
The present work was submitted to the Institute of Software and Tools for Computa-
tional Engineering

FMI Based Spacecraft Simulation
Along Life Cycle Phases

Master Thesis

Presented by Sally Bebawi
Matr.-Nr. 384684

Supervised by Prof. Dr. Uwe Naumann
Prof. Dr. Matthias Müller
Philipp Martin Fischer
Markus Flatken

Aachen, May 2, 2019

Contents

I Acknowledgements

II Abstract

1 Introduction 1

2 Literature Review and State of the Art 3
2.1 Spacecraft Systems Engineering . 3
2.2 Spacecraft System Simulation . 4

2.2.1 Functional Engineering Simulators (FES) 6
2.2.2 Software Validation Facilities (SVF) Simulator 6
2.2.3 Spacecraft Simulation Models . 7

2.3 Functional Mock-up Interface based Simulation Framework 8
2.3.1 FMI Variants . 8
2.3.2 Industrial Domains . 10

2.4 Numerical Optimization . 11
2.5 Optimization in the context of Spacecraft Simulations 11

2.5.1 Cost Function . 12
2.5.2 Parameter Sweep Technique . 12
2.5.3 Gradient Descent Search Algorithm 12

3 System Design Methodologies and Implementation 15
3.1 FMI-based Functional Engineering Simulators (FES) 15

3.1.1 System Architecture . 15
3.1.2 Simulator Con�guration (JSON) �le 18
3.1.3 Generalized Simulation Flow . 20

3.2 Design Optimization within the FMI Infrastructure 26
3.2.1 Optimization Goal . 26
3.2.2 Parameter Sweep . 27
3.2.3 Gradient Descent Search . 28

4 Evaluation 34
4.1 Evaluation of the FMI-based Spacecraft Simulator 34

4.1.1 Use Case: Orientation and Charging Control 34
4.1.2 Use Case Results . 35

4.2 Optimization Evaluation of the FMI Spacecraft Simulator 38
4.2.1 Parameter Sweep . 38
4.2.2 Gradient Descent Search . 39

5 Conclusion 43
5.1 Summary . 43
5.2 Future Work . 44

III List of Figures

IV List of Tables

V References

Appendix A Simulation Models

A.1 Julian Date to Time Converter .
A.2 Mean Anomaly .
A.3 Solar Orbit .
A.4 Solar Flux .
A.5 Earth Eclipse .
A.6 Newton's Law of Universal Gravitation .
A.7 Spacecraft Dynamics .
A.8 Solar Panel .
A.9 Sun Sensor .
A.10 Star Tracker (STR) .
A.11 Reaction Wheels (RW) .
A.12 Power Control and Distribution Unit (PCDU)
A.13 Battery .

Appendix B Simulator Source Code

I Acknowledgements

First and foremost, I want to thank God for the strength and encouragement especially during
all the challenging moments in completing this thesis. I am truly grateful for the exceptional
love and grace during this entire journey.

I extend my gratitude for the great deal of support and assistance I received from my super-
visors at RWTH Aachen University throughout the thesis. I would �rst like to thank Prof.
Uwe Naumann whose expertise was invaluable in the formulating of the research topic and
methodology in particular. Moreover, I would also like to thank Prof. Matthias Müller who
has kindly agreed to serve as my second examiner.

Furthermore, I am very grateful for the support and guidance I received from my super-
visors at DLR, Braunschweig. Thus, I would like to express my sincere gratitude for my
supervisors, P. Fischer and M. Flatken, for their valuable guidance. You provided me with
the tools that I needed to choose the right direction and successfully complete my dissertation.

In addition, I would like to thank my family for their wise counsel and sympathetic ear. Fi-
nally, there are my friends, who were of great support in deliberating over our problems and
�ndings, as well as providing happy distraction to rest my mind outside of my research.

Simulations were performed with computing resources granted by the German Aerospace
Center (DLR) under project Virtual Satellite. I am grateful for providing me the opportunity
to conduct my research and dissertation FMI Based Spacecraft Simulation Along Life Cycle
Phases.

II Abstract

In notion of the recently encountered collisions and the crescent population of objects in the
low Earth orbit, a signi�cant motivation arose to develop e�ective and novel techniques to
estimate the behavior and reactions of the spacecraft in a simulation environment. Early
research e�orts have used the Simulation Model Portability (SMP2) space-related standard
in spacecraft simulation development. However, the simulators compatible with this stan-
dard only provide a C++ reference implementation. This thesis proposes utilization of the
so-called Functional Mock-up Interface (FMI) standard in the spacecraft simulation develop-
ment. It provides encapsulation of models and allows co-simulation at early design stages.
Furthermore, this FMI simulator is leveraged to incorporate optimization algorithms within
the FMU infrastructure. Bene�ts of such incorporation are exact determination of the re-
quired components before purchasing and e�ective emulation of a mission maneuver former
to the spacecraft launching. This thesis provides detailed methodologies for developing a FMI
spacecraft simulator and incorporation of the accumulation of Jacobian matrices optimization
technique for sensitivity analysis of the simulation models.

1 Introduction

Simulation Engineering is the �eld of developing a model that imitates the main characteris-
tics and behaviors of a speci�c abstract or physical process or system. Basically, a real-world
system is represented by a model and its operation over time is represented by the simulation.
In other words, software models recreate the hardware behavior when using the real system.
It is impossible to use the hardware components directly due to costs, safety, or operational
constraints. Spacecraft simulation is an integral part of mission planning, operations, train-
ing, and systems engineering [1].

Real-world systems or products function by assembling a variety of parts that communicate
together in a complex way. Thus, creating a virtual product could be done in the same manner
by assembling a variety of models representing the physical laws and control frameworks. The
Functional Mock-up Interface (FMI), developed by Daimler AG, is a standard that has been
used in simulations to represent the operation of a real-world process or system. It is a tool
independent standard to support both model exchange and co-simulation of the implemented
models [11]. The FMI standard in this manner provides a way for model-based development
of systems. FMI has been utilized and adapted by several modeling and simulation software
vendors for vehicle engineering such as the automotive and shipyard industries [13]. The usage
and adaptation of FMI as a standard for automotive embedded world has been previously in-
vestigated [14]. However, investigating it in the aerospace industry has not been investigated
yet.

Basically, Spacecraft missions are managed in so called phases from 0/A to F. Where 0/A
and B focus on the design, Phase C and D focuses on the implementation, and E �nally on
the operation before phase F takes care of the disposal [3]. Mission Concept Simulator (MCS)
and Functional Engineering Simulator (FES) are simulators used early in the design process
around phases 0/A and B which require coarse and more precise models respectively [6, 7].
Furthermore, Software Validation Facilities (SVF) is used later in the process and requires
highly detailed models. Still all simulators have some heritage, and their models are �nally
replaced, bit-by-bit, by real hardware until the real satellite is tested in the loop [7].

The Virtual Satellite tool, developed by DLR, has been used in driving simulator con�gura-
tions. Virtual Satellite is addressing the whole lifecycle of the spacecraft and has successfully
been used in Phase 0/A/B [5]. The �rst task of system engineering is the model-based sys-
tem engineering which could be realized via the Virtual Satellite built upon the Eclipse Java
framework; whereas the implemented FMI simulator in this thesis utilizes the C programming
language. Furthermore, each of the simulation models is encapsulated in a FMU container
and developed via XML-�le and compiled C code [12]. The simulation models implemented
throughout the thesis cover simple environmental and dynamic models, as well as a generic
state machine to simulate equipment, and a generic On Board Computer (OBC) plus interface
models to simulate proper command handling. Simple Orbit models could be used together
with a ground contact model to evaluate optimal navigation scenarios [17].

A basic solution to several scienti�c and engineering problems is the precise calculation of
derivatives for a mathematical model. Based on the chain rule, the computation of these
derivatives or Jacobians can be done by multipying the locally computed derivatives of each
mathematical model [21].

1

The forward vector mode of the Automatic Di�erentiation (AD) [22] can be used to accumu-
late the derivatives. The described optimization approach in computing the Jacobian based
on the chain rule was suggested in [23]. Furthermore, this accumulation approach and a num-
ber of heuristic strategies have been adopted in many scienti�c researches such as [24].

An approach to compute the Jacobian matrices has been described in [25]. The introduced
approach is to evaluate the Jacobian matrices by calculating the chained products of local
extended Jacobians.

Based on the above-mentioned description, the following research questions will be tackled
throughout the thesis.

� Possibility of the incorporation and adaption of the FMI standard in developing a
spacecraft simulation framework.

� Investigating the incorporation of design optimization algorithms and techniques on
basis of accumulation of Adjoint methods within the FMI standard framework.

The thesis is organized as follows. Chapter 1 presents the introduction. Chapter 2 includes
an overview of the spacecraft system engineering and simulation. Furthermore, it introduces
the Functional Mock-up Interface (FMI) based simulation standard framework. In addition
to that, it also gives an overview of the numerical optimization as well as several optimization
algorithms and techniques in the context of spacecraft simulations. The system design and
implementation of the FMI simulator as well as the incorporation of design optimizations into
the simulator are demonstrated in Chapter 3. Furthermore, Chapter 4 presents the evaluation
of the FMI-based simulator and the results from incorporating the optimization techniques
into it. Finally, the thesis is concluded and the future work are suggested in Chapter 5.

2

2 Literature Review and State of the Art

This chapter delves into the literature review required for the thesis work. It is organised as
follows. The �rst section introduces system engineering in the context of spacecraft industry.
The next section contains the standards used in spacecraft system simulation. In addition to
that, an overview of the so-called Functional Mock-up Interface (FMI) with its two variants
and bene�ts of using FMI in the system simulation domain are introduced in the third section.
Finally, design optimization techniques such as the parameters sweeps technique and the
Gradient Descent optimization algorithm are introduced which are essential concepts that are
used in the thesis to investigate the possibility of incorporating design optimization techniques
into the FMI-based spacecraft simulator.

2.1 Spacecraft Systems Engineering

Systems engineering is a �eld that focuses on how to structure and manage complex frame-
works or systems over their life cycles. Model-Based Systems Engineering (MBSE) is a
methodology that focuses on performing systems engineering by utilization and exchange
of domain models. MBSE creates the simulator con�guration. It aims to achieve a fully
integrated system simulation and validation of the integrated system's operations and func-
tionalities [2]. MBSE is developed in many places such as the Virtual Spacecraft Design (VSD)
developed by ESA [4] and Virtual Satellite tool developed by the "Simulation and Software
Technology, Software for Space Systems and Interactive Visualization" team at the German
Aerospace Center (DLR) [5].

System engineering in the spacecraft industry is the process of designing and simulating space-
crafts or spacecraft's subsystem. Space agencies such as the National Aeronautics and Space
Administration (NASA) and the European Space Agency (ESA) are typically responsible for
the development of spacecraft systems. Standard terms and processes have been introduced
and adapted by all partners to ensure unambiguous communication and e�cient usage of all
documents [2].

The life cycle of space systems are managed in so-called phases from 0/A to F [1]. Figure
1 presents the phases as well as the key event of each phase. The key event or outcome of
Phase 0 is the approval of mission concept and feasablility based on advanced studies. The
next phase results in reaching a preliminary agreement regarding the mission and system def-
inition. After that, the approval of a preliminary design and the contract signing is done in
phase B. Realizing this point denotes that the mission formulation is over and the next phase
would advance with the implementation.

Figure 1: Spacecraft Lifecycle Phases

3

Phase C focuses on design and building the spacecraft. The system should be approved for
testing by the end of this phase. The subsequent phase then holds assembly tests and launch
operations before reaching the point where the spacecraft launching is approved. Finally, the
actual operations and mission is performed at phase E until the mission is accomplished or
critical events occur leading to the spacecraft disposal in space [1].

In particular between phases B and C, the Preliminary Design Review (PDR) is held. It aims
at discussing whether the project is ready to move from phase B to C. After a successful re-
view, contracts are made with suppliers, and actual hardware gets ordered and built. Design
changes at this point in time become expensive due to contractual changes and cross-e�ects
in the overall design [1].

Basically, MBSE stores the spacecraft design in one common system model that can be used
to drive simulations e.g. by a Functional Engineering Simulators (FES), which is explained in
the next Section of this Chapter. The con�guration of such simulators is directly generated
from the system model [6].

2.2 Spacecraft System Simulation

Simulation is a main activity that supports the speci�cation, design, veri�cation and opera-
tions of space systems. Several use cases across the spacecraft development lifecycle can be
supported by system modeling and simulation [7], including activities such as system design
validation, software veri�cation and validation, spacecraft unit and subsystem test activities,
etc.

Signi�cant e�orts are done in projects to improve the simulation and test facilities. It has been
broadly perceived that simulation forms a pivotal part of the system engineering procedure.
However, there is an inclination to consider simulation as a supporting activity. The utilization
of simulation by the distinctive disciplines and throughout project phases is sometimes not
coordinated with facility speci�c solutions that is being developed to address speci�c needs.
It is recently recognized that it would bring considerable advantages if a more coordinated
and consistent approach to the development of simulation products across project phases is
followed. This would advance the best utilization of simulation in the system engineering
process in order to minimize the overall space program risk and cost [10].

