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1. Introduction

In this paper we continue the analysis initiated in Refs. [1] and
[2] by focusing on the computation of the configuration average
of energetic quantities which are quadratic in the field amplitudes.
The configuration average of an energetic quantity must be com-
puted explicitly, because the process of averaging cannot be ex-
pected to commute with the nonlinear operation of squaring the
absolute value of a field quantity.

In the case of a sparse medium, the scattered radiation can be
represented as a sum of two terms. One term corresponds to the
incoherent part of the scattered radiation and is described by the
well-known vector radiative transfer equation obtained by sum-
ming the ladder diagrams in the diagrammatic representation of
the Bethe-Salpeter equation. The second term corresponds to the
coherent part of the scattered radiation, arising from the interfer-
ence of pairs of conjugate waves propagating along the same self-
avoiding paths but in opposite directions, and is obtained by sum-
ming the cyclical diagrams. In the case of a dense medium, the ra-
diation scattered by the medium can no longer be expressed as a
sum of only two terms. A significant additional contribution to the
radiation scattered by the medium can come from, e.g., the inter-
ference between single and double scattered, double scattered and
triple scattered waves and so on. Tishkovets and Jokers [3], and
Tishkovets and Mishchenko [4] extended the approach developed
for sparse media to dense media, by also representing the scat-
tered radiation as the sum of an incoherent and a coherent part,
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but by taking into account the correlations between the particles.
A comprehensive review of these results can be found in Ref. [5].
The analysis is performed in a circular-polarization basis under the
assumption that the observation point is outside the discrete ran-
dom medium and is focused on the computation of the reflection
and transmission matrices of the layer.

In this study we analyze the incoherent part of the scattered ra-
diation at an observation point which is inside the discrete random
medium. In a linear-polarization basis, we aim to derive a vector
radiative transfer equation by taking into account the correlation
between the particles. Because a rigorous derivation of this equa-
tion is a very challenging task, we adopt a simplified approach. To
explain the main assumption of our method we recapitulate some
results established in Ref. [2].

Consider a discrete random medium in the form of a group
of N identical spherical particles of radius a centered at Ry,
Ry, ..., Ry, and distributed throughout a domain D confined to
a laterally infinite plane-parallel layer with the imaginary (non-
scattering) boundaries z=0 and z = H. The wavenumbers of the
non-absorbing, non-magnetic background medium and the parti-
cles are k; and k, = mkq, respectively, where m is the relative re-
fractive index of the particles. Denote by f = ngVj the particle vol-
ume concentration, where ng = N/V is the particle number con-
centration, V is the volume of the discrete random medium, and
Vo = (4/3)ma3 is the volume of each particle. Let the particulate
medium be illuminated by a plane electromagnetic wave with the
propagation direction s =5(6, ¢9) and the amplitude £((s), that
is,

Eo(r) =& G)Ej’“;'r, (1)
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50@ =509’0\©+€0¢¢®, (2)

where j=+—1, (5,0(5), @(s)) is the spherical unit-vector basis,
and &y and &, are the polarized components of the amplitude
vector. Denote by Eg.;(r) the field scattered by particle i at the
observation point r, by E;,(r) the field inside particle i, and by
E.,.i(r) the field exciting particle i. If the observation point is out-
side of any particle, the total field is the sum of the incident and
all scattered fields, i.e.,

N

E(r) = Eo(r) + ) Eqcui(r), 3)
i=1

while inside particle i, the total field is the internal field E;,;(r)

when excited by Eg;(r). In a compact notation, the total field can
be written as

N
E(r) = Eo(r) + ) Eqi(T)

i=1

N
+ Y [1 = a(r = R)|[Eingi(r) — Eexci(1)]. (4)
i=1
where o (r —R;) is the indicator function
N _ )0, reDa(R)
““‘“)‘{L r¢De(R)’ (3)

and Dq(R;) is a sphere of radius a centered at R; (the domain oc-
cupied by particle i). Taking the configuration average of Eq. (4),
we found that for an external observation point r situated in the
domains z < —a or z> H + a, the coherent field is

Ee(F) = Eo(F) + o [ (B ()} &R, (6)
while for an internal observation point r situated in the domain
a <z < H —a, the coherent field is

Bt = Eo(@) 0 [ (B R

—Dq(r)
+ng j;)ﬂ(r) [(Bini (1)), — (Eexci(1)),] A°R;, -

where Dy(r) is a complete sphere of radius a centered at r. The
first integral in Eq. (7) corresponds to the configurations in which
the observation point r is external to all particles, while the second
integral gives the inside contribution. In Ref. [2], Eq. (6) has been
used to compute the coherent fields reflected and transmitted by
the layer, and Eq. (7) has been used to compute the coherent field
inside the layer. A simplified method for computing the coherent
field inside the layer relies on the sparse-medium approximation
for the integration domain, i.e.,

/ d°R; ~ / d°R;. (8)
D—Da(l’) D

This means that in Eq. (7), the integrals over Dq(r) are neglected, or
equivalently, that the particles are treated as point scatterers. For
the coherent field computed by this method, we found that (i) the
boundary conditions for the electric fields are satisfied, (ii) for nor-
mal incidence and an oblique ¢-polarized incidence, the coherent
field is a superposition of plane electromagnetic waves, while (iii)
for an oblique #-polarized incidence, the coherent field is not di-
vergence free. However, for small values of the volume concentra-
tion, the deviations from a divergence free field are not significant.
In fact, the approximation (8) implies that the total field is given
by Eq. (3), and that the coherent field inside the layer is given by
Eq. (6); both equations are valid when the observation point is out-
side of any particle.

Taking account of these results we make the following simplifi-
cations:

1. we adopt the representation (3) for the total field, i.e., the total
field sums the contributions of the incident and all scattered
fields, and

2. in some parts of the proof and when taking the configuration
average, we apply the sparse-medium approximation for the in-
tegration domain (8).

The resulting vector radiative transfer equation will inherit the
main features of the equation for sparse media but will include an
additional source term which is typical of dense media.

2. Coherency dyadic

The coherency dyadic is defined by the relation
C(r) = (E(r) @ E*(r)), 9)

where ® is the dyadic product sign and the asterisk denotes com-
plex conjugation. Representing the field scattered by particle i as
the sum of a configuration-averaged part (Eg;(r)) and a fluctuat-
ing part & (r), ie.,

Eqcti (1) = (Escti (1) + & (1), (10)
we express the total field E(r) as (cf. Eq. (3))

E(r) = Ec(r) + &5 (1), (11)
where

Ec(r) =Eo(r) + ) _(Esei(1)) (12)

is the coherent field, and (cf. Eq. (10))

Esct(T) = Z(qscti(r) = ZEscti(r) - Z(Escti(r))s (13)
or equivalently,

Esct(r) = Esce (r) — (Esct (l')), (14)

where Eset(r) = Y Egi(r), is the diffuse scattered field. In
Egs. (12) and (13), the summations run implicitly from 1 to N. Tak-
ing into account that <<€"m(r)) = 0, we obtain the following repre-
sentation for the coherency dyadic:

1) = Ec() ® EL(1) + (£50(1) © 3 (1) = Ce(X) + Fg(r),  (15)

where

Cc(r) = Ec(r) @ EX(r) (16)
is the coherent part of the coherency dyadic, and
Gq(1) = (65t (1) ® E2 (1)) (17)

is the diffuse coherency dyadic. Using Eq. (13) we find that in
terms of appropriate probability density functions and conditional
configuration averages, the diffuse coherency dyadic (17) can be
written as

Ca(r) =CqL(r) + Cqc(r), (18)
where

Za(r) = Y (Esei (1) ® By ()

no /D (B (1) @ Bz (1)), R, (19)

is the diffuse ladder coherency dyadic, and

Gac(®) =Y > (Esai(r) @ By (1))

i j#
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- Z Z(Escn’(r)) ® (E;ctj (l‘))
i
= ng /D (Escri(r) ® E;c;j(l')),.jg(R,-, R)) d’R;d’R;

- ng A (Exci(D), ® (Ezey; (1)), 4R, &R, (20)

with g(R;, R;) being the pair correlation function, is the diffuse
cross coherency dyadic. Observe that in Eqs. (19) and (20), the
sparse-medium approximation for the integration domain (8) has
been applied. Finally, defining the ladder coherency dyadic by the
relation

CL(r) = Ce(r) + @ (r)

= Ce®) 1 [ (Bcy(®) @ Eiqy(0)), &R, (21)
yields the representation
C(r) = CL(r) + Gac(r) = Ce(r) + Far(r) + Cac(T). (22)

Thus, the coherency dyadic is written as the sum of two terms:
the configuration average of the dyadic product of the field scat-
tered by one particle i in the presence of other particles (the ladder
term Cp), and the correlation of the fields scattered by two distinct
particles i and j (the cross term %4c).

Hereafter we will use a matrix-form representation for the
dyadic product Eg(r) ® E%_ . (r), where

sctj
Escii (1) = X5 (kq1) Tey, (23)

X3(kqr) is the column vector of the radiating vector spherical wave
functions, T is the transition matrix of a spherical particle, and e;
is the vector of the exciting field coefficients. More specifically, for
the vectors X = Y7 ; X;¢; and Y= Y2 , Y;¢;, where X; and Y; are
three-dimensional column vectors, and the column vectors x and
y, we consider the vectors

3
a=x'X=X"x=)"ae, (24)
i=1
a; = XTX,' = X,TX, (25)
and
3
b=y'Y=Y'y=>"be, (26)
i=1
b,‘ = yTYi = Y'Ty, (27)

so that by means of Eqs. (25) and (27), we express the dyadic prod-
uct a®@b in matrix form as

o, 3
agb=[¢ & & "2:|[b1 b, b3]E2]

X-{ €
:[61 ) 63] xT xyT[Y1 Y, w][%z]

= XTxyTY.
In this regard, the matrix-form representation for the dyadic prod-
uct Egi(r) @ Ex (1) is (cf. Eq. (23))

sctj
Esqii (1) ® Eg (1) = XI(ky l‘i)Teiej-TTx§ (kqr;), (28)

—_—

where the dagger stands for “hermitian transpose” and e,-ej. is
the matrix of the exciting field coefficients. The diffuse coherency
dyadics can then be written as

Za(®) = o /D X5 (ki) Tleie] ) T1X5 (ki) &R, (29)

and

Cac(r) = n(z)/ng (ky n)T(eie})ijTTxé (kirj)g(R;. R)) d’R;d’R;
—n? A X5 (kll'i)T<ei)i<ej')jTTX§(kl rj) R R, (30)

with Ri =r—r;.
The main quantity describing the vector radiative transfer is the
diffuse ladder specific coherency dyadic X4, defined by

Tau(r) = / Tou(r, —p) d%p. (31)

The components of the diffuse ladder specific coherency dyadic are
the elements of the diffuse ladder specific coherency column vec-
tor which, in turn, determine the photopolarimetric signal of a de-
tector. Therefore, the above equation provides an important link
between the radiative transfer theory (X4) and the electromag-
netic scattering theory (4. ). According to Eq. (21), the ladder spe-
cific coherency dyadic X, defined by

) = / %,.(r, ) d?p, (32)

is related to X4 by
T (r.—P) = g (r. —P) +8(P +)Ce(r). (33)

3. Integral equation for the ladder correlation matrix of the
exciting field coefficients

In this section, we derive an integral equation for the so-called
ladder correlation matrix of the exciting field coefficients, and then
employ a series of approximations to transform this integral equa-
tion into a form that is suitable for a numerical analysis.

3.1. Derivation

Multiplying the equation for the exciting field coefficients (cf.
Eq. (37) of Ref. [1])

ei=coi+ y_ Q(kiRjj)e; (34)
J#

by its complex conjugate, where ep =exp(jkiS-Ri)ep, ep is
the column vector of the incident field coefficients, Q(kiR;;) =
T3T] (k1R;j)T, and T3;(k;R;j) is the translation matrix relating the
radiating and the regular vector spherical wave functions X3(kr;)
and X (kir;), respectively, that is, X3 (ki1;) = 731 (k1R;j) X (kqr;) for
r; =r;+R;; and r; <R;;, and using the following rule for computing
the conditional configuration average of a function fir, Ay) with
the position of particle i held fixed (cf. Eq. (62) of Ref. [1]):

(1. Aw), = [[(7(x. Aw)p(R)R) R,

= [[(£r An) PRy, RIR) & RGPR, (35)
we obtain
<e"ej)i = eo'(e}‘)i + (e")iegi - eo"egi
+ ¥ [ @UaRip(esel], @' (iR p(R)R) &R
J#i
2> / Q(klRij)(ejeI)iijT(klRik)
j#i ki, oD
x p(R;, R|R;) °Ryd’R;;, (36)

where p(R;, Ry|R;) = p(R;|R;) p(R,|R;, R;) is the conditional proba-
bility of finding the particles at R; and R with respect to a particle
at R;. The above integral equation is simplified as follows.



1. Eq. (36) involves correlation functions of higher orders. In prac-
tice, these functions are unknown unless some approximations
are made or the statistics is Gaussian. In the first case, higher-
order statistics can be completely ignored, while in the second
case, higher-order correlation functions can be written in terms
of products of lower-order ones. The first option is adopted
in our analysis. As statistics higher than the pair statistics has
not been employed in the truncation of the hierarchy of equa-
tions for the coherent field, we neglect the terms involving p(R;,
Ri|R;). The resulting equation is similar to the equation associ-
ated with a continuous random medium with Gaussian fluctu-
ations of the physical properties, when all correlation functions
can be written in terms of the pair correlation function.

