrator 

doesn’t stop the integration after the crash of the orbiter and continues calculating. As the values lie 

below 0 km, the results were set to 0 km.  

 

 

Figure 14. The evolution of the periherm dependent on the scale factor over 2 years 

According to the plots, the gravitational potential causes generally a decrease in periherm after 1 and 

2 years expect the maximal value for scale factors 5 and 10, which follow the tendency of a slow 

decline and then begin to increase. The standard deviations are larger with the growing scale factor. 

The difference between the minimal and maximal values is also greater when the scale factor is 

bigger. Furthermore, there is a possibility that the spacecraft crashes into the planet after 725 and 

after 587 days when considering the maximal value for scale factor 5 and the maximal value for scale 

factor 10 respectively.   

Table 11 depicts the nominal values of the periherm 𝑟𝑝,𝑛𝑜𝑚 without considering uncertainties after 1 

and 2 years. It can be seen, that 𝑟𝑝,𝑛𝑜𝑚 declines by 30.8 % after the first year and by 51.6 % after 2 

years when compared with the initial value of periherm 𝑟𝑝,𝑖𝑛𝑖𝑡, which accounts for 2920 km or rather 

480.6 km when considering above surface. The mean rate of decrease of 𝑟𝑝,𝑛𝑜𝑚  (by assumption of 
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the linear tendency) is 0.4 km/day after 1 year and 0.3 km/day after 2 years. The mean rate after 2 

years is smaller because of slow-moving of 𝑟𝑝,𝑛𝑜𝑚 after 1 year downwards.  

𝒓𝒑 [km] after 1 year after 2 years 

𝑟𝑝,𝑛𝑜𝑚 332.423 232.555 

𝑟𝑝,𝑖𝑛𝑖𝑡 - 𝑟𝑝,𝑛𝑜𝑚 148.177 248.045 

rate per day 0.405 0.339 
Table 11. Nominal values for periherm considering above surface after 1 and 2 years  

The general trend of the evolution of 𝑟𝑝 for scale factor 1 is even decrease. The standard deviation is 

2.9 km after the first year and 8.9 km after 2 years. The periherm declines by 30.2% - 31.5% and by 

49.8% - 53.5% in the range of standard deviation after 1 and 2 years respectively when comparing 

with 𝑟𝑝,𝑖𝑛𝑖𝑡. These values lie in an acceptable range, whereas the minimal value of 𝑟𝑝 after 2 years 

falls below the critical distance of 200 km which could lead to the damage of the satellite.  

When considering the change in the periherm for the scale factor 3, the standard deviation is three 

times larger than by scale factor 1. The periherm altitude decreases by 29% - 32.6 % and by 46% -

57.2 % in the field of the standard deviation when compared with 𝑟𝑝,𝑖𝑛𝑖𝑡. The maximal value of the 

periherm falls slower than by scale factor 1, while the minimal value of 𝑟𝑝 has nearly a linear 

tendency and backs down rapidly reaching the value of 99.8 km after 2 years which could be 

considered as critical.   

The evolution of the periherm for the scale factor 5 looks more pronounced than for the scale factors 

1 and 3. The standard deviation is 1.67 times bigger than for the scale factor 3. The periherm in the 

area of standard deviation changes by 27.9 % - 33.8 % after 1 year and by 42.3% - 61 % after 2 years 

relative to 𝑟𝑝,𝑖𝑛𝑖𝑡. The minimal value of 𝑟𝑝 based on standard deviation falls already below 200 km 

after 2 years. The difference between minimal and maximal values varies strongly and amounts to 

115.1 km after 1 year and to 379.9 km after 2 years. The maximal values of periherm fall slowly, 

change the tendency of drop and start to increase approximately after 500 days. As mentioned 

above, the minimal values of periherm decrease rapidly, i.e. the satellite loses the altitude fast. This 

leads to the crash of the spacecraft onto the planet after 725 days.  

Moreover, the collision of MPO with Mercury could already happen after 587 Earth days when 

considering the minimal value of periherm for the scale factor 10. The maximal values of periherm 

drop slowly and start to increase after ca. 285 Earth days reaching the value which exceeds 𝑟𝑝,𝑖𝑛𝑖𝑡 by 

11.8 km after 2 years. As expected, the standard deviation is 10 times bigger than for the scale factor 

1 and amount to 28.6 km after 1 year and 91.3 km after 2 years. The periherm falls by 24.9% - 36.8 % 

and by 32.6% - 70.6 % considering the values in the range of standard deviation after 1 year and after 

2 years respectively compared with 𝑟𝑝,𝑖𝑛𝑖𝑡. The minimal value of 𝑟𝑝 in the range of deviation after 2 

years can be considered as critical.  

The detailed information about the periherm values per scale factor after 1 and 2 years is 

represented in Table 12 and Table 13.  

𝒓𝒑 [km] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 2.865 8.597 14.330 28.602 
𝑟𝑝,𝜎,𝑚𝑖𝑛 329.557 323.826 318.092 303.821 

𝑟𝑝,𝜎,𝑚𝑎𝑥 335.288 341.019 346.753 361.025 

𝑟𝑝,𝑚𝑖𝑛 319.958 294.676 269.310 226.638 

𝑟𝑝,𝑚𝑎𝑥 342.483 362.389 384.388 434.478 

Table 12. Periherm values above surface after 1 year 
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𝒓𝒑 [km] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 8.916 26.801 44.858 91.258 
𝑟𝑝,𝜎,𝑚𝑖𝑛 223.639 205.753 187.697 141.296 

𝑟𝑝,𝜎,𝑚𝑎𝑥 241.470 259.356 277.413 323.813 

𝑟𝑝,𝑚𝑖𝑛 191.474 99.775 0 0 

𝑟𝑝,𝑚𝑎𝑥 264.217 322.627 379.930 492.416 

Table 13. Periherm values above surface after 2 years 

In order to have an overview of the distribution of the periherm per scale factor after 1 and 2 years, 

the box plots were created which are shown in Figure 15. 

 

Figure 15. The box plots for the periherm altitude after 1 year and after 2 years 

The box extends from the lower to upper quartile values and represents 50% of the data. The orange 

line, located in the box, denotes the median, which depicts the middle value of the dataset and 

separates the higher half from the lower half of the sample data. The upper half and lower half of the 

box separated with the median represents per 24.75% of the data values. The green dashed line 

encompasses the averaged value of data. The median and the averaged value can be hardly 

identifiable because they lie either on top of each other or in proximity to each other. The blue 

crosses depict the outliers values of data which amount to 0.25% per side. The lines extending 

vertically from the boxes are called whiskers and indicate variability outside the upper and lower 

quartiles. The values reaching from the lower cap of whisker to the upper cap account for 99% of 

data.  

According to the plots, the likelihood that the periherm falls below 200 km after the first year is equal 

zero for all scale factors. But it can happen in two from 10,000 cases when considering the periherm 

values for the scale factor 1 after 2 years. By consideration of the scale factor 3, there is 11.7% of the 

possibility that the periherm altitude is between 99.8 km and 200 km after 2 years. Moreover, 

23.69% of the periherm values for the scale factor 5 after 2 years are below 200 km.  

Furthermore, the possibility that the satellite collides with Mercury before or rather after 2 years 

amounts to 1.5% when taken into consideration the scale factor 10. The likelihood of the values of 

periherm below 200 km after 2 years is quite large and accounts to 36.2%. Therefore, there is 0.02% 

of the possibility that the periherm after 2 years is greater than 𝑟𝑝,𝑖𝑛𝑖𝑡. 

In addition, the box plots show clearly the linear dependency of the evolution of periherm over 1 

year or rather 2 years on scale factor.  
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Moreover, the box plot gives the information about symmetry of data dispersion.  As can be seen, 

the distribution is not symmetrical and tends to be left skewed. 

A more detailed information about distribution of the periherm values after 1 and 2 years is 

represented in Table 14. 

 scale factor 1 scale factor 3 scale factor 5 scale factor 10 
after  
1 year  

after  
2 years 

after  
1 year 

after  
2 years 

after  
1 year 

after  
2 years 

after  
1 year 

after  
2 years 

upper 
outliers 

342.483 264.217 362.389 322.627 384.388 379.93 434.478 492.416 

upper 
whisker 

340.48 257.734 356.463 304.92 372.642 349.218 411.615  442.715   

upper 
quartile 

334.345 238.551 338.183 250.359 342.06 261.925 351.539 289.732 

median 332.402 232.475 332.361 232.318 332.391 232.079    332.317 231.592   
lower 
quartile 

330.517 226.628 326.697 214.604 322.827 202.205 313.108   170.147   

lower 
whisker 

324.380 207.586 308.153 153.942  291.954 94.149 250.675 -78.304   

lower 
outliers 

319.958 191.474 294.676 99.775 269.31 -6.570   226.638 -236.804   

Table 14. The important parameter of the box plot dependent on the scale factor after 1 and 2 years 

The box plots for the eccentricity and the apoherm and corresponded tables can be found in 

Appendix. 

7.1.3. Evolution of the eccentricity of MPO 

The second orbital element eccentricity e determines the form of the orbit. In case of MPO, the initial 

orbit is highly elliptically with the eccentricity value 𝑒𝑖𝑛𝑖𝑡 of 0.148688. Figure 16 shows the evolution 

of the eccentricity of MPO dependent on the scale factor over 2 years. The gravitational potential of 

Mercury generally causes the eccentricity to increase which means that the orbit becomes more 

elliptically. This in turn leads to decrease in periherm altitude. All values of the eccentricity follow the 

tendency of growth, except the minimal values of e for the scale factors 5 and 10.  