Simulation has become an increasingly vital activity in the support of a wide scope of engineer-
ing and operational activities throughout the lifecycle of a spacecraft development. Various
simulation and test facilities are procured and used over all space programs. There is a lot
of commonalities between the infrastructure and models developed for each of these facilities.
These commonalities has been documented in the ECSS-E-TM-10-21 "System Modeling and
Simulation" Technical Memorandum [7]. This technical memorandum provides a guide to
system engineers on the best way to utilize simulation in supporting their system engineering
tasks. Moreover, it presents the facilities and their related high level requirements.

A lot of rational and incremental test and simulation facilities from Phases A to E provide the
software engineering functions. The 'Virtual System Model' is the core of these simulation
facilities emulating the behavior and functions of the complete system. The virtual system
model includes the simulation infrastructure and the models of the space system, including
the ground segment and space environment. The developer should re�ect the di�erent con-
�gurations explicitly in the design, development and validation plan. Moreover, the virtual

4

system model should be considered as a part of the overall model. [7]

Each facility represents an instance or a subset of the space system. Consequently, these
facilities should be integrated to the overall model in the system level, including both virtual
and physical models. Furthermore, the System Database is gradually populated and validated
over these steps, practically from Phase C onwards [7].

ESA and several stakeholders in the European Space Industry have developed a standard
for simulation models named Simulation Model Portability (SMP). The current available and
used version is SMP2. It de�nes certain mechanisms that allows connecting and exhchanging
information between components. Only a C++ reference implementation is available for the
realization of these SMP2 concepts [8].

The ECSS-E-TM-10-21 technical memorandum explains simulation facilities and their pur-
poses, such as the Functional Engineering Simulators (FES), the Software Validation Facilities
(SVF), the Training, Operations and Mainetenance (TOM) and others. These facilities are
used to support the analysis, design and veri�cation activities on system level [7].

The purpose behind these FES, SVF and TOMS facilities is to provide a basis upon which
a consistent approach can be followed in the simulation products development across project
phases. Depending on the system engineering tasks being executed, a certain simulation fa-
cilities is required during di�erent phases of the project. Figure 2 summarizes the exact point
in which each facility is required throughout the project lifecycle. Furthermore, the �gure
displays the model resuse across the phases as well as the expanding of the System Database
along the lifecycle [7].

Figure 2: FES, SVF and TOM Facilities across the Life-cycle Phases

5

The following subsections present the most common simulation facilities supporting the space-
craft life cycles which are the Functional Engineering Simulators (FES) and the Software
Validation Facilities (SVF) Simulators.

2.2.1 Functional Engineering Simulators (FES)

Functional Engineering Simulator (FES) is a facility set-up that supports the validation of
ground based and critical algorithms of the On-Board Software (OBSW). This validation in-
cludes the Guidance, navigation and control systems (GNC) as well as the Attitude and Orbit
Control Systems (AOCS) [7].

The FES con�guration includes the functional representation and models of the real system
required for the algorithms validation. However, it does not have to contain representation
of the real interfaces, protocols or data handling subsystem. In other words, the functional
models implemented are a representation of the behavior of real elements [7].

The architectural and functional interfaces of the system design should be included when
developing an FES-based simulator. Furthermore, the simulation capability to evaluate en-
gineering requirements and algorithms performance should be provided. In other words, the
FES should be con�gured in a way that would make it easier for the system designer to
instantiate and con�gure elements [7].

2.2.2 Software Validation Facilities (SVF) Simulator

The Software Validation Facility (SVF) is a complete representation of the functional and
performance aspects of a simulation model of the spacecraft hardware [9]. Furthermore, it
should allow a proper execution and validation of the OBSW. Moreover, it provides the es-
sential spacecraft payloads and environmental simulation in order to properly execute the
software in a closed loop [7].

Validation of the OBSW should be performed in a representative context to the spacecraft
system in space and the ground interfaces [9]. The upper layers of the validation, which are
related to AOCS, data handling, monitor and control of the payload equipment, are called
the application software. On the other hand, lower layers, which are related to the interface
between the OBSW and the OBC, are called basic software. The above mentioned validation
is approved by the OBSW test and debugging capabilities of the SVF [7].

Fundamentally, the main goal of an SVF is to validate the OBSW. This target can be di-
vided into several tasks which are OBSW integrated testing, OBSW parameter settings (e.g.
AOCS), OBSW functional validation in open then closed loop, OBSW HW / SW interface
veri�cation (using Hardware in the Loop (HITL) SVF) in open loop and OBSW performance
and robustness testing in closed loop [7].

Figure 3 shows how does the system engineering information in the data bases increase over
time and how the FES and SVF simulators can be derived. As previously mentioned, the
preliminary system design is realized by the end of phase B. The simulator would initially be
in a low-�delity FES form. Further along the project, data would continue until it reaches
the SVF form. In other words, successive to performing the PDR between phases B and C,
the project is then approved for implementation.

6

The actual more-detailed SVF facility would be carried out by implementing and building
the spacecraft. Nevertheless, parts of the SVF share some data heritage with the FES. The
SVF acts as the basis for hybrid benches which allows incorporating actual hardware into the
simulation loop [9].

Figure 3: Data Continuity for Data Bases and Simulators
(Fischer, Eisenmann and Fuchs, 2014 [6])

2.2.3 Spacecraft Simulation Models

The development of a spacecraft undergoes the phases presented in Section 2.1. The space-
related simulation standards and processes described in Section 2.2 are followed to develop
the spacecraft from being just a concept until it becomes a fully simulated and developed
spacecraft. The overall system architecture of a spacecraft simulation starts with the MBSE
which uses modeling to analyze and realize the systems engineering lifecycle. The outcome
of this model-centric MBSE approach is supporting the system requirements, analysis, de-
sign and applying V activities. Beginning with the conceptual design phase and advancing
throughout development and later lifecycle phases. Based on this formalized application of
modeling, the simulation and development of a spacecraft is guided [2].

Figure 4 shows the general main components of any spacecraft simulation. The OBC is the
main controller that controls the spacecraft. It reads the outputs generated from the environ-
mental simulation models such as the Solar Flux a�ecting the spacecraft through its sensors,
as well as the Newton's gravitational force or any other forces exerted on the spacecraft. Ac-
cordingly, the OBC commands the spacecraft to change its dynamics, such as changing its
orientation or its current position. For instance, this task is accomplished by commanding
the Reaction Wheels (RWs) to exert a certain amount of required torque in a speci�c direction.

In order to execute a simulation for a spacecraft mission, several models needs to be imple-
mented that would simulate the di�erent factors a�ecting a mission such as simple environ-
mental and dynamic models, a generic state machine to simulate equipment, and a generic On
Board Computer (OBC) as well as an interface model to simulate proper command handling.

7

Figure 4: Diagram of the Simulators Components

The theory of the di�erent models that have been implemented throughout the thesis in order
to imitate the simulation environment are expained in more details in Appendix A.

2.3 Functional Mock-up Interface based Simulation Framework

A standard infrastructure by the name of Functional Mock-up Interface (FMI) has been de-
veloped [11]. The FMI development was initiated by Daimler AG in 2010 with the goal of
improving the exchange of simulation models between suppliers and Original Equipment Man-
ufacturers (OEMs). The latest available version of FMI is version 2.0 [12], which has been
released in July 2014, which is the version that is being used in the thesis work.

The simulated models of a system are usually developed by di�erent teams using various
modeling and simulation environments. In order to simulate a complete system, its di�erent
models have to interact with each other. Thus, if di�erent models in a system are developed
by di�erent teams using multiple di�erent simulation tools, where n is the number of tools,
then n squared interfaces would be needed to successfully interact and simulate these models
together [12].

2.3.1 FMI Variants

FMI is a standard used for model exchange and co-simulation of dynamic models. The FMI
standard provides a way to interface models from di�erent simulation tools. The communi-
cation between the models is performed via the master/slave method, in which one device
or process has unidirectional control over one or more other devices. The direction of con-
trol between an established master/slave relationship is always from the master to the slave.
Communication between the master and a slave takes place at a discrete set of time instants,
called communication points [12].

Model exchange and co-simulation are two FMI variants. The main goal of FMI for model
exchange (Fig. 5, part a) is to generate a dynamic system model that could be reused by

8

other modeling and simulation environments. The models are C based and are described
using di�erential, algebraic and discrete equations with di�erent events such as time, state
and step events [12].

On the other hand, the aim of FMI for Co-Simulation (Fig. 5, part b) is to provide an in-
terface standard for simulation tools coupling in a co-simulation environment in which data
exchange can only be done through discrete communication points. The subsystems are solved
independently by a separate solver for each subsystem between two communication points. A
simple or a sophisticated master algorithm, independent from the FMI standard, is used to
control the data exchange between the slaves (i.e. all simulation solvers) [12].

More precisely, FMI is the open standard that exchanges simulation models between the dif-
ferent tools in a standardized format. These simulation models could be exported or developed
as a model exchange or a co-simulation Functional Mock-up Unit (FMU) that adheres to the
FMU standard. Solver integration is performed outside of the FMU for the case of model
exchange, while the solver is inside the FMU for the case of co-simulation [12].

Figure 5: Functional Mockup Unit and Interface for
a. Model Exchange b. Co-simulation

An FMU �le is a container with the extension *.fmu. It contains several �les organized in a
pre-de�ned structure. It includes:

� An XML description �le in which the model structure such as the variable names,
inputs, outputs and parameters are de�ned. Moreover, the capabilities of the FMU
are speci�ed in the XML �le. For instance, specifying that a co-simulation slave can
support advanced master algorithms such as using variable communication step sizes,
higher order signal extrapolation, etc.

9

� A C code and/or a binary �le format which contains the implementation of the model
functionality and behavior. Binary �les such as a Windows dll can only be run on the
platform they are compiled for. Therefore, most FMUs are restricted to run on a single
platform such as Windows 64-bit or Linux 32-bit.

� Further information, such as documentation �les, model icon (bitmap �le) and/or dy-
namic link or object libraries, can be included in the FMU zip �le utilizing them. The
intention is to support platforms that are not known in advance (such as HIL-platforms
or micro-controllers).

An FMU provides separation between the description of interface data (XML �le) and the
functionality implementation (C code or binary). Each FMU contains a XML description �le,
a C code and the libraries and/or dynamics links. The main idea in simulation engineering
of a system is to connect and operate the pool of implemented FMUs together in such a way
that emulates the system behavior.
The type of FMU simulation models implemented and used in this work is the co-simulation
FMU. This means that the FMU simulation models includes the model and the simulation en-
gine. FMI for Co-Simulation provides an interface standard for the solution of time dependent
coupled systems. It consists of subsystems that are continuous in time (model components
that are described by instationary di�erential equations) or time-discrete (model components
that are described by di�erence equations like, for example discrete controllers) [12].

2.3.2 Industrial Domains

Spacecraft Systems Engineering requires simulation of components and models as an emula-
tion of the system operations and functionalities. The FMI standard has been extensively used
for simulation purposes in the automotive industry. It was found to be extensively bene�cial
in terms of model exchange and co-simulation of models.
However since it is not domain speci�c, it can be utilized in other industrial domains such as
the aerospace industry.

Bene�ts of FMI utilization in the automotive industry

FMI-compliant models give engineers the freedom to use a wide variety of tools, and share
amongst peers. It enables high level modeling with specialized tools instead of hand-coding.
Prior to the FMI development, model in the loop (MIL) was bridged to hardware in the loop
(HIL) by many hours of manual work to integrate the models to be simulated together. This
process required tedious work and it was prone to errors. However, with the introduction of
the FMI standard, the MIL to HIL development can be accomplished easily by exporting the
models as an FMU. Several modeling and simulation software vendors have been adapting to
the FMI standard. This rapid adaptation shows that there is a high demand for using FMI
in model exchange [13].

In [13], Drenth et al. have utilized the FMI standard to use consistent models throughout
the integration work�ow from desktop to test bed in the engine controller development. This
was accomplished by exporting the models as FMUs. Furthermore, the FMI approach o�ers
a �exible and standard simulator that integrates the development with the production. It
also permits exchange of the FMUs and co-simulation between these FMUs via a master sim-
ulator. As a result, di�erent types of operating systems and hardware simulators can operate
independently and still be able to control synchronization, monitoring and parameter tuning

10

via an FMU server or a simulation tool [14].

FMI standard has been widely exploited by various industrial partners. It is used as an e�cient
and fast option to exchange virtual prototypes between di�erent teams. This provides a cross-
domain co-simulation environment that integrates suppliers and development partners. It has
been used as a commercial software that allows model, software and hardware in the loop.
FMI has been developed independently of the industry domain, which makes it also bene�cial
for domains other than the automotive one, such as aerospace, industrial machinery and
construction equipments [14].

