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a b s t r a c t 

We consider the scattering of a plane electromagnetic wave obliquely incident on a plane-parallel layer 

of discrete random medium with non-scattering boundaries. We solve the Lax integral equation for the 

conditional configuration-averaged exciting field coefficients by assuming a special-form solution, that is, 

by representing the conditional configuration-averaged exciting field coefficients as a linear combination 

of the coefficients corresponding to an up-going and a down-going wave. This solution representation is 

supposed to be valid within the whole domain occupied by the particles, even in the close proximity 

of the boundaries. By balancing the waves with different propagation directions and wavenumbers we 

derive two homogeneous systems of equations corresponding to the generalized Lorenz–Lorentz law and 

two inhomogeneous systems of equations corresponding to the generalized Ewald–Oseen extinction the- 

orem. It is shown that (i) the two homogeneous systems of equations of the generalized Lorenz–Lorentz 

law reduce to a single homogeneous system of equations corresponding to a semi-infinite discrete ran- 

dom medium at normal incidence; (ii) the dispersion equation is direction and polarization indepen- 

dent; and (iii) the two inhomogeneous systems of equations of the generalized Ewald–Oseen extinction 

theorem can be reduced to two scalar equations by means of the addition theorem for vector spheri- 

cal harmonics. It is also shown that the same dispersion equation can be obtained without assuming a 

special-form solution representation in the proximity of the boundaries. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Multiple scattering of acoustic and electromagnetic waves by

discrete random media is a fascinating topic which has been cov-

ered in detail in several textbooks [1–8] . The journal literature is

also extensive. In this context, the following contributions deal-

ing with the scattering of acoustic waves deserve to be mentioned

specifically. 

1. Foldy [9] analyzed multiple scattering by a random dis-

tribution of isotropic point scatterers by using a stochas-

tic approach. This procedure was later generalized by Lax

[10,11] to include point scatterers with quite general scat-

tering properties using a quantum-mechanical formalism.

Twersky [12] used the same procedure to treat the scat-

tering and reflection of acoustic waves by a rough surface.

To reveal the fundamentals of these approaches, let us con-

sider a Foldy–Lax model for the scattering by N particles
∗ Corresponding author. 
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randomly distributed throughout a volume V . This model re-

lies on the deterministic equations 

u = u 0 + 

∑ 

i 

A 0 i u i , (1)

u i = u 0 i + 

∑ 

j � = i 
A i j u j , (2)

where u is the total field, u 0 is the impressed incident field,

u i is the field exciting particle i centered at R i , A 0 i = A 0 i (R i )

is a (linear) operator describing the scattering from particle

i to the observation point, u 0 i is the incident field at the ori-

gin of particle i , and the operator A i j = A i j (R i , R j ) describes

the scattering from particle j to particle i . Taking the con-

figuration average of Eq. (1) under the assumption that the

positions of all the particles are equally probable over the

volume V , i.e., the single particle probability density function

is p(R i ) = 1 /V, yields 〈
u 

〉
= u 0 + n 0 

∫ 
A 0 i 

〈
u i 

〉
i 
d 

3 
R i , (3)

https://doi.org/10.1016/j.jqsrt.2019.03.012
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where n 0 = N/V is the number concentration (particle num-

ber density), and 

〈
u i 
〉
i 

is the conditional configuration aver-

age of u i with the position of particle i held fixed. Taking

now the configuration average of Eq. (2) with the position

of particle i held fixed, gives (cf. Eq. (64) below) 〈
u i 

〉
i 
= u 0 i + 

∑ 

j � = i 

∫ 
A i j 

〈
u j 

〉
i j 

p 
(
R j | R i 

)
d 

3 
R j , (4)

where 
〈
u i 
〉
i j 

is the conditional configuration average of u i 

with the positions of particles i and j held fixed, and p ( R j | R i )

is the conditional probability of finding particle j at the point

R j if it is known that the particle i is at the point R i . This

lack of completeness, i.e., the fact that the conditional av-

erage of the field with one particle fixed 

〈
u i 
〉
i 

is given in

terms of the conditional average of the field with two par-

ticles fixed 

〈
u j 
〉
i j 
, is the basic difficulty encountered in this

multiple scattering theory. Essentially, we are led to a hi-

erachy of equations which can be truncated at some level

by imposing additional closure assumptions. In these closure

assumptions, the conditional average is replaced with the

corresponding average with one fewer particle held fixed.

At the lowest level, the Foldy closure assumption (otherwise

known as the effective field approximation) is 
〈
u i 
〉
i 
= 

〈
u 
〉
, in

which case we are led the so-called Foldy integral equation

for the coherent field: 〈
u 

〉
= u 0 + n 0 

∫ 
A 0 i 

〈
u 

〉
d 

3 
R i . (5)

At the next level, the Lax quasi-crystalline approximation is〈
u j 
〉
i j 

= 

〈
u j 
〉

j 
, in which case Eq. (4) becomes 〈

u i 

〉
i 
= u 0 i + n 0 

∫ 
A i j 

〈
u j 

〉
j 
p 
(
R j | R i 

)
d 

3 
R j . (6)

Note that in general, such assumptions are not straightfor-

ward to justify. 

2. Waterman and Truell [13] attempted to put Lax’s formal-

ism for the configuration-averaged exciting field on a more

quantitative footing, and also gave a prescription for obtain-

ing the coherent field once the configuration-averaged excit-

ing field has been found. They assumed spherical wave func-

tion expansions for the fields, and applied Eq. (6) , which is

now an integral equation for the conditional configuration-

averaged exciting field coefficients, to the case of normal in-

cidence on a semi-infinite medium containing randomly po-

sitioned spheres. The integral equation is solved by employ-

ing a “disc-shaped exclusion domain” (with its thickness go-

ing to zero), and by assuming a special form representation

for the expansion coefficients of the configuration-averaged

exciting field. The central result of this computation is an ex-

pression for the complex wavenumber describing the prop-

agation in the effective medium. The result obtained for

the effective wavenumber is valid over the whole frequency

spectrum, thus bridging the gap between the low-frequency

limit of point scatterers, where Foldy’s results are obtained

for isotropic scatterers, and the high-frequency limit, where

the results are in agreement with the picture given by the

geometrical optics. 

3. Fikioris and Waterman [14] revised the approach of Water-

man and Truell by considering a sphere rather than a disc

exclusion. The solution of the Lax integral equation (6) with

the hole-correction approximation to the pair correlation

function gives rise to the generalized Lorenz–Lorentz law

and the generalized Ewald–Oseen extinction theorem. The

designation “generalized” emphasizes the fact that the clas-

sical laws are obtained for high frequencies when the par-

ticle sizes are comparable to the wavelength. The homo-
geneous system of equations corresponding to the general-

ized Lorenz–Lorentz law yields a dispersion equation for the

effective wavenumber, while the inhomogeneous system of

equations corresponding to the generalized Ewald–Oseen ex-

tinction theorem reduces to a single scalar equation and en-

ables the computation of the configuration-averaged exciting

field. 

4. The results by Foldy and Lax were extended by Twersky

[15] to sparse media by deriving a consistent set of integral

equations for the coherent field and the correlation function.

The scattering properties of a single particle are described

by the scattering amplitude. For dense media, the pair cor-

relation function has been introduced in Ref. [16] . Twersky’s

theory, which provides a clear physical picture of various

processes of the multiple-scattering theory, was reviewed

in detail by Ishimaru [1] . Using a series expansion method,

which gives a systematic and concise formal representation

of the multiple-scattering processes based on the elemen-

tary use of Feynman-type diagrams, Ishimaru proved the

equivalence of the series expansion method and the Twer-

sky integral equations. Moreover, employing Twersky’s ar-

guments, Ishimaru solved the integral equations for a layer

of sparsely distributed particles, and established the rela-

tion between the multiple scattering theory and the radia-

tive transfer theory. 

Multiple scattering of electromagnetic waves by discrete ran-

om media has been the focus of subsequent relevant works. 

1. Fikioris and Waterman [17] generalized the previously de-

veloped scalar formalism [14] to vector problems. Vector

equations were used throughout and full account was taken

of the hole correction approximation involved in the inte-

gral equation by transforming volume to surface integrals.

As in the scalar case, a dispersion equation for determin-

ing the effective wavenumber was established, and an iter-

ative scheme was used to treat interface corrections. In the

low frequency limit, explicit results were obtained, and the

boundary conditions at the interface were examined in con-

nection with the results for the coherent reflected and trans-

mitted fields. 

2. Varadan et al. [18,19] , Varadan and Varadan [20] , and Bringi

et al. [21,22] used a multiple-scattering formalism analo-

gous to that by Fikioris and Waterman [17] . The differ-

ence was that instead of the hole-correction approximation,

the Percus–Yevik approximation was employed to model the

pair correlation function. 

3. Tsang and Kong [5,23] considered the general case of a

plane electromagnetic wave obliquely incident on a semi-

infinite medium with densely packed spherical particles, and

showed that in contrast to the generalized Lorenz–Lorentz

law, the generalized Ewald–Oseen extinction theorem de-

pends on polarization and direction of propagation of the

incident wave. Besides the dispersion equation, Tsang and

Kong derived expressions for the reflected and transmitted

coherent fields, and computed the incoherent field by means

of the distored Born approximation. 

4. Mishchenko [24] and Mishchenko et al. [7,8] have used the

far-field Foldy equations obtained under the far-field approx-

imation to analyze the scattering by sparse media composed

of arbitrarily shaped particles. This analysis applies to a con-

vex (but otherwise arbitrarily shaped) scattering medium,

which assures that a wave exiting the medium cannot re-

enter it. The scattering properties of a single particle are de-

scribed by the scattering dyadic, in which case the disper-

sion relation is a dyadic equation for the dyadic propagation
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Fig. 1. Scattering by a layer of spherical particles. 
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constant. This result represents the general vector form of

the Foldy approximation for the coherent field. 

In a series of papers, we aim to present in a consistent man-

ner the theoretical fundamentals of a scattering problem which

has received less attention in the literature, specifically, the scat-

tering of a plane electromagnetic wave obliquely incident on a dis-

crete random medium consisting of spherical particles and con-

fined to a layer with non-scattering boundaries. In this first part

of the series, our analysis will be focused on the derivation of the

dispersion equation for the effective wavenumber and the calcu-

lation of the configuration-averaged exciting field. The subsequent

three parts will focus on the computation of the coherent field in-

side and outside the scattering medium (part II); the derivation

of a simplified radiative transfer equation for dense media (part

III); and the analysis of the incoherent and coherent scattering in

backward directions (part IV). Discrete random media with dense

and sparse concentrations of particles will be considered. The so-

lution method is standard: it relies on the superposition T -matrix

method and spherical statistics, and in particular, on the (condi-

tional) configuration-averaged equations for the total field and the

exciting field coefficients. 

The composition of this first part of the series is as follows. We

first introduce some matrix notation and discuss several basic re-

sults which are the starting point for our further analysis. These

include the multiple-scattering equations for a group of particles

with fixed positions and the equations governing the configura-

tion averaging process. We then proceed to solve the Lax integral

equation for the conditional configuration-averaged exciting field

coefficients, or equivalently, to derive the equations of the general-

ized Lorenz–Lorentz law and the generalized Ewald–Oseen extinc-

tion theorem, in the case of a layer with densely packed particles

and oblique incidence. The paper ends with an exhaustive discus-

sion on possible further developments of the theory. 

2. Matrix notation 

For a compact notation, we introduce column vector spheri-

cal wave functions and vector spherical harmonics. Specifically, the

vector spherical wave functions X 1,3 ( k r ) are defined by 

X 1 , 3 ( k r ) = 

[
X 

1 , 3 
mn (k r ) 

]
= 

[
M 

1 , 3 
mn (k r ) 

N 

1 , 3 
mn (k r ) 

]
, (7)

where k is the wavenumber, r is the position vector, and

( M 

1 
mn (k r ) , N 

1 
mn (k r ) ) and ( M 

3 
mn (k r ) , N 

3 
mn (k r ) ) are the systems of reg-

ular and radiating vector spherical wave functions, respectively. We

assume that the host medium containing particles is perfectly non-

absorbing, which implies a real-valued positive k . In the spherical

unit-vector basis ( ̂  r , ̂ θ( ̂  r ) , ̂ ϕ ( ̂  r ) ) , we have the representation 

X 1 , 3 (k r ) = X 

1 , 3 
r (k r ) ̂  r + X 

1 , 3 
θ

(k r ) ̂ θ( ̂  r ) + X 

1 , 3 
ϕ (k r ) ̂ ϕ ( ̂  r ) , 

where for η = r, θ, ϕ, the column vector X 

1 , 3 
η (k r ) is given by 

X 

1 , 3 
η (k r ) = 

[
X 

1 , 3 
ηmn (k r ) 

]
= 

[
M 

1 , 3 
ηmn (k r ) 

N 

1 , 3 
ηmn (k r ) 

]
, (8)

with, for example, M 

1 , 3 
ηmn (k r ) being the components of M 

1 , 3 
mn (k r )

along the spherical unit vectors. Similarly, the vector spherical har-

monics m mn ( ̂  r ) and n mn ( ̂  r ) are concatenated into the vector x ( ̂  r )

as 

x ( ̂  r ) = [ x mn ( ̂  r ) ] = 

[
(−j ) n m mn ( ̂  r ) 

j (−j ) n n mn ( ̂  r ) 

]
, (9)

where j = 

√ −1 , and we have the representation 

x ( ̂  r ) = x θ ( ̂  r ) ̂ θ( ̂  r ) + x ϕ ( ̂  r ) ̂ ϕ ( ̂  r ) , 
ith 

 η( ̂  r ) = 

[
x ηmn ( ̂  r ) 

]
= 

[
(−j ) n m ηmn ( ̂  r ) 

j (−j ) n n ηmn ( ̂  r ) 

]
, η = θ, ϕ. (10)

he vector spherical harmonics and the vector spherical wave

unctions used in this study are defined in Appendix A. In the far-

eld region, the radiating vector spherical wave function computes

s 

 3 (k r ) = −j 
e j kr 

kr 
x ( ̂  r ) , kr → ∞ , (11)

hile the symmetry relations for the vector spherical harmonics

mply that 

 

� 
ηmn ( −̂  r ) = h ηx η−mn ( ̂  r ) , (12)

here the asterisk denotes complex conjugation and h η is the in-

icator function 

 η = 

{
1 , 

−1 , 

η = θ
η = ϕ 

In terms of the column vector x η( ̂  r ) , the elements of the am-

litude matrix S ( ̂  r , ̂  s ) = [ S ημ( ̂  r , ̂  s )] are given by 

 ημ( ̂  r , ̂  s ) = −4 π j 

k 
x T η( ̂  r ) Tx � μ( ̂  s ) , η, μ = θ, ϕ, (13)

here T is the transition matrix of the particle defined with re-

pect to the particle-centered coordinate system. Consequently, the

particle-centered” far-field scattering dyadic A , defined by the re-

ation 

 ( ̂  r , ̂  s ) = 

∑ 

η,μ= θ,ϕ 

S ημ( ̂  r , ̂  s ) ̂  η( ̂  r ) � ̂ μ( ̂  s ) , (14)

here � is the dyadic product sign, is computed as 

 ( ̂  r , ̂  s ) = −4 π j 

k 
x 

T ( ̂  r ) T x 

� ( ̂  s ) . (15)

The addition theorem for radiating vector spherical wave func-

ions plays an important role in the multiple scattering theory. If r j 
nd r i are the position vectors of the same field point in coordinate

ystems O j and O i having identical spatial orientations, respectively,

nd R ij is the vector connecting the origins of the two coordinate

ystems, i.e., r j = r i + R i j , then for r i < R ij , the addition theorem for

adiating vector spherical wave functions reads ( Fig. 1 ) 

 3 (k r j ) = T 31 

(
k R i j 

)
X 1 ( k r i ) . (16)

he translation matrix T 31 (k R i j ) is given by 

 31 

(
k R i j 

)
= 

[
T 31 

mn,m 

′ n ′ 
(
k R i j 

)]
= 

[
A 

3 
mn,m 

′ n ′ 
(
k R i j 

)
B 

3 
mn,m 

′ n ′ 
(
k R i j 

)
B 

3 
mn,m 

′ n ′ 
(
k R i j 

)
A 

3 
mn,m 

′ n ′ 
(
k R i j 

)], (17)
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here 

 

3 
mn,m 

′ n ′ 
(
k R i j 

)
= c nn ′ 

∑ 

n ′′ 
j 
n ′′ 

a 1 
(
m, n | m 

′ , n 

′ | n 

′′ )u 

3 
m −m 

′ n ′′ 
(
k R i j 

)
, (18) 

 

3 
mn,m 

′ n ′ 
(
k R i j 

)
= c nn ′ 

∑ 

n ′′ 
j 
n ′′ 

b 1 
(
m, n | m 

′ , n 

′ | n 

′′ )u 

3 
m −m 

′ n ′′ 
(
k R i j 

)
, (19) 

 

3 
mn (k R i j ) are the radiating spherical wave functions, 

 1 

(
m, n | m 

′ , n 

′ | n 

′′ ) = 

∫ π

0 

[ 
mm 

′ π | m | 
n (θ ) π | m 

′ | 
n ′ (θ ) + τ | m | 

n (θ ) τ | m 

′ | 
n ′ (θ ) 

] 
× P 

| m −m 

′ | 
n ′′ ( cos θ ) sin θd θ, (20) 

 1 

(
m, n | m 

′ , n 

′ | n 

′′ ) = 

∫ π

0 

[ 
mπ | m | 

n (θ ) τ | m 

′ | 
n ′ (θ ) + m 

′ τ | m | 
n (θ ) π | m 

′ | 
n ′ (θ ) 

] 
× P 

| m −m 

′ | 
n ′′ ( cos θ ) sin θd θ, (21) 

nd 

 nn ′ = 

2 j 
n ′ −n √ 

nn 

′ (n + 1)(n 

′ + 1) 
. (22) 

n Eqs. (18) –(21) , the summation over n ′′ is finite, covering the

ange | n − n ′ | , . . . , n + n ′ , P 
| m | 
n ( cos θ ) are the normalized associ-

ted Legendre functions, τ | m | 
n ( θ ) = d P 

| m | 
n ( cos θ ) / d θ, and π | m | 

n (θ ) =
 

| m | 
n ( cos θ ) / sin θ . Throughout our analysis we will use the symme-

ry relation 

 

31 
m 1 n 1 ,mn 

(
k R i j 

)
= T 31 

−mn, −m 1 n 1 

(
−k R i j 

)
(23) 

nd the following representation for the translation matrix in the

ar-field region: 

 31 

(
k R i j 

)
= −4 π j 

e j kR i j 

kR i j 

x 

(̂ R i j 

)
· x 

† 
(̂ R i j 

)
, R i j → ∞ , (24)

here ̂  R i j is the unit vector in the direction of R ij and the symbol

 stands for complex conjugate transpose. 