Table 15 represents the nominal values for the eccentricity 𝑒𝑛𝑜𝑚 without considering the 

uncertainties after 1 and 2 years. It can be seen, that  𝑒𝑛𝑜𝑚 rises by 29% after 1 year and by 48.7% 

after 2 years relative to 𝑒𝑖𝑛𝑖𝑡. The mean rate of the increase of 𝑒𝑛𝑜𝑚 is 0.0001182/day after 1 year 

and 0.0000987/day, assuming a linear trend. The mean rate after 2 years is smaller because the 

eccentricity begins to climb slower after 1 year. 

The general trend of evolution of the eccentricity for the scale factor 1 is an ongoing growth. The 

eccentricity increases by 28.5% - 29.6% after 1 year and by 46.9% - 50.4 % after 2 years when 

considering the values in the range of standard deviation in terms of 𝑒𝑖𝑛𝑖𝑡. The minimal value of the 

eccentricity changes by 27.1% after 1 year and by 42.4 % after 2 years while the maximal value grows 

by 31.5% after 1 year and by 56.7 % when compared with 𝑒𝑖𝑛𝑖𝑡.  

The general trend of evolution of the eccentricity for the scale factor 1 is an ongoing growth. The 

eccentricity increases by 28.5% - 29.6 % after 1 year and by 46.9% - 50.4 % after 2 years when 

considering the values in the range of standard deviation in terms of 𝑒𝑖𝑛𝑖𝑡. The minimal value of the 
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eccentricity changes by 27.1% after 1 year and by 42.4% after 2 years while the maximal value grows 

by 31.5% after 1 year and by 56.7% when compared with 𝑒𝑖𝑛𝑖𝑡.  

By considering of the eccentricity for the scale factor 3, the standard deviation is larger by 0.00167 

after 1 year and by 0.00521 after 2 years in comparison to the scale factor 1. The minimal value of 

the eccentricity grows by 0.0344 after 1 year and by 0.046 after 2 years with regard to 𝑒𝑖𝑛𝑖𝑡. When 

taken into consideration the values in the range of standard deviations, the eccentricity increases by 

27.4% - 36.4% after 1 year and by 43.4% - 53.9% relative to the initial value of e. 

   

 

Figure 16. The evolution of the eccentricity dependent on the scale factor over 2 years 

e [-] after 1 year after 2 years 

𝑒𝑛𝑜𝑚 0.1918620 0.2209888 
𝑒𝑖𝑛𝑖𝑡 − 𝑒𝑛𝑜𝑚 -0.0431740 -0.0723008 
rate per day -0.0001182 -0.0000987 
Table 15. Nominal values for eccentricity after 1 and 2 years  

When taken into account the values for the scale factor 5, it is clearly seen that the location of the 

minimal and maximal value of e is not symmetrical relative to the nominal value of the eccentricity. 

In addition, the difference between the minimal and maximal values after 1 year is greater than the 

by scale factors 1 and 3 and is 0.0336. As expected, the standard deviation is 5 and 1.67 times bigger 

than for the scale factor 1 and 3 respectively. The eccentricity values in the area of standard 

deviation rise by 26.2% – 31.9% after 1 year and by 39.8% – 57.4% after 2 years in terms of 𝑒𝑖𝑛𝑖𝑡.   

The minimal value of the eccentricity for scale factor 10 doesn’t follow the overall trend of the 

ongoing growth. It increases slowly and begins to back down after the first year, then it reaches the 

value which is smaller by 0.0034612 than 𝑒𝑖𝑛𝑖𝑡. The maximal value of the eccentricity has the 

tendency of the rapid growth. The considering of 𝑒𝑚𝑎𝑥 after 2 years makes no sense due to the 
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collision of the spacecraft with the planet after 587 days. The difference between the minimal and 

maximal values of e is 2.6 greater than by scale factor 5. The values for the eccentricity in the range 

of standard deviation increases by 23.4% - 34.7% after 1 year and by 30.7% - 66.5% after 2 years 

when compared with 𝑒𝑖𝑛𝑖𝑡.  

The detailed information about the values of the eccentricity after 1 year and after 2 years for scale 

factors 1, 3, 5 and 10 is listed in Table 16 and Table 17. The values corresponded to the crash of the 

satellite on the planet are shown in bold.   

e [-] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 0.0008354 0.0025065 0.0041782 0.0083393 
𝑒𝜎,𝑚𝑖𝑛 0.1910266 0.1893555 0.1876838 0.1835227 
𝑒𝜎,𝑚𝑎𝑥 0.1926974 0.1943684 0.1960402 0.2002013 
𝑒𝑚𝑖𝑛 0.1889292 0.1831258 0.1767112 0.1621066 
𝑒𝑚𝑎𝑥 0.1954964 0.2028688 0.2102664 0.2227022 
Table 16. Eccentricity values after 1 year 

e [-] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 0.002599 0.0078137 0.0130781 0.0266057 
𝑒𝜎,𝑚𝑖𝑛 0.2183894 0.2131751 0.2079108 0.1943831 
𝑒𝜎,𝑚𝑎𝑥 0.2235881 0.2288025 0.2340669 0.2475945 
𝑒𝑚𝑖𝑛 0.2117578 0.1947289 0.1780219 0.1452268 
𝑒𝑚𝑎𝑥 0.2329656 0.2596999 0.2907041 0.3578205 
Table 17. Eccentricity values after 2 years  

7.1.4. Evolution of the apoherm of MPO 

Due to the increase of the eccentricity that leads to the decrease in periherm, the apoherm rises 

because the semi-major axis remains constant. Although the treatment of the apoherm is redundant 

to the eccentricity, the evolution of the apoherm was added to analysis of the orbital elements 

nevertheless. 

Figure 17 demonstrates the evolution of the apoherm 𝑟𝑎 of MPO dependent on the scale factor over 

2 years. The apoherm follows generally the tendency of the growth after 1 year and 2 years except 

the maximal value of the apoherm for the scale factors 5 and 10 which begin to fall after slow rise. 

The standard deviations are larger with the increasing scale factor. The minimal and maximal values 

have also more significant divergences when the scale factor is bigger. The initial value of apoherm 

𝑟𝑎,𝑖𝑛𝑖𝑡 amounts to 3940 km and 1500.6 km when considering from the surface of Mercury. 

The detailed information about the values of the apoherm after 1 year and after 2 years for scale 

factors 1, 3, 5 and 10 is listed in Table 18, Table 19 and Table 20. The values corresponded to the 

crash of the satellite on the planet are shown in bold. 
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Figure 17. The evolution of the apoherm dependent on the scale factor over 2 years 

𝒓𝒂 [km] after 1 year after 2 years 

𝑟𝑎,𝑛𝑜𝑚 1648.553 1748.507 

𝑟𝑎,𝑖𝑛𝑖𝑡 - 𝑟𝑎,𝑛𝑜𝑚 -147.953 -247.907 
rate per day -0.405 -0.339 
Table 18. Nominal values for apoherm after 1 and 2 years  

𝒓𝒂 [km] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 2.866 8.597 14.331 28.604 
𝑟𝑎,𝜎,𝑚𝑖𝑛 1645.688 1639.956 1634.222 1619.949 
𝑟𝑎,𝜎,𝑚𝑎𝑥 1651.419 1657.150 1662.885 1677.157 
𝑟𝑎,𝑚𝑖𝑛 1638.495 1618.592 1596.587 1546.492 
𝑟𝑎,𝑚𝑎𝑥 1661.021 1686.313 1711.696 1754.321 
Table 19. Apoherm values above surface after 1 year 

𝒓𝒂 [km] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 8.915 26.799 44.855 91.252 
𝑟𝑎,𝜎,𝑚𝑖𝑛 1739.592 1721.708 1703.652 1657.256 
𝑟𝑎,𝜎,𝑚𝑎𝑥 1757.423 1775.307 1793.362 1839.759 
𝑟𝑎,𝑚𝑖𝑛 1716.848 1658.441 1601.137 1488.652 
𝑟𝑎,𝑚𝑎𝑥 1789.586 1881.278 1987.615 2217.755 
Table 20. Apoherm values above surface after 2 years 
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7.1.5. Evolution of the semi-major axis of MPO 

Although the gravitational potential causes increase in the eccentricity and decrease in the periherm 

altitude, the semi-major axis remains almost constant over time. 

Figure 18 shows the evolution of the semi-major axis of MPO dependent on the scale factor over 2 

years. The black line represents the semi-major axis for nominal values without considering the 

uncertainties. The blue and green lines denote the minimal and maximal values of semi-major axis 

based on the standard deviations. The blue dashed and green dashed lines encompass the maximal 

and minimal values of semi-major axis of all simulations.  

The evolution of the semi-major axis has a periodical character. The oscillations are caused by the 

periodic part of the perturbations due to the gravitational potential of Mercury. It can be seen, that 

the period of the oscillation corresponds to one half rotation of Mercury about its axis. Moreover, 

the amplitude of the oscillations grows slightly with the increasing scale factor and with rising 

number of mission days.  