2.4 Numerical Optimization

Engineers and computer scientists investigate the behavior of di�erent real-world systems via
numerical simulations [18]. Performing this investigation in reality is eminently challenging
or even impossible. In general terms, the main aim of most developed computer programs
is to simulate the dependence of a single or multiple objectives on a potentially large set of
parameters.

It is di�cult to directly �nd the best solution. However, it is comparatively much more
achievable to establish a loss or cost function that computes how �t the solution is. This
is performed by minimizing the function. In other words, computing its �rst-derivative and
equating it to zero.

The corresponding target values can be obtained by a single run of the simulation program
as y = F (x) for a given set of input parameters. It can be extremely useful to simulate the
studied real-world system. However, it leaves several questions to be investigated.

One question is related to how sensitive the objective according to changes in the input
parameters. Sensitivity analysis is one of the �elds that requires computation of the Jacobian
matrix of F

∇F = ∇F (x) ≡
(
δyj
δxi

)j=0,...,m−1

i=0,...,n−1

(1)

where y = F (x) represents the numerical simulation. Rows of the matrix includes the outputs
sensitivity yj , j = 0, ...,m− 1 according to the input paameters xi, i = 0, ..., n− 1

By solving the linear di�erential adjoint equation, gradient values with respect to a particu-
lar quantity of interest can be e�ciently computed. Analysis of sensitivity serves two main
purposes. The sensitivities, on the one hand, are model diagnostics that are useful in un-
derstanding how it will change in accordance with parameter changes. But another use is
simply that these derivatives are useful in many cases. Analysis of sensitivity provides a way
to calculate the solution gradient that can be used in the estimating parameters and in other
optimization tasks.

2.5 Optimization in the context of Spacecraft Simulations

There is a demand for high performance in aerospace engineering, modeling and design op-
timization has been used extensively. The aim of this section is to give an introduction on
some used optimization techniques and algorithms.

11

The process of �nding the best design parameters that meet project requirements is called
design optimization. Experiment designs, statistics, and optimization techniques are usually
used by engineers to evaluate trade-o�s in order to determine the best design for their project.
This Section illustrates the concepts of cost function, parameter sweeps technique and gradi-
ent descent algorithm which are used by engineers for design optimization.

The design of aircraft is a complex task that involves many disciplines. Aerospace architects
make high-level decisions and provide concept design speci�cations, while engineers share
domain-speci�c knowledge and prepare single-disciplinary models that are combined to ana-
lyze performance in the multidisciplinary, optimization-driven process.

2.5.1 Cost Function

There are multiple ways to learn the parameters that best suits the optimization goal of a
project. The approach used illustrates statistical learning which is by minimizing the cost
function [19].

There are various ways to compute the cost function. A cost function maps one or more
variables event or values to a real number. In this case, the event we �nd the cost of is the
di�erence between estimated values, or the di�erence between the hypothesis and the actual
values. In other words, a cost function measures how well the current parameters estimate the
relationship between X and Y. This is typically expressed as a di�erence or distance between
the predicted value and the actual value. The Mean-Squared Error (MSE) cost function F(x)
is the most commonly used representation and is expressed as follows:

F (x) =
1

2m

m∑
i=1

(h(xi)− yi)2 (2)

where m is the number of samples. The actual calculation is simply the hypothesis value for
h(x), minus the actual value of y. The summation of this calculation for all variables would
eventually yield a scalar value [19].

2.5.2 Parameter Sweep Technique

Parameters Sweeps is the process of sweeping over a range of values for speci�c parameters.
In product development, several variations of a model often need to be solved in order to �nd
the optimal properties of its design. A parametric sweep can be performed instead of chang-
ing these parameters values manually and re-solving each time. A parametric sweep allows
changing in a speci�ed range of parameter values. It is useful to �nd the optimum value of
a parameter and to study the sensitivity of a design performance to certain parameters or to
run a series of simulations with a set of di�erent parameters.

In the process of sweeping one or more parameters, the values of these parameters are updated
after each simulation iteration. Then, comparison and analysis of the output data from each
iteration is performed. Hence, sweeping parameters is used to adjust control parameters,
estimate unknown model parameters, and test a control algorithm's robustness by taking into
account real-world system uncertainty [26].

2.5.3 Gradient Descent Search Algorithm

Gradient Descent (GD) Search Algorithm is another approach to reach the goal of minimizing
a cost function. Gradient descent is an optimization algorithm that tries to �nd the local or

12

global minimum of a function. Local minimum is the least point or value of a certain function
and global minimum is the least value in the entire function plot [20].

In order to minimize a function and �nd the lowest error, the variables of the program models
needs to be tweaked. This is done by calculating the slope of a function. In other words,
computing the derivative of the cost function (Eq. 2) with respect to a variable and equating
it to zero. Equation 3 represents the gradient computation.

∂F (x)

∂x
=

1

m

m∑
i=1

h(xi)− yi (3)

More precisely, the gradient descent algorithm is basically a �rst-order iterative optimization
problem that aims to �nd the minimum of a function. Steps proportional to the negative of
the function's gradient are taken in order to reach the local minimum of a function. On the
other hand, taking steps proportional to the positive of the gradient would lead to the local
maximum [20].

Figure 6: Gradient Descent Algorithm

The main goal of gradient descent algorithm is to learn the gradient or direction that would
yield the minimum errors or costs (i.e. di�erences between actual y and predicted y should
be minimized). As the program is iterating, it gradually converges to a minimum where fur-
ther adjustments to the parameters generates little or zero loss, also called convergence as
presented in Fig. 6.

Equation 4 is computed in a loop until the xn variable converges. In other words, the iterations
are performed by executing the entire simulation program for one iteration of GD, calculating
the gradients, then updating the weights or variables. This is done for a number of iterations

13

of GD, as seen in Fig. 6, until the variables converges or the minimum value of the function
is reached. At each iteration n, the design variables are updated using:

xn+1 = xn − γn∇F (xn) (4)

where xn+1 is the updated value of the previous xn and the learning rate or the step size is
representing via the γn. The term γn∇F (xn) is subtracted from xn in order to move towards
the minimum; opposite to the gradient direction. ∇F (xn) is the derivative of the cost function
with respect to the variables being optimized.

The main challenge in applying the gradient descent algorithm is �nding the suitable learning
rate γn to be used. If this step size, γn, is too big, the minimum is going to be overshot, that
is, �nding the minimum would not be possible since it is skipped by this large learning rate.
On the contrary, if γn is too small, too many iterations would be required in order to reach
the minimum [18].

14

3 System Design Methodologies and Implementation

The goals and expected outcomes of this master thesis are thoroughly introduced and tackled
in this chapter. Space systems development is a complex task that would require the appli-
cation of model-based system engineering in the simulation development process.

The general architecture and use of these system simulators is well discussed and understood
but the portability and exchange of models is still a hurdle. The usage of FMI standard frame-
work in simulators development solves the problem of integration and simulation of models
by allowing model exchange and co-simulation capabilities, which is more bene�cial and more
easy to use compared to the SMP2 standard that is currently used as a space related standard
for model portability.

Based on the fact that FMI framework has a lot of features and capabilities that could be used
in model exchange, co-simulation and in adopting optimization approaches. It is well accepted
in a lot of industries and tool vendors. Thus, it would be quite interesting to investigate the
possibility of implementing space simulators and optimizers using the FMI technology. Thus,
the main outcome of this thesis is to tackle the following research questions:

� Investigating the usage and extension of the FMI standard to incorporate optimization
on basis of Adjoint methods.

� Applying the FMI standard to build a spacecraft system simulator rather than sticking
with already existing space-related standards.

The chapter is organized as follows. The �rst section presents the overall system architecture.
Consequently, the various parts of the described architecture will be presented. The second
section contains the investigation of incorporating design optimization techniques and algo-
rithms into the FMI-based simulator.

3.1 FMI-based Functional Engineering Simulators (FES)

The functional engineering simulators contain the system models in a low-�delity representa-
tion. The goal is to build such a simulator using the FMI standard framework.

The development of the simulation �ow has been implemented using C and C++ programming
languages. This implementation has been carried out in Microsoft Visual Studio Professional
2017 Version 15.8.7 IDE

3.1.1 System Architecture

The overall system architecture consists of four major blocks which are the MBSE, the JSON
Con�guration �le, the Optimizer and the Simulator which executes the interaction between
the FMU models.

First of all, the MBSE block is basically the process of designing the spacecraft. Within this
block, the number of components or models are de�ned and con�gured together. The MBSE
activities can be performed using the Virtual Satellite tool.

The designed spacecraft architecture is then exported as a con�guration �le (in a .json rep-
resentation for instance). This con�guration �le, which contains the design information, is

15

then used as a guide by the simulator to connect and simulate the pool of developed FMU
models or components together. Furthermore, the optimizer reads this JSON Con�guration
�le as well to obtain the optimization information included in the con�guration �le. This
thesis work focuses on the:

� Design of the JSON Con�guration File.

� Implementation of the Optimizer that calls the simulator to use it in applying di�er-
ent optimization techniques such as the parameter sweep and gradient descent search
algorithms.

� Development of the FMU models in a low �delity representation form that would be
used in a use case proposed for the evaluation .

Figure 7: Overall System Architecture

To further illustrate how the four parts of the system architecture work together. The design
of the FMI-based simulator is presented �rst. Basically, the simulator uses the JSON con-
�guration �le as a guide. It reads the components block, initializes and executes the FMU
models according to the con�guration information speci�ed in the JSON �le. Consequently,
it reads the interfaces block from the JSON �le. It then initializes and executes these FMU
interfaces models. It saves the outputs from all the FMU models and interfaces into the state
vector. Finally, it iterates again and saves the output values of the next simulation step. The
number of iterations performed by the FMI simulator is based on the simulation duration
speci�ed in the con�guration �le. Hence, with each iteration, it builds up the state vector of
the performed simulation (Refer to Fig. 8).

16

Figure 8: Design of the FMI-based Simulator

The above-presented �gure and description illustrates the general steps and tasks performed
by the implemented FMI simulator. The code used to perform these tasks can be found in
Appendix B.

Fig. 9 represents the activity diagram that shows a step-by-step overview illustrating how the
simulator works. The �rst column shows the task followed by its e�ect on the �le system and
on the simulator. The �rst step is to load the JSON con�guration �le from the �le system
into the simulator. The next step is to load the FMU components as speci�ed in the con�gu-
ration �le. Furthermore, the interfaces are loaded and the state vector is set up. Finally, the
components and interfaces are connected to each other through the State Vector.

17

Figure 9: Activity Diagram of the Simulator

3.1.2 Simulator Con�guration (JSON) �le

A lot of projects use JSON for representing con�guration �les. Its main purpose is to give
guidance to the simulator on how many components are used and how does each component
interact with the remaining system models and components.

It includes necessary information needed for the simulator execution such as the simulation
duration, initial state vector, as well as the design of each model and interface.

The simulation duration is speci�ed using three variables which are the simulation_start,
simulation_end and the simulation_stepsize de�ning the start time, end time and the step-
size respectively. International System of Units (SI Units) are used throughout the program
so these time variables are measured in seconds. The below snippet shows the simulation
duration for a day.

1 {
2 " s imu la t i on_star t " : 0 ,
3 " simulation_end" : 86400 ,
4 " s imu la t i on_s t ep s i z e " : 1 ,
5 }

18

In addition to that, the JSON con�guration �le includes the initial state vector. This vector
initially conveys values of all model variables before the simulator is executed. For example,
the Spacecraft Dynamics model, explained in Section A.7, would require variables that store
the position and velocity for X, Y and Z axes respectively. This would look as following in
the con�guration �le.

1 " s imu l a t i on s t a t e v e c t o r " : {
2 "Dynamics . pos i t ion_x " : 0 ,
3 "Dynamics . pos i t ion_y " : 0 ,
4 "Dynamics . pos i t ion_z " : 0 ,
5 "Dynamics . ve loc i ty_x " : 0 ,
6 "Dynamics . ve loc i ty_y " : 0 ,
7 "Dynamics . ve loc i ty_z " : 0 ,
8 }

Furthermore, the JSON �le also includes the connection between all models and interfaces.
The design of each model composes of an instance name, paths to the FMU model and
the unzipped version of the model, as well as parameters, inputs and outputs variables. For
instance, the design of the Spacecraft Position Dynamics model shown in Fig. A.6 is de�ned in
the con�guration �le as shown below. Table 1 speci�es the parameters used for the Spacecraft
Dynamics and the Newton's Universal gravitational models respectively.