. The superposition T -matrix method 

The notion of a discrete random medium is analyzed in Ref.

25] . We consider a discrete random medium in the form of a

roup of N identical spherical particles of radius a centered at

 1 , R 2 , ..., R N , and distributed throughout a domain D confined

o a laterally infinite plane-parallel layer with the imaginary (non-

cattering) boundaries z = 0 and z = H (see Fig. 1). For simplicity,

e assume that the particles are homogeneous and non-magnetic.

he permittivities of the non-absorbing, non-magnetic background

edium and the particles are ε 1 and ε 2 , respectively, while the

avenumbers are k 1 and k 2 = m k 1 , where m is the relative refrac-

ive index of the particles. We denote by f = n 0 V 0 the particle vol-

me concentration, where n 0 = N/V is the number concentration, V

s the volume of the discrete random medium, and V 0 = (4 / 3) πa 3 

s the volume of each particle. If n 0 is small then the particulate

edium is sparse; otherwise the medium is densely populated. Be-

ause the medium is infinite in the horizontal directions, we let

 → ∞ and N → ∞ such that n 0 remains constant. The particulate

edium is illuminated by an impressed incident field [26] in the

orm of a plane electromagnetic wave with the propagation direc-

ion ̂

 s and the amplitude E 0 ( ̂  s ) , that is, 

 0 (r , t) = E 0 (r ) e −j ωt , E 0 (r ) = E 0 ( ̂  s ) e j k 1 ̂ s ·r , (25)

nd 

 0 ( ̂  s ) = E 0 θ ̂ θ( ̂  s ) + E 0 ϕ ̂ ϕ ( ̂  s ) . (26)
here t is time, ω is the angular frequency, and r is the position

ector connecting the origin of the laboratory coordinate system

nd the observation point. The harmonic time dependence will be

mplicit from now on. 

The superposition T -matrix method is a direct corollary of the

xact vector Foldy equations [26,27] and can be thought of as re-

roducing two cooperative effects characterizing the scattering by

 group of particles: the interaction between the particles and the

uperposition of the fields scattered by all particles. The total (elec-

ric) field at a position r sums the contributions of the incident

eld and of the fields scattered by all the particles: 

 ( r ) = E 0 ( r ) + 

∑ 

i 

E sct i (r ) . (27)

he field exciting particle i , E 

(i ) 
exc i 

(r i ) is a superposition of the inci-

ent field E 

(i ) 
0 

(r i ) and of the exciting fields E 

(i ) 
exc i j 

produced by all

articles j except i , that is, 

 

(i ) 
exc i 

(r i ) = E 

(i ) 
0 

(r i ) + 

∑ 

j � = i 
E 

(i ) 
exc i j 

(r i ) . (28)

ere, the superscript “( i )” indicates that the fields are written in

he coordinate system of particle i . 

In the coordinate system of particle i , the field scattered by par-

icle i is expanded in terms of radiating vector spherical wave func-

ions, 

 sct i (r ) = E 

(i ) 
sct i ( r i ) = X 

T 
3 ( k 1 r i ) s i , r = r i + R i , r i > a, (29)

hile the field exciting particle i and the incident field are ex-

anded in terms of regular vector spherical wave functions, that

s, 

 

(i ) 
exc i 

(r i ) = X 

T 
1 ( k 1 r i ) e i , r i < a, (30)

nd 

 

(i ) 
0 

(r i ) = E 0 (R i ) e 
j k 1 ̂ s ·r i = X 

T 
1 ( k 1 r i ) e 0 i , (31)

espectively. The vector of the scattered field coefficients s i is re-

ated to the vector of the exciting field coefficients e i through the

 matrix, i.e., s i = Te i , while the vector of the incident field coeffi-

ients is given by 

 0 i = e j k 1 ̂ s ·R i e 0 , (32) 

here 

 0 = 4 πE 0 ( ̂  s ) · x 

� ( ̂  s ) = 4 π
∑ 

η= θ,ϕ 

E 0 η( ̂  s ) x � η( ̂  s ) (33)

s the vector of the incident field coefficients in the global coordi-

ate system. 

The contribution of the j th particle to the field exciting parti-

le i is the field scattered by particle j in the coordinate system of

article i : 

 

(i ) 
exc i j 

(r i ) = E 

(i ) 
sct j 

(r i ) = E 

( j) 
sct j 

(r j ) , r j = r i + R i j . (34)

sing the expansion 

 

( j) 
sct j 

(r j ) = X 

T 
3 

(
k 1 r j 
)
s j = X 

T 
3 

(
k 1 r j 
)
Te j (35)

nd the addition theorem for vector spherical wave functions (16) ,

.e., X 3 (k 1 r j ) = T 31 (k 1 R i j ) X 1 (k 1 r i ) with R i = R j + R i j , we obtain 

 

(i ) 
exc i j 

(r i ) = X 

T 
1 ( k 1 r i ) e i j , (36)

here 

 i j = Q 

(
k 1 R i j 

)
e j (37) 

nd 

 

(
k 1 R i j 

)
= T T 31 

(
k 1 R i j 

)
T . (38)
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From Eq. (28) along with Eqs. (30) , (31) and (36) , we find (e.g.,

Ref. [5] ) 

e i = e j k 1 ̂ s ·R i e 0 + 

∑ 

j � = i 
Q 

(
k 1 R i j 

)
e j . (39)

In fact, Eq. (39) for the exciting field coefficients together with the

equation for the total field (cf. Eqs. (27) and (29) ) 

E ( r ) = E 0 ( r ) + 

∑ 

i 

X 

T 
3 (k 1 r i ) Te i (40)

are the multiple scattering equations for densely packed media . 

The system of equations (39) can be solved for vertical and hor-

izontal polarizations of the incident field. In this case and in view

of Eq. (26) , we set 

e 0 = E 0 θ e 0 θ + E 0 ϕ e 0 ϕ , (41)

where 

e 0 η = 4 πx � η( ̂  s ) , η = θ, ϕ, (42)

and denote by e iη the solution of the system (39) for a η-polarized

incidence, that is, 

e iη = e j k 1 ̂ s ·R i e 0 η + 

∑ 

j � = i 
Q 

(
k 1 R i j 

)
e jη, η = θ, ϕ. (43)

Then, it is readily seen that 

e i = E 0 θ e iθ + E 0 ϕ e iϕ . (44)

In the far-field region, the representation of the translation ma-

trix given by Eq. (24) enable us to express the matrix Q (k 1 R i j ) as

Q 

(
k 1 R i j 

)
= 

1 

k 1 
g 0 (R i j ) Q ∞ 

(̂ R i j 

)
, R i j → ∞ , (45)

where, apart from the normalization factor 4 π , g 0 (r) = exp (j k 1 r ) /r

is the scalar Green’s function for wavenumber k 1 and 

Q ∞ 

( ̂  R i j ) = −4 π j x 

� ( ̂  R i j ) · x 

T ( ̂  R i j ) T . (46)

Parenthetically, we note that in the framework of the Twersky

approximation [15] , an order-of-scattering expansion for the excit-

ing field coefficients (actually, the iterated solution of Eq. (39) or

the Neumann series) is 

e i = e 0 i + 

∑ 

j � = i 
Q 

(
k 1 R i j 

)
e 0 j + 

∑ 

j � = i 

∑ 

k � = i, j 

Q 

(
k 1 R i j 

)
Q 

(
k 1 R jk 

)
e 0 k + · · · , 

(47)

or in digramatic form 

The symbol � — represents the incident field coefficients e 0 ,

while the symbol —◦ denotes multiplying the field coefficients by

the matrix Q . 

4. Statistical average 

In this section, we give a brief summary of the proba-

bilistic notions needed. With 
N = 

{
R 1 , . . . , R N 

}
being a spatial

configuration of N particles, let p ( 
N )d 
N be the probability

p(R 1 , . . . , R N ) d 

3 
R 1 . . . d 

3 
R N of finding the particles in a configura-

tion wherein the first particle resides inside the volume element

d 

3 R 1 centered at the point R 1 , the second particle resides inside

the volume element d 

3 R 2 centered at the point R 2 , and so on up

to R N . We assume that the integral of the joint probability den-

sity function p(
N ) = p(R 1 , . . . , R N ) over all configurations is nor-

malized to unity, and that the N particles are indistinguishable, so

that the order of the arguments of p is irrelevant. According to the
efinition of the probability density function of conditional proba-

ilities, we have 

p(
N ) = p ( R i ) p 
(

i 

N−1 | R i 

)
= p ( R i ) p 

(
R j | R i 

)
p 
(

i j 

N−2 
| R i , R j 

)
= p ( R i ) p 

(
R j | R i 

)
p 
(
R k | R i , R j 

)
p 
(

i jk 

N−3 
| R i , R j , R k 

)
, (48)

here p ( R i ) is the probability of finding particle i at the point

 i ; p(
i 
N−1 

| R i ) with 
i 
N−1 

= 
N \ { R i } is the conditional

robability of finding the remaining particles at the correspond-

ng points; p ( R j | R i ) is the conditional probability of finding particle

 at the point R j if it is known that the particle i is at the point R i ;

p(
i j 
N−2 

| R i , R j ) with 
i j 
N−2 

= 
N \ { R i , R j } is the conditional

robability of finding the remaining particles at the corresponding

oints; and so on. p ( 
N ) can also be expressed in terms of the

oint probability density functions, i.e., 

p 
(
R i , R j 

)
= p ( R i ) p 

(
R j | R i 

)
, 

p 
(
R i , R j , R k 

)
= p 
(
R i , R j 

)
p 
(
R k | R i , R j 

)
= p ( R i ) p 

(
R j | R i 

)
p 
(
R k | R i , R j 

)
, (49)

here, for example, p ( R i , R j )d 

3 R i d 

3 R j is the joint probability of

nding particle i in d 

3 R i and particle j in d 

3 R j . In particular, if the

ositions of the particles are independent (i.e., uncorrelated), we

ave 

p(
N ) = p(R i ) p 
(

i 

N−1 

)
= p ( R i ) p 

(
R j 

)
p 
(

i j 

N−2 

)
= . . . = 

∏ 

i 

p(R i ) . 

(50)

If the particles are uniformly distributed, the positions of all the

articles are equally probable within the volume V , and the single

article probability density function is 

p(R i ) = 

1 

V 

, i = 1 , . . . , N. (51)

t is a common practice to express the conditional probability

 ( R j | R i ) as 

p 
(
R j | R i 

)
= 

1 

V 

g 
(
R i , R j 

)
, (52)

here g ( R i , R j ) is the two-point correlation function. For radially

ymmetric problems, we have ( R ji = R j − R i ) 

 

(
R i , R j 

)
= g 
(
R ji 

)
= g 
(
R ji 

)
, (53)

nd g is called the pair correlation function. Because the parti-

les are mutually impenetrable, the pair correlation function for

pherical particles of radius a must satisfy the criterion g(R ji ) = 0

or R ji < 2 a . Another criterion is that unless the volume concen-

ration f = n 0 V 0 is equal to the maximum volume concentration

 max , the two particles must be uncorrelated when the separation

istance approaches infinity, i.e., lim R ji →∞ 

g(R ji ) = 1 for f < f max . In

he special case of independent particle positions, the conditional

robability p ( R j | R i ) is p(R j | R i ) = p(R j ) = 1 /V, so that the pair cor-

elation function becomes g(R ji ) = 1 . Another approximation to

he pair correlation function is the hole-correction approximation,

iven by 

(R ji ) = 

{
0 , R ji < 2 a 
1 , R ji ≥ 2 a 

(54)

he hole-correction approximation takes into account the fact that

he particles cannot penetrate each other and further assumes uni-

orm distribution outside the hole. Neither the independent posi-

ion approximation nor the hole-correction approximation is cor-

ect when the volume concentration of the particles is appreciable.
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A brief insight into the theory of pair correlation functions re-

eals that the influence of particle i on particle j can be described

y the total influence, or the total distribution function h (R ji ) =
(R ji ) − 1 . When g(R ji ) = 1 , the particle positions are independent

f each other, and obviously, h (R ji ) = 0 . The total influence is de-

omposed into a sum of a direct and an indirect correlation func-

ion. The direct correlation function C ( R ji ) is such that it satisfies

he Ornstein–Zernike integral equation [28] 

 

(
R ji 

)
= C 
(
R ji 

)
+ n 0 

∫ 
C 
(
R jk 

)
h ( R ki ) d 

3 
R k . (55)

he physical interpretation of the above equation is that the in-

irect influence of particle i on particle j (the integral term in

q. (55) ) is a result of particle i acting directly on a particle at

 k which in turn exerts the total influence on particle j . The to-

al distribution function can be expressed in terms of its Fourier

ransform h p ( p ) as 

 (r ) = 

1 

(2 π) 3 

∫ 
e j p ·r h p (p ) d 

3 
p , 

o that, assuming spherical symmetry for h p ( p ), i.e., h p (p ) = h p (p) ,

e get 

 (r) = 

1 

2 π2 

∫ ∞ 

0 

sin (pr) 

pr 
h p (p) p 2 d p. (56)

he Ornstein–Zernike equation with the Percus–Yevick approxima-

ion [29] has a closed-form solution for the case of hard-sphere

otential. In the Fourier space, the solution to the Ornstein–Zernike

quation (55) is [5] 

 p (p) = 

C p (p) 

1 − n 0 C p (p) 
, (57) 

here the Fourier transform of the direct correlation function C p ( p )

s 

 p (p) = 

24 f 

n 0 

[ 
α + β + δ

u 

2 
cos u − α + 2 β + 4 δ

u 

3 
sin u 

− 2(β + 6 δ) 

u 

4 
cos u + 

2 β

u 

4 
+ 

24 δ

u 

5 
sin u + 

24 δ

u 

6 
( cos u − 1) 

] 
, 

(58) 

ith u = 2 ap and 

= 

(1 + 2 f ) 2 

(1 − f ) 4 
, β = −6 f 

(1 + f/ 2) 2 

(1 − f ) 4 
, δ = 

fα

2 

. (59)

hus, the Fourier transform h p ( p ) can be calculated readily, while

he total distribution function is obtained from Eq. (56) . 

The dense medium theory is developed for media with parti-

les of finite sizes. Hence, the particle positions are correlated, and

he Percus–Yevick approximation to the pair correlation function

s often employed. For a sparse concentration of particles of finite

izes, it is reasonable to use the hole-correction approximation. In

ther words, it is reasonable to suppose that the particles do not

enetrate each other, but are otherwise uncorrelated. However, in

rder to simplify the calculations, the particles are assumed to be

oint scatterers, in which case, the requirement of non-penetration

akes no sense. Thus, for sparse media, the assumption of inde-

endent particle positions, implying g(R ji ) = 1 , is adopted in the

ajority of the studies. 