 

  

Figure 18. The evolution of the semi-major axis dependent on the scale factor over 2 years 

7.1.6. Evolution of the inclination of MPO 

Figure 19 shows the evolution of the inclination dependent on the scale factor over 2 years. The 

inclination remains constant over time like the semi-major axis with minor periodical oscillations. The 

period of the oscillation corresponds to one half rotation of Mercury about its axis. Therefore, the 

amplitude of the oscillations grows with the rising scale factor.  
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Figure 19. The evolution of the inclination dependent on the scale factor over 2 years 

7.1.7. Evolution of the argument of periapsis of MPO 

As mentioned above, the changes in the argument of periapsis is desirable in the scope of the 

mission of MPO because more surface area of Mercury can be investigated by the altimeter BELA 

from the lower altitude. Note that altitudes above 1,000 km to the surface of Mercury are not 

applicable for the BELA instrument [Lüdicke, 2008] due to the low signal to noise ratio at higher 

altitudes. 

Figure 20 shows the evolution of the argument of periapsis ω of MPO dependent on the scale factor 

over 2 years. According to the plots, the overall tendency of the evolution of ω is steady decline over 

time. The changes in the position of ω can be explained by the influence of the flattening [Tresaco et 

al., 2018] and the North-South mass asymmetry of Mercury [Khan and Rocchi, 2018].  

Table 21 depicts the nominal value of the argument of periapsis 𝜔𝑛𝑜𝑚 without considering the 

uncertainties after 1 and 2 years. It decreases by 32.59° after 1 year and by 61.2° after 2 years 

relative to the initial value of argument of periapsis 𝜔 𝑖𝑛𝑖𝑡 amounted to 16°. The mean rate of the 

decline is 0.09°/day after 1 year and 0.08°/day after 2 years.   

The standard deviation for the scale factor 1 is small. The argument of periapsis in the range of 

deviation decreases by 32.5°- 32.9° after 1 year and by 60.67°- 61.73° after 2 years comparative to 

𝜔 𝑖𝑛𝑖𝑡. The minimal and maximal values differ not strongly from the nominal value. 
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The argument of periapsis in the region of deviation for the scale factor 3 declines by 32.31°- 32.87° 

after 1 year and by 59.6°- 62.8° after 2 years when compared with the initial value. The difference 

between the minimal and maximal values is larger and amounts to 2.2° after 1 year and to 13.18° 

after 2 years.  

 

Figure 20. The evolution of the argument of periapsis dependent on the scale factor over 2 years 

ω [°] after 1 year after 2 years 

𝜔𝑛𝑜𝑚 -16.5897 -45.1951 
𝜔 𝑖𝑛𝑖𝑡 - 𝜔𝑛𝑜𝑚 32.5897 61.1951 
rate per day 0.0892 0.0838 
Table 21. Nominal values for argument of periapsis after 1 and 2 years  

The values of ω in area of standard deviation for the scale factor 5 fall stronger by 0.37° after 1 year 

and by 2.13° after 2 years than for the scale factors 1 and 3 in comparison to 𝜔 𝑖𝑛𝑖𝑡. The minimal 

value of ω decreases by 34.31° after 1 year and by 71.49° after 2 years while the maximal value drops 

by 30.61° after 1 year and by 49.09° after 2 years when compared with 𝜔 𝑖𝑛𝑖𝑡.   

The argument of periapsis in the range of deviation for the scale factor 10 has more significant 

changes than for the scale factors 1, 3 and 5 by comparison with the initial value of ω. The standard 

deviation is approximately two times bigger than for the scale factor 5 after 2 years. A more detailed 

information about the values of the argument of periapsis dependent on the scale factor after 1 and 

2 years is demonstrated in Table 22 and Table 23. 
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ω [°] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 0.0932 0.2797 0.4662 0.9316 
𝜔𝜎,𝑚𝑖𝑛 -16.6829 -16.8693 -17.0559 -17.5213 
𝜔𝜎,𝑚𝑎𝑥 -16.4965 -16.3100 -16.1234 -15.6580 
𝜔𝑚𝑖𝑛 -16.9181 -17.5838 -18.3094 -20.1214 
𝜔𝑚𝑎𝑥 -16.1856 -15.3875 -14.6129 -13.3556 
Table 22. Values for argument of periapsis after 1 year 

ω [°] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 0.5311 1.5949 2.6646 5.3703 
𝜔𝜎,𝑚𝑖𝑛 -45.7262 -46.7900 -47.8597 -50.5655 

𝜔𝜎,𝑚𝑎𝑥 -44.6640 -43.6002 -42.5305 -39.8248 
𝜔𝑚𝑖𝑛 -47.1725 -51.1678 -55.4912 -66.6767 
𝜔𝑚𝑎𝑥 -42.8051 -37.9923 -33.0853 -20.8924 
Table 23. Values for argument of periapsis after 2 years 

7.1.8. Evolution of the longitude of ascending node of MPO 

The evolution of the longitude of ascending node Ω dependent on the scale factor over 2 years is 

represented in Figure 21. The overall tendency is the decrease with periodic oscillations caused by 

orbital period of the satellite and rotational period of the planet [Tresaco, 2018]. The maximal values 

of Ω for the scale factor 5 and 10 don’t follow the general trend and start to grow after slow 

decrease. The standard deviation becomes larger with the increasing scale factor and growing 

number of the mission days. The amplitude of the oscillations climbs over time. The variations 

between minimal and maximal values are larger with the rising scale factor and over time.  

Table 21 depicts the nominal value of the longitude of ascending node without considering 

uncertainties Ω𝑛𝑜𝑚 after 1 and 2 years. It decreases by 0.31° after 1 year and by 0.69° after 2 years 

when compared with the initial value of the longitude of ascending node Ω 𝑖𝑛𝑖𝑡 which accounts for 

67.8°.  

The longitude of the ascending node in the range of standard deviations falls by 0.30°-0.31° after 1 

year and by 0.67°-0.7° after 2 years for the scale factor 1, by 0.294°- 0.317° after 1 year and 0.65°-

0.72° after 2 years for the scale factor 3, 0.287°- 0.324° after 1 year and by 0.63°- 0.75° after 2 years 

considering the scale factor 5 and by 0.27°- 0.34° after 1 year and by 0.57°- 0.81° after 2 years taken 

into account the scale factor 10 when compared with Ω 𝑖𝑛𝑖𝑡.  

A more detailed information about the values of the longitude of the ascending node dependent on 

the scale factor after 1 and 2 years is demonstrated in Table 22 and Table 23.  
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Figure 21. The evolution of the longitude of the ascending node dependent on the scale factor over 2 years 

Ω [°] after 1 year after 2 years 

Ω𝑛𝑜𝑚 67.4943 67.1134 
Ω 𝑖𝑛𝑖𝑡 - Ω𝑛𝑜𝑚 0.3057 0.6866 
Table 24. Nominal values for longitude of ascending node 

Ω [°] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 0.0037 0.0112 0.0187 0.0375 
Ω𝜎,𝑚𝑖𝑛 67.4906 67.4831 67.4756 67.4568 
Ω𝜎,𝑚𝑎𝑥 67.4981 67.5056 67.5130 67.5318 
Ω𝑚𝑖𝑛 67.4792 67.4494 67.4196 67.3473 
Ω𝑚𝑎𝑥 67.5091 67.5386 67.5681 67.6428 
Table 25. Values for longitude of ascending node after 1 year 

Ω [°] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 0.0117 0.0350 0.0586 0.1201 
Ω𝜎,𝑚𝑖𝑛 67.1018 67.0784 67.0548 66.9933 
Ω𝜎,𝑚𝑎𝑥 67.1251 67.1484 67.1720 67.2335 
Ω𝑚𝑖𝑛 67.0670 66.9776 66.8911 66.6665 
Ω𝑚𝑎𝑥 67.1587 67.2506 67.3504 67.6785 
Table 26. Values for longitude of ascending node after 2 years 
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7.2. Analytical analysis of influence of the harmonic coefficients 𝑱𝟐, 

𝑱𝟑 and 𝑱𝟒  

In this section, the influence of the gravitational harmonic coefficients 𝐽2, 𝐽3 and 𝐽4 on the evolution 

of the longitude of ascending node, the argument of periapsis and the eccentricity was analytically 

analysed. This analysis gives only approximately estimation of the effect of the coefficients assuming 

the linear tendency. Note that the coefficients 𝐽2, 𝐽3 and 𝐽4  are normalized.   

The influence of 𝐽2, which mainly causes the precession of the longitude of ascending node and the 

rotation of the argument of periapsis, is described by the following formulas:  

𝛺̇ = −
3

2
𝐽2𝑛 (

𝑅𝑝𝑙𝑎𝑛𝑒𝑡

𝑝
)

2

𝑐𝑜𝑠 𝑖 (21) 

 

𝜔̇ =
3

4
𝐽2𝑛 (

𝑅𝑝𝑙𝑎𝑛𝑒𝑡

𝑝
)

2

(5 cos2 𝑖 −  1) (22) 

Here, p is semi-latus rectus with p = a·(1 - e2) and n is mean motion with n = √
𝐺𝑀

𝑎3 . 

The semi-latus rectus of MPO is 3354.2 km while the mean motion accounts for 7.3889·10-4 rad/sec 

when considering the nominal value for GM.  

The change in Ω due to 𝐽2 is equal zero because the orbit of MPO is polar with i = 90°.  

The change in ω due to 𝐽2 is -11.92903°/year. The standard deviations, as well as minimal and 

maximal values for  𝜔̇  dependent on the scale factor are given in Table 27. 