Table 1: Parameters of Dynamics and Newtons Gravitational models

Model Parameters Value Unit
Spacecraft Dynamics Initial Position [6.776× 106 0 0] m

Initial Velocity [0 7660 0] m/s

Newton Universal Gravitation Gravitational
Constant 6.674× 10−11 N(m/kg)2

1

2 "components" : [
3 {
4 "parameters " : {
5 " pos it ion_x " : 0 ,
6 " pos it ion_y " : 0 ,
7 " pos i t ion_z " : 6371000 ,
8 " ve loc i ty_x " : 0 ,
9 " ve loc i ty_y " : 3000 ,

10 " ve loc i ty_z " : 7500 ,
11 } ,
12

13 " inputs " : {
14 "NG. force_x" : " force_x " ,
15 "NG. force_y" : " force_y " ,
16 "NG. force_z " : " force_z " ,
17 "NG. mass" : "mass_spacecraft "
18 } ,
19 " outputs " : {
20 " pos it ion_x " : "Dynamics . pos i t ion_x " ,
21 " pos it ion_y " : "Dynamics . pos i t ion_y " ,
22 " pos i t ion_z " : "Dynamics . pos i t ion_z " ,
23 " ve loc i ty_x " : "Dynamics . ve loc i ty_x " ,
24 " ve loc i ty_y " : "Dynamics . ve loc i ty_y " ,
25 " ve loc i ty_z " : "Dynamics . ve loc i ty_z "

19

26 } ,
27 "path" : " . . \ \FMUs\\Dynamics . fmu" ,
28 "unzipPath" : "fmu1\\" ,
29 " instanceName" : "Dynamics"
30

31 } ,
32 {
33 "parameters " : {
34 " g rav i t a t i ona l_cons tan t " : 6 .674E−11
35 } ,
36 " inputs " : {
37 "Dynamics . pos i t ion_x " : " po s i t i on1x " ,
38 "Dynamics . pos i t ion_y " : " po s i t i on1y " ,
39 "Dynamics . pos i t ion_z " : " po s i t i o n1 z " ,
40 "NG. earth_posit ion_x" : " po s i t i on2x " ,
41 "NG. earth_posit ion_y" : " po s i t i on2y " ,
42 "NG. earth_posit ion_z " : " po s i t i o n2 z " ,
43 "NG. spacecraft_mass " : "mass1 " ,
44 "NG. earth_mass" : "mass2"
45 } ,
46 " outputs " : {
47 " force_x" : "NG. force_x " ,
48 " force_y" : "NG. force_y " ,
49 " force_z " : "NG. force_z "
50 } ,
51 "path" : " . . \ \FMUs\\Ng . fmu" ,
52 "unzipPath" : "fmu2\\" ,
53 " instanceName" : "NG"
54 }
55]

Finally, the con�guration �le also contains an interface block which connects the inputs and
outputs of the models. Each interface includes the same attributes as the model except for
the parameters. For example, the interface below represents the connection between OBC,
Star Tracker, Sun Sensor and the Reaction wheels in which the OBC determines the required
torque needed by the reaction wheel to orient the spacecraft based on the information gained
from the Start Tracker and the Sun Sensor models.

1 " i n t e r f a c e s " : [
2 {
3 " inputs " : {
4 "SS . act ivated_sun_sensor " : " act ivated_sun_sensor " ,
5 "STR. output_orientation_x" : " Spacecra f tOr ientat ion_alpha " ,
6 "STR. output_orientation_y" : " Spacecra f tOr ientat ion_beta " ,
7 "STR. output_orientat ion_z " : "SpacecraftOrientation_gamma"
8 } ,
9 " outputs " : {

10 "RW1_required_Torque_x" : "OBC1. RW1_required_Torque " ,
11 "RW2_required_Torque_y" : "OBC1. RW2_required_Torque " ,
12 "RW3_required_Torque_z" : "OBC1. RW3_required_Torque"
13 } ,
14 "path" : " . . \ \FMUs\\Obc . fmu" ,
15 "unzipPath" : "fmu17 \\" ,
16 " instanceName" : "OBC1"
17 }
18]

3.1.3 Generalized Simulation Flow

A spacecraft is a�ected by many forces and energies from other bodies in space. Thus, in the
same manner, the simulation models introduced in Section 2.2.3 would have an in�uence on
each other. For the purposes of generalization and evaluation of the FMI-based simulator,
low �delity FMU models have been developed. Fig. 10 shows the overall simulation �ow.
It clari�es how the models are connected to each other. The models are partitioned into

20

environmental, dynamics and spacecraft simulation models. The purpose and composition of
each partition are explained subsequently.

Figure 10: Simulation Flow

Environmental Simulation Models

The environmental simulation models represent an emulation of the environmental factors
in�uencing the spacecraft throughout its mission. An overview of the overall connections of
the environmental simulation models will be described, followed by more detailed schemas
used in the implementation of each model.

First of all, the Julian Date which is a continuous count of days since the beginning of the
Julian Period. It is used primarily by astronomers, and in software programs for easily cal-
culating elapsed days between two events. The Julian Date is transformed to Time. In order
to convert the Julian Date to Time, Equation 10 has been used.

Time is then used as an input for the Mean Anomaly model which is then fed to the Solar
Orbit model to estimate the position of the Sun with respect to Earth. The output of the Sun
Orbit model is further used as an input to the Solar Flux Model which computes the amount
of Solar radiation reaching the spacecraft depending on the position of the Sun.

Moreover, the Earth Eclipse model takes as an input the position of the Sun and the position of
the Satellite with respect to Earth in order to compute the lighting coe�cient which represents
the fraction amount of sunlight that reaches the spacecraft throughout its orbit around Earth.

The �rst environmental model in the pool of FMU models is the Mean Anomaly model. It has
been implemented using the schema presented in Figure 11. The equations used to implement
each block in the schema has been presented in Section A.2.

21

Figure 11: Schema of the Mean Anomaly Model

Based on the aforementioned description of the orbit, the Solar Orbit model schema (see
Fig. 12) which calculates the solar vector in the EME2000 coordinate system has been im-
plemented.

Figure 12: Schema of the Solar Orbit Model

The sun can be roughly described as a radiator, which can be described by the Stefan-
Boltzmann law (σ.T 4). This law is now provided with a factor which is composed of the
squared quotient of the radius of the sun RSun and the distance to the sun. This factor takes

22

into account the dependence of solar radiation on the distance to the sun. In order to take
into account the information of the direction of the radiation, the product is still multiplied
by the normalized sun vector. Whether the resulting vector points in the direction of the sun
or in the direction of the origin of the coordinate system depends on the orientation of the
incoming vector of the sun ~rsun. Figure 13 shows the schema used in implementing the Solar
Flux model.

Figure 13: Schema of the Solar Flux Model

Finally, the Earth Eclipse Model is the last environemntal simulation model presented in the
simulation �ow. Figure 14 presents the schema of implemented Earth Eclipse Model.

Figure 14: Schema of the Earth Eclipse Model

Table 2 shows the parameters used in each of the environmental simulation models.

23

Table 2: Parameters of Environmental Simulation Models

Model Parameters Value Unit
Mean Anomaly Sun Mean Anomaly 6.24 rad

Sweeping Angle 628.302 rad

Sun Orbit Length of ascending node + perigee distance 4.938 rad
Ecliptic Inclination 0.409 rad

Sun Flux Stefan-Boltzmann Constant 5.67× 10−8 W/(m2K4)
Radius of Sun 6.96× 108 m

Temperature of Sun 5780 K

Earth Eclipse Radius of Sun 6.96× 108 m
Radius of Earth 6.3781× 106 m

Dynamics Simulation Models

Dynamics simulation models emulate the dynamics of a spacecraft. Basically, the spacecraft
starts from an initial position with an initial velocity. Furthermore, the spacecraft is a�ected
by Newton's universal gravitational force which would lead the spacecraft to rotate around
Earth.

For example, if a mission is to launch a satellite that would rotate around Earth. The model
would be given the mass and the velocity of the satellite as parameters. Moreover, it would
be connected to the Newton's Gravity model described in Subsection A.6 as the spacecraft
would be in�uenced by Earth's gravity. It would �nally output the position of the Satellite.
(Please refer to Figure 15)

Figure 15: Relation between Newton's Gravity and Dynamics Models

The parameters used for the Dynamics and the Newton's Gravitational models have been
presented in table 1.

24

In addition to that, the Dynamics of a spacecraft also includes its Orientation. The model
for this aspect of spacecraft behavior is seen in the block diagram in Figure 16.

When an object has angular acceleration over time, it gains angular velocity, ~Ω. Hence, in
order to determine the position of a spacecraft, represented by an angle θ, which describes the
amount the spacecraft rotated from its previous position. By applying torque to a spacecraft
with speci�c inertia, we create angular acceleration, leading to angular velocity. Hence, a
change in its angular position.

Basically, the angular acceleration ~α is computed via Eq. 23. The application of integration
over time would yield the angular velocity ~W. Finally, applying a second integration over
time would yield the angular position or attitude θ which represents the orientation of the
spacecraft.

Figure 16: Block Diagram of the Orientation Dynamics Model

Spacecraft Models

Spacecraft models simulate the behaviors and functionalities of the components that would
be built on the spacecraft. First of all, the sun sensor determines the sun orientation based on
the solar radiation information from the solar �ux model. The OBC commands the reaction
wheels to exert a certain amout of torque based on the sun orientation or based on the space-
craft mission. The exerted torque from the reaction wheels a�ects the spacecraft dynamics
orientation.

Moreover, the sun position from the sun orbit model, the lighting coe�cient from the earth
eclipse model, the satellite position from the spacecraft dynamics model and the satellite ori-
entation from the star tracker model are all fed to the solar panel model which computes the
amount of energy it gets from the sun to charge the battery and/or other satellite components.

The PCDU controls the battery charging depending on the remaining energy from the solar
panel taking into consideration the payloads consumptions.

Table 3 represents the parameters used in the spacecraft simulation models. The values
used for these parameters have been induced based on the TET-1 (Technologie Erprobungs
Träger-1) microsatellite which has been demonstrated by DLR.

25

Table 3: Parameters of the Spacecraft Simulation Models

Model Parameters Value Unit
Solar Panel Orientation [1 0 0]

E�ciency 0.5
Area 1 m2

Reaction Wheel 1 Orientation [1 0 0]
(RW 90) Maximum Torque 0.15 N.m

Maximum Power 5 W

Reaction Wheel 2 Orientation [0 1 0]
(RW 90) Maximum Torque 0.15 N.m

Maximum Power 5 W

Reaction Wheel 3 Orientation [0 0 1]
(RW 90) Maximum Torque 0.15 N.m

Maximum Power 5 W

Power Control and Distribution Unit Payloads Power Consumption 20 W
(PCDU)

Battery Maximum Power 240 Ah

There are much more components on board of a spacecraft. However, these models were
su�ecient in order to simulate the mission and evaluate the use case for a FMI-based simu-
lator.

3.2 Design Optimization within the FMI Infrastructure

The new designs of today have increased in complexity and need to address more stringent
requirements for society, the environment, �nance and operations. A paradigm shift is there-
fore underway that challenges the design of complex systems. Advances in computing power,
computational analysis, and numerical methods have also transformed the way design is con-
ducted signi�cantly and have a�ected it.

This section focuses on investigating the possibility of incorporating design algorithms and
techniques into the simulator using the FMI standard infrastructure.

3.2.1 Optimization Goal

Before digging deeper in the application of di�erent design optimizations within the FMI-
based simulator, the optimization goal is presented �rst.

26

A speci�c scenario has been assumed to be used as the mission goal. It is assummed that the
spacecraft would launch from the North pole and would �y in a certain trajectory to reach
a target position. The aim is to �nd out the optimum values that should be used as initial
velocity in the Y and Z directions. Figure 17 represents the assummed mission target.

Figure 17: Target Position of the Mission

3.2.2 Parameter Sweep

The �rst technique is applying parameter sweeps on several variables in order to discover the
optimum parameter values and investigate the sensitivity of such variables.

In order to incorporate that to the simulation, an additional block has been added to the
JSON con�guration �le. It includes the name of the optimization technique or algorithm, the
parameters to be swept over and the sweeping ranges. The below optimization block speci�es
that the Parameter Sweep technique will be performed on two variable of the dynamics model.
First sweep will be on the initial velocity at the Y-axis direction starting from 2000 m/s and
ending at 3000 m/s with a step of 100 m/s. The second sweep is for the initial velocity at
the Z-axis direction starting from 6000 m/s and ending at 8000 m/s with a step of 200 m/s.

1 " opt imiza t i on " : [
2 {
3 " a lgor i thm" : "ParameterSweep " ,
4 "parameters " : {
5 "Opt . ve loc i ty_y_start " : 2000 ,
6 "Opt . veloc ity_y_step " : 100 ,
7 "Opt . velocity_y_end" : 3000 ,
8 "Opt . ve loc i ty_z_star t " : 6000 ,
9 "Opt . ve loc i ty_z_step " : 200 ,

10 "Opt . velocity_z_end" : 8000
11 } ,
12 " instanceName" : "Opt"
13 }
14]

27

Besides the adjustments made to the JSON con�guration �le, an optimizer has to be imple-
mented which interprets this additional "optimization" block.

The optimizer would read the JSON con�guration �le and would call the simulator in a
for loop in order to sweep over the range speci�ed for a certain parameter. The presented
optimization block includes sweeping ranges for two parameters. Hence, the optimizer would
have two nested for loops. The following code shows the steps performed by the optimizer to
sweep over the two parameters. The optimizer updates the con�guration �le at each iteration
andruns the simulator with updated JSON con�guration �le.