The conditional configuration averages of a function f ( r , 
N )

hile holding the positions of one, two, and three particles fixed

re defined by 〈
f (r , 
N ) 

〉
i 
= 

∫ 
f (r , 
N ) p 

(

i 

N−1 | R i 

)
d 
i 

N−1 , 〈
f (r , 
N ) 

〉
i j 

= 

∫ 
f (r , 
N ) p 

(

i j 

N−2 
| R i , R j 

)
d 
i j 

N−2 
, 
f (r , 
N ) 
〉
i jk 

= 

∫ 
f (r , 
N ) p 

(

i jk 

N−3 
| R i , R j , R k 

)
d 
i jk 

N−3 
. (60) 

he configuration average of f ( r , 
N ) is then given by 

f (r , 
N ) 
〉
= 

∫ 
f (r , 
N ) p(
N ) d 
N 

= 

∫ 
f (r , 
N ) p(R i ) p 

(

i 

N−1 | R i 

)
d 
i 

N−1 d 

3 
R i 

= 

∫ 
p(R i ) 

〈
f (r , 
N ) 

〉
i 
d 

3 
R i , (61) 

ith (cf. Eq. (51) ) p(R i ) = 1 /V . Noting that 

f (r , 
N ) 
〉
i 
= 

∫ 
f (r , 
N ) p 

(

i 

N−1 | R i 

)
d 
i 

N−1 

= 

∫ 
f (r , 
N ) p(R j | R i ) p 

(

i j 

N−2 
| R i , R j 

)
d 

3 
R j d 
i j 

N−2 

= 

∫ 
f (r , 
N ) p(R j , R k | R i ) p 

(

i jk 

N−3 
| R i , R j , R k 

)
× d 

3 
R k d 

3 
R j d 
i jk 

N−3 
, (62) 

ith 

p 
(
R j , R k | R i 

)
= p 
(
R j | R i 

)
p 
(
R k | R i , R j 

)
, (63)

e obtain 

f ( r , 
N ) 
〉
i 
= 

∫ 〈
f ( r , 
N ) 

〉
i j 

p 
(
R j | R i 

)
d 

3 
R j 

= 

∫ 〈
f ( r , 
N ) 

〉
i jk 

p 
(
R j , R k | R i 

)
d 

3 
R k d 

3 
R j . (64) 

or statistically independent particles, Eq. (64) becomes 

f ( r , 
N ) 
〉
i 
= 

∫ 〈
f ( r , 
N ) 

〉
i j 

p 
(
R j 

)
d 

3 
R j 

= 

∫ 〈
f ( r , 
N ) 

〉
i jk 

p 
(
R j 

)
p ( R k ) d 

3 
R k d 

3 
R j , (65) 

ith p(R j ) = p(R k ) = 1 /V . 

. The generalized Lorenz–Lorentz law and Ewald–Oseen 

xtinction theorem 

In this section we use the quasi-crystalline approximation

o derive an integral equation for the conditional configuration-

veraged exciting field coefficients in the case of a layer with

ensely packed particles and oblique incidence. By assuming a

pecial-form solution, the equations of the generalized Lorenz–

orentz law and the generalized Ewald–Oseen extinction theorem

re obtained. These are solved by employing the technique used by

sang and Kong for a semi-infinite discrete random medium [5,23] .

.1. Integral equation for the conditional configuration-averaged 

xciting field coefficients 

Taking the conditional configuration average of Eq. (39) with

he position of particle i held fixed, and using Eq. (64) in conjunc-

ion with Eq. (52) , yields 

e i 
〉
i 
( R i ) = e j k 1 s ·R i e 0 + n 0 

∫ 
D −D 2 a ( R i ) 

Q 

(
k 1 R i j 

)
×
〈
e j 
〉
i j 

(
R i , R j 

)
g 
(
R i j 

)
d 

3 
R j , (66) 

here D 2 a ( R i ) is an exclusion domain, k 1 s is the wave vector of the

ncident field, 

 1 s = k 1 s ( θ0 , ϕ 0 ) = k 1 ̂  s = k 1 s ⊥ + k 1 z ( k 1 s ⊥ ) ̂  z , (67)

 θ0 , ϕ0 ) are the spherical angles of the incident direction ̂

 s , and

 1 z (k 1 s ⊥ ) = 

√ 

k 2 
1 

− k 2 
1 s ⊥ with k 1 s ⊥ = | k 1 s ⊥ | . In Eq. (66) we used the
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Fig. 2. The exclusion domain D 2 a ( R i ) is a complete sphere of radius 2 a if 2 a ≤ z i ≤ H − 2 a (left), and a truncated sphere of radius a if 0 ≤ z i < 2 a (middle) or H − 2 a < z i ≤ H

(right). 

Fig. 3. Wave vectors k 0 , k R , K + and K − . 
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fact that g(R i j ) = 0 for 0 ≤ R ij < 2 a , so that ∫ 
D 

g 
(
R i j 

)
d 

3 
R j = 

∫ 
D −D 2 a ( R i ) 

g 
(
R i j 

)
d 

3 
R j . (68)

For 2 a ≤ z i ≤ H − 2 a, where R i = R i ⊥ + z i ̂  z and R i ⊥ = x i ̂  x + y i ̂  y , the

exclusion domain D 2 a ( R i ) is a complete sphere of radius 2 a cen-

tered at R i , while for 0 ≤ z i < 2 a or H − 2 a < z i ≤ H, a truncated

sphere of radius 2 a is excluded; its size depends on z i ( Fig. 2 ). This

observation points to the necessity of a special treatment of these

domains for finite scatterers. Invoking the quasi-crystalline approx-

imation, 〈
e j 
〉
i j 

(
R i , R j 

)
= 

〈
e j 
〉

j 

(
R j 

)
, (69)

yields 〈
e i 
〉
i 
( R i ) = e j k 1 s ·R i e 0 + n 0 

∫ 
D −D 2 a ( R i ) 

Q 

(
k 1 R i j 

)
×
〈
e j 
〉

j 

(
R j 

)
g 
(
R i j 

)
d 

3 
R j . (70)

To solve the integral equation (70) , we look for a solution in the

form 〈
e i 
〉
i 
(R i ) = 

∑ 

b= ±
e j K b ·R i e b . (71)

Here, b stands for the signs + and − , the vectors e b are unknown

and have to be determined, the wave vectors K b are defined by 

K b = K ̂

 s b = K ⊥ + bK z (K ⊥ ) ̂ z , (72)

K is the effective wave number in the particulate medium, and

K z (K ⊥ ) = 

√ 

K 

2 − K 

2 
⊥ . More specifically and as shown in Fig. 3 , K + 

is the upward wave vector in the direction of the transmitted wave
 s + = ̂

 s T = ̂

 s T (θT , ϕ T ) , i.e., 

K + = K + (θT , ϕ T ) = K ̂

 s T = K ⊥ + K z (K ⊥ ) ̂ z , (73)

while K − is the downward wave vector in the direction of the

transmitted wave reflected by the upper boundary ̂ s − = ̂

 s TR =
 s TR (θTR , ϕ T ) with θTR = π − θT , i.e., 

K − = K −(θTR , ϕ T ) = K ̂

 s TR = K ⊥ − K z (K ⊥ ) ̂ z . (74)

Following Fikioris and Waterman [14,17] , we make the following

assumptions. 
1. The representation (71) for 
〈
e i 
〉
i 
(R i ) is valid for all z i in D

even in the critical domains 0 ≤ z i < 2 a and H − 2 a < z i ≤ H. 

2. The vectors e b are obtained by solving the integral equation

(70) in the noncritical domain 2 a ≤ z i ≤ H − 2 a ; thus the ex-

clusion domain is a complete sphere of radius 2 a . 

The solution obtained under these assumptions is referred to as

he zeroth-order solution. Higher-order solutions can be computed

y means of the following iteration scheme. The zeroth-order so-

ution 

〈
e (0) 

j 

〉
j 
(R j ) , which is assumed to be also valid in the crit-

cal domains, is inserted in the right-hand side of Eq. (70) , and

he first-order solution 

〈
e (1) 

i 

〉
i 
(R i ) is evaluated by taking into ac-

ount that the domain of integration is D with a truncated sphere

f radius 2 a excluded. It is obvious that the first-order solution

e (1) 
i 

〉
i 
(R i ) is changed only in the critical domains 0 ≤ z i < 2 a and

 − 2 a < z i ≤ H, i.e., 

e 
(1) 
i 

〉
i 
(R i ) = 

〈
e 
(0) 
i 

〉
i 
(R i ) for 2 a ≤ z i ≤ H − 2 a, 

e 
(1) 
i 

〉
i 
(R i ) � = 

〈
e 
(0) 
i 

〉
i 
(R i ) for 0 ≤ z i < 2 a and H − 2 a < z i ≤ H. 

he process is then repeated until convergence is achieved. An

mportant observation is that although the first-order solution

e (1) 
i 

〉
i 
(R i ) is changed only in the critical domains, the second-order

olution 

〈
e (2) 

i 

〉
i 
(R i ) and the subsequent ones are changed in the

hole domain D , i.e., 

e 
(n ) 
i 

〉
i 
(R i ) � = 

〈
e 
(n −1) 
i 

〉
i 
(R i ) for 0 ≤ z i ≤ H and n ≥ 2 . 

s a result, if the iteration scheme converges, the representation

71) for 
〈
e i 
〉
i 
(R i ) is not valid anymore; the dependency on R i is

uch more complex. Because the proof of the convergence of this

teration scheme is a very difficult task, we restrict our analysis to

he zeroth-order solution. 

In the following, we do not indicate explicitly the dependency

f 
〈
e i 
〉
i 

on R i . Substituting the solution (71) in Eq. (70) , we obtain ∑ 

= ±
e j K b ·R i e b = e j k 1 s ·R i e 0 + n 0 

∑ 

b= ±

[ ∫ 
D −D 2 a ( R i ) 

T T 31 

(
k 1 R i j 

)
× e j K b ·R j g 

(
R i j 

)
d 

3 
R j 

] 
Te b . (75)

o integrate over all positions of particle j we use a local coor-

inate system with the origin at particle i , and set R j = R i + R ji ,

here R ji = −R i j . The integral in Eq. (75) (apart from the constant

ector Te b ), 

 

b ( R i ) = 

∫ 
D −D 2 a ( R i ) 

T T 31 

(
−k 1 R ji 

)
e j K b ·R j g 

(
R ji 

)
d 

3 
R ji , (76)

s written as 

 

b ( R i ) = J b 1 ( R i ) + J b 2 ( R i ) , (77)

here 

 

b 
1 ( R i ) = 

∫ 
D −D ( R ) 

T T 31 

(
−k 1 R ji 

)
e j K b ·R j 

[
g 
(
R ji 

)
− 1 

]
d 

3 
R ji , (78)
2 a i 
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Fig. 4. The integration surfaces S a , S z 0 , and S zH for computing the integral I b 2 (R i ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b 
2 (R i ) = 

∫ 
D −D 2 a (R i ) 

T T 31 

(
−k 1 R ji 

)
e j K b ·R j d 

3 
R ji . (79) 

aking into account the representation of the translation matrix (cf.

qs. (17) and (23) ) 

 

T 
31 

(
−k 1 R ji 

)
= 

[
T 31 

−mn, −m 

′ n ′ 
(
k 1 R ji 

)]
= 

[
A 

3 
−mn, −m 

′ n ′ 
(
k 1 R ji 

)
B 

3 
−mn, −m 

′ n ′ 
(
k 1 R ji 

)
B 

3 
−mn, −m 

′ n ′ 
(
k 1 R ji 

)
A 

3 
−mn, −m 

′ n ′ 
(
k 1 R ji 

)] (80) 

n terms of radiating spherical wave functions (cf. Eqs. (18) and

19) ) 

 

3 
−mn, −m 

′ n ′ 
(
k 1 R ji 

)
= c nn ′ 

∑ 

n ′′ 
j n 

′′ 
a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )
× u 

3 
m 

′ −mn ′′ 
(
k 1 R ji 

)
, (81) 

 

3 
−mn, −m 

′ n ′ 
(
k 1 R ji 

)
= c nn ′ 

∑ 

n ′′ 
j n 

′′ 
b 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )
× u 

3 
m 

′ −mn ′′ 
(
k 1 R ji 

)
, (82) 

here c nn ′ is given by Eq. (22) , we see that the computation of the

atrices J b 
1 
(R i ) and J b 

2 
(R i ) requires the computation of the inte-

rals 

 

b 
1 ( R i ) = e j K b ·R i 

∫ 
D −D 2 a ( R i ) 

u 

3 
m 

′ −mn ′′ 
(
k 1 R ji 

)
e j K b ·R ji 

×
[
g 
(
R i j 

)
− 1 

]
d 

3 
R ji , (83) 

 

b 
2 (R i ) = e j K b ·R i 

∫ 
D −D 2 a (R i ) 

u 

3 
m 

′ −mn ′′ 
(
k 1 R ji 

)
e j K b ·R ji d 

3 
R ji . (84) 

Computation of J b 
1 
. To compute I b 

1 
(R i ) , and so J b 

1 
(R i ) , we take

into account that the function g(R ji ) − 1 quickly decreases

with increasing R ji , in which case, the domain of integration

can be extended to the entire space less a ball of radius 2 a

around R i . The integral is therefore approximated by ∫ 
D −D 2 a (R i ) 

R 

2 
ji d 

2 ̂ R ji d R ji ≈
∫ 
R 3 −D 2 a (R i ) 

R 

2 
ji d 

2 ̂ R ji d R ji . (85)

Using the spherical wave expansion of the plane wave (e.g.,

Ref. [30] ) 

e j K b ·R ji = e j K ̂  s b ·R ji = 

∑ 

kl 

2j l Y −kl ( ̂  s b ) u 

1 
kl 

(
KR ji 

)
, (86)

where, for ̂ r = ̂

 r (θ, ϕ) , Y kl ( ̂  r ) = Y kl (θ, ϕ) are spherical har-

monics and u 1 
kl 
(Kr ) are regular spherical wave functions for

wavenumber K , we find that J b 
1 
(R i ) can be expressed as 

J b 1 (R i ) = J b 1 a e 
j K b ·R i , (87)

where the block-matrix components of the matrix J b 
1 a 

, 

J b 1 a = 

[ (
J b 1 a 

)11 

−mn, −m 

′ n ′ 
(
J b 1 a 

)12 

−mn, −m 

′ n ′ (
J b 1 a 

)21 

−mn, −m 

′ n ′ 
(
J b 1 a 

)22 

−mn, −m 

′ n ′ 

] 

, (88) 

are (
J b 1 a 

)11 

−mn, −m 

′ n ′ = 

(
J b 1 a 

)22 

−mn, −m 

′ n ′ 

= 4 πc nn ′ 
∑ 

n ′′ 
(−1) n 

′′ 
a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )
× Y m 

′ −m,n ′′ ( ̂  s b ) F n ′′ ( k 1 , K, a ) , (89) 

(
J b 1 a 

)12 

−mn, −m 

′ n ′ = 

(
J b 1 a 

)21 

−mn, −m 

′ n ′ 
= 4 πc nn ′ 
∑ 

n ′′ 
(−1) n 

′′ 
b 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )
× Y m 

′ −m,n ′′ ( ̂  s b ) F n ′′ ( k 1 , K, a ) , (90) 

and 

F n ′′ ( k 1 , K, a ) = 

∫ ∞ 

2 a 
[ g(r) − 1 ] h n ′′ ( k 1 r ) j n ′′ (Kr ) r 2 d r. (91)

Computation of J b 
2 
. To compute I b 

2 
(R i ) , the volume integral

over D − D 2 a (R i ) is transformed into three surface inte-

grals by means of the scalar Green’s theorem of the sec-

ond kind. For the scalar functions f = exp (j K b · R ji ) and

g = u 3 
m 

′ −mn ′′ (k 1 R ji ) satisfying the scalar wave equation with

wavenumbers K and k 1 , respectively, the Green’s theorem

yields ∫ 
D −D 2 a ( R i ) 

f g d V = 

1 

K 

2 − k 2 
1 

∮ 
S 

(
f 
∂g 

∂ ̂  n 

− g 
∂ f 

∂ ̂  n 

)
d S, (92) 

where, neglecting the vertical boundaries at infinity, the sur-

face S is the union of a sphere of radius 2 a centered at

R i and the boundary planes z j = 0 and z j = H, that is, S =
S a ∪ S z 0 ∪ S z H (see Fig. 4 ). To compute the integral over S a we

use the expansion (86) , while for computing the integrals

over S z 0 and S z H we invoke the integral representation of

the radiating spherical waves in terms of plane waves. More

specifically, for z i ≥ 2 a and in the plane z j = 0 , we use [31] 

u 

3 
mn 

(
k 1 R ji 

)
= 

1 

2 π j n 

∫ 
Y mn 

(̂ k 

−)e j k ⊥ ·R ji ⊥ e j k 1 z ( k ⊥ ) z i d 

2 
k ⊥ 

k 1 k 1 z ( k ⊥ ) 
, 

(93) 

and for z i ≤ H − 2 a and in the plane z j = H, we use 

u 

3 
mn 

(
k 1 R ji 

)
= 

1 

2 π j n 

∫ 
Y mn 

(̂ k 

+ )e j k ⊥ ·R ji ⊥ e j k 1 z ( k ⊥ ) ( H−z i ) 

× d 

2 
k ⊥ 

k 1 k 1 z ( k ⊥ ) 
. (94) 