𝝎̇ [°/year] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 0.0002047 0.0006142 0.0010171 0.0020342 
𝜔̇𝑚𝑖𝑛 -11.9298 -11.9315 -11.9331 -11.9372 
𝜔̇𝑚𝑎𝑥 -11.9283 -11.9269 -11.9252 -11.9213 
Table 27. Change in argument of periapsis dependent on the scale factor due to 𝐽2 after 1 year.  

𝐽3 predominantly affects the eccentricity and the argument of periapsis. The influence of 𝐽3 is given 

by the formulas: 

𝑒̇ =
3

8
𝐽3𝑛 (

𝑅𝑝𝑙𝑎𝑛𝑒𝑡

𝑝
)

3

(1 − 𝑒2) 𝑐𝑜𝑠 𝜔 (23) 

 

𝜔̇ =
3

8
𝐽3𝑛 (

𝑅𝑝𝑙𝑎𝑛𝑒𝑡

𝑝
)

3 1 + 4𝑒2

𝑒
 𝑠𝑖𝑛 𝜔 (24) 

  

The change in the eccentricity of MPO due to 𝐽3 is 0.0150323/year while the change in the argument 

of periapsis amounts to -1.8488°/year when considering the nominal values in both cases. The 

standard deviations, as well as minimal and maximal values for 𝑒̇ and 𝜔̇  dependent on the scale 

factor are shown in Table 28 and Table 29 respectively.  
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ⅇ̇ [1/year] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 2.8115·10-6  8.4346·10-6 1.3974·10-5 2.7947·10-5 
𝑒̇𝑚𝑖𝑛 0.01502195 0.01500123 0.01498314 0.01493397 
𝑒̇𝑚𝑎𝑥 0.01504233 0.01506237 0.01508498 0.01513765 
Table 28. Change in eccentricity dependent on the scale factor due to 𝐽3 after 1 year 

𝝎̇ [°/year] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 0.0003458 0.0010373 0.0017186 0.0034371 
𝜔̇𝑚𝑖𝑛 -1.85 -1.8525 -1.8552 -1.8617 
𝜔̇𝑚𝑎𝑥 -1.8475 -1.8449 -1.8427 -1.8367 
Table 29. Change in argument of periapsis dependent on the scale factor due to 𝐽3 after 1 year 

The gravitational coefficient 𝐽4 mainly causes the change in the argument of periapsis on a polar 

orbit. It is described by [Schuster and Jehn, 2014]: 

𝜔̇ = −
15

32
𝐽4𝑛 (

𝑅𝑝𝑙𝑎𝑛𝑒𝑡

𝑝
)

4

[3 +
9

4
𝑒2 − (1 +

5

2
𝑒2) cos(2𝜔)] (25) 

The change in ω considering the nominal value affected by 𝐽4 accounts for -2.2128°/year. The change 

in the argument of periapsis for the minimal and maximal values, as well as standard deviations 

dependent on the scale factor is presented in Table 30. 

𝝎̇ [°/year] scale factor 1 scale factor 3 scale factor 5 scale factor 10 

𝜎 0.0009836 0.0029507 0.0048854 0.0097708 
𝜔̇𝑚𝑖𝑛 -2.2164 -2.2236 -2.2333 -2.2538 
𝜔̇𝑚𝑎𝑥 -2.2096 -2.2031 -2.1950 -2.1773 
Table 30. Change in argument of periapsis dependent on the scale factor due to 𝐽4 after 1 year 

7.3. Comparison with additional perturbing forces 

7.3.1. Gravity of the Sun 

Since the second major perturbing force affecting the trajectory of the orbiter is the gravitational 

attraction of the Sun, 10,000 simulations were performed using the gravity fields generated on basis 

of the scale factor 1 taking the gravity field of Mercury, as well as the gravity force of the Sun as a 

mass point into account. The aim of these simulations is comparison of the results of the simulations 

considering only gravity field of Mercury and the both effects to investigate and understand the 

changing the trajectory of MPO.  

Figure 22 (left) demonstrates the evolution of the periherm of MPO considering the effect of the 

gravity field of Mercury while the changes in the periherm of the spacecraft, taken the influence of 

the geopotential of Mercury, as well as the attraction of the Sun into account, is shown by Figure 22 

(right). According to the plots, the gravity force of the Sun has generally a positive effect on the 

evolution of the periherm after 2 years in the orbit. The Sun generally causes an increase in periherm 

altitude. On the other hand, as it can be seen by Table 24, the tendency up to the first year is 

opposite to the trend afterwards. The nominal value of periherm considering the gravity field of 

Mercury is greater by 1 km after 1 year and smaller by 25.8 km after 2 years compared to the 

nominal value of the periherm including the gravity force of the Sun. Hence, the standard deviation 

including the Sun doesn’t differ significantly from the standard deviation without the third body 

effect after 1 year and is smaller by 0.04 km. The difference in standard deviation after 2 years is a 

little bit larger and amounts to 0.5 km.  
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Figure 22. The evolution of the periherm considering the gravity field of Mercury over 2 years (left); The evolution of the 
periherm considering the gravity field of Mercury and the Sun as a mass point over 2 years (right).  

While the minimal value of periherm exceeds the critical distance of 200 km when considering the 

gravity field of Mercury only, the minimal value of 𝑟𝑝 including the Sun is in the acceptable range 

after 2 years.  

A more detailed information about values of the periherm within and without considering of the 

gravity of the Sun is depicted in Table 31, Table 32 and Table 33. 

𝒓𝒑,𝑴,𝑺 [km] after 1 year after 2 years 

𝑟𝑝,𝑛𝑜𝑚 331.417 258.307 

𝑟𝑝,𝑖𝑛𝑖𝑡 - 𝑟𝑝,𝑛𝑜𝑚 149.183 222.293 

rate per day 0.408 0.304 
Table 31. Nominal values for periherm considering the effect of the gravity field of Mercury and the gravity force of the Sun 

𝒓𝒑  [km] gravity field of Mercury both effects 

𝜎 2.865 2.821 
𝑟𝑝,𝜎,𝑚𝑖𝑛 329.557 328.596 

𝑟𝑝,𝜎,𝑚𝑎𝑥 335.288 334.238 

𝑟𝑝,𝑚𝑖𝑛 319.958 319.167 

𝑟𝑝,𝑚𝑎𝑥 342.483 341.314 

Table 32. Periherm values above surface after 1 year 

𝒓𝒑 [km] Gravity field of Mercury both effects 

𝜎 8.916 8.417 
𝑟𝑝,𝜎,𝑚𝑖𝑛 223.639 249.891 

𝑟𝑝,𝜎,𝑚𝑎𝑥 241.470 266.724 

𝑟𝑝,𝑚𝑖𝑛 191.474 219.744 

𝑟𝑝,𝑚𝑎𝑥 264.217 288.251 

Table 33. Periherm values above surface after 2 years 

Figure 23 (left) shows the evolution of the eccentricity of MPO taken the geopotential of Mercury 

into account over 2 years. Figure 23 (right) represents the changes in the eccentricity of the satellite 

considering both perturbing forces. The eccentricity does not rise strongly when an attraction of the 

Sun is taking into account. The standard deviation is a little bit smaller when the gravity force of the 

Sun is included than without it and differs by 0.0000129 after 1 year and by 0.0002552 after 2 years.  
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A more detailed information about the values of the eccentricity considering the gravity field of 

Mercury and the geopotential of Mercury with the gravity force of the Sun is presented in Table 34, 

Table 35 and Table 36. 

  

Figure 23. The evolution of the eccentricity considering the gravity field of Mercury over 2 years (left); The evolution of the 
eccentricity considering the gravity field of Mercury and the Sun as mass point over 2 years (right) 

ⅇ𝑴,𝑺 [-] after 1 year after 2 years 

𝑒𝑛𝑜𝑚 0.1921561 0.2134819 
𝑒𝑖𝑛𝑖𝑡 − 𝑒𝑛𝑜𝑚 -0.0434681 -0.0647939 
rate per day -0.00011901 -0.0000887 
Table 34. Nominal values for eccentricity considering the gravity field of Mercury and the gravity of the Sun 

e [-] gravity field of Mercury  both effects  

𝜎 0.0008354 0.0008225 
𝑒𝜎,𝑚𝑖𝑛 0.1910266 0.1913336 

𝑒𝜎,𝑚𝑎𝑥 0.1926974 0.1929787 
𝑒𝑚𝑖𝑛 0.1889292 0.1892709 
𝑒𝑚𝑎𝑥 0.1954964 0.1957283 
Table 35. Eccentricity values after 1 year 

e [-] gravity field of Mercury  both effects 

𝜎 0.002599 0.0023438 
𝑒𝜎,𝑚𝑖𝑛 0.2183894 0.2110281 
𝑒𝜎,𝑚𝑎𝑥 0.2235881 0.2159357 
𝑒𝑚𝑖𝑛 0.2117578 0.2047521 
𝑒𝑚𝑎𝑥 0.2329656 0.2247247 
Table 36. Eccentricity values after 2 years 

Figure 24 show the evolution of the apoherm of MPO considering only the gravity field of Mercury 

(left) and both perturbing forces (right) over 2 years respectively. According to the plots, the Sun 

causes the small increase in the apoherm after the first year and a bigger decrease after 2 years, 

namely the apoherm by considering the both effects reaches smaller values than without taking the 

third body effect into account. The standard deviation of the apoherm by taking the gravity field of 

Mercury and the attraction of the Sun into consideration is smaller than without the gravity of the 

Sun.  
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A more detailed information about the values of the apoherm considering the gravity field of 

Mercury and the geopotential of Mercury with the gravity force of the Sun is presented in Table 37, 

Table 38 and Table 39. 

