Human Aided Automation – a Game Changing Chance for the Aerospace Industry

Dr. Jan Stüve, Dr. Markus Kleineberg

JEC ASIA Conference 2019
Seoul, 15th of November 2019
Motivated by the Digitization Initiative of the German Government
DLR – German Aerospace Center
Sites and Staff

- 8,500 employees
- 42 Institutes and Institutions
- 20 Sites

Institute of Composite Structures and Adaptive Systems
Fundamental Materials Research (e.g., novel resins)

20,000 qm for cooperation and innovation
The R&D-environment of the CFK-Valley Stade
Digital Twins
Accurate digital models represent both the product and the optimized production processes, saving costs, time and engineering efforts.

Digital Guidance
Mass customization is a cornerstone in future manufacturing. Digital Guidance helps to minimize set-up times by autonomously adapting facilities and controlling workflows.

Autonomous Assembly
Intelligent autonomous robots assemble individually customized products using advanced planning algorithms, sensors and modular adaptive robotic skills.

Additive Manufacturing
Data analysis and digital tools improve manufacturing methods resulting in complex and individual parts with optimized geometries and improved component properties.

Human-Robot Collaboration
Intelligent robotic assistants and their human co-workers interact via intuitive, multi-modal programming interfaces and share their workspace in safe and efficient industrial applications.

Mobile Manipulation
Mobile autonomous production units fitted for carrying out a variety of back-work-like tasks help to overcome static shop floor layouts.
The DLR Center for Lightweight Production Technology (ZLP)

Objectives: Maximum floor-to-floor efficiency by high placement rate and robust placement devices
Placement rate: > 100 kg/h → industrial scale up to TRL 6

Stade
Multi-robot automated fiber placement
Autoclave technology
Fully automated preforming and RTM

Augsburg
Robot based dry placement of multi-axial fabrics
Vacuum infusion (VARI, VAP), oven curing

Future Factory labs for Composites
Future Factory for Composites

How does it look like?
Multi-Head Automated Fiber Placement
Smart and efficient autoclave processing

- The Virtual Autoclave – a digital twin of the real process

Simulation of heat flow inside the autoclave
Fully automated textile preforming and RTM-production

1. textile storage
2. textile cutting
3. textile handling
4. draping
5. compressing
6. trimming to net shape
7. loading/10. demoulding
8. isothermal 2C injection
9. curing
Fully automated textile preforming and RTM-production

• Example for demonstrator which has been produced by fully automated textile preforming and RTM-process: generic VTP-Rip

Today cycle time is limited to 25 min. due to curing time of qualified resin system
Over-automation: “Production Hell”

Elon Musk:
• Too many robots in the production process of the Model 3 led to
• "crazy, complex network of conveyor belts“.
• Robots slowed down production
• Start using more humans in the factory, to speed up production

Short way out:
• Take personally control over production line
• Sleep at the factory to keep it running

Learning element for Industry 4.0:
• Where are human skills indispensable?

Why does Human Aided Automation work for Composite Production?

- In Composite Production possible sources of errors are very individual.
- You can’t step into fully automated processes physically to detect a problem...
 ... virtually, you can!
- In case-by-case decisions humans are superior to computers.
- Automation suspends humans from interaction, digitization brings humans back to involvement.
HR: Human Aided Automation

- Reinvolve Human into Automation
- Smart Remote Maintenance
 - VR-login for service provider
 - AR for on-site worker
- Process Monitoring
 - Process data displayed in the right context
- Collaborative Troubleshooting
 - Multi User VR/AR
- „Replay“ as process documentation
 - Review process as happened
 - Walk through instead of one-perspective video
"Human Centered Digitization" in lightweight construction

Manufacture of substructures:

- Individual correction of process- and material tolerances
- Production and assembly conform
- Design with weighted tolerance windows

Assembly of substructures:

- Usage of elasticity and plasticity for gap avoidance

Interactive correction of processes:

- Measurement of:
 - Fiber angle,
 - Flow front,
 - Part thickness,
 - Curing state,
 - …
- Actuation of:
 - Forming angles,
 - Pressures,
 - Temperatures,
 - Valves,
 - …

Interactive Joining of substructures:

- Measurement of:
 - Surfaces,
 - Clearances,
 - Joining Forces,
 - Adhesive Distribution,
 - …
- Actuation of:
 - Treatment,
 - Positioning,
 - Compression,
 - Dwell Time,
 - …

- Reduced process time
- Minimized scrap rate
- Inherent development
- Relaxation of specifications

Learning aptitude

- Reduced correction effort
- Reduced Lead Times
- Scaling Options
- Adaptability due to Modularity

Closed Mould
Preform
Resin
Resin
Trap
Vacuum
Press
Resin
Trap
Vacuum
Autoclave
Prepreg
Membrane
Open Mould
P
Closed
Mould

Human Aided Automation – a Game Changing Chance for the Aerospace Industry

Jan Stüve > 15th of November 2019
Conclusion

Automation in composite production is needed to enable rate and constancy of quality.

Especially RTM offers many opportunities for automation.

Digital twins and augmented reality methods re-involve humans in automated processes.

Human Centered Digitization enables efficiency, traceability and quality control in composite manufacture.
Thank you for your attention!