2. For a large geometrical thickness H, we approximate the con-
ditional configuration average of the exciting field coefficients
<e,-)l. by that of a dense semi-infinite medium. In this case, (e,»)i
can be computed either by using

(a) the dense-medium relation

(i), = e*Re, (37)
where K is given by (cf. Eq. (126) of Ref. [1])
K= k1§+ (K; — k1 cos 90)2, (38)

K, = \/ K2 — k?sin” 6, (39)

and both K and e are computed from the generalized
Lorentz-Lorenz law and the generalized Ewald-Oseen ex-
tinction theorem for a dense semi-infinite discrete ran-
dom medium, or

the sparse-medium approximation

(e,-)i = ejKO'R‘eo, (40)

(b

=

where the effective incident wave vector Ky is given by
(cf. Eq. (211) of Ref. [2])

~

4

= kiS —k ,
Ko = k1S + (K 1)c0500

(41)
and the effective wave number K is computed from the
generalized Lorentz-Lorenz law for a dense semi-infinite
discrete random medium.

Note that for a dense medium, K satisfies the following equa-
tion of the generalized Ewald-Oseen extinction theorem (cf.
Eq. (166) of Ref. [2]):
K =lki =750 Y @n+ DT, + T, (42)
1 n
while for a sparse medium, K satisfies Eq. (42) with xl,f =1.1It
is obvious that the representation (40) simplifies the calculation
because the vector e needs not to be computed; it is sufficient
to solve the dispersion equation for the effective wavenumber
K. For this reason and because the volume concentration is as-
sumed to be rather small, we adopt the simplified representa-
tion (40) for (e,-),..

3. In accordance with the generalized Ewald-Oseen extinction
theorem, at a certain depth within the medium, the incident
wave transforms into a coherent wave which propagates into
the effective medium. This applies also in the case of a wave
propagating from one scatterer to another. In order to describe
the propagation of the scattered waves in an effective medium,
we

(a) make the replacement

Q(kiR;)) — Q(KR;;) = el ®*RiqQ(kyR;)), (43)

and
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(b) substitute k;S in the expression of the incident field coef-
ficients ep; = exp(jkiS - R;)ep with Ky, or equivalently and
in view of Eq. (40), make the change

egi = el15Rigy — elMoRigy — (ei)r (44)
The replacement (43) is equivalent to the following replace-
ment for the radiating spherical wave functions (see Eqs. (67),
and (69)-(71) below):
u, (kyr) — ud, (Kr) = €0y (), (45)

meaning that
eikir o eikr
hn(kir) = Whn(k]r) — ha(Kr) = Whn(k]r), (46)

where u3,,(kjr) are the radiating spherical wave functions,
hn(x) are the spherical Hankel functions of argument X, and
hn(x) are the modified Hankel functions characterizing the near
field between the particles and satisfying the same recurrence
relation as h, with the initial values ho(x) = —j and hy(x) =
—(1+j/x) 3]

4. In the spirit of the quasi-crystalline approximation, we use
(eje})’,j = (eﬁe})},, (47)
which is the analog of the quasi-crystalline approximation for
the exciting field coefficients (ej),” = (ej)..

J J

In this setting, we use the conditional probability p(R;|R;) =

(1/V)g(R;j), where g(Rj) is the pair correlation function, to obtain

the following integral equation for the ladder correlation matrix of

the exciting field coefficients:

(e,-e,T),, =(ei)i(e,T)i+no /D Q(KRU)(eje})jQr(KR,-j)g(R,-j)dsnj, (48)

Recall that g(R;) is non-zero in the domain D — Dy, (R;), where
Daq(R;) is a sphere of radius 2a centered at R;. The iterated solution
of Eq. (48) is

(el = (e fl) + mo [ Q@Rip(es)fe)
x Q" (KR;j)g(Ri;) d°R;
i [ QUR QR ) o] @' (R0 R )
x &(Rj)g(Rij) I’Ryd’R; + - -, (49)

and in a diagrammatic representation, Eq. (49) is equivalent to the
correlated ladder approximation for (e,-elT)i:

<e[ej>i
i i Z,/. i Z-/ Z/\'

—
where

(ei)i ='a«=, Q(KR;)) = i {, and gRj) =" 1.

The previous results can also be obtained by employing the
technique described in Refs. [3,5]. This approach involves the fol-
lowing steps.

1. Consider the series representation for e; (cf. Eq. (45) of Ref.

(1)

ei=epi+»_ QkiRjegj+ Y Y QkiR;j) Q(kiRj)eg + -+ .
i i ket )
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in which Q(k;R;j) and ey; are replaced by Q(KR;;) and (e,»)i, re-
spectively, that is,

e = (ei)i + Z Q(KRij)(ej)j
J#i
+ 30 ) QUKR)HQKR;)er), + -+ - (50)
J# ki, j
2. Multiply Eq. (50) by its complex conjugate; the matrix prod-
uct will contain terms corresponding to different diagrams in
the diagrammatic representation of the Bethe-Salpeter equa-
tion, e.g., ladder diagrams arising from the interference of pairs
of conjugate waves propagating along the same self-avoiding
path in the same direction, cyclical diagrams corresponding to
the interference of pairs of conjugate waves propagating along
the same self-avoiding path but in opposite directions, dia-
grams corresponding to the interference between single and
double scattered waves, double scattered and triple scattered
waves, and so on. Retain in the matrix product eie;r only the
terms corresponding to the ladder diagrams; the result is

cief = {ei)(ef], + 2_ QKR ) (e]) Q" (KRy)
J#
+ 33 QUKR)QKR ) e, (eh),
J#i ki
x QT (KR ) QT (KRjj) + - -+ . (51)
showing that e,-e}L is the iterated solution of the equation

eie] = (ei)e]), + Y QUKRjejel Q" (KR;). (52)
J#i
3. Take the conditional configuration average of Eq. (52) with the
position of particle i held fixed, and use the quasi-crystalline
approximation (47) to obtain the integral equation (48).

A short comment is in order. If we take the conditional con-
figuration average of Eq. (51) and approximate higher-order corre-
lation functions by products of pair correlation functions we ob-
tain the iterated solution (49), and so, the integral equation (48).
Specifically, this means for example, that for the third term on the
right-hand side of Eq. (51), we use

P(R;. Ri|R;) = p(R;|R) p(R¢|R;, R)) =~ p(R;|R;) p(R¢[R;), (53)

while for the fourth term corresponding to the chain i < j<«k <1,
we use

P(R;, R, R/|R;)) = p(R;|R)) p(Ry, R[R;, R;)
= p(R;|R) p(R¢|R;, R) p(R; Ry, R;, R;)
~ p(Rj|R;) p(Ri|R;) p(R;[Ry). (54)

The approximations (53) and (54) are equivalent to the assumption
that the chain of particles is a Markov chain with the transition
probability determined by the pair correlation function, e.g., for
the chain of particles i «j <k <1, we have p(R¢|R}, R;) = p(R¢|R;)
and p(R/|Ry,R;, R;) = p(R;|Ry). Therefore, only for a Markov chain,
the configuration average of the series (51) can be summed up
to yield the integral equation (48). In this context, it is obvious
that the Markov-chain approximation is equivalent to the quasi-
crystalline approximation (47) which is used when taking the con-
ditional configuration average of Eq. (52) and deriving the integral
equation (48).

According to Eq. (29), the diffuse ladder coherency dyadic
@ q.(r) is determined by the ladder correlation matrix (eie,. )’., while

in view of Eq. (30), the diffuse cross coherency dyadic @4c(r) is
determined by the so-called cross correlation matrix (e, T) Recall
that the diffuse cross coherency dyadic is associated with the sum

of the cyclical diagrams describing the interference of two waves
propagating along the same self-avoiding path connecting scatter-
ers i and j, but in opposite directions. For reasons of comparison,
we conclude this section with some remarks on the computation
of the cross correlation matrix (e,e ) Making use of the series rep-

resentation for e; given by Eq. (50), retaining in the matrix product
eie} only the terms corresponding to cyclical diagrams, i.e.,

eie} = (e,-),(e”. + Q(KR,-]')(ej) ,(eT).QT(KRﬁ)
+ _ QKR )QKRy))ej) (ef) Q" (KRi) Q" (KRy)
k#i,j
+ 3 3 QURQKRQUKR;)(ej) (o),
ki, j 144, .k
x Q" (KRy) QT (KRy ) QT (KRj) + -+ (55)

and taking the conditional configuration average while holding the
positions of the ith and jth particles fixed, we obtain

feief); = {eile]); + QUR(ej) (ef) " KRy
+ 3 [ QUkRQUR) e (])
k#i,j
x Q' (KRy;) Q" (KR;) p(Ry [R;, R;) d°Ry
+ 2 % [ QUROQUKRQUR (e e,
k#1,j 1#1,j.k
x Q' (KRy) Q" (KR ) Q' (KR;)
x p(R, R/ IR, R)) R d°Ry + - - - . (56)

The above series which sums up all single scattering processes be-
tween particles i and j is illustrated diagrammatically as

<e'ef->.
i Xk

XSk

(Y SN )

where

<ei)i = 'a«=, Q(KR;)) = id, and PR R, Rj) ="k —J.

Even when approximating higher-order statistics by lower-order
statistics, it is not possible to sum up the cyclical diagrams in
Eq. (56) and to interpret (eie})ij as an iterated solution of an in-
tegral equation. However, this can be done for an external obser-
vation point situated in the far-field region of the entire particulate
medium when the summation is performed by invoking the reci-
procity principle. In fact, the reciprocity principle is applied to the
series for e i.e.,, we consider a series in which the wave propa-
gation direction is reversed. As a result, the cyclical diagrams are
transformed into ladder diagrams involving only pair correlation
functions [4].

3.2. Simplification

In the integral equation (48), the conditional configuration aver-
age of the exciting field coefficients (ef>i is given by Eq. (40); hence,
we have

<e‘)i<e!)i = e ik, (57)
where

E1o = epe)). (58)
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Fig. 1. The integration domain for computing X (z;).

(X, ¥i, z;) are the Cartesian coordinates of R;,

Kop= ———, K=.K—K‘ =2K", 59
0= Costy J( ) (59)
and K” =Im(K). Because the source term in the integral
equation (48) depends only on z; and, by assumption, the scatter-
ing medium is statistically homogeneous in horizontal directions,
we look for a solution in the form

(e,'e?)i = XL (Z,'), (60)

where hereafter the (Hermitian) matrix X (z;) stands for the lad-
der correlation matrix of the exciting field coefficients. Making the
change of variables Rj; = Rj — R;, and using Eq. (43), we express
the integral equation (48) as

XL(zj) = e %Ep + "0/ e RiQ(~kiR;)XL(z))

D—Daa(z)
x Q' (—k{R;)g(R;) d°Rj;. (61)

where Dyq(2;) is a sphere of radius 2a centered at z;, (Rj;, 0, ¢ji)
are the spherical coordinates of Ry, and z; = z; + R cos¢;;. The in-
tegral in Eq. (61) is computed by choosing the origin of a local
coordinate system at the center of particle i as shown in Fig. 1.
Tishkovets and Jockers [3] employed various approximations to
simplify the integral equation (61) into a form that is suitable for
a numerical analysis. Their approach is considered here. Let us ex-

press this equation as
XL(zi) = e %Eg + (L1XL)(2) + (MLXL) (i), (62)

where £ and M are integral operators defined by

(LX) @) = g / e*RiQ(—k;R;)X, (z))Q' (—k;R;)

D—D3q(zi)
x [g(R;i) — 1] d°R; (63)
and
(MiX0) () = no / e *RiQ(—kiR;) X, (z;)
D—Dsq(z;)

x Q'(—kiRj;) AR, (64)

respectively. Next, we switch to a component-form representation
for the matrices (£ X)(z;) and (M XL)(z;). For example, in the
case of the matrix

(L1X0) (i) = [(LLXL) mnmw (2],

this representation is

(LX) mnmn (2i) = o Z ‘/D—

mynymsny

X Ximyny.myn, (Z}')Q:nznz.m’n’ (—=k1Rj;)
x [g(Rj;) — 1]R% d’R;dRj;, (65)

e_KRJ'an‘mm] (—k1 Rji)
Daa(z))

where

Q(—klei) = [an.m'n’(_klei)]s
XL(Zi) = [XL111n.m’n’(zi)]~

Setting
Xl] ’ ,(Z') XIZ ’ ,(Z')
X(z) = [XLmn.m’n' (Zi)] = |:Xl.zr;m.mn l Xlir;m.m " ’ (66)
Lmn,m'n’ (z) Lmn,m'n’ (i)

using the relation (recall that Q(—kRj;) = 7'3T] (=k1R;j)T)

an.mln, (_k1 le') = Tn:j]]nl_mn(_kl le')Tnp (67)
where
Tl
T= [Tnamm'ann'L ”;1] = T"z , (68)
n

and taking into account the symmetry relations for the translation
matrix,

[Tnfllm.mn (_k1Rji)] = [T—Br]nn.—m]n] (klei)]

A;mn.—mml (k1 Rji)
Bfmn,fmInl (k1 le)

BgmrL—m]n] (klkfi)
A—mn.—mﬂn (k1 Rji)

(69)
where (cf. Eq. (18) of Ref. [1])
A2 iy (K1 RG) = Cuny D " a1 (=m,n| — my, ny|n")
o
X ugh_m_n,, (k]Rj,'), (70)
Bimn.—m,n, (k1Rji) = cnn, Zjn”bl (=m,n| —my, ny|n")
n”
x uﬁn—m,n” (ky Rﬁ)‘ (71)

the coefficients a;(-) and by(-) are given by Eq. (19) of Ref. [1],
and

2jm-n
Jnni(n+1)(ny + 1)

we obtain the component-form representation for the integral
equation (62):

(72)