 

Figure 24. The evolution of the apoherm considering the gravity field of Mercury over 2 years (left); The evolution of the 
apoherm considering the gravity field of Mercury and the Sun as mass point over 2 years (right) 

𝒓𝒂,𝑴,𝑺 [km] after 1 year after 2 years 

𝑟𝑎,𝑛𝑜𝑚 1649.567 1722.766 
𝑟𝑎,𝑠𝑡𝑎𝑟𝑡 - 𝑟𝑎,𝑛𝑜𝑚 -148.967 -222.166 
rate per day -0.408 -0.304 
Table 37. Nominal values for apoherm above surface considering the gravity field of Mercury and the gravity of the Sun 

𝒓𝒂 [km] gravity field of Mercury both effects 

𝜎 2.866 2.821 
𝑟𝑎,𝜎,𝑚𝑖𝑛 1645.688 1646.745 

𝑟𝑎,𝜎,𝑚𝑎𝑥 1651.419 1652.388 

𝑟𝑎,𝑚𝑖𝑛 1638.495 1639.671 
𝑟𝑎,𝑚𝑎𝑥 1661.021 1661.821 
Table 38. Apoherm values above surface after 1 year  

𝒓𝒂 [km] gravity field of Mercury  both effects  

𝜎 8.915 8.416 
𝑟𝑎,𝜎,𝑚𝑖𝑛 1739.592 1714.350 
𝑟𝑎,𝜎,𝑚𝑎𝑥 1757.423 1731.182 

𝑟𝑎,𝑚𝑖𝑛 1716.848 1692.825 
𝑟𝑎,𝑚𝑎𝑥 1789.586 1761.327 
Table 39. Apoherm values above surface after 2 years  

Figure 25 and Figure 26 demonstrate the evolution of the longitude of ascending node and argument 

of periapsis respectively over 2 years. The left plots show the change in Ω and ω taking the 

gravitational potential of Mercury into consideration, the right plots represent the evolution of Ω and 

ω considering the gravity field of Mercury as well as the attraction of the Sun. It can be seen, that the 

Sun causes a slower decrease of the longitude of ascending node and the argument of periapsis than 

by taking only the gravity field into account. For example, the difference between nominal values of 

Ω is 0.0138° after 1 years and 0.0422°, and between nominal values of ω amounts to 2.13° after 1 

year and to 3.07° after 2 years. The standard deviation by considering the both perturbing forces is 

smaller than without the Sun.    
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Figure 25. The evolution of the longitude of ascending node considering gravity field of Mercury over 2 years (left); The 
evolution of the eccentricity considering the gravity field of Mercury and the Sun as a mass point over 2 years (right) 

Table 40, Table 41, Table 42, Table 43, Table 44 and Table 45 represent a more detailed information 

about the values of Ω and ω within and without considering of the gravity force of the Sun after 1 

and 2 years.   

Ω𝑴,𝑺 [°] after 1 year after 2 years 

Ω𝑛𝑜𝑚 67.5081 67.1556 
Ω 𝑖𝑛𝑖𝑡 - Ω𝑛𝑜𝑚 0.2919 0.6444 
Table 40. Nominal values for longitude of ascending node the gravity field of Mercury and the gravity of the Sun 

Ω [°] gravity field of Mercury  both effects  

𝜎 0.0037 0.0035 
Ω𝜎,𝑚𝑖𝑛 67.4906 67.5045 

Ω𝜎,𝑚𝑎𝑥 67.4981 67.5117 
Ω𝑚𝑖𝑛 67.4792 67.4938 
Ω𝑚𝑎𝑥 67.5091 67.5220 
Table 41. Values for the longitude of ascending node after 1 year 

Ω [°] gravity field of Mercury both effects 

𝜎 0.0117 0.0106 
Ω𝜎,𝑚𝑖𝑛 67.1018 67.1661 
Ω𝜎,𝑚𝑎𝑥 67.1251 67.1450 
Ω𝑚𝑖𝑛 67.0670 67.1150 
Ω𝑚𝑎𝑥 67.1587 67.1975 
Table 42. Values for the longitude of ascending node after 2 years 
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Figure 26. The evolution of the argument of periapsis considering gravity field of Mercury over 2 years (left);  The evolution 
of the eccentricity considering gravity field of Mercury and Sun as a mass point (right) 

𝝎𝑴,𝑺   [°] after 1 year after 2 years 

𝜔𝑛𝑜𝑚 -14.4586 -42.1231 
𝜔 𝑖𝑛𝑖𝑡 - 𝜔𝑛𝑜𝑚 30.4586 58.1231 
rate per day 0.0834 0.0796 
Table 43. Nominal values for the argument of periapsis considering the gravity field of Mercury and the gravity of the Sun 

ω [°] gravity field of Mercury both effects 

𝜎 0.0932 0.0852 
𝜔𝜎,𝑚𝑖𝑛 -16.6829 -14.5439 

𝜔𝜎,𝑚𝑎𝑥 -16.4965 -14.3734 
𝜔𝑚𝑖𝑛 -16.9181 -14.7587 
𝜔𝑚𝑎𝑥 -16.1856 -14.0897 
Table 44. Values for the argument of periapsis after 1 year 

ω [°] gravity field of Mercury both effects 

𝜎 0.5311 0.4827 
𝜔𝜎,𝑚𝑖𝑛 -45.7262 -42.6058 
𝜔𝜎,𝑚𝑎𝑥 -44.6640 -41.6404 

𝜔𝑚𝑖𝑛 -47.1725 -43.9248 
𝜔𝑚𝑎𝑥 -42.8051 -39.9622 
Table 45. Values for the argument of periapsis after 2 years 

Figure 27 and Figure 28 show the evolution of the inclination and the semi-major axis of MPO 

considering the gravity field of Mercury (left) and the both perturbing forces (right) respectively.  

According to the plots, the amplitude of the periodic oscillations in the inclination and in the semi-

major axis, taking both effects into account, are slightly larger, but the standard deviation is tinier.  
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Figure 27. The evolution of the inclination considering gravity field of Mercury over 2 years (left); The evolution of the 
eccentricity considering the gravity field of Mercury and the Sun as a mass point over 2 years (right) 

 

Figure 28. The evolution of the semi-major axis considering gravity field of Mercury over 2 years (left); The evolution of the 
eccentricity considering the gravity field of Mercury and the Sun as a mass point over 2 years (right) 

7.3.2. Radiation pressure and solar system bodies 

In addition to the simulations discussed in sections 7.1 and 7.3.1, the simulations based on the 

gravity fields with the scale factor 1 were performed taken into consideration the radiation pressure 

and solar system bodies additionally to the geopotential of Mercury and the gravity force of the Sun. 

The radiation pressure includes SPR, the thermal radiation pressure and the reflected albedo 

pressure. The solar system bodies are represented by Venus, Earth-Moon, Mars, Jupiter and Saturn 

(see Figure 12). The number of the simulations was limited to 100 due to the long processing time.  

Case 
Number of  
simulations 

Scale 
factor 

Consideration of perturbing forces 

Case 1  100 1 Gravity field of Mercury 
Case 2 100 1 Gravity field of Mercury and gravity of the Sun 
Case 3 100 1 Gravity field of Mercury, gravity of the Sun, RP, solar system bodies 

(shortly: all perturbations) 
Table 46. Description of the simulations 

Table 46 describes the three analysed cases. The results of these three cases were compared with 

each other in order to investigate the differences in changes in the orbital elements of MPO. Note 
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that 100 simulations in each case were taken for the comparison in order to do the analysis 

legitimately. 

The obtained results show that the values of the orbital elements in case 3 are very similar to the 

values in case 2. The difference in values is very tiny and accounts approximately for 0.1 %. For 

example, the periherm nominal value in case 3 is smaller by 0.2 km than in case 2 after 2 years. 

Otherwise, the differences between the values for case 1 and 3 are appreciable. For example, the 

nominal value of periherm in case 3 is bigger by 25.6 km than in case 1 after 2 years.  

Summarizing the results, the simulations show that, it is necessary to take the gravitational potential 

of Mercury and as well as the gravity force of the Sun into account for the prediction of the orbit 

evolution of MPO over time, because they cause the major perturbations in the satellite motion. The 

other considered disturbance forces of case 3 can be neglected due to the very small resulting 

acceleration. On the other hand, the number of the simulations is too small to do the qualitative 

analyses. It can only give the primary estimation.  

The plots with evolution of the orbital elements and the tables with more detailed information about 

the values of the orbital elements for these three cases after 1 and 2 years can be found in Appendix. 
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8. Discussion and conclusion 

8.1. Discussion 

Within the framework of this bachelor thesis, the simulations for the prediction of the orbital 

evolution of MPO in the gravity field of Mercury were performed using gravity fields based on the 

scale factors 1, 3, 5 and 10. The aim of the simulations is the systematically investigation of the 

consequences of the generated gravity fields of Mercury which lie in the margin of error of the 

gravitational coefficients. Scale factors are used for conservative consideration of the estimations for 

the harmonic coefficients. The recommended scale factor is between 10 and 15 [Mazarico et al., 

2014]. For this reason, the simulations using the generated gravity fields, based on the scale factors 

10 and 15, were executed during the definition of the boundary conditions. The simulations with the 

scale factor 15 failed most of the time as the Integrator stopped the calculations after short time and 

reported the error. This was due to some extreme gravity fields which caused the satellite to crash 

into the planet after short time in the orbit. Although these generated fields could be considered as 

highly unlikely, they are still a possible solution and lie within the margins for the scale factor 15. For 

this reason, it was decided to investigate the influence of the gravity fields with the scale factor 1, 3, 

5 and 10, and not to include the simulations with the scale factor 15.  