1 f o r (double i = ve loc i ty_y_start ; i <= velocity_y_end ; i = i + veloc ity_y_step)
2 {
3 i n t vely_currentSweepValue = (i n t) i ;
4

5 f o r (double j = ve loc i ty_z_star t ; j <= velocity_z_end ; j = j + veloc i ty_z_step)
6 {
7 i n t velz_currentSweepValue = (i n t) j ;
8 updateCon f i gura t i onF i l e (vely_currentSweepValue , velz_currentSweepValue) ;
9 executeS imulator (updatedConf igFi le . j s on) ;

10 saveToFi le (po s i t i onCos t) ;
11 }
12 }

Finally, after running the simulator with the updated values of the parameters. The �nal
position cost computaion attained by simulating such a con�guration is saved to a �le. This
iterations are executed until the �nal values of the sweeping ranges are reached.

3.2.3 Gradient Descent Search

The second design optimization algorithm adressed in this thesis work is the Gradient Descent
Search. In order to achieve the optimization goal described in Section 3.2.1, two appraoches
will be proposed. The �rst one is the classical approach which describes the traditional way
to implement the algorithm. The second approach is the advanced one which presents the
incorporation of this optimization algorithm into the FMI infrastructure.

Classical Approach
This approach implements the Graient Search algorithm in a traditional way. The following
steps are taken consequently.

1. The �nal target position is speci�ed in the con�guration �le.

2. Selecting random values for the initial velocities of the spacecraft.

3. The position cost is computed between the target position and the �nal position reached
by the random velocity values selected in Step 2.

4. Steps 2 and 3 are repeated for a slight change in the initial velocity values. In other
words, a certain delta is added to the initial velocities in the Y and Z directions.

V elinit = [0 vely velz]

V eldeltay = [0 vely + deltay velz]

V eldeltaz = [0 vely velz + deltaz]

(5)

5. Based on the three computations of the position cost, the slopes are calculated.

slope(velinit, veldelta(i)) =
PositionCost(velinit)− PositionCost(veldelta(i))

velinit − veldelta(i)
(6)

28

6. The �nal step in this iteration is to evaluate the next velocity values that would be
used in the next iteration. This is computed using the Gradient Search equation states
in Eq. 4. A relatively small learning rate is chosen to avoid overshooting the minimum
position cost.

7. These steps are iterated over in a loop until it converges (i.e two successive values of
the velocity are approximately equal).

In the above-mentioned sequence of steps, the simualator is called three times in order to
compute the position cost with respect to three di�erent vectors of initial velocity. The �rst
vector is the initial velocity and the second is with an added delta to the velocity in the Y
direction. The �nal third vector is the velocity with an added delta to the velocity in the
Z direction. Based on the slopes calculated in Eq. 6, the initial velocity vetor of the next
iteration in calculated.

Advanced Approach

The advanced approach is incorporating the implemetation of the Gradient Search algorithm
into the FMI Framework. The main idea of this approach is that the derivatives or the sen-
sitivity matrix will be calculated locally within each FMU model and passed on to the next
FMU model. The next model would in turn compute its local derivates and multiply it with
the previous sensitivity matrix.

The advantage of this approach is that the simulator will only be called one time instead of
three times as in the case of the classical approach.

For simplicity, three FMI models will be considered to clarify the possinility of incorporating
this approach to the FMI infrastructure. The three models are the Newton's Gravitational
Force model, the Spacecraft Dynamics model and the Cost Function model. Basically, the
simulator will instantiate and execute these models for the simulation duration and the �nal
position at the end of the simulation run will be used in computing the Position Cost (See
Fig. 18).

Figure 18: Advanced Approach

29

For instance, if the simulation duration is for 1 day (i.e 86400 seconds), then the simulator
would run for these duration. It would unzip the FMU models, initialize and execute them,
resulting in a �nal Position Cost. This would represent how far the spacecraft is located from
the target position.

In order to incorporate the Gradient Search optimization algorithm within the FMI infras-
tructure, several adjutments needs to be made. First of all, the FMU models has to be
extended with the additional variables and parameters required for the computations of the
local derivatives and the sensitivity matrix.

Figure 19: Advanced Approach: Extension of FMUs

Figure 19 illustrates the additional variables that are required to be added to the FMU mod-
els. These additional variables would be used for the computation of the three Position Costs
in one simulation run. Instead of having one initial velocity as an input to the Dynamics
model, there would be three velocity parameters, the initial one and intial with an additional
delta in the Y direction and the initial with an additional delta in the Z direction. These three
velocities vectors would yield three di�erent position vectors as an output of the Dynamics
model. On the other hand, the Newton's Gravitational Force model would take as an input
the three position vectors as an input and would yield three Force vectors for each input
vector respectively. Consequently, these three Force vectors would be used as an input to
the Dynamics model leading to the new Position vectors in the next iteration. This scenario
would be iterated over for the duration of the simulation. Finally, the last three Position vec-
tors computed in the last simulation step would be used in the computation of the Position
Cost. Hence, the �nal output would be the three Position Cost values resulting from the three
initial velocities vectors.

The next step in the Gradient Search algorithm is to compute the slopes. However, these
slopes or derivatives would be calculated locally within each FMU model. Equations 7 and
8 shows how the local derivatives are comuputed in the Dynamics model and the Newton's
Gravitational Force model respectively.

δPositioni(velinit, veldelta(i))

δForcei
=
Positioni(velinit)− Positioni(veldelta(i))
Forcei(velinit)− Forcei(veldelta(i))

(7)

δForcei(velinit, veldelta(i))

δPositioni
=

Forcei(velinit)− Forcei(veldelta(i))
Positioni(velinit)− Positioni(veldelta(i))

(8)

30

where i refers to the X, Y or Z axes. Positioni(velinit) and Positioni(veldelta(i)) refer to
the position values in the i axis resulting from introducing the initial velocity velinit and the
initial velocity with and additional delta in the i axis direction veldelta(i) respectively. In the
same manner, Forcei(velinit) and Forcei(veldelta(i)) refer to the Newton's Gravitational force
exerted in the i axis, resulting from the velinit and veldelta(i) respectively.

These computations are performed in the void calculateV alues(ModelInstance ∗comp) func-
tion in the C code of the respective FMU model.

Figure 20 presents the locally computed derivatives of each FMU model. In the initial state,
the simulations begin with the velocity parameter as an initial feed to the Spacecraft Dynam-
ics model. The locally computed derivatives are change in position with respect to the initial
velocity parameter in each of the Y and Z axes. This matrix of partial derivatives would be
the input to the next FMU model in the chain. Hence, the matrix would be the input to
each of the Newton's Gravitational Force model and the Cost Function model. In the same
way, the locally computed derivatives matrix of the Newton's Gravitational force model is the
partial derivatives of the force with respect to the position in the Y and Z axes respectively.
Furthermore, the partial derivatives matrix returned from the Cost Function model is the
partial derivatives of the Position Cost with respect to the position in the Y and Z axes.

Consequently, the upcoming simulation iterations throughout the simulation duration would
have a di�erent initial input to the Spacecraft Dynamics model. Since then, the feed to the
Spacecraft Dynamics model is the Force vector which was the outcome of the Newton's Grav-
itational Force from the previous iteration. Hence, the output derivatives matrix from the
Spacecraft Dynamics model is the partial derivative of the Position with respect to the Force
in each of the Y and Z axes.

Figure 20: Local derivatives of each FMU model.

These locally computed derivatives indicates the sensitivity matrix of the respective FMU
model. Hence, to compute the overall sensitivity matrix of all the models, each local deriva-
tive should be multiplied with the local derivative of the previous FMU model in the chain of
models. More precisely, the multiplication of the partial derivatives would yield the partial
derivative of the Position Cost with respect to the change in the initial velocities fed to the

31

system. This can be clari�ed by the following equation.

δCost

δV el
=
δCost

δPos
× δPos

δForce
× δForce

δPos
× ...× δPos

δV el
(9)

where each element corresponds to the sensitivity matrix of an FMU model. The multiplica-
tion of the three model's matrices are re-multiplied throughout the simulation iterations and
the �nal multiplicand is the sensitivity matrix of the initial state. Heanse, yielding partial
derivative of the Position Cost with respect to the initially fed velocities.

The �nal step in the Gradient Search algorithm is to compute the new values that would be
used as initial velocites in the next simulation cycle. This step is implemeted in the Optimizer
C++ code that would decide the new velocity values based on the last computed sensitivity
matrix.

Generalization

The advanced approach has been implemented and explained on three FMU models for sim-
plicity and comprehensibility. However, it is more signi�cant to further expand this approach
to the entire simulator including all the FMU models drawn in the Simulation Flow Figure
(Fig. 10).

Conventionally, several independent teams work simultaneously on the mission development
project. Each team is specialized in a speci�c domain. Thus, each team is responsible of im-
plementing a certain component. Naturally, various software development application might
be used by the teams. Hence, for the purpose of integration of these models into one exe-
cutable system, each team would export their implemented component as an FMU model.
The System Engineer who is in charge of executing and simulating the models together, can
choose between multiple approaches or alternatives.

Figure 21 presents di�erent approaches that could be applied in order to incorporate the
design optimization functionality into an FMI-based simulation system.

Figure 21: Approaches to incorportate the Design Optimization Functionality

One approach to resolve incorporating the design optimization functionality into the system,
is to claim this requirement from the development teams or OEMs by stating it in the Require-
ments Speci�cation Document. The extra requirement would state the necessity of appending

32

within the model an additional computation of the local partial derivatives or sensitivity ma-
trix and multiplying it to the another sensitivity matrix fed to the model.

An alternative approach is to implement an interface FMU model which would act as a
wrapper around the main FMU model. This interface is responsible of extending the model
by incorporating the additional design optimization functionality.

33

4 Evaluation

This Chapter delves into the evaluation and validation of the implemented FMI-based simula-
tion system as well as the assessment of incorporating the design optimization techniques into
the FMI-based simulator. The Chapter is splitted into two sections. The �rst section presents
the use case used to evaluate the FMI-based Simulator, followed by the results yielded from
this use case. The second section presents the outcome from applying the Parameter Sweep
technique and the Gradient Search algorithm to the simulator.

4.1 Evaluation of the FMI-based Spacecraft Simulator

In order to validate the implemented FMI-based Simulator, a use case will be proposed. The
use case serves as a proof that the FMI-based Spacecraft Simulator operates as expected. It is
important to note that since scalability is not in the scope of this thesis work, only low-�delity
FMU models have been implemented and used.

4.1.1 Use Case: Orientation and Charging Control

The use case used in evaluating and validating the FMI-based Simulator is based on applying
orientation and charging control functionality to the simulator. The main idea of the use
case is orienting the spacecraft in a way that would direct the solar panel on board of the
spacecraft to point towards the sun direction. The purpose is to have the maximum amount
of charging from the solar energy whenever the spacecraft is not in an eclipse region.

Figure 22 displays the set of FMU models used in simulating the use case. First of all,
the environemnetal models are connected to mimic the environmental factors in�uencing the
spacecraft. The Earth Eclipse model outputs the amount of lighting coe�cient reaching the
spacecraft. The Sun Sensor model uses this information as well as the solar radiation exerted
from the Solar Flux model to indicate the direction of the Sun. For simplicity, the output
of the Sun Sensor model is a scalar value indicating the activated sun sensor. A sensor gets
activated whenever it is facing the Sun direction.

Based on the activated Sun Sensor, the OBC determines the amount and direction of torque
that needs to be exerted by the Reaction Wheels (RWs). It then commands each RW to exert
a certain amount of torque. Accordingly, the RWs would output the required torque. Thus,
leading to the adjustments and changes in the orientation of the spacecraft.

Figure 22: The Use Case FMU Models.

34

For simplicity, the spacecraft is assumed to be cube shaped on which the solar panel is at-
tached onto one side and 5 sun sensors are attached to the remaining sides.

In order to further clarify the use case, Fig. 23 illustrates the scenario of the implemented use
case. The orientation and charging control functionality starts operating once the spacecraft
has merged out of the eclipse region into the sunlight. After running the simulation, it was
found that the spacecraft emerges from the eclipse region in the orientation magni�ed in the
bottom left corner of the Figure. The solar panel is represented by the thick dark blue border
line on the spacecraft. It is oriented towards the +X axis direction. Furthermore, the Sun
Sensors with the numerals 2, 4 and 5 are oriented towards the +Y, -X and -Y axes directions
respectively.

The required goal is to orient the spacecraft in such a way that the solar panel would be
directed towards the sun. In order to realize that, the spacecraft should be rotated around
the -Z axis, based on the right-hand rule. Hence, the solar panel would be oriented on the -Y
axis direction which is the Sun direction with respect to the spacecraft.

Figure 23: Orientation and Charging Control Use Case

4.1.2 Use Case Results

This upcoming segment is to demonstrate the output of each FMU model used in realizing
the described use case. The stated scenario has been simulated for an overall duration of two
hours (i.e. 7200 seconds).

