Interaction constraints for laser-based removal of space debris

Stefan Scharring, Raoul-Amadeus Lorbeer, Jürgen Kästel, Kevin Bergmann, Wolfgang Riede

Institute of Technical Physics, Stuttgart German Aerospace Center

HiLase Workshop on Laser Space Applications Prague, September 25, 2019


## Overview

## Motivation

Review on interaction constraints:

1. Astrodynamics
2. Fluence regime
3. Momentum uncertainty
4. Thermo-mechanical „side-effects"
5. Destination orbit uncertainty
6. Hit rate
7. Beam broadening
8. Weather conditions
9. Laser safety

Conclusion and Outlook

## Motivation: Space debris threats

## Objects > 10 cm

- Fragments, Rocket bodies, Defective satellites
- s/c destruction ( $\rightarrow$ Kessler syndrome)
- Monitoring \& obstacle avoidance possible
- $\geq 5 \mathrm{~cm}$ : 15,000 catalogued and published TLE


Active satellites and debris objects > 10 cm in Earth orbit

## Objects between 1 cm and 10 cm

main ROI for laser-based removal

- s/c wall penetration ( $\rightarrow$ loss of functionality)
- Difficult to detect
- 500,000 - 1,000,000 objects (estimated)


Impact of aluminum sphere in aluminum block @ $6.8 \mathrm{~km} / \mathrm{s}$

## Constraint \#1: Astrodynamics Constraints

## Requirements:

- Analysis of laser-target conjunction geometry and timespan


## Target deceleration for atmospheric burn-up



## In-track / radial momentum transfer



## Constraint \#2: Laser fluence in ablative momentum coupling

## Requirements:

- High laser pulse energy Small laser spot size


## Main requirement: Laser fluence at the target surface

$$
\Delta v=\eta_{c} \cdot c_{m} \cdot \Phi \cdot A_{c s} / m
$$

C. Phipps, Acta Astronaut. 93: 418 (2014)

Key dependency: $c_{m}(\Phi) \approx \frac{\Phi-\Phi_{0}}{a+\left(\Phi-\Phi_{0}\right)} \cdot b \cdot 12.46 \cdot A^{7 / 16} \cdot\left(\frac{\sqrt{\tau}}{\lambda \cdot \Phi}\right)^{c}$
S. Scharring et al., Opt. Eng. 58(1): 011004 (2018) following C. Phipps et al., J. Propul. Power 26: 609 (2010)

| Data for <br> $\lambda=1064 \mathrm{~nm}$ | Type | $\tau$ <br> $[\mathrm{ns}]$ | $\Phi_{0}$ <br> $\left[J / \mathrm{cm}^{2}\right]$ | $c_{\text {m, max }}$ <br> $[\mathrm{mNs} / \mathrm{kJ}]$ | $\Phi_{\text {opt }}\left(c_{m, \max }\right)$ <br> $\left[J / \mathrm{cm}^{2}\right]$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Stainless steel | Exp. | 5 | 1.7 | 30 | 4.8 |
| Copper | Exp. | 5 | 2.6 | 18 | 36 |
| Aluminum | Exp. | 5 | 2.2 | 24 | 8.4 |
| Aluminum | Exp. | 8 | 1.5 | 13 | 6.5 |
| Aluminum | Mod. | 1 | 1.1 | 24 | 3.5 |
| Aluminum | Mod. | 10 | 3.0 | 18 | 10.4 |

- Typical fluence $(\tau=5 \ldots 10 \mathrm{~ns}, \lambda=1064 \mathrm{~nm}): \approx 5-10 \mathrm{~J} / \mathrm{cm}^{2}$
- Threshold fluence: $\Phi_{0} \propto \sqrt{\tau}$, dependencies: $\lambda, \tau$, material


Experimental data from:
B.C. D‘Souza, Development of Impulse Measurement Techniques for the Investigation of Transient Forces du Laser-Induced Ablation, PhD Thesis, University of Southern California (2007) 41