The scale factors have a linear effect on the evolution of the elements, as it was shown before. By 

investigating the scale factors 1, 3, 5 and 10, the effect of a scale factor of 15 can be investigated. In 

fact, a higher scale factor will lead to a higher probability that the orbit falls below the critical altitude 

of 200 km or even crashes into the planet. 

All gravity fields were generated up to degree and order of 50 although 100x100 gravity fields would 

have been possible. The degree and order were reduced for two reasons:    

Higher terms of the gravity field have only a minor effect on the orbital evolution. The terms with 

degree and order above 50 have such a small effect, that they are not noticeable in the results. The 

second reason was to simplify the considered model and to reduce the calculation time significantly. 

As shown in section 7.3.1, the gravity field of the Sun as a point-like mass has also appreciable 

influence on the evolution of the periherm after 2 years. For this reason, the attraction of the Sun 

had to be included in simulation in order to obtain better and more realistic results.  

In addition, the effect of other disturbing forces has been analysed. This includes the solar radiation 

pressure, the gravitational forces of solar system planets like Venus, Earth, Jupiter etc., and the 

indirect radiation pressure which includes the thermal radiation pressure and the albedo. All these 

perturbing forces have only a minor effect on the orbital evolution. Perturbations are caused by the 

solid tidal forces and propulsive manoeuvres as well as the relativistic perturbations were not 

considered. A detailed analysis of these forces would go beyond the scope of this bachelor thesis. 

In a future work, based on the results of this thesis, it could be studied which kind of orbit correction 

manoeuvres needs to be performed to maintain the desired altitude of MPO.   

8.2. Conclusion 

The main acceleration acting on the motion of MPO is caused by the gravity field of Mercury. The 

performed simulations show that the geopotential of Mercury increases the eccentricity of the orbit 

which in turn leads to a decrease in the periherm altitude and a rise of the apoherm respectively. The 
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semi-major axis and the inclination remain almost constant over time but have a periodical character 

due to the perturbations. The overall trend in the evolution of the longitude of ascending node is a 

slow decrease with periodic fluctuations because of the motion of the satellite and the planet’s 

rotation. Moreover, the argument of periapsis decreases almost linearly, which is caused by the 

North-South mass asymmetry and flattening of Mercury.  

The standard deviations, as well as the differences between the minimal and maximal values of the 

orbital elements get larger with growing scale factor and over time. The values of the elements lie in 

an acceptable range after 1 year while the change, for example, in the periherm after 2 years could 

be already considered as critical for the scale factor 1, whereas there is a chance of 0.02 % that the 

periherm falls below 200 km. The likelihood that the periherm lies under the critical value after 2 

years increases with the rising scale factor and amounts to 11.74 % for the scale factor 3, to 23.69 % 

for the scale factor 5 and to 36.21 % for the scale factor 10. Furthermore, the satellite ends up with 

the collision into the planet in 0.01% of the simulations for the scale factor 5 and in 1.51 % of the 

simulations for the scale factor 10. 

The maximal and minimal values of the orbital elements for the scale factor 10 can be defined as 

extreme. This might be caused by the extreme gravity fields of Mercury which could exist statistically 

but the likelihood of them is very tiny.   

When considering third-body perturbing force as a point mass additionally to the gravitational 

potential of Mercury, an attraction of the Sun has a positive effect on the evolution of the periherm, 

i.e. the gravity force of the Sun reduces the increase in the eccentricity and the decrease of the 

periherm respectively after 2 years in the orbit. For example, considering the gravity of the Sun and 

the geopotential of Mercury, the periherm ends up 25.8 km higher than without the attraction of the 

Sun. Moreover, the minimal value of the periherm doesn’t fall below 200 km after 2 years when the 

gravity of the Sun is taking into account. Considering only the gravity field of Mercury, the minimal 

value of the periherm falls below this critical value. 

Furthermore, “the third-body perturbation makes the orbit to flatten in the direction of the 

perturbing body. It produces secular effects on the argument of periapsis and the right ascension of 

the ascending node” [Tresaco et al., 2018], namely both elements fall slower than by considering 

only the gravitational potential of Mercury. Furthermore, the periodic oscillations in semi-major axis 

and in inclination are slightly larger than without considering the attraction of the Sun. Moreover, the 

standard deviation of all orbital elements is tinier when considering both perturbing forces instead of 

taking only the gravitational potential of Mercury into account.  

By consideration of the radiation pressure and the solar system bodies additionally to the 

geopotential of Mercury and the attraction of the Sun, the results of the simulations show that the 

evolution of the orbital elements of MPO in this case is similar to the case with the Sun’s gravity 

force. This difference is unappreciable and accounts for ca. 0.1 %, because the radiation pressure and 

the solar system bodies masses cause only small perturbations on the motion of MPO. For this 

reason, these disturbing forces can be neglected by the prediction of the orbital evolution of the 

spacecraft.  

The results of the performed simulations of this bachelor thesis are in accordance with the results 

presented in CREMA in which the gravity field of Mercury, the gravity of the Sun and SRP are taken 

into account [Khan and Rocchi, 2018]. This thesis expands the results of CREMA and gives additional 

probabilities on how the orbit will evolve. 
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Table of acronyms 

Acronym Description 

BELA BepiColombo Laser Altimeter 

CREMA Cornerstone Consolidated Report on Mission Analysis 

DLR Deutsches Zentrum für Luft und Raumfahrt 

dlsode Adam multi-step integration method 

dop853 integration method 

EPPS Energetic Particle and Plasma Spectrometer 

ESA European Space Agency 

ESOC European Space Operations Centre 

GRNS Gamma-Ray and Neutron Spectrometer 

GSFC Goddard Space Flight Center 

IAUplanet body-fixed equatorial system 

ISA Italian Spring Accelerometer 

ISAS Institute of Space Astronautical Science 

J2000 Earth equator system 

JAXA Japan Aerospace Exploration Agency 

MAG MAGnetometer 

MASCS Mercury Atmospheric and Surface Composition Spectrometer 

MDIS Mercury Dual Imaging System 

MercuryIAU Inertial Mercury equatorial system 

MERTIS MErcury Radiometer and Thermal Infrared Spectrometer 

MESSENGER MErcury Surface, Space ENvironment, GEochemistry, and Ranging 

MGNS Mercury Gamma-ray and Neutron Spectrometer 

MIXS Mercury Imaging X-ray Spectrometer 

MJD Modified Julian Date 

MJD Modified Julian Date 

MLA Mercury Laser Altimeter 

MMO Mercury Magnetospheric Orbiter 

MON-3 Mixed Oxides of Nitrogen 

MORE Mercury Orbiter Radio-science Experiment 

MOSIF MMO Sunshield and Interface Structure 

MPO Mercury Planetary Orbiter 

MPO-MAG Mercury Planetary Orbiter MAGnetometer 

MTM Mercury Transfer Module 

NASA National Aeronautics and Space Administration 

PDF probability density function 

PDS Planetary Data System  

PHEBUS Probing of Hermean Exosphere by Ultraviolet Spectroscopy 

https://pds.nasa.gov/
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PlanetIAU inertial equatorial system 

RK4 Runge-Kutta integration method 

RKFB Runge-Kutta-Fehlberg integration method 

RP Radiation pressure 

RS Radio Science 

SERENA Search for Exospheric Refilling and Emitted Natural Abundance 

SIMBIO-SYS Spectrometer and Imagers for MPO BepiColombo Integrated 
Observatory SYStem 

SIXS Solar Intensity X-ray and particle Spectrometer 

SRP solar radiation pressure 

XRS X-Ray Spectrometer 

 

Table of symbols 

Symbol Description Unit 

GM gravitational coefficient  
𝑘𝑚3

𝑠2  

𝐶𝑚𝑛, 𝑆𝑛𝑚 spherical harmonic coefficients - 

a semi-major axis km 

e eccentricity - 

i inclination ° 

Ω the longitude of the ascending node ° 

ω argument of periapsis ° 

M mean anomaly ° 

α right ascension ° 

δ declination ° 

𝜎 standard deviation - 

𝑟𝑝 periherm km 

µ nominal value - 

𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7 surface areas of the spacecraft  𝑚2 
k number of concentric rings - 