Cany, =

Xlldjrzn«m’n’(zi) = e_KOZ'EI{ngn.m’n’ + (LLXL)gng’n’ (Zi)
+MXDN @), pg=1,2, (73)
where EPY , are the block-matrix components of Ejg,

LOmn,m’n
(‘CLXL)%1,I11’n’ (Zi)
=Mo ZKrﬁ%r]mznzn”n’”
X / e_KRﬂ ug’n—m.n” (kl Rﬂ)xlf;nn]‘mznz (Zj)
D—Daq(z))

X llg:z_m/‘nm (k] R_n)[g(R)l) -1 ]Ri dzﬁj,’dei, (74)
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Fig. 2. The specific intensities at the bottom and the top of the layer I(z=0.6;.¢ =0) and I(z=H.6;", ¢ =0). respectively. The results correspond to the solution of
the radiative transfer equation with (solid curve) and without (dotted curve) the dense-medium source term. The plots in the upper panels corresponds to kia = 5, while

the plots in the lower panels correspond to k;a = 7. The incidence angle is 6, = 30°,

the polarization angle is ape1 = 45°, the volume concentration is f = 0.04, the layer

thickness is H = 30a, the wavenumber of the background medium is k; = 10 «um~', and the number of Gauss-Legendre quadrature nodes is N, = 12.

and

(MXD)BL (20
=ngy_ Kh"

mynymynyn”n”’
—kRji;,3 rt
x / e Rid o G RDXE s (2)
D—Dq(zi)

X u?n'z_m,.n,,, (k] Rj,')RJZ-,- dzﬁﬁde,u

In Egs. (74) and (75), the coefficients KP" ., are computed

mynymynyn’’n

as
rt [
= Cnmy Cngd™ " tpr (=, n| —my, ny|n")
X teg(—m', 0’| — my, ny ") T} Ti*, (76)
with
() =t2(-) == a1(), (77)

ti2(-) =1 () 1= b1 (), (78)
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and the sum should be understood as

2 Nunk m Nrank ny n+m n'+n;

=222 2 X X (79)

rt=1ny=1my==ny ny=1Ma==n2 n”=|n—ny | n"”=|n'—n,|

where N, is the maximum expansion order.
Computation of the matrix (£;X)(z;). Consider the integral

Lrtminiman; (zi: X1)

Lmnm'n’
- /I;—Dzn(zi) e_KRj' U?n" (kl Rﬁ )X[’%l”b’"z"z (Zj)
Xug;’n’ (kl le)[g(Rj,) — 1]R}2'id2Rjidei (80)

and take into account that the function g(Rj;) — 1 quickly decreases
with increasing Rj, so that the volume of integration can be ex-
tended to the whole space less a sphere of radius 2a around R;.
Note that the same assumption was made in Ref. [1] to compute
the effective wavenumber K. Thus, the integral is determined by
the particles in the neighborhood of particle i, and we use the ap-
proximation

R%d’R;dR;; ~ / R2d%R;;dR ;. 31
‘/D—DZa(Zi) N e R3—Dyq(z) n S (81)
Besides, we assume that (z; = z; + Rj;cos 6};):
Xz = SO ON 2

= e BXIT (7))

— e ¥oRji COSHJIX{.I (z). (82)

According to this approximation, we suppose that in the neighbor-
hood of particle i (inside a sphere around particle i whose radius
Ro is determined by the interval [2a, Rp] in which the function
g(Rji) —1 is not negligible, e.g., Ro~8a), the matrix X, decreases
exponentially with increasing the optical depth along the incidence
direction; for z; > z;, X[ (z;) decreases with respect to X (z;) when
Ko(zj —z;) increases, while for zj <z;, the reverse is true. The ap-
proximation (82) is equivalent to the estimate X (z;) ~ e %0%W
for some matrix W that does not depend on z; (observe that the
source term in Eq. (62) has the same dependence on z;). Employ-
ing this local approximation, we get

rtmpnyman; . _ It )
LLmnm’n' (zi: X1) = LLmnm’n'XLml,,]‘,,,.,zn2 (z),
where
b4 00
Limnmw = 2”61nm’/ {/ e KRjig=KoRji cos 0j [g(Rji) - 1]
0 2a

x hn(k1Rji)hy, (kiR R%dRj

x B (cos 0;)P!" (cos 0;) sin 0;d6;, (83)

and P,L'"l(cosé)) are the associated Legendre functions of degree n
and order m. The integral over the polar angle 6;; in Eq. (83) can
be computed analytically. Using the series expansion for the plane
wave

21+1
2

o0
KoK Ri — @i(k02Ri — §™ o ul, (koR). (84)
1=0
and the spherical harmonic expansion theorem for the associated
Legendre functions

n+n'

P (cos)P'™ (cos ) = Z a(m,n| —m, n'|)P(cos@), (85)

n
I=[n—n’|
where u(]),(jKORji):j,(jKoRj,-)PI(COSQﬁ) are the regular spherical
wave functions for the azimuthal mode m = 0, j,(x) are the spher-
ical Bessel functions of argument x, and P,(cos6) = P9 (cos) are

the Legendre polynomials, we find

n+n’
g (2141
Lymnmw = 470 8y Z Jl

I=|n—n’|

a(m,n| —m,n'|DF,,,  (86)

with
oo
B = [ e SlgRy) ~ 1h(laRy)
a
X j[(jK()Rji)h;,/ (klei)Rjz'idei« (87)
Thus, the elements of the matrix (£;X[)(z;) are given by
(ELXL);q,Lm:nr(Zi) =Ny ZK,ﬁtz';,t]mz,,z,,nnmLLml—mn”mz—m’n’”
x X{fnﬂh.mﬂi; (Zi)' (88)

Computation of the matrix (MX;)(z;). Consider the inte-
gral

rtmynymyn . —KkRji;,3 t
l\'/,]_m,:m}n/2 Hziy XL) = / e J'umn(k1Rj")xl':m,nl.mznz (zj)
D—Daq(zi)
3% 2 2R
X Uy (k]Rji)Rﬁ d Rjidei- (89)

For a medium with sufficiently weak absorption, this integral is
mainly determined by the contribution of the particles located in
the far-field region of particle i [5]. Therefore, in Eq. (89) we em-
ploy

1. the sparse-medium approximation for the integration domain:
R2d?R;dR; ~ / R2d?R iR}, 90
A—Dza(zn i G i i i (90)

and
2. the far-field representation for the radiating spherical wave
functions:

alkiRy
kiRji

ul (kiR = (=)™ ———Yimn(Rji), Rji — o0, (91)

where Ym,,(ﬁj,-) are the spherical harmonics for the direction
Ri;.
JU

We obtain
i
M 25 )
27T, . wen [m] [m]
= (D" "mm Y | P (cos ;)P (cos 6;)
k% b=+ /O

R =
X|:|C050,'j| A ab‘Sgn(Z’fzJ)e K Xlll[ﬂ]n‘.mznz(zj) dz}:l
x sin 6,~d0,~, 92
¥

where ®, and ®_ are the intervals [0, 7/2) and (7 /2, 7], re-

spectively, ﬁ,-j = —ﬁ}-,- = ﬁ,-j(é,»j, @ij), and ‘Sb.sgn(z,-—zj) is the indicator
function
_J1, b=sgn(z;-zj)
<Sb.sgn(z,—zj) - {0, b + sgn(z,- _ Zj) (93)
Thus, the components of the matrix (M X[)(z;) are given by
t

(MLXL)ll;fn.m’n' (Zi) = o Kl‘rjlqlrumgnzn”n”'

x Myt o (Zis X1 (94)

Another way of computing ME;T::’]:TZHZ(Z“ Xp) by means of an in-

tegral representation for the radiating spherical wave functions in
terms of plane waves is given in Appendix A.

The above method for computing ME;’;‘I;:},TZ"Z (zi; X) is equiv-
alent to the computation of the matrix (MyX)(z;) by means of
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the relation (cf. Eq. (64) with the sparse-medium approximation
for the integration domain (90))

(MLXL)(Zi)=no/De"KRJ"Q(—klRji)XL(Zj)QT(—hRﬁ)d3Rji, (95)

in which, the far-field approximation

eJklRJ
Q(- kIR)l) = ro( R]z) le — 00, (96)

Qe (-Rj) = —4njx*(—ﬁ,-,~) X (-R)T (97)
is employed. The result is

no
(MX) (z) = (47T)2
1 b=+
—bk%,z,{—l

x |:|CT9,~1-|/(; Sp.sgnz-z))€ i XL (z5) de]

X TTX'(ﬁ,'j) . XT (ﬁll) dzﬁ,’j, (98)
where x(ﬁu) is the column vector of the vector spherical harmon-
ics in the direction R;;, and 2, and 2_ are the upper and lower
unit hemispheres.

In the above approach the matrix (£;Xy)(z;) is a charac-
teristic of a dense medium, while the matrix (MXp)(z;) is
a characteristic of a sparse medium. Obviously, for a sparse
medium, we have g(R;;) =1; hence, (£1X1)(z;) =0 and the inte-
gral equation (62) simplifies to that for sparse media.

Some comments are in order.

/ xRy X' R)T

ij>

1. Dlscretlzmg the altitude interval [0, H] with a set of N,
points {z,} ., and computing the integral in the expression for
(MLXL)(Z) by a quadrature method, we are led to a matrix
equation which involves the components of all matrices X (z;)
at all quadrature points z;, i=1,..., N;. The solution of this ma-
trix equation by a direct method is computationally expensive
because the dimension of the matrix to be inverted is exceed-
ingly high. To deal with this problem, we may solve the integral
equation (62) by applying the iteration formula

x1(z)) = e %y + (LX) (@) + (MiX(T) (@) (99)

In a computer implementation of this approach, we have to
store N, matrices of dimension 2Nmax x 2Nmax, Where

Nmax = Nrank + Mrank (ZNrank - Mrank + 1)s

while N and My, are the maximum expansion and az-
imuthal orders, respectively. For particles with moderate values
of the size parameter, the memory requirement is manageable,
e.g., for a particle with a size parameter kja =5, the choice
Nrank = Mank = 10 guarantees convergence, so that for N; =
100, we have to store 100 matrices of dimension 240 x 240.

2. If instead of the representation (40) we use the representation
(37) for the conditional configuration average of the exciting
field coefficients <e,~)i. we get

(e").'(ef)i = e Ey, (100)
where E| = eef, and
Ky = 2K = 2Im(K;) = 2Im(v/ K2 — k2 sin’ 6p). (101)

Comparing Egs. (57) and (100) it is apparent that the above re-
lations remain valid provided that the following replacements
are made:

(a) e~ *0%ZiEy — e 2% E in Eqs. (61), (62), and (99);

(b) *KoZ:Efgmn = e*"ZZ:EL’ﬁn a0 EQL(73);

) X'(z;) ~ e *2(Zj=%) X1t (z.) instead of the approximation
L \%j L (4
(82); and

(d) kog— k7 in Eqgs. (83), (84), and (87).

4. Diffuse ladder specific coherency dyadic

To derive the expression for the diffuse ladder specific co-
herency dyadic X'y, we consider the integral representation (29) in
which we make the replacement (compare with Eqs. (43) and (45))

X3 (kir;) — X3 (Kr;) = e ®R01X ;5 (kyry). (102)

Then, by the change of variables p = —r; = R; — r, we obtain

Za@) = no [ X (-KpYTXL(2) TIX; (~Kp) &P, (103)
so that by taking into account the definition of the diffuse ladder
specific coherency dyadic de as given by Eq. (31), we get, for a
specified direction P,
Zaz. D) =no [ X (-KpTX@)TX; (KPP dp  (104)
withp=pp and z;=z+ p(p - Z).

The diffuse ladder specific coherency dyadic (104), which
has been obtained by applying the sparse-medium approxima-
tion for the integration domain in Eq. (29), is of the form
XT( Kpp)(- X5 (= Kpp) and is therefore not a transverse dyadic. It
can be transformed into a transverse dyadic if we assume that the
observation point is in the far zone of the group of particles. Under
this assumption, we use Eq. (102) and apply the far-field approxi-
mation for the vector spherical wave functions X3 (—k;p) to obtain

(cf. Eq. (11) of Ref. [1]):

X3 (—Kp) ——J%X( B). p oo (105)
Consequently, from Eq. (104), we find

Tz —p) = xT< P7| [ e x|t -p).  (106)

For the direction k = —p with k= @9, @), we define the upward
and downward propagating vectors k* and k= by

+ =Kk, ), 0¢0,7/2), ¢ €[0,27], (107)
k =k, ¢), 6 ¢ (n/2,7] ¢€[0,27] (108)
and obtain the equivalent representation
ZdL(z kb) = —X (kb) |C059| / b,sgn(z—z)€ bKW

« X((2) dz,]TTx' (). (109)

Another derivation of Eq. (109) relying on an integral representa-
tion of the vector spherical wave functions in terms of plane elec-
tromagnetic waves is given in Appendix B. The diffuse ladder spe-
cific coherency dyadic (109) is of the form xT(—p)(-)x*(—p) and is
therefore a transverse dyadic.

5. Vector radiative transfer equation
In this section we derive a radiative transfer equation for the
diffuse ladder specific coherency dyadic, obtain the expressions for

the reflection and transmission matrices of a layer, and discuss it-
erative schemes for solving the vector radiative transfer equation.

5.1. Derivation
From Egs. (98) and (109), we get

(MiXy) (z) = (47)> / x(K) - Ty (2. K) - %7 (K) Ak, (110)
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Consequently, the integral equation (61) becomes
Xu(2) = e ey + () [x ) Ta @0 (0 &’k

+X1(z), (111)

where the elements of the matrix X (z;) = (£1X1)(z;), which is a
characteristic of a dense medium, are computed from Eq. (88).