## Constraint \#3. Momentum uncertainty

## Requirements:

- Material reconnaissance

Shape information

- Knowledge of orientation


## Laser-matter interaction code

## EXPEDIT

EXamination Program for irrEgularly shapeD debrls Targets
$\vec{p}=\sum_{j} \overrightarrow{p_{j}}=\sum_{j}-c_{m}\left(\Phi_{L}, \vartheta\right) \cdot \Phi_{L}(\vec{r}) \cdot \cos \vartheta_{j}(\vec{r}) d \hat{n}_{j}(\vec{r})$
Laser: $\Phi=\Phi(\vec{r})$
Matter: Finite surface elements (obj files)
Interaction: $c_{m}(\Phi), \eta_{\text {res }}(\Phi)$

## Simulation setup

- Laser specs: $E_{L}=25 \mathrm{~kJ}, \tau=10 \mathrm{~ns}, \lambda=1064 \mathrm{~nm}$
- Spot: $\emptyset=0.67 \mathrm{~m},\langle\Phi\rangle=7.2 \mathrm{~J} / \mathrm{cm}^{2}$
- Beam Discretization: 0.1 mm resolution
- Monte Carlo simulation:
- Random target orientation
- 2000 sample shots / target
- Beam center = Target CMS


## Targets

- 100, randomly generated
- Flake-like ellipsoids
- Material: aluminium
- Size: $L_{c} \in[0.01 \mathrm{~m} ; 0.1 \mathrm{~m}]$


Targets (green) generated following crash test analysis (black) in: T. Hanada et al., Adv. Space Res. 44(5): 558 - 567 (2009)

## Velocity Increment $\Delta v$


$\rightarrow$ Consideration of large momentum scatter necessary
$\rightarrow$ Collision analysis for conceivable trajectories required

## Requirements:

- Material reconnaissance

Pulse number limitation

- Multi-pass irradiation
- Multi-pass irradiation


## Constraint \#4: Thermo-mechanical „side effects"

Number of laser pulses $\mathrm{N}_{\mathrm{p}} 180$

## Structural integrity risks

- Residual heat in laser ablation:
- target melting (flat, large $\rightarrow$ sphere, small)
- Fragmentation risks:
- Low heat conductivity $\rightarrow$ thermal stress
- Frequent, rapid heating cycles $\rightarrow$ aging effects
- Strong shock and rarefaction waves


Molten aluminum target after repetitive laser irradiation

## Simulation setup

Laser specs: $E_{L}=20 \mathrm{~kJ}, M^{2}=2, \lambda=1064 \mathrm{~nm}, \tau=10 \mathrm{~ns}$
Transmitter: $D_{\text {Telescope }}=8 \mathrm{~m}, \mathrm{Str}=0.4$
Target: Al plate $2 \times 2 \times 0.1 \mathrm{~cm}, \varepsilon=0.09, d_{\text {spot }}=70 \mathrm{~cm}$
Initial target temperature: $T_{0}=327.8$ (239.4) $K$ (dusk/dawn)
Circular orbit, 800 km altitude
Irradiation range: $30^{\circ}-100^{\circ}$ elevation (3 minutes)
Monte Carlo study, up to 1000 samples each
Arbitrary target orientation, $0.42 \mu \mathrm{rad}$ hit precision

## Requirements:

- Prior collision analysis


## Constraint \#5. Predictive collision avoidance

- Clearance for conceivable destination trajectories


## Collateral damage prevention for active missions

Multi-pass irradiation
$\rightarrow$ need for long-term safe debris maneuvering
$\rightarrow$ information on impact of $\Delta v$ on orbit uncertainty needed


## Simulation setup



Laser specs: $E_{L}=20 \mathrm{~kJ}, M^{2}=2, \lambda=1064 \mathrm{~nm}, \tau=10 \mathrm{~ns}$
Transmitter: $D_{\text {Telescope }}=8 \mathrm{~m}, \mathrm{Str}=0.4$
Target: Al plate $2 \times 2 \times 0.1 \mathrm{~cm}, d_{\text {spot }}=70 \mathrm{~cm}$
Circular orbit, 800 km altitude
Irradiation range: $30^{\circ}$ - $100^{\circ}$ elevation ( 3 minutes)
Monte Carlo study, up to 1000 samples each
Arbitrary target orientation, $0.42 \mu \mathrm{rad}$ hit precision
Orbit propagation with ODEM software, $A / m=0.1$

