Interaction constraints for laser-based removal of space debris

Stefan Scharring, Raoul-Amadeus Lorbeer, Jürgen Kästel, Kevin Bergmann, Wolfgang Riede

Institute of Technical Physics, Stuttgart German Aerospace Center

HiLase Workshop on Laser Space Applications Prague, September 25, 2019

Knowledge for Tomorrow

 ΔT

Overview

Motivation

Review on interaction constraints:

- 1. Astrodynamics
- 2. Fluence regime
- 3. Momentum uncertainty
- 4. Thermo-mechanical "side-effects"
- 5. Destination orbit uncertainty
- 6. Hit rate
- 7. Beam broadening
- 8. Weather conditions
- 9. Laser safety

Conclusion and Outlook

Motivation: Space debris threats

Objects > 10 cm

- Fragments, Rocket bodies, Defective satellites
- s/c destruction (\rightarrow Kessler syndrome)
- Monitoring & obstacle avoidance possible
- \geq 5 cm: 15,000 catalogued *and published* TLE

Active satellites and debris objects > 10 cm in Earth orbit

Objects between 1 cm and 10 cm

main ROI for laser-based removal

- s/c wall penetration (\rightarrow loss of functionality)
- Difficult to detect
- 500,000 1,000,000 objects (estimated)

Impact of aluminum sphere in aluminum block @ 6.8 km/s

 Requirements:
 Analysis of laser-target conjunction geometry and timespan

Constraint #1: Astrodynamics Constraints

Target deceleration for atmospheric burn-up

In-track / radial momentum transfer

Constraint #2: Laser fluence in ablative momentum coupling

Main requirement: Laser **fluence** at the target surface $\Delta v = \eta_c \cdot c_m \cdot \Phi \cdot A_{cs}/m$

C. Phipps, Acta Astronaut. 93: 418 (2014)

Key dependency: $c_m(\Phi) \approx \frac{\Phi - \Phi_0}{a + (\Phi - \Phi_0)} \cdot b \cdot 12.46 \cdot A^{7/16} \cdot \left(\frac{\sqrt{\tau}}{\lambda \cdot \Phi}\right)^c$

S. Scharring et al., Opt. Eng. 58(1): 011004 (2018) following C. Phipps et al., J. Propul. Power 26: 609 (2010)

Data for $\lambda = 1064 \ nm$	Туре	τ [ns]	Φ_0 $\left[J/cm^2\right]$	c _{m,max} [mNs/kJ]	$ \Phi_{opt}(c_{m,max}) \\ [J/cm^2] $
Stainless steel	Exp.	5	1.7	30	4.8
Copper	Exp.	5	2.6	18	36
Aluminum	Exp.	5	2.2	24	8.4
Aluminum	Exp.	8	1.5	13	6.5
Aluminum	Mod.	1	1.1	24	3.5
Aluminum	Mod.	10	3.0	18	10.4

- Typical fluence ($\tau = 5 \dots 10 \text{ ns}, \lambda = 1064 \text{ nm}$): $\approx 5 10 \text{ J/cm}^2$
- Threshold fluence: $\Phi_0 \propto \sqrt{\tau}$, dependencies: λ, τ , material

Experimental data from: B.C. D'Souza, Development of Impulse Measurement Techniques for the Investigation of Transient Forces du Laser-Induced Ablation, PhD Thesis, University of Southern California (2007)

- High laser pulse energy
- Small laser spot size

Requirements:

- Material reconnaissance
- Shape information
- Knowledge of orientation

Constraint #3. Momentum uncertainty

Laser-matter interaction code

EXPEDIT

EXamination Program for irrEgularly shapeD debrls Targets

$$\vec{p} = \sum_{j} \vec{p_{j}} = \sum_{j} -c_{m}(\Phi_{L}, \vartheta) \cdot \Phi_{L}(\vec{r}) \cdot \cos \vartheta_{j}(\vec{r}) d\hat{n}_{j}(\vec{r})$$

S. Scharring et al., Opt. Eng. **58**(1): 011004 (2018)

Laser: $\Phi = \Phi(\vec{r})$ **Matter:** *Finite surface elements (obj files)* **Interaction:** $c_m(\Phi), \eta_{res}(\Phi)$

Simulation setup

- Laser specs: $E_L = 25 kJ$, $\tau = 10 ns$, $\lambda = 1064 nm$
- Spot: $\phi = 0.67 m$, $\langle \Phi \rangle = 7.2 J/cm^2$
- Beam Discretization: 0.1 mm resolution
- Monte Carlo simulation:
 - Random target orientation
 - 2000 sample shots / target
 - Beam center = Target CMS