The �rst plot in Figure 24 presents the output yielded from the Earth Eclipse model which
exports the lighting coe�cient reaching the spacecraft. Lighting coe�cient of value 1 indicates
full sunlight while value 0 indicates that the spacecraft is in an Eclipse region.

35

Figure 24: Orientation and Charging Control Use Case Result

36

The second plot demonstrates the activated Sun Sensor pointing towards the sun direction.
Initially when the spaceraft emerges out of the Eclipse region, the Sun Sensor with the number
5 is activated since it is pointing towards the Sun direction (i.e. -Y axis). Hence, the Solar
Panel is in the +X axis direction. Thus, the spacecraft should be oriented in such a way that
it would rotate with an angle of 90°.

The OBC of the spacecraft would then control this change in orientation. It would command
the reaction wheels to exert certain amounts of torques in order to accomplish the rotation
around the -Z axis. It would command the �rst and second reaction wheels (RW1 and RW2)
which are located on the X and Y axes of the spacecraft to exert 0 N.m of torque. Hence,
RW1 and RW2 would perform the required task.

Furthermore, the OBC would command the third reaction wheel (RW3), oreinted on the Z-
axis, to exert -1 N.m of torque. RW3 would then carry out the required amount of torque.
However, it would output only 0.15 N.m which is the maximum amount o torque it could ex-
ert. The purpose of these OBC commands to the RWs is to change the spacecraft orientation
to rotate about the -Z axis until the solar panel would face the Sun direction.

After changing the spacecraft orientation, this would re�ect on the second plot presenting the
activated sun sensor. The number refering to the activated sun sensor would change from 5
to 0 which means that the solar panel is facing towards the sun direction. Moreover, during
Eclipse regions, there would be no activated sun sensors. Hence, the output of the Sun Sensor
model would be -1.

Finally, the last plot in Fig. 24 shows the outputs of the Solar Panel and Battery models. It
indicates the amount of power measured in Watt that the Solar Panel has charged throughout
regions of Sunlight. On the other hand, as expected, it does not charge in regions of Eclipse
due to the absence of the Solar energy. The output plot of the solar panel is expected to be
bell-shaped. However, it is not because the implemented model is in a low �delity represen-
tation, thus the orientation was not taken into consideration.

Furthermore, the dark green graph color displays the output of the Battery model. It gets
charged during Sunlight regions from the energy gained by the solar panel. The amount of
charging depends on the remaining energy after the payloads consumpsions has been taken
into consoderation. On the other hand, it discharges during Eclipse region since it provides
energy to the Spacecraft instead of the Solar Panel.

The change in orientation can be presented by plotting the angular speed from the Orienta-
tion model described in Fig. 16. Therefore, Figure 25 displays the dynamics angular speed
experienced by the spacecraft from the described use case.

As anticipated, there would be no angular speed in the X and Y axis since there is changes
only in the Z axis. As above mentioned, the OBC commands only the third reaction wheel to
output certain amount of torque in the negative Z direction. Thus, the third subplot in Fig.
25 displays that the change of angular speed measured in radians per second. It shows that
the angular speed in the Z-axis direction is negative as expected.

37

Figure 25: Angular Speed

4.2 Optimization Evaluation of the FMI Spacecraft Simulator

As mentioned earlier, the second section of this chapter presents the evaluation of applying
optimization techniques on the FMI Spacecraft Simulator. The �rst section presents the
results of applying the Parameter Sweep technique in optimizing the FMI simulator design.

4.2.1 Parameter Sweep

The parameter sweep technique was applied on two variables. Table 4 presents the parameter,
its sweeping range, the step size or delta used and the unit of this variable respectively. The
velocity in the Y axis direction was swept over by values ranging from 2000 to 3000 m/s with
a delta of 100 and the velocity applied in the Z axis direction was swept over by values ranging
from 6000 to 8000 m/s with a delta of 200.

Table 4: Parameters used in the Parameter Sweep Approach

Parameter Sweep Range Step Size Unit
(Delta)

Velocity Y 2000 - 3000 100 m/s

Velocity Z 6000 - 8000 200 m/s

38

Figure 26 displays the output from applying the parameter sweep approach to optimize the
velocities applied on the Y and Z axes respectively. Velocity Z, Velocity Y and the Position
Cost are displayed on the X, Y and Z axes respectively.

The Z axis of the plot displays the Position Cost yielded from applying each value of velocities
Y and Z throughout the sweeping range. In other words, the �rst position cost is gained from
using the initial velocities 2000 m/s in the Y axis and 6000 m/s in the Z axis. The second
calculated position cost is from sweeping to the next value of velocity in the Z axis. Hence,
using initial velocities 2000 m/s in the Y axis and 6200 m/s in the Z axis and so on till
the end of the sweeong range of the Z axis. Then, the value of the initial velocity of the Y
axis is incremeneted with the correcponding step size. In other words, the initial velocities
would be 2100 m/s in the Y axis and 6000 m/s in the Z axis. Aftwerwards, the upcoming
values proceed in the same manner. Sweeping over the range of Velocity Z values and then
re-incrementing the Velocity Y to the next sweeping value.

Figure 26: Parameter Sweep Optimization Approach

4.2.2 Gradient Descent Search

This Section presents the output gained by applying the Gradient Descent Search algorithm
onto the implemented FMI-based simulator. Firstly, the result of implemeting the classical
approach is presented, followed by the results yielded from applying the advanced approach.

Classical Approach

The parameters used to apply the classical approach is presented in Table 5. The parameter
being optimized, its initial value, the step size used for it and its unit are presented respec-
tively. The initial velocity used for the parameter "Velocity Y", which represents the velocity
exerted in the Y axis, is 3000 m/s and its corresponding delta is 10 m/s. Moreover, the initial

39

velocity used for the parameter "Velocity Z" is equal to 7500 m/s with a step size of 10 m/s.

Table 5: Parameters used in the Gradient Search Classical Approach

Parameter Initial Value Step Size Unit
(Delta)

Velocity Y 3000 10 m/s

Velocity Z 7500 10 m/s

Figure 27 presents the result of applying the classical approach added to the parameter sweep
graph. The idea of displaying both plots on the same graph is to show that the optimum ve-
locity V elopt reached by the classical approach is indeed the minimum point in the parameter
sweep plot. In other words, the V elopt is the velocity vector that would yield the minimal
position cost.

The parameter sweep plot is represented via the purple linecolor while the output of the
classical approach is represented via the red color. The initial velocity fed to the simulator is
V elinit with values 0, 3000 and 7500 m/s applied on the X, Y and Z axes respectively.

Figure 27: Parameter Sweep and Classical Gradient Search Approaches

The red plot shows that three di�erent vectors of velocity are applied per iteration. V elinit
with an additional delta for each of the Y and Z axes respectively. Then, it would shift to
the three position cost values gained from applying the next set of valocity vectors. The

40

shifts gets closer to each other when it gets closer to the minimum or the optimum due to the
adjustments in the learning rate.

Advanced Approach

The same parameters and initial values have been used to test and validate applying the
advanced optimization approach to the FMI simulator. Table 6 restates the parameters that
has been used for the advanced approach.

Table 6: Parameters used in the Gradient Search Advanced Approach

Parameter Initial Value Step Size Unit
(Delta)

Velocity Y 3000 10 m/s

Velocity Z 7500 10 m/s

Figure 28 displays the result of applying the advanced optimization approach. Three di�erent
colors have been used to display the di�erent optimization techniques. The purple color is
used to present the plot resulting from applying the parameter sweep technique. Further-
more, the red color is used to present the classical approach and the green color displays the
advanced approach.

Figure 28: Parameter Sweep, Classical and Advanced Gradient Search Approaches

41

Both the classical and the advanced approaches were initiated with the same values. A value
of 0 m/s has been used for the velocity in the X axis direction. Moreover, values of 3000 m/s
and 7500 m/s have been used as velocities for the Y and Z axes respectively. The output of
each approach is approximately equal.

42

5 Conclusion

Spacecraft dynamic simulations are becoming progressively complex. As the complexity in-
creases, special consideration must be given to the software's sustainability, testability, and
scalability.

The aim of this dissertation is to tackle several research questions. It o�ers a novel approach
for the spacecraft simulation engineering task. That approach is to utilize the FMI stan-
dard in developing the spacecraft simulation system, which has been most e�ective in models
so-simulation at early design phases. A second signi�cant contibution is the incorporation
of di�rent design optimization algorithms and techniques within the FMI infrastructure. It
includes sensitivity analysis by applying parameters sweeps and incorporation of the Gradi-
ent Descent Search algorithm within the FMI standard infrastructure. This thesis employs
the accumulation of Jacobian matrices on dynamics and envionmental simulation models,
more speci�cally, on the "Newton's Gravitaional Force" and "Spacecraft Position Dynamics"
models.

5.1 Summary

The development of spacecraft simulations follows a speci�c standard documented in the
ECSS-E-TM-10-21 "System Modeling and Simulation" Technical Memorandum. A key fea-
ture of this standard is the type of simulator realized at each phase of the development.

Early research e�orts have used the Simulation Model Portability (SMP2) standard in space-
related simulation development. It has been used in model exchange and portability. However,
the simulators compatible with this standard only provide a C++ reference implementation.
It does not o�er wrapping and encapsulation as FMI standard framework promises.

This thesis introduces the system design architecture of the FMI-based spacecraft simulator.
The proposed architecture initiates from model-based system engineering task which delivers
the con�guration �le. The FMI simulator then proceeds with the instantiation of the imple-
mented FMU models and executing the simulation.

An additional contribution of this thesis is the incorporation of the design optimizations
within the FMI simulator infrastructure. The sensitivity analysis was performed by perform-
ing parameter weeps and implementing the gradient search in two di�erent approaches. The
�rst approach is the classical one. The second approach is rendered by the accumulation of
Jacobian matrices across the FMU models.

Investigation of the formulated research questions indicates that utilizing the FMI standard
in spacecraft simulation development indeed yielded promising results. The capability of co-
simulation in early design stages allow for ease in the maintenance, testing and scalability
of the software code base. Furthermore, the possibilty of incorporating optimization tech-
niques within the FMI infrastructure is highly promising, because applying the approach of
accumulating Jacobians is not a trivial task in terms of computing gradients for fully coupled
nonlinear equations.

The FMI simulator and incorporation of optimization techniques into it have been veri�ed by
exploiting a use case and an optimization scenario respectively. The charging and orientation
control use case veri�es the realization of a FMI simulator and the co-simulation of FMU
simulation models representing the environmental and dynamical physics the spacecraft will

43

encounter. On the other hand, the optimizing of several parameters have been held in the
context of an optimization goal or objective. The outcome realizes the optimum based on
a cost function. It indicates that incorporating optimization within the FMI infrastructure
is possible and advantageous in terms of early design �aws detection. In other words, this
would bene�t in determining the range of each parameter and a more precise description of
the required components before purchasing them.

The advanced approach which applies the gradient search optimization technique on basis of
accumulation of adjoint methods, becomes more signi�cant and bene�cial for systems with
large number of parameters. It was applied for two parameters as it would be more compre-
hensible.

Later pursuits sought to extend the low-�delity FMU models to become sophisticted highly
detailed models. However, due to time restriction, scalability of the FMU models is not in
the scope of the thesis. Nevertheless, di�erent approaches will be described in the upcoming
Future Work section.

5.2 Future Work

A straight forward next step is to attempt the FMU models extension into sophisticated
ready-to-use FMU simulation models. Each model could be extended with di�erent con-
straints, capabilities and quali�cations. This section will propose a potential approach for the
simulation models extension.

Extension of Low-�delity Models to High-Fidelity Sophisticated Models

A potential exists based on the fact that FMI is tool independent. This denotes that these
models could be attained from the components suppliers. Despite of the variant simulation
tools that might be utilized by the di�erent suppliers, the simulation models of these compo-
nents could be exported as an FMU container and incorporated into the simulation.

Figure 29 displays the proposed potential approach for substituting the low �delity model
with a pre-implemented ready-to-use sophisticated model.

This above-described approach requires no changes or adjustments to be carried out in the
FMI simulator. However, certainly there are some adaptation that are necessary in the models
connection. In other words, work should be done in the interface FMUs (IF FMU) connecting
the models together.

44

Figure 29: Extension of Low-Fidelity FMU model to High-Fidelity FMU Model

Inclusion of all FMU models in the optimization process

The included FMU models in the optimization scenario are the Newton's Gravitaional Force
and Spacecraft Dynamics models. An alternative optimization scenario or objective could be
assumed with the purpose of including all FMU models into the optimization. Hence, instead
of optimizaing two variables in one of the models. Future work could be completed in order
to leverage the number of variables to be optimized.

A generalized optimization scenario would require the adjustment of all FMU models. Two
potential approaches exists to accomplish this generalization. The �rst approach could be
adding an interface FMU that would chain the sensitivity matrix of each FMU model together
with the next model. Another approach is to de�ne this model extension as a requirement
for the developers implementing the models.