Substituting now Eq. (111) in Eq. (109) gives rise to three terms
on the right-hand side of the resulting equation; these terms cor-
respond to the three terms on the right-hand side of Eq. (111). For
the first term, we identify (cf. Eq. (15) of Ref. [1])
—4k—7?xT®Tx'G) _AGS), (112)
where A(T,S) is the far-field scattering dyadic, and use the rela-
tions (cf. Eq. (58)) Ep :eoeB and (cf. Eq. (31) of Ref. [1]) eg =
47rx* () - £9(8), to obtain

kzxT(k”)Te*"‘JZ'ELOTTx'(k”)—A(k”A) C.z) A'®,3), (113)

with

fc (Z,‘)

e gy (S) ® E4(S)
= ) e g, &.06) @ EGS).

n.E=0.¢

(114)

Note that Eq. (114) is compatible with the representation (cf.
Eq. (16)) Cc(R;) = Ec(R;) ® E{(R;), since for a sparse medium, we
have (cf. Eq. (213) of Ref. [2]) Ec(R;) = exp(jKo - R})€((S). For the
second term, application of the relation (112) yields
(4 )
1
AR, K) - Ty (z,K) A @, K).

2T (R TX(K) - ZdL(z,,k’) xT (K)THx* (k?)

(115)

Taking these results into account, we find the following integral
form of the vector radiative transfer equation for the diffuse ladder
specific coherency dyadic:

Tz k)
1 H B -z [ ~ _ —t =~
= HOWA Sb.sgn(z—zi)e K restn [A(kb,’§) -Ce(z) -A (k”.ﬂ
+ / AR, K)oz, k) A @, 1) dzfd] dz

n
g T( b) [m/ b,sgn(z— z,)e WXL(L) dzl]

k2
x Thx* (k?). (116)
Differentiating with respect to z and using the results
ab,sgn(z—z;) = 5b+H(Z_Zi) +8b7H(Zi —Z), (117)
dHE@ _ 52, (118)
dz
which imply
d H
E /(; f(zi)‘sb.sgn(z—z;)dzi
H
= [ r@tonbz-2) -85 - 2)d
=bf(2). (119)

where H(z) is the Heaviside step function, we obtain the differen-
tial form of the vector radiative transfer equation:

dX (2, k)

& = kg (z.k)

cos 6

+noA(K,S) - Ce(2) - A'(K3) + noT(z. k)
+11o / ARK) T,z K) A & K)dK.
(120)

In Eq. (120), the dyadic T(z, E) possesses the matrix-form repre-
sentation

Tz k) = kl_sz ®)TX (2)Tx* (K), (121)
1
which means that in the dyadic-form representation
Tek= Y [eEbik ok (122)
n,E=0,¢
the components of T'(z, ﬁ) are
I (z.K) = x,, FR)TXL(2) T (K). (123)

where x(ﬁ) = 2,7:9#, x”(ﬁ)ﬁ(f(). Eq. (120) is similar to the vec-
tor radiative transfer equation for sparse media; the difference is
that now, the source dyadic contains the additional term ngT (z, K)
which is characteristic for a dense medium.

To cast the vector radiative transfer equation (120) into a com-
mon form, we use the dyadic-form representation for the far-field
scattering dyadic

AKK)= 3 So(kK)AEK) @ EK),
n.§=0.¢

(124)

where SO(E. K)= [50p;g(ﬁ~ lA(’)] is the single-particle amplitude ma-
trix, and obtain

d ~
cosf @ Yane (2. K)
= —k Zapye (2, K) +no Z sOm;/(k,)s\)s(.)ggr (k,/s)ccn’s’ (2)

n'E'=¢.0
+no e (2, K)

+np Z

n'E'=6.¢

f Sonn (R KSR W) S0 (2. %) a2, (125)

where

Tuk = Y Za@kpk e&k).
n.§=6.¢
and (cf. Eq. (114))
Ec (Z) = Z Ccr)E (Z)ﬁ(E) ® 5(5)*
n.5=0.¢
Cc:;s (Z) = e—KOZgD"gaE.
The vector radiative transfer equation (125) can also be written
as

cos@%ﬁk) —KkJgq (2, k)
+ nOZJL(kwch(z) + M gns (2. K)
+11o / 2 (K. K)Jq (2. K) K, (126)
where,
—~ ] & —~
S @10 = 5/ Zae (2. k) (127)
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are the components of the diffuse ladder specific coherency col-
umn vector Jy (z, K) = UaLap.6) 2. K.

1/
]c(r;.E)(Z)z 5 Zl Cl)E(z)

are the components of the coherency column vector of the coher-
ent field Je(2) = lcp.¢)(@)],

= 1 /¢ ~
Jdns(n,s)(zs k) = i /,L—10F"$ (Z, k)

are the components of the diffuse coherency column vector for a
dense medium Jys (2, K) = [Jans(n.¢) (2. K)], and

Zn e ar.en (K K) = Sopy (K K)Spee (K. K),

(128)

(129)

(130)
are the components of the ladder coherency phase matrix
2y (K K) = [Zyp.6)07.61 (K K]

In Egs. (127)-(130), the multi-index v = (, &) is such that v takes
the values v=1,2,3,4 for (n,&) =(0,0), (0, ¢), (¢, 0), (¢, @),
respectively.

Some comments can be made here.

1. For f« 1, we can approximate x
we obtain

K=k — sz Z(2n+1)(r,}+12)

~ 1in Eq. (42). Consequently,

(131)
and from the relations

S(0) = So9s (5.9) = Soy 5.3) = —2171 S @n+ 1)(T) +12),
n

(132)
and Cext = (47 /k1)Im[S(0)], we get

Kk =—j(K = K*) = noCext, (133)

where S(S,5) is the amplitude matrix in the forward direction
and Cey is the extinction cross section.

2. For a sparse medium, we have X (z) = 0 implying J.(z) = 0. As
a result, we are led to the standard form representation for the
vector radiative transfer equation. Alternative derivations of this
equation for sparse media are given in Appendix C.

3. In the present approach we considered spherical particles. For
a sparse medium consisting of non-spherical particles in arbi-
trary orientations, the extinction matrix and the phase matrix
are averaged over the particle orientations [6,7]. Similarly, for a
sparse medium consisting of clusters of particles, the extinction
cross section and the phase matrix are averaged over the posi-
tions of the particles in the cluster. Several methods for mod-
eling the radiative transfer in a sparse medium consisting of
clusters of particles are presented in Appendix D.

4. A backward Monte Carlo method for modeling the radiative
transfer in a dense medium is discussed in Appendix E. This
model relies on the solution of the integral equation (61) and
the computation of the diffuse ladder specific coherency dyadic
from Eq. (106), and employs essentially the same assumptions
as those used in the derivation of the vector radiative transfer
equation (120).

5.2. Reflection and transmission matrices of a layer

The vector radiative transfer equation (126) has been derived by
using the integral representation (109) for the diffuse ladder spe-
cific coherency dyadic, and the simplified version (111) of the inte-
gral equation (61) for the ladder correlation matrix of the exciting

field coefficients. In principle, the reflection and transmission ma-
trices of the layer Ry (T,s) and Tj.(T.), defined by

J41(0,T) = cosGpRy. (T, 5)Jc(0), (134)
and
Ja(H.T) = cos O T (F.'5)Jc(0), (135)

respectively, where T is the scattering direction, can be obtained by
solving the vector radiative transfer equation for specific polariza-
tions of the incident wave. However, the above approach can also
be used to derive analytical expressions for Ry (T,s) and Tj.(T.5s).
To find these expressions, we begin with a result characteriz-
ing the solution of the polarized integral equation (61): for e =
3, Eoyeoy With egy =47x;(S), the relation
Eo = eoeB = Z 50,,€5Eeo,,egs (136)
n.£=0.¢
and the linearity of the integral equation (61) imply that the solu-
tion Xp,¢ (2;) of the polarized integral equation

Xipe (zi) = e Eg,: + no/ e RiQ(—kiRji)Xye (2))
D—Dyq(2)

x Q' (—kiR;i)g(R;) dR;;. (137)

where Ejg,s = eo,,egé, is related to the solution X (z;) of the inte-
gral equation (61) via

X (z) = Z E0yEge XLyt (21)-
n.§=0.¢

(138)

Now, in Eq. (109), we consider the downward direction k- =T with

T=T(0,¢), set z=0, and use the representation (138) together

with the relation x(f) = Yn=6.0 X ()5 (), to derive

nop 1
D (0,1) = Y {k_%xg B T[|c050|

0'.§'=0.¢
H M
X / e WZ‘XL,,:g/ (Z,’)dZi:ITTXE (ﬂ }507;’565,. (139)
0

Then, from Eq. (139), we find that the elements of the reflection
matrix

RL(T,S) = [Ripe) .6y (T, S)]
are given by

1
RJL(nf)(n'.s')@f)— Xn() [

cos 6| cosb|

H
X / e_WZ'XLanr(Z,') dZI]TTXE® (140)
0

For the transmission matrix we proceed similarly. Considering the
upward direction k* =T with T=T(0,¢), and setting z=H in
Eq. (109), we infer that the elements of the transmission matrix

TL(®S) = [TLp.e)r.e) (T.9)]
are given by

1
Tin.6)0r.6H) TS) = k2 oxh DT [W

H
« /0 e’m(”’z"xl_,,,s,(zi)dz]TT . (F). (141)

In a subsequent paper we will find exactly the same expres-
sions for the reflection and transmission matrices when the ob-
servation point is outside the discrete random medium, i.e., when
we approach the boundaries from the exterior of the particulate
medium. This agreement certifies somehow the validity of the
present approach.
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The maximum of the relative errors over the scattering angles &g and €yaxr. Columns 1,
2, and 3 correspond to f = 0.02, 0.04, and 0.06, respectively. The unspecified parameters

of the calculation are as in Fig. 2.

kia  Nrank T Emar [%] Emaxt [%]

1 2 3 1 2 3 1 2 3
5 8 1.62 336 5.21 079 363 752 062 336 9.02
7 10 1.69 357 562 074 318 602 066 348 9.11
10 14 1.03 211 323 031 145 372 022 118 4.6

5.3. Iterative scheme

For a discrete set of points {z;};* Z in the altitude interval [0, H],
JaL(z, k) and X (z) can be computed by means of the following

iterative scheme: given X,_ (z,-) and ngs ”(z,», k), at the iteration
step N,
1. solve the vector radiative transfer equation
A (z, k)
(N)
056—dZ KN (2, k)
+noZy (k,ch (2) + TloJ&’l\i;” (z,Kk)
+ng / 7k RN K dK (142)
for I3V (z;, K);
2. compute the matrix X (z;) as
X(z) = e B+ X (z)
Ho N ot ()T (1) dA21e
+32m2 [E0 5 f I G oxg @ (0 d2k
1n.§=0.¢

(143)

3. update the dense-medium matrix X (z;) by computing the ele-
ments of the matrix
(N) N +PI(N)
(Zl) = ('CLX( ))(zl) = [XLmn m n'(zi)]
as (cf. Eq. (88))
<Pa(N) pqrt
Ximnm (Zi) = o ITl]111111211211"n"’LLm1 —mn"my—m'n""

Xxlrrrmn].mznz (), p.gq=1,2 (144)

. update the diffuse coherency column vector for a dense
medium Jgy,s(z;, k) by computing the elements of the vector

I 2, K) as (cf. Eqs. (123) and (129))
o 1 & ~ .
(N) [&1 1 N) X
Jdns(n £) (Zis k) = Zk% EX,; (k)TXL (Z,')TTXE (k) (145)

. . s . <0 =
The iterations are initialized with X(L ) —0 and Jé?l)s(zi, k) =0,
and so, at the first iteration, the pair Jé}_’ (z;,k) and X((z;) cor-
responds to the sparse-medium solution. At the subsequent iter-
ations, we solve the vector radiative transfer equation for sparse
media with a source term accounting for the correlation between
the particles.

We may also solve the vector radiative transfer
equation (142) by the method of Picard iterations, that is, we
may consider the iterative scheme

(N)
dJy’ (z, k) ~
(N)
os@d— —kJg (z.K)
~ NoT) .
+n0ZyL (K, $)Jc (2) + noJh " (2. k)

g / 2, (kK )IND 2, ) dK (146)

or, equivalently, its integral form

J(N)(Z kb) = n0|C059| / ‘Sbsgn(z z,)e bkm I:ZJL(kb,g)Jc(zi)

i @) + [ 200 R @ K K |
x dz;. (147)

These iterations are initialized with J(°>(z k) =0, X(O) =0, and
1@ (z;,k) = 0. An algorithm based on Eq. (147) and the discrete

o?gsmate method is described in Appendix F.

We applied the iterative scheme (147) with the boundary con-
ditions Jg (z=0,k*) =0 and Jg (z=H,k ) =0 to some test ex-
amples. To ensure that the iteration method converges, we consid-
ered weakly absorbing particles with the relative refractive index
m = 1.33 + 0.01j. The layer is discretized into Nj,y = T/A7 sublay-
ers, where T = kH is the optical thickness of the layer and At is
chosen to be AT = 0.2. In Fig. 2 we illustrate the specific intensities
I(z=0, 9‘ ¢=0) and I(z=H, 9+ @ = 0) at the scattering angles
9 = arccos(£u;), where {u;}; ’1 is a set of N, Gauss-Legendre
quadrature nodes on the mterval [0,1]. Note that the specific in-
tensity I(z, l() is the first element of the (diffuse ladder) specific
intensity column vector Iy (2, k). defined by lgL(z, k) = DJg.(z, k),
where

1 0 0 1
1 0 0 -1

P=lo 1 -1 o (148)
0 - j o0

The discrepancies between the specific intensities are visible. In
fact, as it can be seen in Table 1, the maximum of the relative error
over the scattering angles &,,.xg between the specific intensities
I(z=0,6;, ¢ = 0) with and without the dense-media source term,
as well as the similar maximum error &,47 corresponding to the
specific intensities I(z=H, 0", ¢ = 0), increases with the particle
volume concentration.