Here, 

k 

b = k 

b (k ⊥ ) = k ⊥ + bk 1 z (k ⊥ ) ̂  z , b = ±, (95)

k 1 z (k ⊥ ) = 

√ 

k 2 
1 

− k 2 ⊥ , and in general for R i = R i ⊥ + z i ̂  z and

R j = R j⊥ + z j ̂  z , we have R ji = R ji ⊥ + (z j − z i ) ̂  z . Performing

the calculations and assuming that the results are also valid

in the critical domains, we end up with 

J b 2 (R i ) = J b 2 a e 
j K b ·R i + J b 2 z 0 e 

j K ⊥ ·R i ⊥ e j k 1 z (K ⊥ ) z i 

+ J b 2 z H e 
j K ⊥ ·R i ⊥ e −j k 1 z (K ⊥ ) z i e j[ bK z (K ⊥ )+ k 1 z (K ⊥ )] H . (96) 

The block-matrix components of the matrix J b 
2 a 

, 

J b 2 a = 

[ (
J b 2 a 

)11 

−mn, −m 

′ n ′ 
(
J b 2 a 

)12 

−mn, −m 

′ n ′ (
J b 2 a 

)21 

−mn, −m 

′ n ′ 
(
J b 2 a 

)22 

−mn, −m 

′ n ′ 

] 

, (97) 
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C

b

are (
J b 2 a 

)11 

−mn, −m 

′ n ′ = 

(
J b 2 a 

)22 

−mn, −m 

′ n ′ 

= − 16 πa 

K 

2 − k 2 
1 

c nn ′ 
∑ 

n ′′ 
(−1) n 

′′ 

× a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )
× Y m 

′ −m,n ′′ ( ̂  s b ) G n ′′ ( k 1 , K, a ) , (98)

(
J b 2 a 

)12 

−mn, −m 

′ n ′ = 

(
J b 2 a 

)21 

−mn, −m 

′ n ′ 

= − 16 πa 

K 

2 − k 2 
1 

c nn ′ 
∑ 

n ′′ 
(−1) n 

′′ 

× b 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )
× Y m 

′ −m,n ′′ ( ̂  s b ) G n ′′ (k 1 , K, a ) , (99)

where 

G n ′′ ( k 1 , K, a ) = ( k 1 a ) h 

′ 
n ′′ ( 2 k 1 a ) j n ′′ (2 Ka ) 

− (Ka ) h n ′′ (2 k 1 a ) j 
′ 
n ′′ (2 Ka ) . (100)

The block matrix components of the matrix J b 
2 z0 

, 

J b 2 z 0 = 

[ (
J b 2 z 0 

)11 

−mn, −m 

′ n ′ 
(
J b 2 z 0 

)12 

−mn, −m 

′ n ′ (
J b 2 z 0 

)21 

−mn, −m 

′ n ′ 
(
J b 2 z 0 

)22 

−mn, −m 

′ n ′ 

] 

, (101)

are (
J b 2 z 0 

)11 

−mn, −m 

′ n ′ = 

(
J b 2 z 0 

)22 

−mn, −m 

′ n ′ 

= 2 π j 
bK z (K ⊥ ) + k 1 z (K ⊥ ) 

k 1 k 1 z (K ⊥ ) 
(
K 

2 − k 2 
1 

)c nn ′ 

×
∑ 

n ′′ 
(−1) n 

′′ 
a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )
× Y m 

′ −m,n ′′ 
(̂ k 

+ ), (102)

(
J b 2 z 0 

)12 

−mn, −m 

′ n ′ = 

(
J b 2 z 0 

)21 

−mn, −m 

′ n ′ 

= 2 π j 
bK z (K ⊥ ) + k 1 z (K ⊥ ) 

k 1 k 1 z (K ⊥ ) 
(
K 

2 − k 2 
1 

)c nn ′ 

×
∑ 

n ′′ 
(−1) n 

′′ 
b 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )
× Y m 

′ −m,n ′′ 
(̂ k 

+ ), (103)

where hereafter (cf. Eq. (95) ) 

k 

+ = k 

+ (K ⊥ ) = K ⊥ + k 1 z (K ⊥ ) . (104)

Finally, the block matrix components of the matrix J b 
2 zH 

, 

J b 2 z H = 

[ (
J b 2 z H 

)11 

−mn, −m 

′ n ′ 
(
J b 2 z H 

)12 

−mn, −m 

′ n ′ (
J b 2 z H 

)21 

−mn, −m 

′ n ′ 
(
J b 2 z H 

)22 

−mn, −m 

′ n ′ 

] 

, (105)

are (
J b 2 z H 

)11 

−mn, −m 

′ n ′ = 

(
J b 2 z H 

)22 

−mn, −m 

′ n ′ 

= −2 π j 
bK z (K ⊥ ) − k 1 z (K ⊥ ) 

k 1 k 1 z (K ⊥ ) 
(
K 

2 − k 2 
1 

)c nn ′ 

×
∑ 

n ′′ 
(−1) n 

′′ 
a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )
× Y m 

′ −m,n ′′ 
(̂ k 

−), (106)

(
J b 2 z H 

)12 

−mn, −m 

′ n ′ = 

(
J b 2 z H 

)21 

−mn, −m 

′ n ′ 
= −2 π j 
bK z (K ⊥ ) − k 1 z (K ⊥ ) 

k 1 k 1 z (K ⊥ ) 
(
K 

2 − k 2 
1 

)c nn ′ 

×
∑ 

n ′′ 
(−1) n 

′′ 
b 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )
× Y m 

′ −m,n ′′ 
(̂ k 

−), (107)

where hereafter (cf. Eq. (95) ) 

k 

− = k 

−(K ⊥ ) = K ⊥ − k 1 z (K ⊥ ) . (108)

The formulas for J b 
2 z0 

and J b 
2 zH 

can be simplified by using the

identities 

m m 

′ n ′ 
(̂ k 

)
· m −mn 

(̂ k 

)
= c n c n ′ (−1) n + n 

′ ∑ 

n ′′ 
(−1) n 

′′ 

× a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )Y m 

′ −m,n ′′ 
(̂ k 

)
, 

(109)

m m 

′ n ′ ( ̂
 k ) · n −mn ( ̂  k ) = j c n c n ′ (−1) n + n 

′ ∑ 

n ′′ 
(−1) n 

′′ 

× b 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )Y m 

′ −m,n ′′ ( ̂
 k ) , 

(110)

where ̂  k is an arbitrary direction and 

c n = 

1 √ 

2 πn (n + 1) 
. (111)

Note that the identities (109) and (110) have been derived

(i) by expanding the scalar fields m m 

′ n ′ ( ̂  k ) · m −mn ( ̂  k ) and

m m 

′ n ′ ( ̂  k ) · n −mn ( ̂  k ) (for fixed indices m , m 

′ , n and n ′ ) in

terms of the spherical harmonics Y m 

′ −m,n ′′ ( ̂  k ) , (ii) by using

the orthogonality property of the spherical harmonics on

the unit sphere, and (iii) by employing the representations

(20) and (21) . We obtain (
J b 2 z 0 

)11 

−mn, −m 

′ n ′ = 

(
J b 2 z 0 

)22 

−mn, −m 

′ n ′ = 8 π2 j(−j) n 
′ −n 

× bK z (K ⊥ ) + k 1 z (K ⊥ ) 
k 1 k 1 z (K ⊥ )(K 

2 − k 2 
1 
) 

m m 

′ n ′ ( ̂
 k 

+ ) · m −mn ( ̂  k 

+ ) ,

(112)(
J b 2 z 0 

)12 

−mn, −m 

′ n ′ = 

(
J b 2 z 0 

)21 

−mn, −m 

′ n ′ = 8 π2 j(−j) n 
′ −n +1 

× bK z (K ⊥ ) + k 1 z (K ⊥ ) 
k 1 k 1 z (K ⊥ )(K 

2 − k 2 
1 
) 

m m 

′ n ′ ( ̂
 k 

+ ) · n −mn ( ̂  k 

+ ) , 

(113)

and (
J b 2 z H 

)11 

−mn, −m 

′ n ′ = 

(
J b 2 z H 

)22 

−mn, −m 

′ n ′ = −8 π2 j(−j) n 
′ −n 

× bK z (K ⊥ ) − k 1 z (K ⊥ ) 
k 1 k 1 z (K ⊥ )(K 

2 − k 2 
1 
) 

m m 

′ n ′ ( ̂
 k 

−) · m −mn ( ̂  k 

−)

(114)(
J b 2 z H 

)12 

−mn, −m 

′ n ′ = 

(
J b 2 z H 

)21 

−mn, −m 

′ n ′ = −8 π2 j(−j) n 
′ −n +1 

× bK z (K ⊥ ) − k 1 z (K ⊥ ) 
k 1 k 1 z (K ⊥ )(K 

2 − k 2 
1 
) 

m m 

′ n ′ ( ̂
 k 

−) · n −mn ( ̂  k 

−) .

(115)

ollecting all results we express the integral equation (75) as ∑ 

= ±
e j K ⊥ ·R i ⊥ e j bK z (K ⊥ ) z i e b = e j k 1 s ⊥ ·R i ⊥ e j k 1 z (k 1 s ⊥ ) z i e 0 

+ 

∑ 

b= ±
e j K ⊥ ·R i ⊥ e j bK z (K ⊥ ) z i n 0 

(
J b 1 a + J b 2 a 

)
Te b 
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n

e

+ e j K ⊥ ·R i ⊥ e j k 1 z (K ⊥ ) z i n 0 

∑ 

b= ±
J b 2 z 0 Te b 

+ e j K ⊥ ·R i ⊥ e −j k 1 z (K ⊥ ) z i n 0 

∑ 

b= ±
e j[ bK z (K ⊥ ) k 1 z (K ⊥ )] H 

× J b 2 z H Te b . (116) 

n Eq. (116) , we first separate the upward and downward propa-

ating waves, and then balance the waves with the wavenumber

 1 and those with the wavenumber K ; for the upward propagating

aves with the wavenumbers k 1 and K we obtain, respectively, 

 

j k 1 s ⊥ ·R i ⊥ e j k 1 z (k 1 s ⊥ ) z i e 0 + e j K ⊥ ·R i ⊥ e j k 1 z (K ⊥ ) z i n 0 

∑ 

b= ±
J b 2 z 0 Te b = 0 , (117) 

 + − n 0 (J 
+ 
1 a + J + 2 a ) Te + = 0 , (118) 

hile for the downward propagating waves with the wavenumbers

 1 and K we obtain, respectively, 
 

= ±
e j bK z (K ⊥ ) H J b 2 z H Te b = 0 , (119) 

 − − n 0 

(
J −1 a + J −2 a 

)
Te − = 0 . (120) 

rom Eq. (117) , it follows that 

 ⊥ = k 1 s ⊥ , (121) 

 1 z (K ⊥ ) = k 1 z (k 1 s ⊥ ) = 

√ 

k 2 
1 

− k 2 
1 s ⊥ . (122) 

he relation (121) , which reflects the translational invariance of the

roblem, is essentially the Snell law 

 sin θT = k 1 sin θ0 , (123) 

 T = ϕ 0 . (124) 

ote also that because of scattering and absorption, the effec-

ive wavenumber K is complex; hence, the transmitted angle θT is

slightly) complex. 

Hereafter, we introduce the short-hand notation 

 z 
def = K z (k 1 s ⊥ ) = 

√ 

K 

2 − k 2 
1 s ⊥ = 

√ 

K 

2 − k 2 
1 

sin 

2 θ0 , (125)

nd 

 1 z 
def = k 1 z (k 1 s ⊥ ) = 

√ 

k 2 
1 

− k 2 
1 s ⊥ = 

√ 

k 2 
1 

− k 2 
1 

sin 

2 θ0 , (126)

nd let 

 

′ 
z = Re (K z ) and K 

′′ 
z = Im (K z ) > 0 . (127)

he effective wave vectors K b can then be expressed as 

 b = k 1 s ⊥ + bK z ̂  z = k 1 ̂  s + (bK z − k 1 z ) ̂ z . (128)

rom Eq. (121) , the vectors k 

+ and k 

−, defined by Eqs. (104) and

108) , respectively, become 

 

+ = k 1 s = k 1 s ⊥ + k 1 z (k 1 s ⊥ ) = k 1 ̂  s (129)

nd 

 

− = k 1 R = k 1 s ⊥ − k 1 z (k 1 s ⊥ ) = k 1 ̂  s R , (130)

here ̂  s R is the specular reflection direction characterized by the

pherical angles (θR , ϕ 0 ) = (π − θ0 , ϕ 0 ) . Hence, ̂ k 

+ = ̂

 s and 

̂ k 

− =
 

 R , and by means of the designations (125) and (126) , we express

qs. (112) –(113) and (114) –(115) as 

J b 2 z 0 

)11 

−mn, −m 

′ n ′ = 

(
J b 2 z 0 

)22 

−mn, −m 

′ n ′ = 8 π2 j ( −j ) 
n ′ −n 
× b 

k 1 k 1 z ( K z − bk 1 z ) 
m m 

′ n ′ ( ̂  s ) · m −mn ( ̂  s ) , (131) 

J b 2 z 0 

)12 

−mn, −m 

′ n ′ = 

(
J b 2 z 0 

)21 

−mn, −m 

′ n ′ = 8 π2 j ( −j ) 
n ′ −n +1 

× b 

k 1 k 1 z ( K z − bk 1 z ) 
m m 

′ n ′ ( ̂  s ) · n −mn ( ̂  s ) , (132) 

nd 

J b 2 z H 

)11 

−mn, −m 

′ n ′ = 

(
J b 2 z H 

)22 

−mn, −m 

′ n ′ = −8 π2 j ( −j ) 
n ′ −n 

× b 

k 1 k 1 z ( K z + bk 1 z ) 
m m 

′ n ′ ( ̂  s R ) · m −mn ( ̂  s R ) , (133) 

J b 2 z H 

)12 

−mn, −m 

′ n ′ = 

(
J b 2 z H 

)21 

−mn, −m 

′ n ′ = −8 π2 j(−j) n 
′ −n +1 

× b 

k 1 k 1 z (K z + bk 1 z ) 
m m 

′ n ′ ( ̂  s R ) · n −mn ( ̂  s R ) , (134) 

espectively. 

Two comments are in order. 

1. Eqs. (118) and (120) , written in compact form as 

e b = n 0 

(
J b 1 a + J b 2 a 

)
Te b , b = ±, (135)

are representations of the generalized Lorenz–Lorentz law

and are used for deriving a dispersion equation for the ef-

fective wavenumber K . 

2. Eq. (117) , written as 

e 0 + n 0 

∑ 

b= ±
J b 2 z 0 Te b = 0 , (136)

together with Eq. (119) represents the generalized Ewald–

Oseen extinction theorem. Essentially, Eq. (136) states that at

the lower boundary, the waves produced by the particles sit-

uated at the lower and upper boundaries of the medium ex-

tinguishes the incident wave. Similarly, Eq. (119) states that

at the upper boundary, the wave produced by the particles

situated at the lower boundary extinguishes the wave pro-

duced by the particles situated at the upper boundary. 

For the η-polarized incident field 

 0 η(r ) = 

̂ η( ̂  s ) e j k 1 s ⊥ ·r e j k 1 z z , (137)

here η = θ, ϕ, we consider instead of Eq. (39) the polarization-

ependent system of equations (43) . The integral equation

70) then transforms into 

e iη
〉
i 
= e j k 1 s ·R i e 0 η + n 0 

∫ 
D −D 2 a (R i ) 

Q 

(
k 1 R i j 

)〈
e jη
〉

j 
g 
(
R i j 

)
d 

3 
R j , (138)

nd its solution is sought in the form 

e iη
〉
i 
= 

∑ 

b= ±
e j K b ·R i e bη. (139) 

rom Eq. (41) , i.e., e 0 = E 0 θ e 0 θ + E 0 ϕ e 0 ϕ , and the linearity of the

ntegral equation (138) , we obtain 

e i 
〉
i 
= E 0 θ

〈
e iθ
〉
i 
+ E 0 ϕ 

〈
e iϕ 
〉
i 
, (140)

nd so, 

 b = E 0 θ e bθ + E 0 ϕ e bϕ . (141)

hus, the case of an incident wave of arbitrary polarization can be

alculated by linearly combining the cases of θ- and ϕ-polarized

ncidence. 

Taking into account that the incident field coefficients, concate-

ated in the vector 

 0 η = 

[
e 1 0 ηmn 

e 2 0 ηmn 

]
, (142) 
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are given by (cf. Eqs. (10) and (42) ) 

e 1 0 ηmn = 4 π j n ̂ η( ̂  s ) · m −mn ( ̂  s ) , (143)

e 2 0 ηmn = −4 π j n +1 
̂ η( ̂  s ) · n −mn ( ̂  s ) , (144)

we assume a similar form representation for the components of

the vector 

e bη = 

[
e 1 

bηmn 

e 2 
bηmn 

]
, (145)

that is, 

e 1 bηmn = 4 π j n ̂ η( ̂  s b ) · m −mn ( ̂  s b ) x 
1 
bηn , (146)

e 2 bηmn = −4 π j n +1 
̂ η( ̂  s b ) · n −mn ( ̂  s b ) x 

2 
bηn , (147)

where ̂ s + = ̂

 s T and 

̂ s − = ̂

 s TR with (θTR , ϕ 0 ) = (π − θT , ϕ 0 ) . In

Eqs. (146) and (147) , we suppose that for spherically symmetric

particles, the coefficients x 1 
bηn 

and x 2 
bηn 

do not depend on the az-

imuthal index m . 