## Constraint \#6: Hit rate, affected by...

 tip/tilt correction
## Simulations on thermo-mechanical coupling

Laser specs: $E_{L}=20 \mathrm{~kJ}, M^{2}=2, \lambda=1064 \mathrm{~nm}, \tau=10 \mathrm{~ns}$
Transmitter: $D_{\text {Telescope }}=8 \mathrm{~m}$, Str $=0.4$
Target: Al plate $2 \times 2 \times 0.1 \mathrm{~cm}, d_{\text {spot }}=70 \mathrm{~cm}$
Monte Carlo study, 10,000 samples each
Arbitrary target orientation, $0.42 \mu \mathrm{rad}$ hit precision
... debris tracking accuracy,

and laser/transmitter pointing stability

## Constraint \#7: Beam broadening

## Spot size



## Fluence



Laser pulse energy: $2 \times 18 \mathrm{~kJ}$, wavelength: 1053 nm (e.g., Laser Mégajoule beamlines) $\mathrm{M}^{2}=2$, transmitter diameter: 8 m
Turbulence model: Hufnagel-Andrews-Phillipps (day)

/ha

## Requirements

- site weather analysis


## Constraint \#8: Weather conditions

## Cloud cover: \% Laser time fraction



Based on 3-hourly data with $0.75^{\circ}$ lat / Ion resolution from 2007 through 2017 kindly provided from the European Center for Medium Weather Forecast

Criterion:
cloud coverage < 25\%

## Extinction by aerosols and molecules

$$
\begin{aligned}
& \mathrm{T}(z)=\exp \int_{0}^{z} \frac{-\gamma(z)}{\sin \alpha} d z
\end{aligned}
$$




## Requirements

- predictive avoidance of unintentional irradiation


## Constraint \#9: Laser safety



## Risk mitigation

## Ground:

- Elevation geofencing
- Restricted HEL area

Air:

- Virtual radar (ADS-B, FLARM)
- Beam sector primary radar
- No-fly zone

Space:

- Orbital traffic monitoring
- Publication of irradiation times
- Laser protection (astronauts, sensors)


Fig. 15. Definition of the three safety areas.
B. Esmiller, Appl. Opt. 53(31): 145 (2014)

## Summary: Interaction-related Requirements

1. Space Situational Awareness:
2. Analysis of laser-target conjunction geometry and timespan
3. Material reconnaissance, shape information, knowledge of orientation
4. Prior collision analysis, trajectory corridor clearance
5. Laser and Transmitter:
6. High laser pulse energy
7. Laser guide star operation, tip/tilt correction
8. Adaptive optics
9. Operation:
10. Multi-pass irradiation
11. Weather-related site analysis and station redundancy
a long way to go, but ...
12. Predictive irradiation avoidance (ground/air/space)
13. Nevertheless: Presently the sole solution for the management and removal of debris fragments

## ... small steps count: Collision avoidance

... with a single high energy laser pulse


Laser: $\mathrm{E}=80 \mathrm{~J}, \tau=10 \mathrm{~ns}, \lambda=1064 \mathrm{~nm}$
Spot fluence, size: $\emptyset=3 \ldots 4 \mathrm{~cm}, \Phi_{\max } \approx 10 \mathrm{~J} / \mathrm{cm}^{2}$
Target dimensions: $A_{c s} \approx 1 \ldots 4 \mathrm{~cm}^{2}, m \approx 1 \ldots 3 \mathrm{~g}$
Velocity increment: $\Delta v_{\text {exp }}=0.25 \ldots 2.8 \mathrm{~m} / \mathrm{s}$
R.-A. Lorbeer et al., Sci. Rep. 8: 8453 (2018)
https://www.nature.com/articles/s41598-018-26336-1

## Thank you for your kind attention