6. Conclusion

Following closely the approach described in Refs. [3,5] we de-
rived a vector radiative transfer equation with an additional source
term typical of dense media. This equation is valid at interior
points of the discrete random medium. To reach this goal we were
forced to employ a series of approximations that are typical of
sparse media. These are:

1. the representation of the total field inside the particulate
medium as a superposition of the incident field and all scat-
tered fields,

2. the sparse-medium approximation for the integration domain,
and

3. the far-field approximation.

The first two approximations are not very restrictive. The far-
field approximation has been used
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1. in Section 3.2, to simplify the integral equation for the ladder
correlation matrix of the exciting field coefficients, and

2. in Section 4, to compute the diffuse ladder specific coherency
dyadic.

It should be pointed out that if in Section 4, the far-field
approximation is not used, the diffuse ladder specific coherency
dyadic is not a transverse dyadic and consequently, a radiative
transfer equation valid at interior points cannot be derived.

Because of the approximations employed, our feeling is that
the model can be used to compute the diffuse ladder specific co-
herency dyadic at interior points for rather low values of the parti-
cle volume concentration f. This is the reason why our simulations
correspond to a low value of f. For exterior points, i.e, when the
scattering is described by the reflection and transmission matrices
of the layer, the model can be applied to higher values of the par-
ticle volume concentration.

Future work should focus on the design of a validation method
for our model. This is not a trivial task because a benchmark
model, based on the solution of the multiple scattering equations
for the exciting field coefficients, is restricted to a domain of finite
size. At the present time, we do not see how such a model can be
endowed with periodic boundary conditions as it is done in three-
dimensional radiative transfer modeling.
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Appendix A

The integral M;_Trg:]‘,:},;?z"z(zi: X1) has been computed by means
of the following approach: in Eq. (48) we used the representation
(43) for Q(KR;;) in terms of Q(k{R;;), and then, by taking into ac-
count the relation Q(k{R;;) = ’T3T1(k1R,-j)T. as well as Eqs. (67) and
(69), we employed the far-field approximation (91) for u3,, (k1R;;)
in Egs. (70) and (71). Now, in Eq. (48) we do not use the rep-
resentation (43) for Q(KR;;) and the far-field approximation for
upn (k1R;i). Instead, we apply the relation Q(KR;j) = 73, (KR;;)T.
express 731 (KR;;) in terms of u,3,,,,(KRj,-), and utilize the integral
representation of u,3n,,(I(Rj,~) in terms of plane waves

1 ~ . d?k
3 Y — b Kk, Rji, ajbK; (k) (zj—2z) L

U (KRy) = - [ Yo (R0 Rl 20, 0 (149)
with Rj,' = RjiJ_ + (Zj - Zi)i, and

K’ =k, + bK,(K.)Z, (150)
K (k) = /K2 —k2, (151)
b= {*’ Zj > Zi (152)

= Zj <Z

Computing the integral over the particle positions in the sense of
Cauchy’s principal value, we obtain

rtmynymyny ¢, .
MLmnm’n’ (Z” XL)

o 1 - N
:J" _”W Z / Ymn (kb)y;rn’ (kb)[/o ab.sgn(zj—zi)
b=+

2
Xe—Zsz”(kA)(zJ'—z;)Xrt d ki

Lm1n1.m2n2(lj) dzj]m, (153)

with K}/ (k) = Im(K; (k,)).

Next, we assume that K’ «K' vyielding K~K', neglect the
evanescent waves, i.e., |k, | =k, < K’, and define the real upward
(b= +) and downward (b= —) vectors for propagating waves by
(compare with Egs. (150) and (151))

Kk =k, + bK}(k,)Z, (154)
Ky(ky) = /K2 — 12, (155)

The upward and downward vectors kP are described through
the propagation direction k=Kk(8j;,¢;) as (compare with
Eqgs. (107) and (108))

k+ =§(0ji, @ji), 0jie[0,7/2), pji €[0,2r], (156)
k- ZiE(ejh ®ji), Ojie (/2,7], gji €[0,27]. (157)
Then, using the relations
K,(K.) = K'| cos 0], (158)
dzkl = K/z sin 9_“| COSGﬁ|d9ﬁd§0ﬁ (159)
and the approximations Kz (k) ~ Kj(k,) and
K'K" K"
KK)~ = ————, 160
2 W)™ k) = Teosty] (160)
we obtain
MR i X)
— 2_7T~n'—n5 , Z P™ (cos6;)P™ (cos6;)
= K/ZJ mm L ji)ky Ji
b=+""b
1 H b gt
X[WA 6b.sgn(z]—z,‘)e rﬁmxﬁn]n].mznz (Zj)dzj]
X Sin9ﬁd9ﬁ, (161)

where k is defined by Eq. (59), ®, and ®_ are the intervals [0,
m/2) and (7r/2, i ], respectively, and (Sb.sgn(zj_z'_) is given by Eq. (93).
Finally, approximating K’~ k;, making the change of variables 6;; =
7 —6j;, and applying the symmetry relation

P (= cos6) = (=1)"I"IR" (cos ),

we obtain the representation (92) for M{%lﬂ':)’:?z"z (zis X1).

In fact, the neglect of the evanescent waves, which decay far
from the sources and boundaries, but can be significant in the
near field, is equivalent to the far-field approximation for the
fields. Therefore, the two methods for computing the integral

T, .
L::]‘rg,‘nrf’znz (z;: X)) are completely equivalent.

Appendix B

__ The expression for the diffuse ladder specific coherency dyadic
XY 4.z, k?) has been computed as follows: in Eq. (103) we used
the representation (102) for X3(—Kp) in terms of X3(—k;p), and
then, the far-field approximation for X3(—k;p). Here, we do not
use the representation (102) for X3(—Kp) and the far-field approx-
imation for X3(—k;p). We first use the integral representation for
the vector spherical wave functions in terms of plane electromag-
netic waves:

1

X3(—Kp) = E/x(ﬁb)e_jkA'pAeijz(kA)(Z—Zi)

d%k,

kG (162
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/-1,

with p=p, + (z;— 2)Z, kP =k, +bK,(k.)Z, K;(k,)
and

b:{—h Z>12Z

o (163)

Performing the calculation, we find that the diffuse ladder co-
herency dyadic % 4; (z) can be written as

Ta@ =Y / 7"z k) &k, (164)
b=+
where %? is defined by
k) = —2 X (k)T
IK|?[K, (k)|
H
<[ [ sy 000 (2 |
0
x TTx* (k), (165)
with
_J1, b=sgn(z-2z)
ab.sgn(z—zi) - {0, b # SgI'l(Z _ Zi) (166)

The next step is to neglect the evanescent waves, define the
real upward and downward vectors for propagating waves kb as in
Egs. (154) and (155), and set (cf. Eqs. (107) and (108)) kt = k(9 )
for 6 [0, 7/2) and @ €[0, 2r], and k= =k(0, ¢) for O (7 [2, 7]
and ¢ €[0, 27 ]. Then, using the approximations K~K’', K, (k) ~
K;(ky), (158), and (160), we find that the diffuse ladder specific
coherency dyadic Xy (z. kb) defined through the relation

T2 K) =7 (2. kKK, (ko) (167)
is given by
Tae k) = g (1] o / 8y sgnie—z€ T

x Xp(z) dz,-] Tix* (kb). (168)

Finally, approximating K’ ~k;, yields the representation (109) for
fd]_(z, l(b).

Note that in view of Eq. (159), which implies d%k, =
K'K,(k,)d?k, and Eq. (167), we deduce that the representation
(164) is equivalent to the definition (31) of the diffuse ladder spe-

cific coherency dyadic, i.e.,
7a@ =Y [ TaGk) k= [Ta@bek
b=z <2

As in Appendix A, the neglect of the evanescent waves, which
is equivalent to the far-field approximation for the fields, implies
that the two methods for computing the diffuse ladder specific co-
herency dyadic are also equivalent.

Appendix C
Two methods other than that described in Section 5 can be
used to derive the vector radiative transfer equation for sparse me-

dia. These are described below.

Method 1. For a sparse medium, the integral equation for X reads
as (cf. Eq. (61) with Q(—KRj;) in place of Q(—~k{Rj;))

X (zj) = e ¥%E + no/ Q(—KR;i)X.(z/)QT(~KR;)) d®R;i.  (169)

In the above equation, we employ the relation Q(—KRj) =
7'3T1( KR;;)T in conjunction with the plane-wave representation of

the translation matrix

T (~KRy) = 2 [ (k) - (e e B

s elikite )z _42KL (170)
KKz(kL)’
with k =k, + cK, (k. )Z, K,(k.) = /K> —kZ, and
c={+’ S (171)
-, Zi < Zj

and integrate over R;;,. Then, accounting for Eqs. (165) and (167),
and the relation d?k; = K’K}(k,)d?k, we obtain (compare with
Eq. (111))

XL(z)) = e ¥ + (4m)? Y / x*(K) - Ty (21, K°) - xT (K°) d?k.
(172)

In view of the representation (109), we multiply Eq. (172) by

n
K/OZXT( T [|c059|./ b.sgn(z-2)€ e - z')()dz]ﬂx'(kb)
and integrate, where, as usual, k= E(B.(p) for 6 €[0, 7 /2] and
¢el0, 2], and k- =k(0, ¢) for 6 €[ /2, ] and ¢ [0, 277 ]. The
result is

1
K’2 | cos 6|

Tu@ k) =

H iy~ -
x / Sb_sgn(z_zl.)e‘b’(WXT(k”)Te”“’szmTTx‘(k”)dzi

2-Zj

O e[, e
<[ [ AR () B2 ) - R The () @k az

=% Qc
(173)

In Eq. (173), we approximate K ~k; and employ the relations
Epp = ege‘(; and ep = 4w X*(S) - £0(S), as well as Eqs. (112) and (114).
We obtain the integral form of the vector radiative transfer equa-
tion:

Tz, k)
_ Mo / " e ¥ ren [K&b $) C@) A @3
[cos@] Jo ~eene) ‘ I |

+ / A, K) - Ty (2. K) - A (K, K) dzi’] dz;. (174)

so that after differentiating with respect to z and using the dif-
ferentiation rule (119), we are led to the differential form of the
vector radiative transfer equation:

dXq (z k)

cos 6 i

= k2. (2, K) +1oAK,S) - Cc(2) - A'(k3s)
o [ARK)- Fa @ K) A & K) &K,
(175)

Method 2. Inserting the iterated solution of <eie;)i as given by
Eq. (49) with g(R;j) =1 in Eq. (29) and accounting of Eq. (33),
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Fig. 3. Scattering geometry showing the relevant quantities in computing the inte-
grals over particle positions.

we obtain
Zu(r, —p) = 5(P+5)Cc(r)
+ng / X5 (—Kp)T(ei) (]) T'X35 (—Kp)p? dp

+n(z)/xg(—KP)TQ(_Kij)(ej>j(ej)j
x Q" (~KR;) T'X3 (~Kp)g(R;)R};p* dR;idR;idp
o (176)

The relevant quantities for computing the integrals in Eq. (176) are
illustrated in Fig. 3.

Taking into account the far-field approximation for the radiating
vector spherical wave functions X3 (—Kp) as given by Eq. (105), we
proceed to analyze the terms of the series (176) in detail. First, we
consider the second term, i.e.,

Zu(r D) = o [ X} (Kp)Tle) () TR (K P dp. (177)
Employing Eq. (112) in conjunction with the sparse-medium repre-
sentation (see Ref. [2]) (e,-)i =47x*(s) - Ec(R;), we find

T ejKP_ .
X5 (—Kp)T(e), = —5 ACPS) ERy). (178)
and further,
T (r,—p) = ny / e “PA(—p.5) - C.(R) A (-p.S)dp.  (179)

For the third term in the series,

T -D) = g [ XEKDITQ(KR)(e) (]
x Q' (—KR;;) T'X3 (—Kp)g(R;) R} p? dzﬁjideidp
+oo (180)

we employ the far-field approximation (cf. Eqs. (43), (96), and
(97))

eJKRij -~
Q(KRjj) = -——Qux (Rjj), Rij — oo, (181)
k1R;;
Qo (Ryj) = —47jx* Ryj) - X (R;j)T, (182)
and derive
elKp eikRijj _ L
X} (—-Kp)TQ(—KR;)(e;). = — r AP -R;)
J p 1)
A(-R;i.5) -Ec(R)). (183)

Hence, we obtain
Ziz(r, —P) = g / e P RA(-p, -R;) -A(-R;;, ) - C(R))
— =~ - o~ A ~
‘A (—Rj,',g) -A (-p, —Rj,') dsz,'de,’dp +---. (184)
Proceeding similarly for all terms in the series, we end up with
Ti(r,—p) = 5(P+9)Cc(r)
+no [R5 CR) A (-5 dp
+ng / e “Pe*RiA(-p, —R;)) -A(-R;.3) - C.(R;)

—t = —t o~ = ~
‘A (—Rji,g) -A (-p, —Rj,‘) dsz,'de,‘dp +---. (185)
The above series is the expanded form of the integral equa-
tion

i -P) = 5@ +8)C(r) +mo [ e AP, —P)

v N U =7

Zi(r+p,-p)-A (-p,—p) d’p'dp. (186)
Putting k=—p, K= —p’, and p= (z—2z)/cosf for k=Kk(0, ¢),
we express Eq. (186) as

z-Z;

- - - _ n H §
B R) = 5@ - 9@ + g [ [ Shnesye ™

AR K) -T2, K) A, K) K dz. (187
For the diffuse specific coherency dyadic, given by (cf. Eq. (33))
Yz k) =X (z.k) —8(k—3)Cc(z), we obtain the integral
equation (174) and after differentiating with respect to z, we are
led to the vector radiative transfer equation (175).