5.2. The generalized Lorenz–Lorentz law 

For a η-polarized incidence and a specified sign b ( b = + or b =
−), the homogeneous system of equations (135) written as 

e bη = n 0 

(
J b 1 a + J b 2 a 

)
Te bη, (148)

has a nontrivial solution if the corresponding determinant van-

ishes. Equating the determinant to zero gives the dispersion equa-

tion for the effective wavenumber K . 

In explicit form, the homogeneous system of equations

(148) is 

̂ η( ̂  s b ) · m −mn ( ̂  s b ) x 
1 
bηn 

= 4 πn 0 

∑ 

m 

′ n ′ 

∑ 

n ′′ 
c nn ′ j 

n ′ −n (−1) n 
′′ 
H n ′′ (k 1 , K, a ) 

×
{

a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )Y m 

′ −m,n ′′ ( ̂  s b ) 

×
[
̂ η( ̂  s b ) · m −m 

′ n ′ ( ̂  s b ) 
]
T 1 n ′ x 

1 
bηn ′ 

− j b 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )Y m 

′ −m,n ′′ ( ̂  s b ) 

×
[
̂ η( ̂  s b ) · n −m 

′ n ′ ( ̂  s b ) 
]
T 2 n ′ x 

2 
bηn ′ 
}

(149)

and 

̂ η( ̂  s b ) · n −mn ( ̂  s b ) x 
2 
bηn 

= 4 πn 0 

∑ 

m 

′ n ′ 
c nn ′ j 

n ′ −n (−1) n 
′′ 
H n ′′ (k 1 , K, a ) 

×
{

j b 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )Y m 

′ −m,n ′′ ( ̂  s b ) 

×
[
̂ η( ̂  s b ) · m −m 

′ n ′ ( ̂  s b ) 
]
T 1 n ′ x 

1 
bηn ′ 

+ a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )Y m 

′ −m,n ′′ ( ̂  s b ) 

×
[
̂ η( ̂  s b ) · n −m 

′ n ′ ( ̂  s b ) 
]
T 2 n ′ x 

2 
bηn ′ 
}
, (150)

where 

H n ′′ (k 1 , K, a ) = F n ′′ (k 1 , K, a ) − 4 a 

K 

2 − k 2 
1 

G n ′′ (k 1 , K, a ) (151)

and 

T = [ T n δmm 

′ δnn ′ ] , [ T n ] = 

[
T 1 n 

T 2 n 

]
. (152)

Using the relations 

 m 

′ −m,n ′′ ( ̂
 k ) m −m 

′ n ′ ( ̂
 k ) = 

∑ 

p 

(−1) p+ n ′ + n ′′ √ 

pn 

′ (p + 1)(n 

′ + 1) 
×
[
a 1 
(
m, p| m 

′ , n 

′ | n 

′′ )m −mp ( ̂  k ) + j b 1 
(
m, p| m 

′ , n 

′ | n 

′′ )n −mn ( ̂  k ) 
]
, 

(153)

 m 

′ −m,n ′′ ( ̂
 k ) n −m 

′ n ′ ( ̂
 k ) 

= 

∑ 

p 

(−1) p+ n ′ + n ′′ √ 

pn 

′ (p + 1)(n 

′ + 1) 

×
[
a 1 
(
m, p| m 

′ , n 

′ | n 

′′ )n −mp ( ̂  k ) − j b 1 
(
m, p| m 

′ , n 

′ | n 

′′ )m −mn ( ̂  k ) 
]
, 

(154)

hich follow from Eqs. (109) and (110) , and the summation rules

5] ∑ 

m 

′ 
a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )a 1 (m, p| m 

′ , n 

′ | n 

′′ )
= δpn C nn ′ n ′′ a 1 

(
−1 , n | − 1 , n 

′ | n 

′′ ), (155)

∑ 

m 

′ 
b 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )b 1 (m, p| m 

′ , n 

′ | n 

′′ )
= −δpn C nn ′ n ′′ b 1 

(
−1 , n | − 1 , n 

′ | n 

′′ ), (156)

nd 

 

m 

′ 
a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )b 1 (m, p| m 

′ , n 

′ | n 

′′ ) = 0 , (157)

here 

 nn ′ n ′′ = (−1) n + n 
′ + n ′′ 
√ 

nn 

′ (n + 1)(n 

′ + 1) 

√ 

2 n 

′ + 1 

2 n + 1 

√ 

2 n 

′′ + 1 

2 

, 

(158)

e obtain 

 

1 
bηn = 

∑ 

n ′ 

(
A nn ′ T 

1 
n ′ x 

1 
bηn ′ + B nn ′ T 

2 
n ′ x 

1 
bηn ′ 
)
, (159)

 

2 
bηn = 

∑ 

n ′ 

(
B nn ′ T 

1 
n ′ x 

1 
bηn ′ + A nn ′ T 

2 
n ′ x 

2 
bηn ′ 
)
, (160)

here 

 nn ′ = 4 πn 0 

∑ 

n ′′ 
c nn ′ j 

n ′ −n 

√ 

2 n 

′ + 1 

2 n + 1 

(−1) n 
′′ 
√ 

2 n 

′′ + 1 

2 

× H n ′′ (k 1 , K, a ) a 1 
(
−1 , n | − 1 , n 

′ | n 

′′ ), (161)

 nn ′ = 4 πn 0 

∑ 

n ′′ 
c nn ′ j 

n ′ −n 

√ 

2 n 

′ + 1 

2 n + 1 

(−1) n 
′′ 
√ 

2 n 

′′ + 1 

2 

× H n ′′ (k 1 , K, a ) b 1 
(
−1 , n | − 1 , n 

′ | n 

′′ ). (162)

he dispersion equation is then 

et 

(
δnn ′ − A nn ′ T 

1 
n ′ −B nn ′ T 

2 
n ′ 

−B nn ′ T 
1 

n ′ δnn ′ − A nn ′ T 
2 

n ′ 

)
= 0 , (163)

here n, n ′ = 1 , . . . , N rank and N rank is the maximum expansion or-

er in the expansions (159) –(162) . 

It is obvious that the dispersion equation is the same for b = +
nd b = −, and that it is polarization independent . Moreover, the

wo homogeneous systems of equations (148) , corresponding to

 = + and b = −, reduce to a single homogeneous system of equa-

ions, i.e., Eqs. (159) and (160) , which is identical to that of a semi-

nfinite discrete random medium at normal incidence (when only the

zimuthal mode m = 1 is involved in the calculation). Thus, the

ispersion equation is also direction independent , and the effec-

ive wavenumber of a discrete random layer with non-scattering
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Fig. 5. Extinction efficiency Q ext versus size parameter k 1 a for a spherical particle with the relative refractive index m = 1 . 33 . 

Fig. 6. Re( K ) (left) and Im( K ) (right) as functions of the size parameter k 1 a for different values of the volume concentration f . The layer thickness is H = 10 a, the incidence 

angle is θ0 = 0 ◦, the wavenumber of the background medium is k 1 = 10 μm 

−1 , the relative refractive index of the particles is m = 1 . 33 , and the maximum expansion order 

is N rank = 15 . 
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oundaries coincides with the effective wavenumber of a semi-

nfinite discrete random medium. 

As examples, we illustrate in Fig. 5 the dependency of the ex-

inction efficiency Q ext on the size parameter k 1 a for a spherical

article with the relative refractive index m = 1 . 33 (rain drops at

ptical frequencies) and in Fig. 6 the real and imaginary parts of

he effective wavenumber Re( K ) and Im( K ), respectively, as func-

ions of the size parameter k 1 a and for different values of the vol-

me concentration f . From Fig. 5 we observe that with increas-

ng the size parameter, Q ext first grows, reaches a maximum at

 0 = k 1 a 0 ≈ 6 , and then decreases; this means that the particles

catter less. As a result, from Fig. 6 we see that 

1. for k 1 a ≤ x 0 , Re( K ) > k 1 and Re( K ) increases with the volume

concentration f , while for k 1 a > x 0 , Re( K ) < k 1 and Re( K ) de-

creases with the volume concentration f ; 
2. Im( K ) as a function of the size parameter k 1 a has a maxi-

mum which moves toward x 0 when the volume concentra-

tion f increases. 

Fig. 7 shows that for a spherical particle with the size parame-

er k 1 a = 0 . 5 , Im( K ) as a function of the volume concentration f has

 maximum. This result can be explained by the fact that the par-

iculate medium becomes essentially continuous in terms of its op-

ical properties when the volume concentration is sufficiently high.

onsequently, Im( K ) is mostly determined by the absorption of the

articles, and for non-absorbing particles, Im( K ) may tend to zero. 

We conclude this section by particularizing the above results

n the low frequency limit when the size of the particles is much

maller than the wavelength. In this regime, it is sufficient to

ake only the lowest-order coefficients in the field expansions
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Fig. 7. Im( K ) as a function of the volume concentration f . The size parameter is k 1 a = 0 . 5 , the layer thickness is H = 10 a, the incidence angle is θ0 = 0 ◦, the wavenumber of 

the background medium is k 1 = 10 μm 

−1 , the relative refractive index of the particle is m = 1 . 33 , and the maximum expansion order is N rank = 15 . 
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f∑
 , 
( N rank = 1 ), so that the elements of the T matrix are 

T 1 1 = 

j 

45 

(
m 

2 − 1 

)
x 5 + O 

(
x 7 
)
, (164)

T 2 1 = 

2j 

3 

m 

2 − 1 

m 

2 + 2 

x 3 + 

2j 

5 

(
m 

2 − 1 

)(
m 

2 − 2 

)(
m 

2 + 2 

)2 
x 5 + O 

(
x 6 
)
, (165)

where x = k 1 a is the size parameter. In Eqs. (161) and (162) we

proceed analogously; considering the leading terms in the expan-

sions of the spherical Bessel and Hankel functions, we obtain 

A 11 = a 0 + 

a 2 
2 

, B 11 = 

3 a 1 
2 

, (166)

where 

a 0 = 

3j f k 2 1 (
k 2 

1 
− K 

2 
)
x 3 

+ 

(1 − f ) 4 

(1 + 2 f ) 2 
, (167)

a 1 = 

3j f k 1 K (
k 2 

1 
− K 

2 
)
x 3 

, (168)

a 2 = 

3j f K 

2 (
k 2 − K 

2 
)
x 3 

. (169)

As a result, the dispersion equation (163) takes the form (
1 − A 11 T 

1 
1 

)(
1 − A 11 T 

2 
1 

)
− (B 11 ) 

2 T 1 1 T 
2 

1 = 0 . (170)

Further, neglecting T 1 1 yields 1 − A 11 T 
2 

1 = 0 and consequently, 

K 

2 = k 2 1 

2 χ + 6j f 

2 χ − 3j f 
(171)

with 

χ = x 3 
[ 

(1 − f ) 4 

(1 + 2 f ) 2 
− 1 

T 2 
1 

] 
. (172)

For an ensemble of particles with a small volume concentration f ,

the first term on the right-hand side of Eq. (172) can be neglected;

we obtain 

χ ≈ 3j 

2 

m 

2 + 2 

m 

2 − 1 

, (173)

 

nd so the Maxwell-Garnet formula 

 

2 = k 2 1 

(
1 + 

3 f y 

1 − f y 

)
≈ k 2 1 (1 + 3 f y ) (174)

ith y = (m 

2 − 1) / (m 

2 + 2) . 

.3. The generalized Ewald–Oseen extinction theorem 

After computing the effective wavenumber K , the components

f the vectors e bη can be expressed in terms of two arbitrary con-

tants, one for e + η and the other one for e −η . These two constants

re determined from the two η-polarized systems of equations of

he generalized Ewald–Oseen extinction theorem: 

 0 η + n 0 

∑ 

b= ±
J b 2 z 0 Te bη = 0 , (175)

∑ 

= ±
e j bK z H J b 2 z H Te bη = 0 , (176)

rovided that each system of equations reduces to a single scalar

quation. To derive the latter, we use the addition theorem for vec-

or spherical harmonics (see Appendix B), which yields the rela-

ions 
 

m 

[ m mn ( ̂  k ) � m −mn ( ̂  k 

′ )] · ̂ θ( ̂  k 

′ ) = χn 

√ 

n (n + 1) M n ( ̂  k ·̂ k 

′ ) ̂ θ( ̂  k ) , 

(177)

 

m 

[ m mn ( ̂  k ) � n −mn ( ̂  k 

′ )] · ̂ θ( ̂  k 

′ ) = χn 

√ 

n (n + 1) N n ( ̂  k ·̂ k 

′ ) ̂ ϕ ( ̂  k ) , 

(178)

 

m 

[ n mn ( ̂  k ) � n −mn ( ̂  k 

′ )] · ̂ θ( ̂  k 

′ ) = −χn 

√ 

n (n + 1) N n ( ̂  k ·̂ k 

′ ) ̂ θ( ̂  k ) 

(179)

or a θ-polarized incidence, and 

 

m 

[
m mn ( ̂  k ) � m −mn ( ̂  k 

′ ) 
]

· ̂ ϕ ( ̂  k 

′ ) = −χn 

√ 

n (n + 1) N n ( ̂  k ·̂ k 

′ ) ̂ ϕ ( ̂  k )

(180)
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w  
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g  

e  
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m 

[
m mn ( ̂  k ) � n −mn ( ̂  k 

′ ) 
]

· ̂ ϕ ( ̂  k 

′ ) = −χn 

√ 

n (n + 1) M n ( ̂  k ·̂ k 

′ ) ̂ θ( ̂  k ) ,

(181) 

 

m 

[ n mn ( ̂  k ) � n −mn ( ̂  k 

′ )] · ̂ ϕ ( ̂  k 

′ ) = χn 

√ 

n (n + 1) M n ( ̂  k ·̂ k 

′ ) ̂ ϕ ( ̂  k ) 

(182) 

or a ϕ-polarized incidence. In Eqs. (177) –(181) , the coefficient χn 

s given by 

n = 

1 

2 πn (n + 1) 

√ 

2 n + 1 

2 

, (183) 

hile for the directions ̂ k = ̂

 k (θ, ϕ) and 

̂ k 

′ = ̂

 k 

′ (θ ′ , ϕ) , the func-

ions M n ( ̂  k ·̂ k 

′ ) and N n ( ̂  k ·̂ k 

′ ) are given respectively by 

 n ( ̂  k ·̂ k 

′ ) = π1 
n (x ) , (184) 

 n ( ̂  k ·̂ k 

′ ) = xπ1 
n (x ) −

√ 

n (n + 1) P n (x ) , (185) 

here x = ̂

 k ·̂ k 

′ and π1 
n (x ) = P 1 n (x ) / 

√ 

1 − x 2 . 

Let us analyze Eqs. (175) and (176) in detail. 

Eq. (175) . Inserting Eqs. (143) –(144) and (146) –(147) together

with Eqs. (131) –(132) in Eq. (175) , we find that for a η-

polarized incidence, 

̂ η( ̂  s ) · m −mn ( ̂  s ) 

= −j 
8 π2 n 0 

k 1 k 1 z 

∑ 

b= ±

b 

K z − bk 1 z 

×
∑ 

m 

′ n ′ 

{ 
m −mn ( ̂  s ) · { [ m m 

′ n ′ ( ̂  s ) � m −m 

′ n ′ ( ̂  s b ) ] · ̂ η( ̂  s b ) } T 1 n ′ x 
1 
bηn ′ 

− n −mn ( ̂  s ) · { [ m m 

′ n ′ ( ̂  s ) � n −m 

′ n ′ ( ̂  s b ) ] · ̂ η( ̂  s b ) } T 2 n ′ x 
2 
bηn ′ 

} 
(186) 

and 

̂ η( ̂  s ) · n −mn ( ̂  s ) 

= −j 
8 π2 n 0 

k 1 k 1 z 

∑ 

b= ±

b 

K z − bk 1 z 

×
∑ 

m 

′ n ′ 

{ 
n −mn ( ̂  s ) · { [ m m 

′ n ′ ( ̂  s ) � m −m 

′ n ′ ( ̂  s b ) ] · ̂ η( ̂  s b ) } T 1 n ′ x 
1 
bηn ′ 

+ m −mn ( ̂  s ) · { [ m m 

′ n ′ ( ̂  s ) � n −m 

′ n ′ ( ̂  s b )] · ̂ η( ̂  s b ) } T 2 n ′ x 
2 
bηn ′ 

} 
. 