Targets

- 100, randomly generated
- Flake-like ellipsoids
- Material: aluminium
- Size: $L_c \in [0.01 \ m; 0.1 \ m]$

Targets (green) generated following crash test analysis (black) in: T. Hanada et al., Adv. Space Res. **44**(5): 558 – 567 (2009)

Velocity Increment Δv

→ Consideration of large momentum scatter necessary
 → Collision analysis for conceivable trajectories required

Constraint #4: Thermo-mechanical "side effects"

Structural integrity risks

- Residual heat in laser ablation:
 - target melting (flat, large \rightarrow sphere, small)
- Fragmentation risks:
 - Low heat conductivity \rightarrow thermal stress
 - Frequent, rapid heating cycles \rightarrow aging effects
 - Strong shock and rarefaction waves

Molten aluminum target after repetitive laser irradiation

Target: Al plate 2 x 2 x 0.1 cm, $\varepsilon = 0.09$, $d_{spot} = 70 \ cm$ Initial target temperature: $T_0 = 327.8 (239.4) K$ (dusk/dawn) Circular orbit, 800 km altitude Irradiation range: 30° - 100° elevation (3 minutes) Monte Carlo study, up to 1000 samples each Arbitrary target orientation, 0.42 µrad hit precision

S. Scharring et al., Removal of Small-Sized Space Debris by Laser-Ablative

Requirements:

Material reconnaissance Pulse number limitation

Multi-pass irradiation

Circular orbit, 800 km altitude

Irradiation range: 30° - 100° elevation (3 minutes) *Monte Carlo study, up to 1000 samples each* Arbitrary target orientation, 0.42 µrad hit precision

Orbit propagation with ODEM software, A/m = 0.1

Constraint #5. Predictive collision avoidance

Collateral damage prevention for active missions

Multi-pass irradiation

- \rightarrow need for long-term safe debris maneuvering
- \rightarrow information on impact of Δv on orbit uncertainty needed

ODEM software used with friendly permission by DLR – Institute of Space Operations and Astronaut Training

Requirements:Prior collision analysis

Clearance for conceivable destination trajectories

- Requirements:target finetracking
- laser quide star
- tip/tilt correction

Constraint #6: Hit rate, affected by...

Simulations on thermo-mechanical coupling

Target: Al plate $2 \times 2 \times 0.1$ cm, $d_{spot} = 70$ cm Monte Carlo study, 10,000 samples each

Arbitrary target orientation, 0.42 µrad hit precision

Transmitter: $D_{Telescope} = 8 m$, Str = 0.4

Laser specs: $E_L = 20 kJ$, $M^2 = 2$, $\lambda = 1064 nm$, $\tau = 10 ns$

... debris tracking accuracy,

Zenith angle [deg]

... and laser/transmitter pointing stability

Constraint #7: Beam broadening

Spot size

- site weather analysis
- network redundancies

Constraint #8: Weather conditions

Cloud cover: % Laser time fraction

Extinction by aerosols and molecules

Requirements:

predictive avoidance of unintentional irradiation

Constraint #9: Laser safety

Summary: Interaction-related Requirements

- 1. Space Situational Awareness:
 - 1. Analysis of laser-target conjunction geometry and timespan
 - 2. Material reconnaissance, shape information, knowledge of orientation
 - 3. Prior collision analysis, trajectory corridor clearance
- 2. Laser and Transmitter:
 - 1. High laser pulse energy
 - 2. Laser guide star operation, tip/tilt correction
 - 3. Adaptive optics
- 3. Operation:
 - 1. Multi-pass irradiation
 - 2. Weather-related site analysis and station redundancy
 - 3. Predictive irradiation avoidance (ground/air/space)
- 4. Nevertheless: Presently the sole solution for the management and removal of debris fragments

a long way to go, but ...

... small steps count: Collision avoidance

... with a single high energy laser pulse

Laser: E = 80 J, τ = 10 ns, λ = 1064 nm Spot fluence, size: ϕ = 3 ... 4 cm, $\phi_{max} \approx 10 J/cm^2$ Target dimensions: $A_{cs} \approx 1 ... 4 cm^2$, $m \approx 1 ... 3 g$ Velocity increment: $\Delta v_{exp} = 0.25 ... 2.8 m/s$

R.-A. Lorbeer et al., Sci. Rep. 8: 8453 (2018) https://www.nature.com/articles/s41598-018-26336-1

... or even by photon pressure with COTS cw lasers

Current research @DLR-TP: ESA study SSA P3-SST-XV – Laser Ranging Systems Evolution Study (LARAMOTIONS)

Thank you for your kind attention

DLR