Appendix D

In this appendix we present several methods for modeling ra-
diative transfer in a sparse medium consisting of clusters of parti-
cles.

These approaches rely on the following basic idea. Consider
a volume element V., let N. volume elements be randomly dis-
tributed in the volume V, and let Nj particles be randomly dis-
tributed in each volume element V. (Fig. 4(a)). The total num-
ber of particles and the particle number concentration in the vol-
ume V are N = NcN, and ny = N/V, respectively, the number con-
centration of the clusters in the volume V is nc. = N./V, and the
particle number concentration in the volume element V. is n, =
Np/Vc. Let the scattering characteristics of a cluster be described
by the configuration-averaged coherency phase matrix (ZJLC) and
the configuration-averaged extinction cross section (Cext.c). whereas
the configuration average is taken over the positions of the parti-
cles in the cluster. Assuming that the clusters are situated in the
far-field region of each other, and reformulating our previous anal-
ysis in terms of clusters of particles instead of individual particles,
we arrive at the vector radiative transfer Eq. (126) without the dif-
fuse coherency column vector for a dense medium Jgy,, and with
the replacements noZy, — nc(ZJL_C> and k = ngCext > kK = nc<Cex[‘c>.
Defining the effective coherency phase matrix ZJL by

= 1

) = —(ZjLc) 188
IL anC< JL.c) (188)

and the effective extinction cross section Cext by

—= 1

Cext = —<Cext.c), (189)

npVe
and taking into account that nc(ZJLC) =npZy and k = nc(Cext_c) =
noCext, We see that the scattering can be described by the vec-

tor radiative transfer equation for sparse media (126) with the re-
placements Zj — ?JL and Cext — Cext. Thus, such an approximate
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N, particles

P

Fig. 4. (a) Scattering by clusters of particles, and (b) the volume element V. containing N, randomly distributed particles.

radiative transfer model for dense media assumes that the clus-
ters are situated in the far-field region of each other and so, that
their positions are uncorrelated. Inside a cluster, the positions of
the particles (i) can be described by the pair correlation function
&(R;j) =g(R;j), or (ii) can be randomly generated by a stochastic
model. Note that only for V~N.V., we can approximate ng~np,
i.e., only when the clusters are close together, the particle distribu-
tion in the volume element V¢ is approximately equal to the parti-
cle distribution in the volume V.

In the following we present several methods for comput-
ing the configuration-averaged quantities of a cluster, i.e., the
configuration-averaged coherency phase matrix (ZJL_C) and the

configuration-averaged extinction cross section (Cext‘c).

Method 1. In Ref. [8], the configuration-averaged quantities of a
cluster are computed analytically by means of the quasi-crystalline
approximation and the distorted Born approximation.

To explain this method, we consider a group of N, particles ran-
domly distributed within the volume V.. The volume element is a
cylinder with cross section A and height H (Fig. 4(b)). The obser-
vation point is situated in the far-field region of the cluster, and
therefore, the representation of the field scattered by particle i, (cf.
Eq. (23)) Egi(r) = Xg(k]r,-)Te,- with r =R, +r;, is used in conjunc-
tion with the far-field approximation of the radiating spherical vec-
tor wave functions (cf. Eq. (11) of Ref. [1]). The far-field pattern
&% () of the diffuse scattered field &sce(r) = Esct(r) — (Esce(r)),
defined through the relation &sct(r) = go(r)&%,(X) with go(r) =
exp(jkqr)/r, is characterized by the elements of amplitude ma-
trix for the diffuse radiation .#) (,s). More precisely, for £3,(T) =
Y. é”s"cct‘nﬁ')ﬁ(f). the .7, (r,s) are defined through the relation

Sy @) = Z e (F.8) &, (190)
=09
and are computed as [19]
e (€,8) = Sy (£.5) — (S (T.9)), (191)
where
Sr;E (f',g) = ZsinE (f',g) (192)
i

are the elements of the amplitude matrix of the cluster,

Sing (l:, @ = — kJ_.l e*jlevRiX'g G‘\)TE,‘E ’

are the elements of the amplitude matrix of particle i, and for e; =
Ye—0.p €oseie and eg = 3¢ _g , Coseog, ej¢ satisfies the &-polarized
equation (34), i.e.,

(193)

et = elkiSRy et + ZQ(’“ Rij)ej:. (194)
J#
In Eqgs. (192) and (194), the summations run implicitly from 1 to

Np.

’ As in Section 3.1, for a large geometrical thickness H, we ap-
proximate the conditional configuration average of the exciting
field coefficients (e,-g)'. by that of a dense semi-infinite medium. In
this case, (eié),v is given by (cf. Eq. (37)) (e,-s)', =exp(K-Rye;, K
is given by Eq. (38), and both K and e; are computed from the
generalized Lorentz-Lorenz law and the generalized Ewald-Oseen
extinction theorem for a dense semi-infinite discrete random
medium [1]. To compute the effective coherency phase matrix,
the quasi-crystalline approximation is used in conjunction with
the distorted Born approximation. Because the quasi-crystalline ap-
proximation combined with the distorted Born approximation may
not conserve energy, the computational process is organized as fol-
lows:

1. compute K’ = Re(K) from the Lorentz-Lorenz law,

2. compute the effective coherency phase matrix Zj; from the dis-
torted Born approximation,

3. integrate the elements of the effective coherency phase matrix
over the unit sphere to determine the effective scattering cross
section Cect,

4. compute the effective absorption cross section C,p, from the co-
herent exciting field, and finally,

5. calculate the extinction cross section by adding the effective ab-
sorption and scattering cross sections, i.e., Cext = Caps + Csct-

These steps are outlined below.
Effective coherency phase matrix. The elements of the
configuration-averaged coherency phase matrix of the cluster (ZJLC>
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are expressed in terms of the configuration-averaged products
(e Ve ) via

(Z_ILc(n.r)’)(E.E’)(ﬁa) ( V)E(\’) ;5 (\ ’)) = ydnér;; (\ ’)

(195)
In this regard and in view of Eq. (188), we define
_ 1
<le}$r)’$’(fsa = Wlsﬁdnsn'g’(ﬁgs (196)
pYc

in which case, the elements of the effective coherency phase ma-
trix are

ZJL(';JJ’)(S‘E’)G”S\) = ‘7dn$n’é’@vg)'

The quantity Zy,e,¢ is given by [19]

Sanene €.85) = np / (SineShye), d°Ri + 12 / [{Sing Siyer ), ,8(Rip)

(197)

— (Sine){S5e ) ]d°R;d*R,, (198)
so that by means of the distorted Born approximation,
(SingSie )y = (Sine){Sime ) (199)

we obtain
Saneye (£.5) = np f(sms)( e ) d’R;
+mp / [8(Rij) = 11(Sing ) (Sjye); °R;’Ri. (200)

Taking the configuration average of S;,¢ given by Eq. (193) with the

position of particle i held fixed, using < ,E) =exp(jK-R;)e;, mak-
ing the change of variables R; = R; + Rj;, and neglecting boundary

effects, we obtain
H
yd'?é')'&"(r\’/s\) = k_gA{_/(; e_KZZ'dZ,' +np/e_’(zzf

X [/ e‘jK"Rﬁej"iRﬁh(Rﬁ) d3Rj,‘:| dZ,‘}
x b ) Teg I @) Te (201)

where (cf. Eq. (101)) «, = 2K} and h(R;;) = g(R;;) — 1. To compute
the integral over R;; we choose the origin of a local coordinate
system at the center of particle i, and since h(R;;) decreases very

rapidly to zero, we let Rj; e R3. Consequently, the integral will not
depend on the position of particle i, and we get

n
‘ydl)$l)’5’ﬁa§) = k_123
[Xr;()TeE][X17 OTe$ ] (202)

In Eq. (202), hp(p) is the Fourier transform of the total distribution
function h(r) =g(r) -1, ie,

hy(p) = / h(r)e®rd’r,
and for spherical symmetry, i.e., hp(p) = hp(p), we approximate
hy (K* — kT) = hp(|K* — kt]) ~ h,(|Re(K) — kT|).

Note that h,(p) solving the Ornstein-Zernike equation has a closed-
form representation in terms of p = |[Re(K) — kr| and the volume
concentration of the particles f=npVy [1]. In the limit of small

k.H, we use
1 —e*H

1—e*"zH -

(203)

Jmy S = (208

and we end up with

— 1
ydné‘r;’g’(ia = pF®[X£®TeE][X£'®Te$’]'~ (205)
1

where

F(r) = 1+ nphp(|Re(K) — kiT]). (206)
It should be pointed out that for a sparse medium, we have

F(r)=1 and e ~ ey = 47Tx§® (the exciting field is approxi-

mately equal to the incident field). In this case, Eq. (205) becomes

7d77$17’£'@v§) = SOI)E (ﬁ QSBWEVG7)5)
1 .
= k—zlxg(ﬂTeos][X,T,'OTEOE']
1
= Ziga ) (T.8),

where Sp,¢ are the elements of the single-particle amplitude ma-
trix in the particle-centered coordinate system. Thus, ZJL =Zjasit
should be.

Effective scattering cross section. The configuration average of
the scattering cross section of the cluster is given by

Y /|x7g(")| )d?F;
nE—Gw

whence in view of Eq. (188), it follows that the effective scattering
cross section can be computed as

! (Csctc) Z /ydnsné( A)d r,

n,V,
pe I;EGVJ

(Cueec) = (207)

6sct = (208)

where 7 g (r,s) is given by Eq. (205).

Effective absorption cross section. For a &-polarized incident
field, the configuration average of the field exciting particle i in the
local coordinate system attached to particle i (the coherent exciting
field) is

(S (r0), = X] (ke eie ), (209)
Then, using again ( ,5) =exp(JK-Ry)es with e = [eSmn egmn]T
we find that the absorption cross section of particle i is
1
<Cabsi> - k eJ(K KR Z{[Re( ) + |Tnl |2]|e;mn|2
mn
+[Re( n ) + | n | ]le&‘mnl ]} (210)

The configuration average of the absorption cross section of the
cluster reads

<Cabs.c) = Z(Cabsi) =np /(Cabsi)i d3Ri’ (211)
i
so that by means of the result
; . 1— ekt
/e'(K‘K PRPR = Ve — Ve as iH - 0,
we obtain
— 1
Cabs = m(cabs.c)
1
= _k_2 Z{[Re(Tn]) + |Tn1 |2]|e;mn|2
1 mn
+[Re(T) + |T7 12 ]leZ,,, |*)- (212)

To simplify the analysis it is convenient to consider a
plane electromagnetic wave at normal incidence, ie., S=Z. In
this case, the generalized Ewald-Oseen extinction theorem for
computing ez (which determines the conditional configuration
average of the exciting field coefficients (e,-g)'.:exp(jl(-R,-)eE)
is polarization independent [2], and moreover, only the az-
imuthal modes m=1 and m= -1 are involved in the summa-
tion (212). Choosing the xz-plane as the scattering plane we find
that for T=T(6 = ©, ¢ =0), the non-zero configuration-averaged
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products ((,,E(@)) m,(@)) are (|.79(0)12), (%9 (©).75,(0)),

(fw(ﬂ(@) (®)> and (|y¢¢(®)| ) These four quantities are the
diagonal elements of the configuration-averaged coherency scat-
tering matrix (FJLC(®)>. This matrix determines the configuration-
averaged coherency phase matrix for the directions T =T(6, ¢) and
S =5(6p. ¢o) via

(Z1L.c(@9)) = D'L(=02)D(FyLc (©))D 'L (7w - 01)D,

with D-! = (1/2)DT. For the definitions of the rotation matrix L
and the angles 0 and o, we refer, for example, to Ref. [6].

Method 2. A numerical method for computing the configuration-
averaged quantities of a cluster by simulating the multiple scatter-
ing of waves by volumes of discrete random media consisting of
spherical particles was described by Tse et al. [9]. The effective op-
tical properties are computed by simulating random positions of
particles inside a spherical cluster (by random shuffling and bond-
ing) and by averaging over a number of realizations. For L realiza-
tions of the particle positions inside a cluster, the computational
process is organized as follows:

1. solve the multiple scattering equations for the exciting field co-
efficients

(’) e_]k]SR,"eOs +ZQ(k1R(’))ejQ’ (213)
j#i
ie, determine e, i=1,..., N, for each configuration I;

2. for each configuration I, compute the elements of the amplitude
matrix of particle i (cf. Eq. (193))

()
Sipe(T.8) = —

and the elements of the amplitude matrix of the cluster (cf.
Eq. (191))

(l)
nE ( A) Z SHIE

3. calculate the configuration average of the elements of the am-
plitude matrix of the cluster

L
(S'IE (l:,/S)) — % Zs(l)

and for each configuration [, the elements of the amplitude ma-
trix of the cluster for the diffuse radiation (cf. Eq. (191))

o) _c .
‘/,75 (f‘,g = 5,75 (Eg) - (SI]E (f«a),

4. compute the configuration-averaged coherency phase matrix of
the cluster (cf. Eq. (195))

e ERDT @) Tel) (214)

(215)

(216)

(217)

(Zncmm e @) = Z S 3)71 ([ 9) (218)

and the configuration-averaged scattering cross section of the
cluster <C5c[~c> (cf. Eq. (207))

L
(Guer) = %Z[l > / I/,,‘QC@Fde]
=1 n.§=0.¢
1
) > /ZJLc(n :;)(ES)CA)) (219)
n.§=6.¢

5. for each configuration I/, compute the absorption cross section

of particle i (for the exciting field Eg()c(,”(r,) = XT(kl‘,)e(“ and a

given polarization state & of the incident field)

() H1
Cab51= kZZ[Re( )+|T"1|2”eiémn|2
1 mn
I
+[Re(T7) + [T7 ]leim, I*1). (220)
where e(l) [eé)"l”1 ,(E”nf"]T and then, the configuration-

averaged absorptlon cross section of the cluster

(= 1 D

The multiple scattering equation (213) can be solved iteratively,
e.g., by the generalized minimum residual method, whereby the
matrix-vector multiplication, required in each iteration step, can be
accelerated by the fast multipole method [10,11]. Note that in iter-
ative methods, the matrix resulting from Eq. (213) needs to be well
conditioned. Actually, the multiple scattering equation (213) can be
reformulated in terms of the scattered field coefficients s = Te!,

i§ i&
or the internal field coefficients Ci(E“ =Time’.(é). where Tj, is the

particle-centered “transition matrix” relating the expansion coef-
ficients of the internal field to those of the exciting field. In Ref.
[12] it has been shown that the condition number of the ma-
trix equation with internal field coefficients is better thus, this ap-
proach is recommended.