(187) 

Using Eqs. (177) , (178), (180) , and (181) of the addition the-

orem for vector spherical harmonics, we get 

1 = −j 
8 π2 n 0 

k 1 k 1 z 

∑ 

b= ±

b 

K z − bk 1 z 

∑ 

n 

χn 

√ 

n (n + 1) 

×
[
M n ( ̂  s ·̂ s b ) T 

1 
n x 

1 
bθn − N n ( ̂  s ·̂ s b ) T 

2 
n x 

2 
bθn 

]
(188) 

for a θ-polarized incidence, and 

1 = j 
8 π2 n 0 

k 1 k 1 z 

∑ 

b= ±

b 

K z − bk 1 z 

∑ 

n 

χn 

√ 

n (n + 1) 

×
[
N n ( ̂  s ·̂ s b ) T 

1 
n x 

1 
bϕn − M n ( ̂  s ·̂ s b ) T 

2 
n x 

2 
bϕn 

]
(189) 

for a ϕ-polarized incidence. 

Eq. (176) . Inserting Eqs. (146) –(147) together with Eqs. (133) –

(134) in Eq. (176) , we find that for a η-polarized incidence, 

0 = 

∑ 

b= ±

b 

K z + bk 1 z 
e j bK z H 
×
∑ 

m 

′ n ′ 

{ 
m −mn ( ̂  s R ) · { [ m m 

′ n ′ ( ̂  s R ) � m −m 

′ n ′ ( ̂  s b ) ] · ̂ η( ̂  s b ) } T 1 n ′ x 
1 
bηn

− n −mn ( ̂  s R ) · { [ m m 

′ n ′ ( ̂  s R ) � n −m 

′ n ′ ( ̂  s b ) ] · ̂ η( ̂  s b ) } T 2 n ′ x 
2 
bηn ′ 

} 
(190) 

and 

0 = 

∑ 

b= ±

b 

K z + bk 1 z 
e j bK z H 

×
∑ 

m 

′ n ′ 

{ 
n −mn ( ̂  s R ) · { [ m m 

′ n ′ ( ̂  s R ) � m −m 

′ n ′ ( ̂  s b ) ] · ̂ η( ̂  s b ) } T 1 n ′ x 
1 
bηn ′

+ m −mn ( ̂  s R ) · { [ m m 

′ n ′ ( ̂  s R ) � n −m 

′ n ′ ( ̂  s b ) ] · ̂ η( ̂  s b ) } T 2 n ′ x 
2 
bηn ′ 

} 
. 

(191) 

Using again Eqs. (177) , (178), (180) , and (181) , we get 

0 = 

∑ 

b= ±

b 

K z + bk 1 z 
e j bK z H 

∑ 

n 

χn 

√ 

n (n + 1) 

×
[
M n ( ̂  s R ·̂ s b ) T 

1 
n x 

1 
bθn − N n ( ̂  s R ·̂ s b ) T 

2 
n x 

2 
bθn 

]
(192) 

for a θ-polarized incidence, and 

0 = 

∑ 

b= ±

b 

K z + bk 1 z 
e j bK z H 

∑ 

n ′ 
χn 

√ 

n (n + 1) 

×
[
N n ( ̂  s R ·̂ s b ) T 

1 
n x 

1 
bϕn − M n ( ̂  s R ·̂ s b ) T 

2 
n x 

2 
bϕn 

]
(193) 

for a ϕ-polarized incidence. 

Thus, the two systems of equations of the generalized Ewald–

seen extinction theorem reduce to two scalar equations that are

olarization dependent . These are Eqs. (188) and (192) for a θ-

olarized incidence, and Eqs. (189) and (193) for a ϕ-polarized in-

idence. 

In summary, the procedure for computing the configuration-

veraged exciting field involves the following steps: 

1. solve the dispersion equation (163) for the effective

wavenumber K ; 

2. solve the homogeneous system of equations (159) –(160) to-

gether with the two scalar equations (188) and (192) , or

(189) and (193) , for the coefficients x 1 , 2 
bηn 

; 

3. compute the vectors e bη from Eqs. (145) –(147) ; 

4. for a η-polarized incidence, compute the configuration-

averaged field exciting particle i at the field point r = r i + R i 

according to 〈
E exc i (r ) 

〉
i 
= 

〈
E 

(i ) 
exc i 

(r i ) 
〉
i 
= X 

T 
1 (k 1 r i ) 

〈
e iη
〉
i 
, 

where 
〈
e iη
〉
i 
= 

∑ 

b= ± exp (j K b · R i ) e bη . 

The following two results, established by a numerical analysis,

ill play an important role in further development. Referring to

igs. 8 and 9 , these are 

1. | x 1 , 2 −ηn | � | x 1 , 2 + ηn | , and 

2. x 1 , 2 + n ≈ 1 for small values of the volume concentration f , e.g.,

f = 0 . 01 . 

Because the coefficients x 1 , 2 + ηn and x 1 , 2 −ηn correspond to an up-

oing and a down-going wave, respectively, the first result which

s an agreement with that of Ref. [32] suggests that the coherent

eld reflected by a layer with non-scattering boundaries is much

eaker than the coherent transmitted field. On the other had, in

iew of Eqs. (143) –(144) and (146) –(147) , the second result sug-

ests that for sparse media, the conditional configuration-averaged

xciting field can be considered to be approximately equal to the

ncident field (provided that K ≈ k and ̂

 s T ≈̂ s ) . 
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Fig. 8. Averaged norms defined by 
√ ∑ 

n [ | x 1 + θn 
| 2 + | x 2 + θn 

| 2 ] / 2 N (left) and 
√ ∑ 

n [ | x 1 −θn 
| 2 + | x 2 −θn 

| 2 ] / 2 N (right) as functions of the size parameter k 1 a for different values of the 

volume concentration f . The layer thickness is H = 10 a, the incidence angle is θ0 = 0 ◦, the wavenumber of the background medium is k 1 = 10 μm 

−1 , the relative refractive 

index of the particles is m = 1 . 33 , and the maximum expansion order is N rank = 15 . 

Fig. 9. Re (x 1 + θn 
) (left) and Im (x 1 + θn 

) (right) for n = 1 , . . . , N rank and N rank = 15 . The volume concentration is f = 0 . 01 , the layer thickness is H = 10 a, the incidence angle is 

θ0 = 0 ◦, the wavenumber of the background medium is k 1 = 10 μm 

−1 , and the relative refractive index of the particles is m = 1 . 33 . The real and imaginary parts of the 

coefficients x 2 + θn 
have the same dependency on n . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Discussion 

In this paper we have considered the scattering of a plane elec-

tromagnetic wave obliquely incident on a discrete random layer

with non-scattering boundaries. We solved the Lax integral equa-

tion for the conditional configuration-averaged exciting field coeffi-

cients by applying the technique used by Tsang and Kong [5,23] for

a semi-infinite discrete random medium. Some particulars of the

solution method are summarized below: 

1. The conditional configuration-averaged exciting field coeffi-

cients are expressed as a linear combination of coefficients

corresponding to an up-going and a down-going wave, that

is, 
〈
e i 
〉
i 
(R i ) = 

∑ 

b= ± exp (j K b · R i ) e b . This special-form solution
representation is assumed to be valid in the whole domain

occupied by the particles. In other words, the analysis is re-

stricted to the computation of the zeroth-order fields with-

out a special treatment of the critical domains. 

2. By balancing the waves with different propagation direc-

tions and wavenumbers in the Lax integral equation, we ob-

tained two homogeneous systems of equations correspond-

ing to the generalized Lorenz–Lorentz law and two inhomo-

geneous systems of equations corresponding to the general-

ized Ewald–Oseen extinction theorem. 

3. It is shown that even in the case of a discrete random layer,

(i) the two homogeneous systems of equations of the gener-

alized Lorenz–Lorentz law reduce to a single homogeneous
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o  
system of equations corresponding to a semi-infinite discrete

random medium at normal incidence, and (ii) the dispersion

equation is direction and polarization independent. It is also

shown that the two inhomogeneous systems of equations of

the generalized Ewald–Oseen extinction theorem can be re-

duced to two scalar equations by means of the addition the-

orem for vector spherical harmonics. 

We conclude our analysis by presenting some new results

elated to the representation of the conditional configuration-

veraged exciting field coefficients. The goal of this presentation is

o examine if and how these results can be applied to the scatter-

ng problem considered in this study. 

.1. Result 1 

An approach consisting in the solution of the integral equation

138) , without assuming a special form for the conditional

onfiguration-averaged exciting field coefficients, has been pro-

osed by Kristensson [33] . To reduce the complexity of the prob-

em, the case of normal incidence was considered. Here, we discuss

 possible extension of this approach to the general case of oblique

ncidence. For a η-polarized incident field, we assume that the so-

ution is of the form 

e iη
〉
i 
(R i ) = e j k 1 s ⊥ ·R i ⊥ e η(z i ) , 0 ≤ z i ≤ H. (194)

hus, the solution representation (194) is assumed to be valid in

he entire domain of analysis. Substituting Eq. (194) into Eq. (138) ,

e obtain 

 η(z i ) = e j k 1 z z i e 0 η + n 0 

∫ 
D −D 2 a (R i ) 

Q 

(
−k 1 R ji 

)
× e j k 1 s ⊥ ·R ji ⊥ e η

(
z j 
)
g 
(
R ji 

)
d 

3 
R j (195) 

ith k 1 z = k 1 z (k 1 s ⊥ ) = 

√ 

k 2 
1 

− k 2 
1 s ⊥ and k 1 s ⊥ = k 1 sin θ0 . Taking into

ccount the representations of the elements of the translation ma-

rix as given by Eqs. (80) –(82) , we see that the following integral

s of interest in computing the right-hand side of Eq. (195) : 

(z i ; e η) = 

∫ 
D −D 2 a (R i ) 

u 

3 
m 

′ −m,n ′′ 
(
k 1 R ji 

)
e j k 1 s ⊥ ·R ji ⊥ 

× e η
(
z j 
)
g 
(
R ji 

)
d 

2 
R ji ⊥ d z j . (196) 

o simplify the analysis, we consider the hole-correction ap-

roximation for the pair correlation function, i.e., g(R ji ) = 0 for

 ≤ R ji < 2 a , and g(R i j ) = 1 for R ji ≥ 2 a . The interval of integration

ver z j , [0, H ], is split into several (sub)intervals; in these intervals,

he plane z = z j does or does not intersect the (complete or trun-

ated) sphere D 2 a ( R i ). We distinguish the following situations. 

1. For z i < H − 2 a, the plane z = z j does not intersect the

sphere D 2 a ( R i ) when z j ranges in the interval [ z i + 2 a, H] .

Using the integral representations of the radiating spherical

waves in terms of plane waves in the case z i < z j (compare

with Eq. (94) ), 

u 

3 
mn (k R ji ) = 

1 

2 π j n 

∫ ∞ 

−∞ 

Y mn ( ̂  k 

+ ) e j k ⊥ ·R ji ⊥ e j k 1 z (k ⊥ )(z j −z i ) 
d 

2 
k ⊥ 

kk 1 z (k ⊥ )
(197) 

with k 

+ = k ⊥ + k 1 z (k ⊥ ) ̂  z , we find 

I(z i ; e η) = 

∫ H 

z i +2 a 

[ ∫ 
R 2 

u 

3 
m 

′ −m,n ′′ 
(
k 1 R ji 

)
e j k 1 s ⊥ ·R ji ⊥ 

× e η(z j ) d 

2 
R ji ⊥ 
] 

d z j 

t  
= 

2 π j n 
′′ 

k 1 k 1 z 
Y m 

′ −m,n ′′ ( ̂
 k 1 R ) 

∫ H 

z i +2 a 

e j k 1 z (z j −z i ) e η(z j ) d z j , 

(198) 

where (cf. Eq. (130) ) k 1 R = k 1 s ⊥ − k 1 z . 

2. For z i > 2 a , the plane z = z j does not intersect the sphere

D 2 a ( R i ) when z j ranges in the interval [0 , z i − 2 a ] . Using

the integral representations of the radiating spherical waves

in terms of plane waves in the case z i > z j (compare with

Eq. (93) ), 

u 

3 
mn 

(
k R ji 

)
= 

1 

2 π j n 

∫ ∞ 

−∞ 

Y mn ( ̂  k 

−) e j k ⊥ ·R ji ⊥ e −j k 1 z (k ⊥ )(z j −z i ) 

× d 

2 
k ⊥ 

kk 1 z (k ⊥ ) 
(199) 

with k 

− = k ⊥ − k 1 z (k ⊥ ) ̂  z , we find 

I(z i ; e η) = 

∫ z i −2 a 

0 

[ ∫ 
R 2 

u 

3 
m 

′ −m,n ′′ (k 1 R ji ) e 
j k 1 s ⊥ ·R ji ⊥ 

× e η(z j ) d 

2 
R ji ⊥ 
] 

d z j 

= 

2 π j n 
′′ 

k 1 k 1 z 
Y m 

′ −m,n ′′ ( ̂
 k 1 s ) 

∫ z i −2 a 

0 

e j k 1 z (z i −z j ) e η(z j ) d z j . 

(200) 

3. The plane z = z j crosses the sphere D 2 a ( R i ) when z j ranges in

the interval of integration. Using the integral representation

of the cylindrical Bessel functions 

J n (x ) = 

1 

2 π j n 

∫ 2 π

0 

e j nϕ e j x cos ϕ d ϕ, (201)

we find 

I(z i ; e η) = 

∫ min (z i +2 a,H) 

max (0 ,z i −2 a ) 

{ ∫ ∞ 

ρ0 (z ji ) 

[ ∫ 2 π

0 

u 

3 
m 

′ −m,n ′′ (k 1 R ji , θ ji , ϕ ji ) 

× e j k 1 s ⊥ ρ ji cos (ϕ ji −ϕ 0 ) d ϕ ji 

] 
ρ ji d ρ ji 

} 
e η(z j ) d z j 

= 2 π j m 

′ −m e j(m 

′ −m ) ϕ 0 

∫ min (z i +2 a,H) 

max (0 ,z i −2 a ) 

×
[ ∫ ∞ 

ρ0 (z ji ) 
h n ′′ 
(

k 1 

√ 

ρ2 
ji 

+ z 2 
ji 

)
P 

| m 

′ −m | 
n ′′ 

⎛ ⎝ 

z ji √ 

ρ2 
ji 

+ z 2 
ji 

⎞ ⎠ 

× J m 

′ −m 

(
k 1 s ⊥ ρ ji 

)
ρ ji d ρ ji 

] 
e η(z j ) d z j , (202) 

where ( R ji , θ ji , ϕji ) and ( z ji , ρ ji , ϕji ) are the spherical and the

cylindrical coordinates of R ji , respectively, z ji = z j − z i , R ji =√ 

ρ2 
ji 

+ z 2 
ji 
, cos θ ji = z ji / 

√ 

ρ2 
ji 

+ z 2 
ji 
, and 

ρ0 (z ji ) = 

√ 

4 a 2 − (z j − z i ) 2 . 

In the last case, the main problem which has to be solved is

he computation of the integral over ρ ji . This computational aspect

s discussed in Appendix C. The integral equation can then be dis-

retized at equally spaced points z i in the interval [0, H ], and the

ntegrals over z j in Eqs. (198) , (200) , and (202) can be computed,

or example, by the use of Simpson’s quadrature and by assum-

ng that e η(z) varies linearly between the points of discretization

 i [32] . 

.2. Result 2 

Gower et al. [35] suggested that in general there is not only

ne effective wavenumber K = K 1 , but there is a series of effec-

ive wavnumbers K 1 , K 2 , ..., K N K 
in a discrete random medium. The
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majority of these waves are highly attenuating, i.e., K p often has

a large imaginary part for p > 1, so that the least attenuating, say

K 1 , will dominate the coherent field inside the particulate medium.

However, through a numerical analysis, it is has been shown that

these waves can make a significant contribution to the reflection

and transmission of the layer beyond the low-frequency regime.