𝑛𝑖 for i=1,…,k number of surface segments - 

𝑛𝑎 number of additional surface segments in the outer rings - 

𝑟𝑎 apoherm km 

𝑟𝑀 reference radius of Mercury km 

F Gravitational force  

m Mass of the satellite kg 

r distance between the centres of mass km 

G universal gravitational constant 
𝑚3

𝑘𝑔 ⋅ 𝑠2
 

𝑟̈ acceleration 
𝑘𝑚

𝑠2
 

𝑟̈𝑃𝐵 acceleration due to gravity forces of bodies 
𝑘𝑚

𝑠2
 

𝑟̈𝐺𝑒𝑜𝑝 acceleration due to higher terms of the geopotential 
𝑘𝑚

𝑠2
 



63 
 

𝑟̈𝑅𝑃 acceleration due to radiation pressure 
𝑘𝑚

𝑠2
 

𝑟̈𝐴𝑡𝑚 acceleration due to atmospheric drag 
𝑘𝑚

𝑠2
 

𝑟̈𝑡𝑖𝑙𝑡 acceleration due to tilt forces 
𝑘𝑚

𝑠2
 

𝛻𝑈 gradient of gravitational potential 
𝑘𝑚

𝑠2
 

𝑈 gravitational potential 
𝑘𝑚2

𝑠2
 

ρ(s) density at some point s 
𝑘𝑔

𝑘𝑚3
 

𝑃𝑛(𝑢) Legendre polynomial of degree n - 

λ, 𝜆′ geographic longitude km 

𝜙, 𝜙′ geographic latitude km 

𝛿0𝑚 Kronecker delta - 

𝑃𝑛𝑚 associated Legendre polynomial of degree n and order m - 

𝐶𝑛̅𝑚, 𝑆𝑛̅𝑚. normalized spherical harmonic coefficients - 

vp velocity in periherm 
𝑘𝑚

𝑠
 

va velocity in apoherm 
𝑘𝑚

𝑠
 

T orbital period hours 

hp periherm altitude km 

ha apoherm altitude km 

(𝑥, 𝑦, 𝑧) Three dimensional coordinates km 

(𝑣𝑥, 𝑣𝑦, 𝑣𝑧) Three-dimensional velocity vector 
𝑘𝑚

𝑠
 

N Number of simulations  - 

𝑥̅ Nominal value  - 

𝑥 Value of the data set - 

𝑟𝑝,𝜎,𝑚𝑎𝑥 Maximal value of periherm based on standard deviation km 

𝑟𝑝,𝜎,𝑚𝑖𝑛 Minimal value of periherm based on standard deviation km 

𝑟𝑝,𝑖𝑛𝑖𝑡 Initial value of periherm km 

𝑟𝑝,𝑛𝑜𝑚 Nominal value of periherm km 

𝑟𝑝,𝑚𝑖𝑛 Minimal value of periherm km 

𝑟𝑝,𝑚𝑎𝑥 Maximal value of periherm km 

𝑒𝑛𝑜𝑚 Nominal value of eccentricity - 

𝑒𝑖𝑛𝑖𝑡 Initial value of eccentricity - 

𝑒𝜎,𝑚𝑖𝑛 Minimal value of eccentricity based on standard deviation - 

𝑒𝜎,𝑚𝑎𝑥 Maximal value of eccentricity based on standard deviation - 

𝑒𝑚𝑖𝑛 Minimal value of eccentricity - 

𝑒𝑚𝑎𝑥 Maximal value of eccentricity - 

𝑟𝑎,𝑛𝑜𝑚 Nominal value of apoherm km 

𝑟𝑎,𝑖𝑛𝑖𝑡 Initial value of apoherm km 

𝑟𝑎,𝜎,𝑚𝑖𝑛 Minimal value of apoherm based on standard deviation km 

𝑟𝑎,𝜎,𝑚𝑎𝑥 Maximal value of apoherm based on standard deviation km 

𝑟𝑎,𝑚𝑖𝑛 Minimal value of apoherm km 

𝑟𝑎,𝑚𝑎𝑥 Maximal value of apoherm km 

𝜔 𝑖𝑛𝑖𝑡 Initial value of argument of periapsis ° 

𝜔𝑛𝑜𝑚 Nominal value of argument of periapsis ° 

𝜔𝜎,𝑚𝑖𝑛 Minimal value of argument of periapsis based on standard ° 
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deviation 

𝜔𝜎,𝑚𝑎𝑥 Maximal value of argument of periapsis based on standard 
deviation 

° 

𝜔𝑚𝑖𝑛 Minimal value of argument of periapsis ° 

𝜔𝑚𝑎𝑥 Maximal value of argument of periapsis ° 

Ω 𝑖𝑛𝑖𝑡 Initial value of longitude of ascending node ° 

Ω𝑛𝑜𝑚 Nominal value of longitude of ascending node ° 

Ω𝜎,𝑚𝑖𝑛 Minimal value of longitude of ascending node based on 
standard deviation 

° 

Ω𝜎,𝑚𝑎𝑥 Maximal value of longitude of ascending node based on 
standard deviation 

° 

Ω𝑚𝑖𝑛 Minimal value of longitude of ascending node ° 

Ω𝑚𝑎𝑥 Maximal value of longitude of ascending node ° 

𝛺̇ Change in longitude of ascending node °/s 

𝜔̇ Change in argument of periapsis °/s 

𝜔̇𝑚𝑖𝑛 Minimal value of change in argument of periapsis °/s 

𝜔̇𝑚𝑎𝑥 Maximal value of change in argument of periapsis °/s 

𝑒̇𝑚𝑖𝑛 Minimal value of change in eccentricity 1/s 

𝑒̇𝑚𝑎𝑥 Maximal value of change in eccentricity 1/s 

𝑒̇ Change in eccentricity 1/s 

p semi-latus rectus km 

n mean motion 1/s 

𝑅𝑝𝑙𝑎𝑛𝑒𝑡 Planet’s radius km 

𝑟𝑝,𝑀,𝑆 
Periherm value based on consideration of the gravity field of 
Mercury and the gravity of the Sun 

km 

𝑒𝑀,𝑆 
Eccentricity value based on consideration of the gravity field 
of Mercury and the gravity of the Sun 

- 

𝑟𝑎,𝑀,𝑆 
Apoherm value based on consideration of the gravity field of 
Mercury and the gravity of the Sun 

km 

Ω𝑀,𝑆 
Value of longitude of ascending node based on consideration 
of the gravity field of Mercury and the gravity of the Sun 

° 

𝜔𝑀,𝑆    
Value of argument of periapsis based on consideration of the 
gravity field of Mercury and the gravity of the Sun 

° 

Ω𝑎𝑙𝑙 𝑝𝑒𝑟𝑡 
Value of longitude of ascending node based on consideration 
of all perturbations 

° 

𝜔𝑎𝑙𝑙 𝑝𝑒𝑟𝑡 
Value of argument of periapsis based on consideration of all 
perturbations 

° 

𝑒𝑎𝑙𝑙 𝑝𝑒𝑟𝑡 Eccentricity value based on consideration of all perturbations - 
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Appendix 

Appendix 1 – Evolution of the orbital elements e, 𝒓𝒂, a, i, Ω and 

ω dependent on degree and order of the gravitational harmonic 

coefficients  

 

Figure 29. Evolution of the eccentricity dependent on the degree and order of gravitational harmonic coefficients over 2 
years 
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Figure 30. Evolution of the apoherm considering from the Mercury’s center dependent on the degree and order of 
gravitational harmonic coefficients over 2 years 

 

Figure 31. Evolution of the semi-major dependent on the degree and order of gravitational harmonic coefficients over 2 
years 
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Figure 32. Evolution of the inclination dependent on the degree and order of gravitational harmonic coefficients over 2 years 

 

Figure 33. Evolution of the longitude of the ascending node dependent on the degree and order of gravitational harmonic 
coefficients over 2 years 
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Figure 34. Evolution of the argument of periapsis dependent on the degree and order of gravitational harmonic coefficients 
over 2 years 

 

Appendix 2 – Box plot for eccentricity of MPO and corresponded 

table 

 

Figure 35. The box plots for the eccentricity after 1 and 2 years 
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 scale factor 1 scale factor 3 scale factor 5 scale factor 10 
after  
1 year  

after  
2 years 

after  
1 year 

after  
2 years 

after  
1 year 

after  
2 years 

after  
1 year 

after  
2 years 

upper 
outliers 

0.195496 0.232966 0.202869 0.2597 0.210266 0.290704 0.222702 0.357820 

upper 
whisker 

0.194207 0.228268 0.198937 0.243908 0.203658 0.26134 0.21569 0.311616 

upper 
quartile 

0.192418 0.222717 0.193531 0.226222 0.194659 0.229838  0.197495 0.239183 

median 0.191868 0.221012 0.191879 0.221058 0.191871 0.221128 0.191891 0.221269 
lower 
quartile 

0.191301 0.219241 0.190182 0.215798 0.189052 0.212427 0.186289 0.204319 

lower 
whisker 

0.189513 0.213648 0.184854 0.199891 0.180134 0.186976 0.168767 0.159717 

lower 
outliers 

0.188929 0.21176 0.183126 0.194729 0.176711 0.178022 0.162107 0.145227 

Table 47. The important parameter of the box plot for the eccentricity dependent on the scale factor after 1 and 2 years 

Appendix 3 – Box plot for apoherm of MPO and corresponded table 

 

Figure 36. The box plots for the apoherm after 1 and 2 years 

 scale factor 1 scale factor 3 scale factor 5 scale factor 10 
after  
1 year  

after  
2 years 

after  
1 year 

after  
2 years 

after  
1 year 

after  
2 years 

after  
1 year 

after  
2 years 

upper 
outliers 

1661.021 1789.586 1686.313 1881.278 1711.696 1987.615 1754.321 2217.755 

upper 
whisker 

1656.594   1773.474   1672.811 1827.113 1689.0 1886.9 1730.245 2059.325 

upper 
quartile 

1650.458 1754.434 1654.272 1766.458 1658.141 1778.861 1667.885 1810.911 

median 1648.571 1748.588 1648.606 1748.747 1648.588 1748.984 1648.663 1749.467 
lower 
quartile 