45

III List of Figures

1 Spacecraft Lifecycle Phases . 3
2 FES, SVF and TOM Facilities across the Life-cycle Phases 5
3 Data Continuity for Data Bases and Simulators 7
4 Diagram of the Simulators Components . 8
5 Functional Mockup Unit and Interface for a. Model Exchange b. Co-simulation 9
6 Gradient Descent Algorithm . 13
7 Overall System Architecture . 16
8 Design of the FMI-based Simulator . 17
9 Activity Diagram of the Simulator . 18
10 Simulation Flow . 21
11 Schema of the Mean Anomaly Model . 22
12 Schema of the Solar Orbit Model . 22
13 Schema of the Solar Flux Model . 23
14 Schema of the Earth Eclipse Model . 23
15 Relation between Newton's Gravity and Dynamics Models 24
16 Block Diagram of the Orientation Dynamics Model 25
17 Target Position of the Mission . 27
18 Advanced Approach . 29
19 Advanced Approach: Extension of FMUs 30
20 Local derivatives of each FMU model. 31
21 Approaches to incorportate the Design Optimization Functionality 32
22 The Use Case FMU Models. 34
23 Orientation and Charging Control Use Case 35
24 Orientation and Charging Control Use Case Result 36
25 Angular Speed . 38
26 Parameter Sweep Optimization Approach 39
27 Parameter Sweep and Classical Gradient Search Approaches 40
28 Parameter Sweep, Classical and Advanced Gradient Search Approaches . . . 41
29 Extension of Low-Fidelity FMU model to High-Fidelity FMU Model 45
30 Representation of the mean anomaly M .
31 Orbit Elements i, ω and Ω .
32 Earth Eclipse (Shadows and penumbra) .
33 Darkening of the Sun by a Celestial Body
34 Overview of the Used Vectors .
35 Simpli�ed Sun Sensor that measures sun incidence angle

IV List of Tables

1 Parameters of Dynamics and Newtons Gravitational models 19
2 Parameters of Environmental Simulation Models 24
3 Parameters of the Spacecraft Simulation Models 26
4 Parameters used in the Parameter Sweep Approach 38
5 Parameters used in the Gradient Search Classical Approach 40
6 Parameters used in the Gradient Search Advanced Approach 41

V References

[1] NASA Systems Engineering Handbook (NASA/SP-2007-6105 Rev 1) National Aeronautics
and Space Administration, Washington, D.C. / USA, 2007.

[2] P. M. Fischer, D. Lüdtke, C. Lange, F. Roshani, F. Dannemann and A. Gerndt Imple-
menting Model Based System Engineering For The Lifecycle of a Spacecraft Deutscher
Luft- und Raumfahrtkongress 2016

[3] ECSS Secretariat ECSS-M-ST-10C - Space project management [Project planning and
implementation]. ESA-ESTEC Requirements and Standards Division, Noordwijk, Nether-
lands, 2009.

[4] ESA Virtual Spacecraft Design [Online]. Available: http://www.vsd-project.org/ Ac-
cess at 20 4 2016

[5] DLR Virtual Satellite https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-5135/

8645_read-8374/ Started in 2007

[6] P. M. Fischer, H. Eisenmann und J. Fuchs Functional Veri�cation by Simulation based on
Preliminary System Design Data 6th International Conference on Systems and Concurrent
Engineering for Space Applications (SECESA), Stuttgart, Germany, 2014.

[7] ECSS Secretariat ECSS-E-TM-10-21A - Space Engineering [System Modeling and Sim-
ulation]. ESA-ESTEC Requirements and Standards Division, Noordwijk, Netherlands,
2010.

[8] European Space Agency SMP 2.0 Handbook [EGOS-SIM-GEN-TN-0099]. Issue 1 Revision
2, 28 October 2005

[9] F. Pace, V. Barrena, N. Lindman, Q. Wijnands Evolving Infrastructure for Avionics Ver-
i�cation and Validation Activities Simulation and EGSE facilities for Space Programmes
(SESP2010), 30 September 2010

[10] A. Walsh, Q. Wijnands, N. Lindman, P. Ellsiepen, D. Segneri, H. Eisenmann, T. Steinle
The Spacecraft Simulator Reference Architecture Simulation and EGSE facilities for Space
Programmes (SESP2010), 29 September 2010

[11] FMI-Standard.org Functional Mock-up Interface [Online]. Available: https://

fmi-standard.org/ Access at 28 8 2018.

[12] FMI version 2.0 Guide Functional Mock-up Interface for Model Exchange and Co-
Simulation July 25, 2014

[13] P. Chombart, Dassault Systems Multidisciplinary modelling and simulation speeds devel-
opment of automotive systems and software ITEA2 innovation report, 2012

[14] E. Drenth, M. Törmänen, K. Johansson, B. A. Andersson, D. Andersson, I. Torstensson,
J. Akesson Consistent Simulation Environment with FMI based Tool Chain Proceedings
of the 10th International ModelicaConference, Lund, Sweden. March 10-12, 2014

[15] ECSS Secretariat ECSS-E-TM-10-23A - Space engineering [Space system data reposi-
tory]. ESA-ESTEC Requirements and Standards Devision, Noordwijk, Netherlands, 2011.

[16] P. M. Fischer, M. Deshmukh, V. Maiwald, D. Quantius, A. Martelo Gomez und A.
Gerndt Conceptual Data Model - A Foundation for Successful Concurrent Engineering
Concurrent Engineering: Research and Applications, 2017.

 http://www.vsd-project.org/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-5135/8645_read-8374/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-5135/8645_read-8374/
 https://fmi-standard.org/
 https://fmi-standard.org/

[17] J. Eickho� Onboard Computers, Onboard Software and Satellite Operations [An intro-
duction]. Heidelberg, Berlin: Springer-Verlag, 2012.

[18] Uwe Naumann. The Art of Di�erentiating Computer Programs [An Introduction to Al-
gorithmic Di�erentiation]. Society for Industrial and Applied Mathematics, Philadelphia,
2012.

[19] McDonald, C. Machine learning fundamentals (I): Cost functions and gradi-
ent descent https://towardsdatascience.com/machine-learning-fundamentals-via-linear-
regression-41a5d11f5220 Nov 27, 2017

[20] J. Hicken, J. Alonso, and Ch. Farhat AA222 - Introduction to Multidisciplinary Design
Optimization Gradient-Based Optimization Department of Aeronautics & Astronautics,
Stanford University , April, 2012

[21] Naumann, U. Optimal accumulation of Jacobian matrices by elimination meth-
ods on the dual computational graph U. Math. Program., Ser. A (2004) 99: 399.
https://doi.org/10.1007/s10107-003-0456-9

[22] Corliss, G., Faure, C., Griewank, A., Hascoet, L., Naumann, U. Automatic Di�erentiation
of Algorithms. [From Simulation to Optimization]. Springer, New York, 2002

[23] Griewank, A., Reese, S. On the calculation of Jacobian matrices by the Markovitz rule.
In [8], pp. 126 - 135, 1991.

[24] Naumann, U. E�cient Calculation of Jacobian Matrices by Optimized Application of the
Chain Rule to Computational Graphs. PhD thesis, Technical University Dresden, Feb.
1999

[25] Griewank, A., Naumann, U. Accumulating Jacobians as chained sparse matrix products.
Math. Program. 3(95), 555 - 571 2003 (Springer)

[26] BÃ×cker, M., Corliss, G.,Hovland P., Naumann, U., Norris, B. Automatic Di�erentia-
tion: Applications, Theory, and Implementations Springer-Verlag Berlin Heidelberg 2006

[27] O. Montenbruck, E. Gill. Satellite Orbits [Models, Methods, Applications]. Springer-
Verlag Berlin Heidelberg New York, 2000.

[28] M.J.F. Al-Bermani, A. S. Baron Calculation of Solar Radiation Pressure E�ect and Sun,
Moon Attraction at High Earth Satellite Journal of Kufa, PHYSICS VOL.2 NO.1, 2010

[29] P. Ortega, G. Lopez Rodriguez, J. Ricart, M. Dominguez, L. M. Castaner, J. M. Quero,
C. L. Tarrida, J. Garcia, M. Reina, A. Gras, M. Angulo A Miniaturized Two Axis Sun
Sensor for Attitude Control of Nano-Satellites IEEE Sensors Journal, Vol. 10, No. 10,
October 2010.

[30] NASA. Star Camera http : //nmp.nasa.gov/st6/TECHNOLOGY/starcamera.html
Access May, 2004.

[31] T. Urakubo, K. Tsuchiya, K. Tsujita Attitude Control of a Spacecraft with Two Reaction
Wheels Jet Propulsion Laboratory, California Institute of Technology, December 2017

[32] A. Kron, A. St-Amour, J. de Lafontaine Four Reaction Wheels Management: Algorithms
Trade-O� and Tuning Drivers for the PROBA-3 Mission The International Federation of
Automatic Control, Cape Town, South Africa. August 24-29, 2

[33] NASA. Reaction/Momentum Wheel https : //spinoff.nasa.gov/spinoff1997/t3.html
Retrieved 15 June, 2018

[34] C. C. Huang, P. Y. Ho FORMOSAT-5 Satellite Power Control and Distribution Unit
(PCDU) Development National Space Organization, Hsinchu, Taiwan

[35] NASA. Energy Storage Technologies for Future Planetary Science Missions Graduate
School of Engineering, Kyoto University, Japan

A Simulation Models

A.1 Julian Date to Time Converter

First of all, Julian Date (JD) is simply a continuous count of days and fractions of days since
the start of the Julian Calender, which is noon Universal Time on January 1, 4713 BC. Julian
dates has been widely used by astronomy and applied in many astronomical software to cal-
culate elapsed days between two events or dates. Julian date is commonly used in computer
science to calculate the di�erence between days, since all numbers in the system are consecu-
tive integers. In our simulation, the initial Julain day number is 2451545 which refers to the
day starting at 12:00 UT on January 1, 2000 (J2000) [27]

In order to compute the number of Julian centuries since 1.5 January 2000 (J2000), a model
was created to perform this conversion by applying the following equation:

T =
JD − 2451545

36525
(10)

A.2 Mean Anomaly

To describe the position of an astronomical object in an elliptical orbit, the mean anomaly M
is used. It indicates the angle from the pericenter to a point y on a circle (perimeter around
the ellipse orbit) relative to the center of the ellipse. This point would result if the object
were on an ideal circular path and would move at a constant angular velocity. However, point
(y) would have the same orbital period as the object on orbit. Please refer to Figure 30.

With the auxiliary magnitude of the mean anomaly M, orbital motion of an astronomical
object can be described more simply than e.g. with the true anomaly θ would be possible.

Figure 30: Representation of the mean anomaly M

The mean anomaly determines the position of a body on the circumference surrounding the
orbital ellipse at average speed at a certain point in time (T). It is calculated as the sum of

the mean anomaly at reference time M0 and the product of the angle swept by the body per
unit time at medium speed on the auxiliary circle (perimeter around the ellipse) (ς), and the
time di�erence T since the reference time has elapsed.

M = M0 + ς.T (11)

whereM0 of the Sun is equal to 6.24 radians and the swept angle of the sun per Julian century
ς is equal to 628.302 radians.

A.3 Solar Orbit

Earth travels around the sun. Seen from the earth, it seems as if the sun is moving. The
model presented in this subsection will imitate the Solar Orbit.

The earth moves in a slightly eccentric orbit (ε = 0.017) around the sun. The closest point to
the sun (perihelion) is at a distance of about 147.1 × 106 km, while the point furthest away
from the sun is 152.1 × 106 km. The plane of this orbit (ecliptic) is inclined at 23.5 °to the
equator of the earth. The intersections of the ecliptic with the equatorial plane move about
50 arcseconds per year. [27]

The movement of the earth around the sun can also be described in an earth-related coor-
dinate system as the apparent motion of the sun on the celestial sphere. The most common
coordinate system for this is the so-called Earth-centered inertial (ECI) system. The ECI
coordinate system is a geocentric equatorial Cartesian coordinate system whose x-axis points
in the direction of the vernier point and whose z-axis is the axis of rotation of the earth.

Also included in the group of ECI coordinate systems is the Earth's Mean Equator and
Equinox at 12:00 Terrestrial Time on 1 January 2000 (EME2000) coordinate system used
here for the solar vector. To describe the apparent motion of the Sun around the Earth, sev-
eral orbital elements are required as seen in Figure 31. These elements are the orbital plane
which is inclined with respect to the equatorial plane of Earth. The angle through which the
two planes are inclined is called inclination i.

Figure 31: Orbit Elements i, ω and Ω
(Montenbruck and Gill, 2000 [27])

The Sun's apparent orbit pierces the equatorial plane at two points whose connecting line is
called a line of nodes. The ascending node is the one where the sun moves from the south-
ern hemisphere to the northern hemisphere, while the descending node is described by the
migration of the sun from the northern hemisphere to the southern hemisphere. The angle
from the vernal equinox to the ascending node measured in the equatorial plane is called the
length of the ascending node Ω. The angle from the ascending node to the perigee (perigee)
measured in the orbit plane is called the perigee distance ω.

the �rst step in the computations of the sun position is the geographic length of the apparent
projection of the orbit to the earth in the ecliptic coordinate system. This formula derives
from the equations for the general Kepler elements and was extended with two terms of a
series expansion to account for confounding factors.