The analysis in Ref. [35] is performed for the scalar wave equa-

tion in two spatial dimensions, and considers particles placed in a

semi-infinite medium. In the following, we extend this idea to the

case of electromagnetic scattering by a discrete random layer. For

the effective wavenumbers K p with p = 1 , . . . , N K , we assume the

solution representation 〈
e iη
〉
i 
(R i ) = 

N K ∑ 

p=1 

∑ 

b= ±
e j K pb ·R i e pbη, (203)

where 

K pb = K ⊥ + bK pz (K ⊥ ) ̂ z , (204)

K pz (K ⊥ ) = 

√ 

K 

2 
p − K 

2 
⊥ . (205)

In addition, we suppose that the representation (203) is valid for

all z i in D even in the critical domains 0 ≤ z i < 2 a and H − 2 a < z i ≤
H. Repeating the steps of our previous derivation, we find that the

generalized Lorenz–Lorentz law and the generalized Ewald–Oseen

extinction theorem become 

e pbη = n 0 [ J 
b 
1 a (K p ) + J b 2 a (K p )] Te pbη, (206)

and 

e 0 η + n 0 

N K ∑ 

p=1 

∑ 

b= ±
J b 2 z 0 (K p ) Te pbη = 0 , (207)

N K ∑ 

p=1 

∑ 

b= ±
e j bK pz H J b 2 z H (K p ) Te pbη = 0 , (208)

respectively. Here, the dependency of the matrices J b 
1 a 

, J b 
2 a 

, J b 
2 z 0 

,

and J b 
2 z H 

on the effective wavenumber K p is indicated explic-

itly. Thus, the homogenous system of equations of the gener-

alized Lorenz–Lorentz law remains unchanged, and the effective

wavenumbers K 1 , K 2 , ..., K N K 
are the solutions of the disper-

sion equation (163) . To reduce the systems of equations of the

generalized Ewald–Oseen extinction theorem to two polarization-

dependent scalar equations, we set e pbη = [ e 1 
pbηmn 

, e 2 
pbηmn 

] T , 

e 1 pbηmn = 4 π j n ̂ η( ̂  s pb ) · m −mn ( ̂  s pb ) x 
1 
pbηn , (209)

e 2 pbηmn = −4 π j n +1 
̂ η( ̂  s pb ) · n −mn ( ̂  s pb ) x 

2 
pbηn , (210)

where K p ̂  s pb = k 1 s ⊥ + bK pz ̂ z and K pz = 

√ 

K 

2 
p − k 2 

1 s ⊥ . Then, we ob-

tain 

1 = −j 
8 π2 n 0 

k 1 k 1 z 

N K ∑ 

p=1 

∑ 

b= ±

b 

K pz − bk 1 z 

∑ 

n 

χn 

√ 

n (n + 1) 

×
[
M n ( ̂  s ·̂ s pb ) T 

1 
n x 

1 
pbθn − N n ( ̂  s ·̂ s pb ) T 

2 
n x 

2 
pbθn 

]
, (211)

0 = 

N K ∑ 

p=1 

∑ 

b= ±

b 

K pz + bk 1 z 
e j bK pz H 

∑ 

n 

χn 

√ 

n (n + 1) 

×
[
M n ( ̂  s R ·̂ s pb ) T 

1 
n x 

1 
pbθn − N n ( ̂  s R ·̂ s pb ) T 

2 
n x 

2 
pbθn 

]
(212)
t  
or a θ-polarized incidence, and 

 = j 
8 π2 n 0 

k 1 k 1 z 

N K ∑ 

p=1 

∑ 

b= ±

b 

K pz − bk 1 z 

∑ 

n 

χn 

√ 

n (n + 1) 

×
[
N n ( ̂  s ·̂ s pb ) T 

1 
n x 

1 
pbϕn − M n ( ̂  s ·̂ s pb ) T 

2 
n x 

2 
pbϕn 

]
, (213)

 = 

N K ∑ 

p=1 

∑ 

b= ±

b 

K pz + bk 1 z 
e j bK pz H 

∑ 

n ′ 
χn 

√ 

n (n + 1) 

×
[
N n ( ̂  s R ·̂ s pb ) T 

1 
n x 

1 
pbϕn − M n ( ̂  s R ·̂ s pb ) T 

2 
n x 

2 
pbϕn 

]
(214)

or a ϕ-polarized incidence. The scalar equations (211) and (212) ,

s well as the scalar equations (213) and (214) , have 2 N K unknowns

2 scalars for each wavenumber K p with p = 1 , . . . , N K ). Thus, the

nly option to determine e pbη (under the assumption that the rep-

esentation (203) is valid for all z i in D ) is to solve these equations

n the least squares sense. 

.3. Result 3 

For the acoustic scattering by parallel identical circular cylin-

ers randomly distributed in a semi-infinite medium, Linton and

artin [36] considered a more general solution representation

han in Eq. (139) . In the case of electromagnetic scattering by a

iscrete random layer, this representation is 

e iη
〉
i 
(R i ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

e j K ⊥ ·R i ⊥ e + η(z i ) , ∑ 

b= ± e j K b ·R i e bη, 

e j K ⊥ ·R i ⊥ e −η(z i ) , 

0 ≤ z i ≤ h, 

h ≤ z i ≤ H − h, 

H − h ≤ z i ≤ H, 

(215)

ith a sufficiently large h . Thus, we do not assume that the condi-

ional configuration-averaged exciting field coefficients are propor-

ional to exp (j K b · R i ) everywhere inside the domain D , but only in

he domain h ≤ z i ≤ H − h away from the boundary. Defining the

lane-parallel domains 

 

+ 
h 

= 

{
(x, y, z) | x, y ∈ R 

2 , 0 ≤ z ≤ h 

}
, (216)

 h = { (x, y, z) | x, y ∈ R 

2 , h ≤ z ≤ H − h } , (217)

 

−
h 

= 

{
(x, y, z) | x, y ∈ R 

2 , H − h ≤ z ≤ H 

}
, (218)

nd substituting Eq. (215) in Eq. (138) gives for h + 2 a ≤ z i ≤ H −
 − 2 a, ∑ 

= ±
e j K b ·R i e bη = e j k 1 s ·R i e 0 η + n 0 

∑ 

b= ±

∫ 
D h −D 2 a (R i ) 

Q (−k 1 R ji ) 

× e j K b ·R j e bηg(R ji ) d 

3 
R j 

+ n 0 

∑ 

b= ±

∫ 
D b 

h 

Q (−k 1 R ji ) e 
j K ⊥ ·R j⊥ e bη(z j ) d 

3 
R j . (219)

ere, it is assumed that for R j ∈ D 

b 
h 

and R i ∈ D h , we can ap-

roximate g ( R ij ) ≈ 1 (eventually, we can restrict z i to the domain

 + 2 a ≤ H min ≤ z i ≤ H max ≤ H − h − 2 a, and choose H min and H max 

uch that this approximation is valid). Consider the last integral in

q. (219) which we denote by j b (R i ; e bη) , that is, 

 

b (R i ; e bη) = 

∫ 
D b 

h 

T T 31 (−k 1 R ji ) e 
j K ⊥ ·R j⊥ T e bη(z j ) d 

3 
R j . (220)

aking into account the representations of the elements of

he translation matrix as given by Eqs. (80) –(82) , and setting
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Fig. 10. The approximations I J 
04 

(z) for ka = 10 , k = 10 μm 

−1 , z = 0 . 5 a, H = j H a with j H = 100 , and ρmax = j ρmax a with j ρmax = 300 . The wavenumber is k + j ε, the incidence 

angle is θ0 , and the dotted line in the upper right plot corresponds to the value of I 04 ( z ) computed by means of Eq. (283) . 
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 bη(z i ) = [ e 1 bηmn (z i ) , e 
2 
bηmn (z i )] T , we see that the computation of

he vector j b (R i ; e bη) requires the computation of the integral 

 

b (R i ; e bη) = e j K ⊥ ·R i ⊥ 
∫ 

D b 
h 

u 

3 
m 

′ −m,n ′′ (k 1 R ji ) e 
j K ⊥ ·R ji ⊥ 

× e 
α
bηm 

′ n ′ (z j ) d 

3 
R ji (221) 

ith α = 1 , 2 . For the integral over D 

+ 
h 

(the case z i > z j ) we use the

ntegral representations of the radiating spherical waves in terms

f plane waves as given by Eq. (199) , while for the integral over

 

−
h 

(the case z i < z j ), we use the integral representation (197) . We

btain 

 

b (R i ; e bη) = 

2 π

kk 1 z (K ⊥ ) 
j n 

′′ 
e j K ⊥ ·R i ⊥ e j bk 1z (K ⊥ ) z i 

× Y m 

′ −m,n ′′ ( ̂
 k 

b ) K 

bα
m 

′ n ′ (K ⊥ ; e bη) , (222) 

here 

 

+ α
m 

′ n ′ (K ⊥ ; e + η) = 

∫ h 

0 

e −j k 1z (K ⊥ ) z j e 
α
+ ηm 

′ n ′ (z j ) d z j , (223) 

 

−α
m 

′ n ′ (K ⊥ ; e −η) = 

∫ H 

H−h 

e j k 1z (K ⊥ ) z j e 
α
−ηm 

′ n ′ (z j ) d z j , (224) 

nd k 

+ and k 

− are given by Eqs. (104) and (108) , respectively. This

artial result yields 

 

b 
(
R i ; e bη

)
= e j K ⊥ ·R i ⊥ e j bk 1z (K ⊥ ) z i j b z 

(
R i ; e bη

)
, (225) 

here for 

 

b 
z 

(
R i ; e bη

)
= 

[ (
j b z 
(
R i ; e bη

))1 

mn (
j b z 
(
R i ; e bη

))2 

mn 

] 

, (226) 

e have 

j b z 
(
R i ; e bη

))1 

mn 
= 

2 π

kk 1 z (K ⊥ ) 

∑ 

m 

′ n ′ n ′′ 
c nn ′ (−1) n 

′′ 
Y m 

′ −m,n ′′ ( ̂
 k 

b ) 

×
[
a 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )T 1 n ′ K 

b1 
m 

′ n ′ 
(
K ⊥ ; e bη

)
+ b 1 

(
−m, n | − m 

′ , n 

′ | n 

′′ )T 2 n ′ K 

b2 
m 

′ n ′ 
(
K ⊥ ; e bη

)]
(227) 

nd 

j b z 
(
R i ; e bη

))2 

mn 
= 

2 π

kk 1 z (K ⊥ ) 

∑ 

m 

′ n ′ n ′′ 
c nn ′ (−1) n 

′′ 
Y m 

′ −m,n ′′ ( ̂
 k 

b ) 
×
[
b 1 
(
−m, n | − m 

′ , n 

′ | n 

′′ )T 1 n ′ K 

b1 
m 

′ n ′ 
(
K ⊥ ; e bη

)
+ a 1 

(
−m, n | − m 

′ , n 

′ | n 

′′ )T 2 n ′ K 

b2 
m 

′ n ′ 
(
K ⊥ ; e bη

)]
. (228) 

he integral over the domain D h − D 2 a (R i ) is computed as before;

he difference is that now, the integral representations (93) and

94) are applied on the planes z j = h and z j = H − h, respectively.

hen, by separating the upward and downward propagating waves

n Eq. (219) , and by balancing the waves with the wavenumbers

 1 and K , we find that the equations of the generalized Lorenz–

orentz law remain unchanged, while the equations of the gen-

ralized Ewald–Oseen extinction theorem become (compare with

qs. (175) and (176) ) 

 0 η + n 0 e 
−j k 1z h 

∑ 

b= ±
J b 2 z 0 Te bη + n 0 j 

+ 
z (R i ; e + η) = 0 , (229) 

 

j k 1z (H−h ) 
∑ 

b= ±
e j bK z H J b 2 z H Te bη + j −z (R i ; e −η) = 0 . (230) 

Thus, we obtain the dispersion Eq. (163) without knowing the

ehavior of 
〈
e iη
〉
i 
(R i ) in the domains 0 ≤ z ≤ h and H − h ≤ z ≤ H,

hich include the critical domains. In fact, the length h needs not

e specified if only the calculation of the effective wavenumber is

equired. 

If we take h = 0 in Eqs. (229) and (230) , then the equations

f the generalized Ewald–Oseen extinction theorem are given by

qs. (175) and (176) . This approximation was used by Martin [37] .

o compute the coherent field. To solve the problem in the case

 ≥ 2 a , we write the integral equation (138) in the domains D 

c 
h 
,

 = ±, and obtain 

 cη(z i ) = e j k 1 z z i e 0 η + n 0 

∑ 

b= ±

∫ 
D h −D 2 a (R i ) 

Q 

(
−k 1 R ji 

)
× e j k 1 s ⊥ ·R ji ⊥ e j bK z z j e bηg 

(
R ji 

)
d 

3 
R j 

+ n 0 

∫ 
D (−c) 

h 

Q 

(
−k 1 R ji 

)
e j k 1 s ⊥ ·R ji ⊥ e (−c) η

(
z j 
)

d 

3 
R j 

+ n 0 

∫ 
D c 

h 
−D 2 a ( R i ) 

Q 

(
−k 1 R ji 

)
e j k 1 s ⊥ ·R ji ⊥ e cη

(
z j 
)
g 
(
R ji 

)
d 

3 
R j . (231) 

or the hole-correction approximation, these integral equations can

e discretized by employing the same approach as for the inte-

ral equation (195) . The derived systems of equations are then
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solved together with the system of equations resulting from the

discretization of Eqs. (229) and (230) . The final system of equa-

tions for the two scalars (which provide the coefficients x 1 , 2 
bηn 

of e bη)

and the discrete values e cη(z i ) is determined if the equations of the

generalized Ewald–Oseen extinction theorem (229) and (230) can

be reduced to two scalar equations; otherwise it is overdeter-

mined. The answer to this question is an ongoing project of the

authors. However, if the system of equations is overdetermined

then it can be solved in the least squares sense with or without

regularization. The regularization term may involve a diagonal ma-

trix in order to control the magnitude of the two unknown scalars,

and the first-order finite difference operator in order to control the

smoothness of the discrete solutions e cη(z i ) . 

Finally, we note that as in Ref. [35] , the solution representation

for 
〈
e iη
〉
i 
(R i ) in the domain h ≤ z i ≤ H − h can be assumed to be

that of Eq. (203) . In this case, we are led to (i) the generalized

Lorenz–Lorentz law, as given by Eq. (206) ; (ii) the following equa-

tions of the generalized Ewald–Oseen extinction theorem: 

e 0 η + n 0 e 
−j k 1z h 

N K ∑ 

p=1 

∑ 

b= ±
J b 2 z 0 (K p ) Te pbη + n 0 j 

+ 
z (R i ; e + η) = 0 , (232)

e j k 1z (H−h ) 
N K ∑ 

p=1 

∑ 

b= ±
e j bK pz H J b 2 z H (K p ) Te pbη + j −z (R i ; e −η) = 0 ; (233)

and (iii) an overdetermined system of equations for the 2 N K scalars

(which determine the coefficients x 1 , 2 
pbηn 

of e pbη for p = 1 , . . . , N K )

and the discrete values e cη(z i ) . 
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Appendix A 

The normalized associated Legendre functions are given by 

P 
| m | 
n (x ) = ξmn ̃

 P 
| m | 
n (x ) , (234)

where 

˜ P m 

n ( x ) = 

(
1 − x 2 

)m/ 2 d 

m 

d x m ̃

 P n ( x ) = 

(
1 − x 2 

)m/ 2 

2 

n n ! 

d 

m + n 

d x m + n 
(
x 2 − 1 

)n 

are the conventional associated Legendre functions defined for

positive and negative values of the azimuthal index m , and 

ξmn = 

√ 

2 n + 1 

2 

· (n − | m | )! 

(n + | m | )! 
(235)

is a normalization constant. The angular functions π | m | 
n (θ ) and

τ | m | 
n (θ ) are given respectively, by 

π | m | 
n (θ ) = 

P 
| m | 
n ( cos θ ) 

sin θ
, (236)

τ | m | 
n (θ ) = 

d 

P 
| m | 
n ( cos θ ) , (237)
d θ
nd we have the orthogonality relations 

 π

0 

P 
| m | 
n ( cos θ ) P | m | 

n ′ ( cos θ ) sin θd θ = δnn ′ , (238)

 π

0 

[ 
τ | m | 

n (θ ) τ | m | 
n ′ (θ ) + m 

2 π | m | 
n (θ ) π | m | 

n ′ (θ ) 
] 

× sin θd θ = n (n + 1) δnn ′ , (239)

 π

0 

[ 
π | m | 

n (θ ) τ | m | 
n ′ (θ ) + τ | m | 

n (θ ) π | m | 
n ′ (θ ) 

] 
sin θd θ = 0 . (240)

The three normalized vector spherical harmonics are defined

y 

 mn (θ, ϕ) = 

1 √ 

2 π
Y mn (θ, ϕ) ̂  r , (241)

 mn (θ, ϕ) = 

1 √ 

2 πn (n + 1) 

[ 
τ | m | 

n (θ ) ̂ θ( ̂  r ) + j mπ | m | 
n (θ ) ̂ ϕ ( ̂  r ) 

] 
e j mϕ , 

(242)

 mn (θ, ϕ) = 

1 √ 

2 πn (n + 1) 

[ 
j mπ | m | 

n (θ ) ̂ θ( ̂  r ) − τ | m | 
n (θ ) ̂ ϕ ( ̂  r ) 

] 
e j mϕ , 

(243)

here ( θ , ϕ) are the spherical angles of the direction ̂

 r , and 

 mn (θ, ϕ) = P 
| m | 
n ( cos θ ) e j mϕ 

re the (normalized) spherical harmonics. They satisfy the orthog-

nality relation 

 2 π

0 

∫ π

0 

v αmn (θ, ϕ) · v 
β
−m 

′ n ′ (θ, ϕ) sin θd θd ϕ = δαβδmm 

′ δnn ′ , (244)

here α, β = 1 , 2 , 3 , v 1 mn (θ, ϕ) = l mn (θ, ϕ) , v 2 mn (θ, ϕ) = n mn (θ, ϕ) ,

nd v 3 mn (θ, ϕ) = m mn (θ, ϕ) . 