1646.629 1742.512 1642.788 1730.705 1638.921 1719.144 1629.443 1691.330 

lower 
whisker 

1640.5 1723.33 1624.523 1676.148 1608.316 1631.849 1569.312 1538.354 

lower 
outliers 

1638.495 1716.848 1618.592 1658.441 1596.587 1601.137 1546.492 1488.652 

Table 48. The important parameter of the box plot for the apoherm dependent on the scale factor after 1 and 2 years 



73 
 

Appendix 4 – Evolution of orbital elements of MPO considering the 

geopotential of Mercury, additionally gravity force of the Sun and 

all perturbations  

 

 

Figure 37. Evolution of the periherm of MPO dependent on the considered perturbing forces 

𝒓𝒑,𝒂𝒍𝒍 𝒑ⅇ𝒓𝒕 [km] after 1 year after 2 years 

𝑟𝑝,𝑛𝑜𝑚 331.176 258.107 

𝑟𝑝,𝑖𝑛𝑖𝑡 - 𝑟𝑝,𝑛𝑜𝑚 149.424 222.493 

rate per day 0.409 0.305 
Table 49. Nominal values for periherm considering all perturbations 

𝒓𝒑  [km] 
gravity field of 
Mercury 

gravity field of 
Mercury and Sun 

all perturbations 

𝜎 2.874 2.830 2.828 
𝑟𝑝,𝜎,𝑚𝑖𝑛 329.549 328.587 328.348 

𝑟𝑝,𝜎,𝑚𝑎𝑥 335.296 334.247 334.004 

𝑟𝑝,𝑚𝑖𝑛 325.455 324.543 324.306 

𝑟𝑝,𝑚𝑎𝑥 339.456 338.330 338.084 

Table 50. Periherm values above surface after 1 year 
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𝒓𝒑  [km] 
gravity field of 
Mercury 

gravity field of 
Mercury and Sun 

all perturbations 

𝜎 8.945 8.446 8.445 
𝑟𝑝,𝜎,𝑚𝑖𝑛 223.61 249.861 249.661 

𝑟𝑝,𝜎,𝑚𝑎𝑥 241.5 266.753 266.552 

𝑟𝑝,𝑚𝑖𝑛 211.477 238.302 238.102 

𝑟𝑝,𝑚𝑎𝑥 254.814 279.285 279.085 

Table 51. Periherm values above surface after 2 year 

 

 

 

Figure 38. Evolution of the eccentricity of MPO dependent on the considered perturbing forces 

ⅇ𝒂𝒍𝒍 𝒑ⅇ𝒓𝒕 after 1 year after 2 years 

𝑒𝑛𝑜𝑚 0.1922276 0.2135381 
𝑒𝑖𝑛𝑖𝑡 − 𝑒𝑛𝑜𝑚 -0.0435396 -0.0648501 
rate per day -0.00011920 -0.0000888 
Table 52. Nominal values for eccentricity considering all perturbations  
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e [-] 
gravity field of 
Mercury 

gravity field of 
Mercury and Sun 

all perturbations 

𝜎 0.0008378 0.0008251 0.0008246 
𝑒𝜎,𝑚𝑖𝑛 0.1910242 0.1913311 0.191403 
𝑒𝜎,𝑚𝑎𝑥 0.1926999 0.1929813 0.1930521 
𝑒𝑚𝑖𝑛 0.1898111 0.1901404 0.1902135 
𝑒𝑚𝑎𝑥 0.193893 0.1941601 0.1942305 
Table 53. Eccentricity values after 1 year 

e [-] 
gravity field of 
Mercury 

gravity field of 
Mercury and Sun 

all perturbations 

𝜎 0.0026079 0.0024623 0.0024622 
𝑒𝜎,𝑚𝑖𝑛 0.2183809 0.2110196 0.211076 
𝑒𝜎,𝑚𝑎𝑥 0.2235967 0.2159442 0.2160003 
𝑒𝑚𝑖𝑛 0.2144993 0.2073660 0.2074224 
𝑒𝑚𝑎𝑥 0.2271340 0.2193144 0.2193702 
Table 54. Eccentricity values after 2 year 

 

 

Figure 39. Evolution of the apoherm of MPO dependent on the considered perturbing forces 

𝒓𝒂,𝒂𝒍𝒍 𝒑ⅇ𝒓𝒕 [km] after 1 year after 2 years 

𝑟𝑎,𝑛𝑜𝑚 1649.817 1722.947 
𝑟𝑎,𝑖𝑛𝑖𝑡 - 𝑟𝑎,𝑛𝑜𝑚 -149.217 -222.347 
rate per day -0.409 -0.304 
Table 55. Nominal values for apoherm above surface considering all perturbations 
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𝒓𝒂 [km] 
gravity field of 
Mercury 

gravity field of 
Mercury and Sun 

all perturbations 

𝜎 2.874 2.83 2.828 
𝑟𝑎,𝜎,𝑚𝑖𝑛 1645.68 1646.737 1646.988 
𝑟𝑎,𝜎,𝑚𝑎𝑥 1651.427 1652.397 1652.645 
𝑟𝑎,𝑚𝑖𝑛 1641.517 1642.652 1642.909 
𝑟𝑎,𝑚𝑎𝑥 1655.516 1656.438 1656.687 
Table 56. Apoherm values above surface after 1 year 

𝒓𝒂 [km] 
gravity field of 
Mercury 

gravity field of 
Mercury and Sun 

all perturbations 

𝜎 8.945 8.445 8.444 
𝑟𝑎,𝜎,𝑚𝑖𝑛 1739.563 1714.321 1714.503 
𝑟𝑎,𝜎,𝑚𝑎𝑥 1757.452 1731.211 1731.392 
𝑟𝑎,𝑚𝑖𝑛 1726.25 1701.79 1701.973 

𝑟𝑎,𝑚𝑎𝑥 1769.585 1742.771 1742.95 
Table 57. Apoherm values above surface after 2 year 

  

 

Figure 40. Evolution of the argument of periapsis of MPO dependent on the considered perturbing forces 
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𝝎𝒂𝒍𝒍 𝒑ⅇ𝒓𝒕   [°] after 1 year after 2 years 

𝜔𝑛𝑜𝑚 -14.4343 -42.0789 
𝜔 𝑖𝑛𝑖𝑡 - 𝜔𝑛𝑜𝑚 30.4343 58.0789 
rate per day 0.08332 0.0795 
Table 58. Nominal values for argument of periapsis considering all perturbations  

ω [°] 
gravity field of 
Mercury 

gravity field of 
Mercury and Sun 

all perturbations 

𝜎 0.0947 0.0867 0.0865 
𝜔𝜎,𝑚𝑖𝑛 -16.6844 -14.5453 -14.5208 
𝜔𝜎,𝑚𝑎𝑥 -16.495 -14.3719 -14.3477 
𝜔𝑚𝑖𝑛 -16.8262 -14.6745 -14.6497 
𝜔𝑚𝑎𝑥 -16.3692 -14.2563 -14.2323 
Table 59. Values for argument of periapsis after 1 year 

ω [°] 
gravity field of 
Mercury 

gravity field of 
Mercury and Sun 

all perturbations 

𝜎 0.5309 0.483 0.4823 
𝜔𝜎,𝑚𝑖𝑛 -45.7260 -42.6061 -42.5612 
𝜔𝜎,𝑚𝑎𝑥 -44.6642 -41.6401 -41.5966 

𝜔𝑚𝑖𝑛 -46.5742 -43.3738 -43.3279 
𝜔𝑚𝑎𝑥 -44.0146 -41.0377 -40.9951 
Table 60. Values for argument of periapsis after 2 year 

Ω𝒂𝒍𝒍 𝒑ⅇ𝒓𝒕 [km] after 1 year after 2 years 

Ω𝑛𝑜𝑚 67.5056 67.1486 
Ω 𝑖𝑛𝑖𝑡 - Ω𝑛𝑜𝑚 0.2944 0.6514 
Table 61. Nominal values for longitude of ascending node considering all perturbations 

Ω [km] 
gravity field of 
Mercury 

gravity field of 
Mercury and Sun 

all perturbations 

𝜎 0.0037 0.0036 0.0036 
Ω𝜎,𝑚𝑖𝑛 67.4906 67.5045 67.5021 
Ω𝜎,𝑚𝑎𝑥 67.4980 67.5116 67.5092 
Ω𝑚𝑖𝑛 67.4858 67.5 67.4975 
Ω𝑚𝑎𝑥 67.5015 67.5146 67.5122 
Table 62. Values for longitude of ascending node after 1 year 

Ω [km] 
gravity field of 
Mercury 

gravity field of 
Mercury and Sun 

all perturbations 

𝜎 0.0107 0.0097 0.0097 
Ω𝜎,𝑚𝑖𝑛 67.1027 67.1459 67.1389 
Ω𝜎,𝑚𝑎𝑥 67.1241 67.1653 67.1583 
Ω𝑚𝑖𝑛 67.0809 67.1269 67.1199 
Ω𝑚𝑎𝑥 67.1445 67.1839 67.1769 
Table 63. Values for longitude of ascending node after 2 year 
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Figure 41. Evolution of the longitude of ascending node dependent on the considered perturbing forces 
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Figure 42. Evolution of the inclination of MPO dependent on the considered perturbing forces 
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Figure 43. Evolution of the semi-major axis of MPO dependent on the considered perturbing force 

 

 

 

 

 

 

 

 

 

 

 

 

 