In this numerical approach, the configuration-averaged quan-
tities of a cluster are computed by solving the multiple scatter-
ing equation (213) without any approximation as, for example, the
quasi-crystalline approximation or the distorted Born approxima-
tion. Thus, the scattering by the particles in the cluster is accu-
rately described in the sense that all interference effects between
different types of scattered waves are taken into account.

(221)

Method 3. In Ref. [13], the configuration-averaged quantities of a
cluster are computed by considering the first-order approxima-
tion for the exciting field coefficients e; satisfying Eq. (34), ie
e; = exp(jkiS - Ry)ep. As a result, the field scattered by particle i is
E...i (1) = X} (ki1;) Te; = eM15RXT (ky1;) Teg, (222)
where r = R; +r;, the elements of the amplitude matrix of particle
i are

Sy (£.5) = _kJ_1ei'<l CDRLT () Tegy, (223)

and the elements of the amplitude matrix of the cluster become

S1¢ (.3) = 3 Sipe (.5) = = o (D Teoe 3 MOPR - (224)
i i
By means of Eq. (191) it follows that
(ZJLc(n.n’)(E.E’>G*§)) = (yrzs Ggyﬁs@§)>
= (5,095 F.9) - (5 E DS, F.9),
(225)

The configuration-averaged quantities (5,75)(5;’,?) and (Srz&‘s;;'s'>
are computed by simulating random positions of particles inside a
cluster and by averaging over a number of realizations. However,
in order to improve the convergence of the configuration averag-
ing, an analytical averaging over orientations is performed. This ap-
proach is described below.

Assuming spherical symmetry, the probability density p(R;) can
be written as
= 1
p(R;) = p(R)p(R;) = EP(R,-), (226)
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so that for L realizations of R;, R'.“), I=1,...,
average of a function f(R;) is given by

L, the configuration

L
(S5 ®0) = SR Rolg ), = ¢ D(SURRolg) - @27
with

b 1 PSR
(FRDR))e = E/f(R,f ) R;) d?R; (228)
The result
/e—JP-l' d?r = 47 M‘ (229)
pr

then yields
(SUE Gg))(% E'(\ A)) kz [XT OTeOE ][Xn OTeOE’]

sin(qR\")

x ‘IE(Z R ) , (230)

where q = k; (s —

p(R;, Rj) = p(R)p(R;|Ry) = p(R))p(R; — R;) = p(R) p(R;;) (231)

together with the spherical-symmetry assumption
= 1

P(R;i) = p(R;) p(Rji) = Hp(Rji)’

implies that the configuration average of a function f(R;) is given

by
(X’: 2}: fR;)) Z’: ;«f(Rﬁ, iiji))ﬁﬂ_)Rﬁ

T). Similarly, the relation

(232)

1< ~
= ZZ(ZZ(f(ij’, ji))ﬁj') (233)
I=1 " i j
with
0 1 N B 29
(FRY R, = 7 / FRY, R;) d?R;. (234)
As a result, the representation
Sy @ 9)S}e €.9)) = 12 [X , (F) Tegg ][y (F) Tege ]
sin(qR})
<[ z(;z T O] @)

J

readily follows.

In Ref. [13], the configuration-averaged scattering and ab-
sorption cross sections of the cluster are computed by using
Eq. (207) and the relation

Csct,
(Gune) = 12

respectively, where Cser and C,,s are the cross sections of an in-
dividual particle. Because in this approach, the multiple scatter-
ing equation (213) are not used, < abs. C) is computed by means of
Eq. (236) instead of Eqs. (220) and (221).

Cawa (236)

Appendix E

In this appendix we sketch the main ideas of a possi-
ble backward Monte Carlo method for solving the integral
equation (61) and for computing the diffuse ladder specific co-
herency dyadic by means of Eq. (106). Specifically, the backward
Monte Carlo method uses the polarized versions of Eqs. (61) and
(106), and relies on the application of the reciprocity principle.

Fig. 5. Scattering by a chain of particles {Ry; ).

Note that the Monte Carlo method is widely used for solving the
radiative transfer equation (e.g. Refs. [14,15]), and in general, for
solving Fredholm integral equations of the second kind (e.g. Refs.
[16-18]).

For ey (S) = X¢_g., €ozeoz (5), the polarized version of the inte-
gral equation (61) is

XLEE’(RO) = e"‘ORﬂ'ieOE G)egf'@) + nof

D—D3q(Ro)

e “RorQ(kiRor)

x Xigg (Ry)QT(k1Ro1)g(Ror) d°Ry, (237)
while X; (Ro) satisfying Eq. (61) is related to X;¢¢ (Ro) via
XL(Ro) = Z 0 €o¢ X1ee (Ro). (238)

§.8'=0.9

Using Eq. (238), we find that the components of the diffuse lad-
der specific coherency dyadic given by Eq. (106) are
> [ e D TR ()

EdLr]E (l' P) =

K .E=0.9
TTxg (-ﬁ)so,,,sas, (239)
o
where Rop = RopRgp = Ry — 1 (Fig. 5).
In the first step of our analysis we insert the iterated solution
of Eq. (237) in Eq. (239) and apply the reciprocity principle to each
term of the series. Essentially, using the representations e, (S (8) =
4mx; ,(S) and

5(R0P —p) &Ry,
P

Q(k1Ry_1 ) = T31 (k1R ) T, (240)

the symmetry relations for the translation matrix and the n-
polarized vector of spherical harmonics x;(p), ie. Xmn (= pP) =
hyxy_mn(P). where h; is the indicator function

1,

and the identity (note that for spherical particles, T is a diagonal
matrix)

x1, (=P)TQ(KkiRo1) ..

n==0
n=¢’

-Q(kiRy_1 )3, (S)

=x1, (=P T[T (kiRo)T] ... [T3] (ki Ry_1 1) T]y, (8)

= X,,IOT[Tz] (k1Ry_1 ) T]. .. [T31(k1Ro1) T Ixy (—P). (241)
we are led to the transformation rule
xp (—=P)TQ(k1Ro1) ... Q(k1Ry_1 1 )eqy ()

= hyhyx}, (=8)TQ(k1Ry k1) - .. QK1 Ryp)eoy, (P)- (242)
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For more details on the derivation of Eq. (242) we refer to Ref. [19].
The final result is

Equs (l‘, _ﬁ) = hnhE Z hl]’hs’wnén'é’(r, _6)507)'565“ (243)
n.§'=0.¢

In Eq. (243),

Gpeye (8B =3 Y (x, ), (244)

k=0

where

w® ,(r,—A)=/ [/ [/
A A DDy (Rg) LD

XFkuEn’E’(Rks ....,R1,Rp) d3R0:| d3R1] .. .d3Rk

(245)
and
FknEr;'&’(Rki cee Rls RO)
n
= k—gtk(Rk,...,Rl,Ro)
1
xe “RZ[ ] (—§)TQu(R. ... R1. Ro)eoy (P)]
X[X?(—@TQk(Rk, ...,Ry, R())egg (ﬁ)]*e"‘R‘"’
L 5Rop ), k=0, (246)

R2_
ROP

with typ =1 and Qg =I. For k> 1, the quantities t,(-) and Q(-) in
Eq. (246) are computed recursively as

te (R, Ry_q. ... Ro) = noe *Reeig(Ry 1)

x 1 (Rg_1.....Ro) (247)
and
Qu(Ri, Ri_1, ..., Ro) = Q(k1Ry 1) Qi—1 (Rg_1, ..., Ro), (248)

where, as before, tp =1 and Qp = I.

To find an estimate for lll,ls,l,él(r. —p) in Eq. (243), we con-
sider L independent Markov chain paths of lengths K, I =1,... L,
ie.,

{R(l)

OK‘“} 'R(l) — Rm - ... R,((” —

= R;((’<)Il 17 Rl(("),) = {®} (249)

with the initial probablllty density function p(RO)) on D, a transi-

tion function p(R — R(”) which gives the probability of mov-

ing from state R(”1 to state R,(f”. and the absorbing state @ ¢D.
The absorption probability at an arbitrary state R,_; is 1— o, i.e.,
pP(Ry_1 — {@}) =1 — w, in which case, w is the survival probabil-
ity at state R,_q, i.e,

| PR, — R) IR, = (250)
D—Dyq (Rg—1)

The probability of the Markov cham (249), with the initial state
R(()” and the absorbing state rY )

pu(RY R R = pRYIPRY — R)pRY — R ...

xp(R), , — RG)PRY), — (o))
K(h
= (1 -w)p®RM)[TP®RY, > RD),
j=1
(251)

while for k < K, we have (the chain does not terminate at R,((”)

pu®RY.RY.RY) = pR)PRY — R)pRY” - RY) ...

x p(RY —RM). (252)
The k-fold integral in Eq. (245) is estimated as
L
~ ~ 1
Wi (8 D) ~ W, (0 —D) = T D wyeye R, (253)
1=1
where the weights W,;gn/g/(Rg:)k) are defined by
(U] O p
R(l) Fkl;SnE’(R Ry Ry ) 254
Wig e Ry 0} ) 0y (254)
PR [T m(R —R)
Consequently, an unbiased estimate for ¢, ¢/(r, —p) is
_1 L K®»
ey (1, —P) = I 33 whene (RS (255)

1=1 k=0

Note that each sample contributes to K() trajectorles and strictly

speaking, in Eq. (255), the last weights W,)E,isf(Ro K(“) should be

multiplied by 1/(1 — w) because rY ) is an absorbing state.
Before proceeding we make a short comment. Consider the
product

£l R

kJ eloRe (§)T

.R1,Ro)

><[eJ(K k1)Ry k-1 Q(ky Ry k1 )]
xeqy (p)er ®o=0),
(9p Sop))

A

[/ IR0 Q(kiRyp) ]

where (p

K, =kip+ (K —kj)——— (256)

cos6p’

and the following scattering process: (i) the particle placed at Ry
is illuminated by the n-polarized plane electromagnetic wave

Eo(r') = (p)eliP -0 (257)

propagating in an effective medium in the direction p, (ii) the
field scattered by the particle placed at Ry propagates in an ef-
fective medium and excites the particle placed at Ry, (iii) the field
scattered by the particle placed at R; propagates in an effective
medium and excites the particle placed at R, and so on (Fig. 5).
In a local coordinate system centered at Ry,

ejk1|3-(R0—r)eOU (ii)

are the expansion coefficients of the plane electromagnetic wave
(257) in terms of regular vector spherical wave functions, and in
order to take into account that the incident wave propagates in an
effective medium, we replace kip — Kp, that is,

ki Ro—1) _ oiKy (Ro—1)
In the effective medium, the expansion coefficients of the field ex-

citing particle k (placed at R;) due to a n-polarized plane electro-
magnetic wave illuminating the first particle of the chain are

el = Q(KRy 1) ... Q(KRyp)eq, (p)elr ®o=r)
= [ IR 1Q(kiR k1)) [N ROQ(K1 Ry0)]
x eoy (P)ellv Ro=0), (258)

The far-field pattern Esctk( $) of the field scattered by particle k in
direction —§ is

Bk (9 = 2 EGoy (DN (D),

n'=0.¢

(259)
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El, (-9 =-1

sty eJk‘SR"x” (-s ’)Te (260)

and as before, to describe the propagation of the scattered wave in
an effective medium we make the replacement k;s — Ky, that is,

eikiSRy _, oiKoRy

Thus, we have f"n,(.) :Eiﬁ)},(—?), and since j(K, - Kj) - (Rg -
r) = —kRop, J(K—K*)Rgy_1=—KkRpp_1. and j(Ko—Kp) Ry =
—koRy, -Z, we see that f’Z;,(.)f,fs',(.) = Es"cﬁn,(—E)Efcﬁ;,(—E) deter-
mines Fe,e () when the correlations between the particles are
not taken into account. In importance sampling, the main problem
that has to be solved is the choice of the initial probability density

P(Rp) and the probability transition function p(R,_; — Ry).
1. The probability density p(Rg) is chosen as

P(Ro) = p(Rop) = - p(Ror)3 (Rop — P). (261)
op

where Rgp is defined by the probability density

p(r)=ke™ " r>0. (262)
Note that if i{()p is a realization of Rgp, then in Eq. (254), the
term (1/x)p(Rgp) given by Eq. (261) and the last three terms
in the expression of I-',”]E,’/S,(-) given by Eq. (246) cancel out.