The normalized vector spherical wave functions are defined

y 

 

1 , 3 
mn (k r ) = 

[
z 1 , 3 n (kr) 

]′ 
l mn (θ, ϕ) + 

√ 

n (n + 1) 
z 1 , 3 n (kr) 

kr 
n mn (θ, ϕ) , 

(245)

 

1 , 3 
mn (k r ) = z 1 , 3 n (kr) m mn (θ, ϕ) , (246)

 

1 , 3 
mn (k r ) = 

√ 

n (n + 1) 
z 1 , 3 n (kr) 

kr 
l mn (θ, ϕ) + 

[
krz 1 , 3 n (kr) 

]′ 
kr 

n mn (θ, ϕ) ,

(247)

here u 1 , 3 mn (k r ) = z 1 , 3 n (kr) Y mn (θ, ϕ) are the spherical wave func-

ions, z 1 n (kr) stands for the spherical Bessel functions j n ( kr ),

 

3 
n (kr) stands for the spherical Hankel functions of the first kind

 

( 1 ) 
n (kr) , 

z 1 , 3 n (kr) 
]′ = 

d 

d (kr) 

[
z 1 , 3 n (kr) 

]
nd 

krz 1 , 3 n (kr) 
]′ = 

d 

d (kr) 

[
krz 1 , 3 n (kr) 

]
= 

d 

d r 

[
rz 1 , 3 n (kr) 

]
. 
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[

∑
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∑
 

∑
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ϕ∑
The symmetry relation 

 

| m | 
n (− cos θ ) = ( −1 ) 

n −| m | P | m | 
n ( cos θ ) , (248)

ields 

| m | 
n (π − θ ) = ( −1 ) 

n −| m | π | m | 
n ( θ ) , (249) 

| m | 
n (π − θ ) = ( −1 ) 

n −| m | +1 τ | m | 
n ( θ ) . (250) 

y virtue of Eqs. (248) , (249) , and (250) , and the relations ̂ θ(−̂  r ) =
̂ ( ̂  r ) and 

̂ ϕ (−̂  r ) = −̂ ϕ ( ̂  r ) , we get 

 mn (−̂  r ) = (−1) n +1 l mn ( ̂  r ) , (251) 

 mn (−̂  r ) = (−1) n m mn ( ̂  r ) , (252) 

 mn (−̂  r ) = (−1) n +1 n mn ( ̂  r ) , (253) 

nd moreover, 

 

3 
mn (−k 1 r ) = (−1) n M 

3 
mn (k 1 r ) , (254) 

 

3 
mn (−k 1 r ) = (−1) n +1 N 

3 
mn (k 1 r ) . (255) 

ppendix B 

The addition theorem for vector spherical harmonics can be ob-

ained from the addition theorem for scalar spherical harmonics 

 n ( cos �) = 

n ∑ 

m = −n 

√ 

2 

2 n + 1 

P 
| m | 
n ( cos θ ) P | m | 

n ( cos θ ′ ) e j m (ϕ −ϕ ′ ) , (256)

here 

os � = cos θ cos θ ′ + sin θ sin θ ′ cos (ϕ − ϕ 

′ ) . 
sing the identities 

∂ 2 P n 
∂ θ∂ θ ′ = P ′′ n (x ) 

[ ̂ θ( ̂  k ) ·̂ k 

′ 
] [ ̂ k ·̂ θ( ̂  k 

′ ) 
] 

+ P ′ n ( x ) 
[ ̂ θ( ̂  k ) ·̂ θ( ̂  k 

′ ) 
] 
, 

(257) 

1 

sin θ ′ 
∂ 2 P n 

∂ θ∂ ϕ 

′ = P ′′ n (x ) 
[ ̂ θ( ̂  k ) ·̂ k 

′ 
] [̂ k · ̂ ϕ ( ̂  k 

′ ) 
]
+ P ′ n ( x ) 

[ ̂ θ( ̂  k ) · ̂ ϕ ( ̂  k 

′ ) 
] 
, 

(258) 

1 

sin θ

∂ 2 P n 
∂ ϕ∂ θ ′ = P ′′ n (x ) 

[̂ ϕ ( ̂  k ) ·̂ k 

′ ][ ̂ k ·̂ θ( ̂  k 

′ ) 
] 

+ P ′ n ( x ) 
[ ̂ ϕ ( ̂  k ) ·̂ θ( ̂  k 

′ ) 
] 
,

(259) 

1 

sin θ sin θ ′ 
∂ 2 P n 

∂ ϕ∂ ϕ 

′ = P ′′ n (x ) 
[̂ ϕ ( ̂  k ) ·̂ k 

′ ][̂ k · ̂ ϕ ( ̂  k 

′ ) 
]

+ P ′ n (x ) 
[̂ ϕ ( ̂  k ) · ̂ ϕ ( ̂  k 

′ ) 
]
, (260) 

ith ̂

 k = ̂

 k (θ, ϕ) , ̂  k 

′ = ̂

 k 

′ (θ ′ , ϕ 

′ ) , and x = ̂

 k ·̂ k 

′ = cos �, we obtain

5,23] 

 

m 

l mn ( ̂  k ) � l −mn ( ̂  k 

′ ) = 

1 

2 π

√ 

2 n + 1 

2 

P n (x ) ̂  k �
̂ k 

′ , (261) 

 

m 

l mn ( ̂  k ) � m −mn ( ̂  k 

′ ) = χn 

[ 
1 

sin θ ′ 
∂P n 

∂ϕ 

′ ̂
 k �
̂ θ( ̂  k 

′ ) −∂P n 

∂θ ′ ̂
 k � ̂ ϕ ( ̂  k 

′ ) 
]

(262) 

 

m 

l mn ( ̂  k ) � n −mn ( ̂  k 

′ ) = χn 

[ 
∂P n 

∂θ ′ ̂
 k �
̂ θ( ̂  k 

′ ) + 

1 

sin θ ′ 
∂P n 

∂ϕ 

′ ̂
 k � ̂ ϕ ( ̂  k 

′ ) 
] 
,

(263) 
 

m 

m mn ( ̂  k ) � l −mn ( ̂  k 

′ ) = χn 

[ 
1 

sin θ

∂P n 

∂ϕ ̂

 θ( ̂  k ) �̂ k 

′ −∂P n 

∂θ
̂ ϕ ( ̂  k ) �̂ k 

′ 
] 
,

(264) 

 

m 

n mn ( ̂  k ) � l −mn ( ̂  k 

′ ) = χn 

[ 
∂P n 

∂θ
̂ θ( ̂  k ) �̂ k 

′ + 

1 

sin θ

∂P n 

∂ϕ ̂

 ϕ ( ̂  k ) �̂ k 

′ 
] 
, 

(265) 

nd 

 

m 

m mn ( ̂  k ) � m −mn ( ̂  k 

′ ) = χn 

[ 
1 

sin θ sin θ ′ 
∂ 2 P n 

∂ ϕ∂ ϕ 

′ ̂
 θ( ̂  k ) �̂ θ( ̂  k 

′ ) 

− 1 

sin θ

∂ 2 P n 
∂ ϕ∂ θ ′ ̂

 θ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 

− 1 

sin θ ′ 
∂ 2 P n 

∂ θ∂ ϕ 

′ ̂  ϕ ( ̂  k ) �̂ θ( ̂  k 

′ ) 

+ 

∂ 2 P n 
∂ θ∂ θ ′ ̂  ϕ ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 
] 
, (266) 

 

m 

n mn ( ̂  k ) � n −mn ( ̂  k 

′ ) = χn 

[ 
∂ 2 P n 

∂ θ∂ θ ′ ̂
 θ( ̂  k ) �̂ θ( ̂  k 

′ ) 

+ 

1 

sin θ ′ 
∂ 2 P n 

∂ θ∂ ϕ 

′ ̂
 θ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 

+ 

1 

sin θ

∂ 2 P n 
∂ ϕ∂ θ ′ ̂  ϕ ( ̂  k ) �̂ θ( ̂  k 

′ ) 

+ 

1 

sin θ sin θ ′ 
∂ 2 P n 

∂ ϕ∂ ϕ 

′ ̂  ϕ ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 
] 
, 

(267) 

 

m 

m mn ( ̂  k ) � n −mn ( ̂  k 

′ ) = χn 

[ 
1 

sin θ

∂ 2 P n 
∂ ϕ∂ θ ′ ̂

 θ( ̂  k ) �̂ θ( ̂  k 

′ ) 

+ 

1 

sin θ sin θ ′ 
∂ 2 P n 

∂ ϕ∂ ϕ 

′ ̂
 θ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 

− ∂ 2 P n 
∂ θ∂ θ ′ ̂  ϕ ( ̂  k ) �̂ θ( ̂  k 

′ ) 

− 1 

sin θ ′ 
∂ 2 P n 

∂ θ∂ ϕ 

′ ̂  ϕ ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 
] 
, (268) 

 

m 

n mn ( ̂  k ) � m −mn ( ̂  k 

′ ) = χn 

[ 
1 

sin θ ′ 
∂ 2 P n 

∂ θ∂ ϕ 

′ ̂
 θ( ̂  k ) �̂ θ( ̂  k 

′ ) 

− ∂ 2 P n 
∂ θ∂ θ ′ ̂

 θ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 

+ 

1 

sin θ sin θ ′ 
∂ 2 P n 

∂ ϕ∂ ϕ 

′ ̂  ϕ ( ̂  k ) �̂ θ( ̂  k 

′ ) 

− 1 

sin θ

∂ 2 P n 
∂ ϕ∂ θ ′ ̂  ϕ ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 
] 
, (269) 

here 

n = 

1 

2 πn (n + 1) 

√ 

2 n + 1 

2 

. (270) 

The addition theorem for vector spherical harmonics in the case

 = ϕ 

′ becomes 

 

m 

m mn ( ̂  k ) � m −mn ( ̂  k 

′ ) = χn 

[ 
1 

sin θ sin θ ′ 
∂ 2 P n (x ) 

∂ϕ 

2 
̂ θ( ̂  k ) � ̂ θ( ̂  k 

′ ) 

+ 

∂ 2 P n (x ) 

∂ θ∂ θ ′ ̂ ϕ ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 
] 
, (271) 
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∑ 

m 

n mn ( ̂  k ) � n −mn ( ̂  k 

′ ) = χn 

[ 
∂ 2 P n (x ) 

∂ θ∂ θ ′ 
̂ θ( ̂  k ) � ̂ θ( ̂  k 

′ ) 

+ 

1 

sin θ sin θ ′ 
∂ 2 P n (x ) 

∂ϕ 

2 
̂ ϕ ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 
] 
, 

(272)

∑ 

m 

m mn ( ̂  k ) � n −mn ( ̂  k 

′ ) = χn 

[ 
1 

sin θ sin θ ′ 
∂ 2 P n (x ) 

∂ϕ 

2 
̂ θ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 

− ∂ 2 P n (x ) 

∂ θ∂ θ ′ ̂ ϕ ( ̂  k ) � ̂ θ( ̂  k 

′ ) 
] 
, (273)

∑ 

m 

n mn ( ̂  k ) � m −mn ( ̂  k 

′ ) = χn 

[ 
−∂ 2 P n (x ) 

∂ θ∂ θ ′ 
̂ θ( ̂  k ) � ̂ ϕ ( ̂  k 

′ ) 

+ 

1 

sin θ sin θ ′ 
∂ 2 P n (x ) 

∂ϕ 

2 
̂ ϕ ( ̂  k ) � ̂ θ( ̂  k 

′ ) 
] 
, 

(274)

where P n (x ) = P 0 n (x ) are the Legendre polynomials and x = ̂

 k ·̂ k 

′ =
cos (θ − θ ′ ) . By means of the recurrence relations for the associated

Legendre functions, the partial derivatives in Eqs. (271) –(274) can

be readily computed; they are given by 

1 

sin θ sin θ ′ 
∂ 2 P n (x ) 

∂ϕ 

2 
= 

√ 

n (n + 1) M n ( ̂  k ·̂ k 

′ ) , (275)

∂ 2 P n (x ) 

∂ θ∂ θ ′ = −
√ 

n (n + 1) N n ( ̂  k ·̂ k 

′ ) , (276)

where 

M n ( ̂  k ·̂ k 

′ ) = π1 
n (x ) , (277)

N n ( ̂  k ·̂ k 

′ ) = xπ1 
n (x ) −

√ 

n (n + 1) P n (x ) , (278)

and π1 
n (x ) = P 1 n (x ) / 

√ 

1 − x 2 . 

Appendix C 

Consider the integral 

I mn (z) = k 2 
∫ ∞ 

√ 

a 2 −z 2 
h n 

(
k 
√ 

ρ2 + z 2 
)

P 
| m | 
n 

( 

z √ 

ρ2 + z 2 

) 

J m 

(kηρ) ρ d ρ, 

(279)

where η = sin θ0 . As compared to Eq. (202) , note the mild change

in notation 2 a → a . 

Using the result [38] 

−1 

k 

∂ 

∂z 
u 

3 
mn = 

√ 

(n + 1) 2 − m 

2 

(2 n + 1)(2 n + 3) 
u m,n +1 −

√ 

n 

2 − m 

2 

4 n 

2 − 1 

u m,n −1 , 

(280)

the following recurrence relation 

I m,n +1 (z) = 

√ 

(2 n + 1)(2 n + 3) 

(n + 1) 2 −m 

2 
(kz) h n (ka ) P | m | 

n 

(
z 

a 

)
J m 

(
kη
√ 

a 2 −z 2 
)

−
√ 

(2 n + 1)(2 n + 3) 

(n + 1) 2 − m 

2 

1 

k 
I ′ mn (z) 

+ 

√ 

(2 n + 3)(n 

2 − m 

2 ) 

(2 n − 1) [ (n + 1) 2 − m 

2 ] 
I m,n −1 (z) (281)
eadily follows. For normal incidence, we have η = 0 , and from

 m 

(0) = 1 for m = 0 and J m 

(0) = 0 for m ≥ 1, we get m = 0 . In this

ase, Eq. (281) becomes 

 0 ,n +1 (z) = 

√ 

(2 n + 1)(2 n + 3) 

n + 1 

(kz) h n (ka ) P n 

(
z 

a 

)
−
√ 

(2 n + 1)(2 n + 3) 

n + 1 

1 

k 
I ′ 0 n (z) 

+ 

n 

n + 1 

√ 

2 n + 3 

2 n − 1 

I 0 ,n −1 (z) , (282)

nd as shown by Kristensson [33,34] , the recurrence (282) has a

urprisingly and elegant solution given by 

 0 n (z) = −(ka ) h n +1 (ka ) P n 

(
k 

a 

)
+ 

[ n/ 2] ∑ 

l=0 

(−1) l 
√ 

(2 n + 1)(2 n − 4 l + 1) h n −2 l ( ka ) P n −2 l 

(
z 

a 

)
. 

(283)

he derivation given in Ref. [34] uses the fact that the term pro-

ortional to ( kz ) P n ( z / a ) on the right-hand side of Eq. (282) implies

hat I 0 n ( z ) is a polynomial in z of the order n , so that I 0 n ( z ) can be

xpressed as a finite series of Legendre polynomials, i.e., 

 0 n (z) = 

[ n/ 2] ∑ 

l=0 

a nl P n −2 l 

(
z 

a 

)
. (284)

nfortunately, for oblique incidence, the term which is propor-

ional to 

(kz) P | m | 
n (z/a ) J m 

(
kη
√ 

a 2 − z 2 
)

n the right-hand side of Eq. (281) does not lead to this conclu-

ion. For this reason, the method presented in Ref. [34] cannot be

pplied directly, and more effort should be made to design an an-

lytical method for computing the integral I mn ( z ). 

However, the integral I mn ( z ) can be numerically estimated by

omputing the approximations 

 

1 
mn (z) = 

∫ H 

√ 

a 2 −z 2 
f mn (z, ρ) d ρ, (285)

 

J 
mn (z) = 

∫ H 

√ 

a 2 −z 2 
f mn (z, ρ) d ρ + 

J ∑ 

j=2 

∫ jH 

( j−1) H 
f mn (z, ρ) d ρ, J ≥ 2 

(286)

y means of Romberg integration. Here, f mn ( z , ρ) stands for the in-

egrand in Eq. (279) , and H is the length of each integration in-

erval. In order to increase the numerical efficiency, the asymp-

otic representations for the spherical Hankel and cylindrical Bessel

unctions 

 n (x ) = 

1 

x 
e j(x − n +1 

2 π) with x = k 
√ 

ρ2 + z 2 , and (287)

 m 

(x ) = 

√ 

2 

πx 
cos 

[ 
x − (2 m + 1) π

4 

] 
with x = kηρ, (288)

an be used for ρ ≥ ρmax with a sufficiently large ρmax , while in

rder to speed up the convergence, a small imaginary part can be

dded to the wavenumber k , i.e., k → k + j ε. As an example, we

llustrate in Fig. 10 the approximations I 
J 
mn (z) in the case m = 0

nd n = 4 for normal and oblique incidence. From these plots we

ee that although J should be large in order to achieve a reasonable

ccuracy, the integral I mn ( z ) can, in principle, be computed by the

bove numerical algorithm. 
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