2. The transition function p(R,_; — R;) is represented in the
standard form

PR k1)

2
Rkkl

PR — RY) = wpRep1) = 0= T pR ). (263)
where @ is the single-scattering albedo of the particle. For
P(Ry k1), we use the probability density function

g(rye™*r
Jon g(re—rdr’

To construct the probability density function p(ﬁk‘k_‘l) with
ﬁk_k_l = (Ok k-1, Pr.k—1), we consider the scattering by the
particles chain {Ry. g} placed in free space (cf. Fig. 5 with
k=K) and being illuminated by the plane -electromag-
netic wave Ey(r') = &(p) exp[jkip- (' —r)] with Ey(p) =
E,’_g 50;7(P)17(P) In a local coordinate system centered at Rg,
eXP[.lklp (R —1)]eg(P) with e (p) = Z;; 0.9 80);(]’)50); (P). are
the expansion coefficients of the incident plane electromagnetic
wave in terms of regular vector spherical wave functions,

ex1 = Q(kiR_14_2) ... Q(k1Ryo)eq (p)ef1P Ro=r)
= Q1 (Ry_1.....Ro)eg(p)eiP®o-r) (265)
are the expansion coefficients of the field exciting particle k —

1, E2,_, () with

Egy 10 = D Egy 1, 7 @), (266)

n'=0.¢

> 2a. (264)

p(r) =

sctk 1, r;’o -

is the far-field pattern of the field scattered by particle k — 1 in
the direction T=T1(, ¢), and 2y=6.¢ |E et Ly ,(0)|? is the dif-

ferential scattering cross section. Taking these results into ac-
count, we construct the probability density function as

20, ¢) = 2= 1y OF
Z'?'Z(’-‘Pf |E§§tk—1.1]'(f)|2 d’r

e-IhT R 1 (F) Tey_y, (267)

(268)

and sample the polar angle 6 = Oy k1 from the marginal prob-
ability density
2

p@O) = A p@.¢)de (269)
and the azimuth angle ¢ = ¢, ,_; from the conditional proba-
bility

p©.9)

p©)

Note that this is not the only option for constructing p(ﬁk.k_l)
and other alternative solutions can be considered.

p(eld) = (270)

We conclude this appendix with some comments.

. To construct the probability density function p(ﬁk_kfl) we con-

sidered a chain of particles placed in free space whose positions
are uncorrelated, and assumed that particle k is situated in the
far zone of particle k — 1. Thus, as the matrix (M X[ )(z;) given
by Eq. (94), or equivalently, by Eq. (98), the probability den-
sity function p(Ry _1) is a characteristic of a sparse medium.
On the other hand, in Eq. (264), the probability density func-
tion p(r) includes the transmission terms exp[j(K —k{)R;; 1],
j=1,..., k from Eq. (258) and the pair correlation functions
&(Rj j_1). Thus, as the matrix (£1X)(z;) given by Eq. (88), the
probability density function p(r) is a characteristic of a dense
medium.

. For a sparse medium, we use the far-field approximation

elkiRy k-1

Q(k1Ry 1) = —47j—— KiRer

Zx:,(ﬁk.k_uxﬁ(ﬁk.k_nt (271)
n

the representation of the elements of the single-particle ampli-
tude matrix in the particle-centered coordinate system

Sonin (ﬁ, i/) = _ﬂxgl (i)TX;] (iz/), (272)

F 4
k1
and the relation giving the components of the ladder coherency
phase matrix

ZJL(m.& )(r7-$>(k* k) = 50'71'7 (k, k/)sa&s (k. k), (273)
to obtain
Fepee (Re, ..., Ry, Ro)
k —kR
koRu3 e KKjj1
= noe %[ [ (10 %) |
):1 J‘_’_l
Z Zior ey om o6y (=S Ryk_1)
m.&Er=0.¢
XZjk(n, sl)ms)(Rkk 1.Ri_1k2.....Rio, P)
we—+Ror L S(Rop—P), k=1 (274)
R3p
with Zji1 (Ryo, P) = Zj.(Ryo. P), and

FOUE’]'S'(RO) = Tl()e_KORk'zZJL(,’/.E/)(,;.E) (—§, ii)

1 -~ -~
x e~ For RTa(Rop -P). (275)
op
where
Zj(Rik—1, Ri_ 142, -+, Rio, P)
= ZjL(Ry k-1, Rg_1 k—2)
xZjik-1 (Re—1k-2. .-, Ri0, P), k=2, (276)

and, as before, Z;; (ﬁ10. p) = ZJL(ﬁm. P). On the other hand, be-
cause for sparse media, g(r) =1 and [}, dr — [;* dr, the prob-
ability density function p(r) given by Eq. (264) simplifies to that
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given by Eq. (262). Furthermore, the exciting field coefficients
given by (cf. Eq. (265))

1 =41 Y & (Re-14e-2)x¢ (Rt 4-2). (277)
§=0.9
elkiRjj-1
& Ry 2)—(1_[ R, )
-1
x> Sok-1.61 (Re-14-2.Rie_243, .-, Rio, P)
0
xEoy (P)eliP Ro—0) e > 2 (278)
with So; (Rio. P) = So(Ryo. P). and
e =41 Y Eoz (P)xt (p)elfP®or), (279)
§=0.¢
where
Sok-1(Rk_1.4-2 Rk 243 ... Rio. P)
= So(Rk—1.k—2, Rk—2.1-3)
xSok-2(Re_2.k-3, .-, Rio, P), k=3, (280)

So1 (ﬁm, P = So(ﬁlo,f)), and Sy = [Sosr;(k ﬁ’)], are the expan-
sion coefficients of a plane electromagnetic wave with am-
plitudes & (Ry_1,_2), & =0, ¢, propagating in the direction
ﬁk—].k—Z' Consequently,

Zz]':e.w |E:c°tk_1.n,(l‘\) |2
Z);’:G @ [ |Esocctk_1 nr(i') |2 d’r

with EZ, Ly ,(f) as in Eq. (267), is the phase function for

P(E.Re 1 2) = 47 (281)

the incident and scattering directions Rk 1k—2 and T, respec-
tively. Thus, as in the standard Monte Carlo method for solving
the radiative transfer equation in a sparse medium, the prob-
ability density function p(6, ¢) is proportional to the phase
function P(Tf,Ry_j y_p). Note that in Eq. (254), the product
]'I""(]/R2 _y) in the expression of l",mg,irél() and the same
product in the expression 1‘[1 1p(R(') — R}”) (resulting from
Eq. (263)) cancel out.

. In a forward Monte Carlo approach for a sparse medium, the

quantity of interest is the diffuse ladder coherency dyadic at
point r in an arbitrary small solid angle AQ(p) around the di-
rection p. This is defined by

CaLae@).ne () =/  Xgupe (r,—p) d*p
AQ(p)

and is the analog of the local estimate of the radiance in the ra-
diative transfer theory [15] Using Eq. (239) with x; (- p)rS(ROp -
P = xp (= Rop)S(Rop —P). and introducing the indicator func-
tion

X(ﬁOP):/ R a(ﬁop—ﬁl)dzﬁ’: {1* ROPGAQ(p),
AQ(p)

0, otherwise

(282)

(283)

we obtain

Caaa@).ne (T = 2 > /_KR"PXT( ROP)TXLUE(RO)

ki 0.§'=0.9
. 1 -
TTXE (—Rop) o Ege RTX (Rop) d®Ry. (284)

From Eq. (284) we see that for a Markov chain {Ry. g}, only the
particles k with Rkp e AQ(p) will contribute to the estimate of
CaLaq@).ne (1) Thus, if the direction P is specified, a backward

Monte Carlo method seems to be more efficient than a forward
Monte Carlo method. From the other side, one trajectory in the
forward Monte Carlo approach can yield contributions to the
diffuse ladder coherency dyadics Gy aqp,).y¢ (1) corresponding
to many directions p;.

4. In Refs. [20-22], the method presented in this appendix has
been extended to clusters of particles (actually, a forward
Monte Carlo approach has been used to analyze the incoher-
ent part of the scattered radiation at an observation point that
is outside the discrete random medium). In this method, the
clusters are not situated in the far-field region of each other
as in Appendix D, i.e., clusters with large size parameters are
allowed to come into contact. Starting with the series repre-
sentation for the exciting field coefficients (51) and assuming
that (i) a chain of clusters is a Markov chain and moreover,
(ii) the positions of the clusters are uncorrelated, the integral
equation (61), with g(R;j) =1 and the matrix QT(klR,-j) as in
Eq. (240) but with the transition matrix of a particle T replaced
by the transition matrix of a cluster T, is derived. This integral
equation is used in conjunction with the integral representa-
tion for the diffuse ladder specific coherency dyadic (106) and
solved by means of a forward Monte Carlo approach. In the
Monte Carlo simulations, the probability density function p(6,
@) corresponding to the transition function p(R,_; — Ry) is
constructed by assuming that the cluster k is situated in the far
zone of the cluster k — 1. Although, for example, the assumption
that a chain of clusters with large size parameters is a Markov
chain is very strong, i.e., for the chain, i« j<«k, we suppose
that p(Ri|R;, R;) = p(Ri|R;), meaning that the position of clus-
ter k depends only on the position of cluster j and not on the
position of cluster i, the numerical analysis reported in these
papers showed that this approach yields accurate results for
volume concentrations f beyond its theoretical limit, e.g., for f
up to 0.25.

Appendix F

In this appendix we present an iteration algorithm based on
Eq. (147) and the discrete ordinate method. As boundary condi-
tions, we impose Jq (z =0, k*) =0and Jy(z=H k) =

Let S =S(ig, o) be the incidence direction, and {zt, Wuk}kN£1
be a set of N, Gauss-Legendre quadrature nodes and weights on
the interval [0,1]. Furthermore, consider a discrete set of points
{z,}NZ in the altitude interval [0, H]. For the directions k= k(u )

and l(1 = k1 (1, 1), assume the azimuthal expansions

—~ ank X
JazK) = Y Jam(z, p)em @), (285)
m=—Mank
. Miank )
Jans (Z, k) = Z Jdnsm (Z’ 'u)ejm(‘ﬂ—%)’ (286)
M=—Mank
and
PN Mr:mk .
Zp(k k)= > Zum(u, py)elmeen, (287)
m=*ank
where M, is the maximum azimuthal order, and set
(1, 90)
— nmn 288
Xl;(,u- ¢0) [ r;mn(/’l“ SOO) ( )
The algorithm is organized as follows: given Y(LN_D(Z,-) and

IND (z dp,) with i=1,...,

dnsm
tion step N

N; and k=1,...,Ny, at the itera-
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1. set J;’Z) (zi =0, ) =0 and J(N) (zi=H, —) =0, and for all
azimuthal modes m = —ank, ...,Mrank, compute the remain-
ing Jé’]\_’%(zi, +py) withi=1,...,N; and k=1,...,N, by using
the relations (cf. Eq. (147))

J4n @is )
= ﬂo/%k DZi e+ [ZJLm(llvb 140)3c(z)) + I @ i)
Ny
270 Y W[ Zyum (e )35 @5 )
=1
e~ @i~} iz (289)
and
J4in @i —140)
= nol%k He_KE{% {ZJLm(_/‘*k’ wo)de(zj) + IV (5 )
Ny
+270 Y W[ Zjum (— g w)IG D (zg )
1=1
(=~ @5 )| a2 (200)
2. compute the elements of the matrix X (z;) as (cf. Eq. (143))

Pq _ a—KoZipPd pq(N-1)
XLmn.m'v1’(Zi) =e lEOmn m'n +XLmn m (Zi)

+3272 /“° urm (z)), (291)
where

N,
up @) =27 Y > wu

n.§=0.¢ I=1

[JdLm ey i ) Xn (it 0)XE (1 90)

it .6 Eie =X (= 141 90X 1y (= 1, <p0>];
(292)

3. compute the elements of the dense-medium matrix Y,(_N) (z;) as
(cf. Eq. (144))

xPa) part
Ximnmn (Zi) = Mo Z K,y Lmy —mnmy —mne
X Xl mgn, @ P4 =1,2; (293)

4. for all azimuthal modes m = —M4k; - - - » Miank compute the el-
ements of the diffuse coherency column vector for dense media
ijn;m(z,-,:tuk) withi=1,...,N; and k=1,..., Ny by using the

relation (cf. Eq. (145))

(N)
-]dns(r] £)m (Z,', Ztl"'k)

2 Npank Nrank min(n,n’+m)

N D IDIDIEDY

pq 1 n=1 n’=1 m'=max(-n,m-n’)

wPa(N) e
Xx”m n(:tu’k (/’O)T XLm m.m’' —mn’ (zi)Tq xgm —mn’ (i”’k’ (PO)

(294)

The integrals over z; in Eqgs. (289) and (290) are calculated by
using the following quadrature scheme. Consider the generic inte-
grals

zi [ N i-1
L= [ sar@dz=3 [ s@r@dz= Y1, (295)
0 k=1 7% k=1

N;—1

H N1z
- / gDF@dz= Y / gDF()dz= Y Iy (296)
Zi k=i Y% k=i
with
= goF@a, (207)

and let {x,,wx,}fi"] be a set of Nx Gauss-Legendre quadrature
points and weights on the interval [-1,1]. For each interval
[k, Z.1] compute

1.7 = Zk+12— ka’ " Zk+]2+ Zk’ (298)

2. Wy = Z"“zi_z"wx,, (299)

3 F = AT g+ MF(Z ), 300

1= g e —7,F & (300)

4. g =8@7), (301)
NE

5. k=) WagF. (302)
=1

Thus, in the interval [z, z;, 1], the (matrix) function F(z) with the
endpoint values F(z,) and F(z,,) is assumed to vary linearly,
while the (scalar) function g(z) is sampled at all quadrature points
inside this interval. In Eqs. (289) and (290), the functions g(z) are
expl—k (z; — z)/ 4] and exp[—« (z — z;)/ 4], respectively.
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