The length of the Sun λsun is calculated from the sum of the length of the ascending node Ω,
the perigee distance ω, the mean anomaly of the sun M, the two terms for the confounding
factors and the last summand to take into account the migration of the spring point over time.
For this, the epoch of the reference spring point Teqx is given in centuries since the reference
time JD0. [27]

λsun = Ω + ω +M + 6892”.sin(M) + 72”.sin(2M) + 1.3972°.Teqx (12)

where the length of ascending node and the perigee distance Ω + ω has the default value
4.938 rad. The next step is to calculate the distance from the Earth to the Sun in the ecliptic
coordinate system. This is analogous to Formula 12 again from the original Kepler equation
extended by terms of a series expansion.

|~rsun| = (149.619− 2.499.cos(M)− 0.021.sin(2M)).109m (13)

Since the latitude disappears due to the ecliptic coordinate system, the solar vector can be
calculated using the inclination of the ecliptic (ε = 0.409 rad) in the EME2000 coordinate
system as follows.

~rsun =

 |~rsun|.cos(λsun)
|~rsun|.sin(λsun).cos(ε)
|~rsun|.sin(λsun).sin(ε)

 (14)

A.4 Solar Flux

The sun shines in all directions of space due to the chemical processes that take place in its
interior. This radiation is used for example by spacecraft as an energy source. Solar cells
convert the radiation into electrical energy through the process of photovoltaics.

The radiation that actually arrives on a surface depends primarily on the distance to the
sun. In addition, there are variations in radiant power due to irregularities in the chemical
processes of the sun.

The Solar Radiation Computation block is based on the position of the sun and is computed
as follows:

~ΦSun = σ.T 4
Sun.(

RSun

|~rsun|
)2.||~rsun|| (15)

where the Stefan-Boltzmann Constant σ is 5.67 × 10−8 W/(m2K4). The radius of the Sun
RSun is 6.96× 108 m and the temperature of the Sun is TSun is 5780 K.

A.5 Earth Eclipse

This model calculates the illumination of the satellite taking into account the shadow cast
by a celestial body as it crosses the line from the sun to the satellite. Many satellites are on
their orbits at some point on the night side of the celestial body around which they circle.
Depending on the nature of the orbit, the shadow that the heavenly body throws traverses
again and again. This shadow can be further subdivided into a core and a partial shade. In
the following �gure, for example, a satellite orbiting the earth is shown.

Figure 32: Earth Eclipse (Shadows and penumbra)

The penumbra has the characteristic that di�erent levels of illumination prevail in this area.
The closer the satellite gets to the shadow, the darker it gets. And the farther away it is from
the shadow, the brighter it will be again until the satellite leaves the semi-shade and is fully
illuminated.

For the satellites, the information about the shadow is very important, since within the partial
shadow they can only obtain fractions of the energy and within the core shadow no energy
from the solar cells and consequently have to switch their energy supply to battery operation.

The model described below for the calculation of the shadow ratios is based essentially on the
information given in Chapter 3.4.1 "Eclipse Condition" and 3.4.2 "Shadow Function" [27]. In
contrast to the statements in [27], the coordinate system, in the book "Fundamental Plane",
was placed in the center of the obscuring celestial body. This has the advantage that no
further coordinate system has to be introduced, but the coordinate system for the satellite
vector and solar vector can be used. The downside is that both vectors have to refer to the
occluding celestial body and therefore the model is not quite as �exible.

Due to the large distances of celestial bodies (e.g., the earth) and sun and the resulting ap-
parent small diameter of the sun, in the model the earth's shadow is described by means of
two overlapping circular disks. In this case, the small angle approach is also applied, whereby
the sides a (distance ĀC), b (distance B̄C) and c (distance B̄A) from �gure 33 correspond
to the corresponding angles. The associated angles are each enclosed by the lines from the
satellite to the respective vertices of the sides.

Figure 33: Darkening of the Sun by a Celestial Body

The �rst side of the triangle in Figure 33 is the apparent radius of the hidden celestial body
a. In this case, the hidden celestial body is the sun. The apparent radius from the satellite is
calculated as follows:

a = arcsin(
RSun

|~rSun − ~rSat|
) (16)

The following illustration shows the vectors ~rSun , ~rSat and ~rSun − ~rSat.

Figure 34: Overview of the Used Vectors

Next, the apparent radius of the obscuring body b can be calculated. For earthbound satellites,
this could be Earth, for example.

b = arcsin(
RBody

|~rSat|
) (17)

The last required size for the triangle in Figure 33 is the apparent distance from the centers
of the two celestial bodies c.

c = arccos(
−~rTSat.(~rSun − ~rSat)
| ~rSat|.|~rSun − ~rSat|

) (18)

After calculating the apparent values a, b and c, the next step is to a feature which calculates
if the satellite is in direct sunlight, partial shade or in the core shadow. For this purpose,

the apparent radii of the concealed and the concealing celestial body and the distance whose
centers are compared.

fSun =

{
1, if a+ b ≤ c
0, otherwise

fPenumbra =

{
1, if |a− b| < c < a+ b

0, otherwise

fUmbra =

{
1, if fSunor fPenumbra

0, otherwise

(19)

The condition a+ b ≤ c means that the circle of the sun is outside the circle of the obscuring
body and therefore no shadow exists. On the contrary, the condition |a− b| < c ensures that
the perimeter of the sun is not completely within the circumference of the obscuring body
and consequently has not yet adjusted to the core shadow.
The next step is to calculate the area (A) of the intersection of the Occulting Body and the
Sun (refer to Fig. 33) using the below equation:

A =

1, if fSun
a2.arccos(xa) + b2.arccos(c−x

b)− c.y, otherwise

0, if fUmbra

(20)

where x = c2+a2−b2

2c and y =
√
a2 − x2

The remaining fraction of Sunlight can �nally be computed by:

ν = 1− A

πa2
(21)

A.6 Newton's Law of Universal Gravitation

Newton's universal gravitation law states that every particle attracts every other particle in
the universe with a force which is directly proportional to the product of their masses and
inversely proportional to the square of the distance between their centers.

The equation for universal gravitation thus takes the form:

F = G
m1m2

r2
(22)

where F is the force of gravity that is acting between two objects, G is the gravitational
constant which value is approximately 6.674 × 10−11 N.kg−2.m2. The two objects have the
masses m1 and m2 and the distance between the center of their masses is r.
Implementing the Newton's gravity law as a simulation model would be useful for simulating
spacecraft missions orbiting Earth or in the near proximity of Earth.

A.7 Spacecraft Dynamics

Dynamics of a Spacecraft is the modeling its position and orientation in response of external
forces acting on it. Several forces should be taken in account for a launch from Earth such as
engine thrust, aerodynamic forces, and gravity. In this section, the models which simulates
the position of a spacecraft in outer space as well as its orientation will be presented.

• Position

The purpose of the Position Dynamics simulation model is to keep track of the position of
a spacecraft in outer space. The position of the spacecraft is compute dwith respect to the
center of Earth. For instance, if a low-earth orbit is taken into consideration, the position
would refer to the exact location of the spacecraft in its orbit around Earth.

• Orientation

The orientation a spacecraft is simply the angular rotation of a body with respect to its center
coordinate frame. As we know, any spinning body follows Newton Laws of Motion. The mass
moment of inertia of an object, I, is described by the distribution of mass on that object.
Based on Newton's Second Law, we would now be able to perceive how to relate torque and
precise force. Similarly as force is equal to the time rate of change of linear momentum, torque
is the time rate of change of angular momentum. In other words, in the event that we apply
a torque to an object, its angular momentum will change. At the point when torque is zero,
angular momentum remains constant.

If we apply a force to an object, it will accelerate. In the same manner, if we apply a torque
to a free-�oating object, it will begin to rotate with higher speed. That is, it will encounter
angular acceleration α. Hence, the angular acceleration could computed given a precise torque
T and the object's mass moment of inertia. This concept is summarized in Equation (23)

~T = I~α (23)

where I is the mass moment of inertia measured in (kg ·m2) and α is the angular acceleration
measured in (rads/s2).

A.8 Solar Panel

Spacecrafts operating in Solar systems depends on Solar Panels in order to convert the Solar
Energy into Electric Energy. Equation 24 describes the energy gained by the solar panel from
the solar radiation pressure acting on the surface of the satellite [28]. The gained energy is
directly proportional to the e�ective satellite surface area, to the solar �ux and to the e�ciency
of the solar panel. Thus, the energy resulting from the solar radiation pressure ~fsolar is

~Esolar = A.η.~ΦSun.γ.cos(θ) (24)

where

A is the cross sectional area of the solar panel
η is the e�ciency of the solar panel
~ΦSun is the Solar Radiation pressure acting on the satellite
γ is the lighting coe�cient ranging from 0 to 1 for umbra, penumbra to total sunlight phases
θ is the angle between the position of the sun and the position of the spacecraft

A.9 Sun Sensor

Sun Sensor is one of the attitude sensors that measures the sun vector for attitude deter-
mination. Sun Sensors are used to maximize energy conversion e�ciency [29]. In satellite
applications, measuring the sun vector in any position in a 360°range is a common necessity.

Figure 35: Simpli�ed Sun Sensor that measures sun incidence angle

In normal sun sensors, a thin cut at the highest point of a rectangular chamber enables a line
of light to fall on a variety of photodetector cells at the base of the chamber. By arranging
two sensors perpendicular to one another, the direction of the sun can be calculated.

A.10 Star Tracker (STR)

A star tracker is an optical device used to estimate the stars positions utilizing photocells
or a camera. Astronomers have measured with high accuracy the positions of many stars.
The star tracker on the spacecraft or the satellite uses these measurements to determine the
position and orientation of the spacecraft with reference to the stars [30]. More precisely, the
star tracker has a star catalog containing the stars images which is used to compare the stars
positions and the apparent position of the stars with respect to the spacecraft. Furthermore, a
star tracker can distinguish stars by comparing the pattern of observed stars with the already
known stars in the sky via an incorporated processor.

A.11 Reaction Wheels (RW)

Reaction wheels and gas thrusters are two commonly used actuators for controlling the atti-
tude of a spacecraft. In general, they are located on the three principal axes of inertia of the
spacecraft to produce three independent torques [31]. The majority of the Reaction Wheels
Assembly (RWA) provides redundancy by including an additional reaction wheel. The stan-
dard methodology utilizes three of the four RWs to adjust the control torques but there are
advantages in utilizing at least four skewed RWs [32].

Reaction wheels are utilized to control the orientation of a spacecraft without the utilization
of thrusters. Hence, decreasing the fuel required for mass fraction. They work by having an
electric engine connected to a �ywheel that would change the rotation speed leading to the
spacecraft to rotate in a counter-rotation proportional to the angular momentum. Reaction
wheels can pivot a shuttle just around its focal point of mass; they are not �t for changing
the position of the spacecraft. [33]

A.12 Power Control and Distribution Unit (PCDU)

There are three basic components in the electrical power subsystem of a spacecraft. The solar
array, the battery and the power control and distribution unit (PCDU). The PCDU is similar
to a human heart. It acts as the power control and distribution center in the spacecraft. The
main purpose of the PCDU is to condition and distribute energy between the solar panels and
the rest of the payloads in the spacecraft. During sunlight, the PCDU receives solar power

from the solar arrays, recharges the battery and controls the power distribution to various
payloads in the spacecraft. While during eclipse, the battery powers the spacecraft through
a bus in the PCDU [34].

A.13 Battery

Battery is one of the electrical power subsystem components in a spacecraft. The light en-
ergy from the sun is converted into electric energy by the solar array. The solar array then
recharges the battery in sunlight, so that it would provide electrical power energy to the
spacecraft during periods when the spacecraft is in earth eclipse.

Almost all spacecrafts used in planetary science missions nowadays use primary non-rechargeable
batteries, secondary rechargeable batteries as well as capacitors in their energy storage devices.

Rechargeable batteries are electrochemical devices that convert the electric energy into chem-
ical energy during charge and chemical energy into electrical energy during discharge several
times. They are used to provide power for the spacecraft launch before deploying the solar
panels, as well as providing power to the payloads during eclipse for operations, mobility
and any other anomalies that might occur. Rechargeable batteries used in space missions
include: silver-zinc (Ag-Zn), nickel-cadmium (NiCd), nickel-hydrogen (Ni-H2), and more re-
cently, lithium-ion (Li-ion). Nowadays, the technology of choice for most of the aerospace
applications is the Li-ion rechargeable batteries [35].

B Simulator Source Code

In order to get a better understanding on how the FMI simulator works, the steps performed
by the simulator will be presented in more details.

1 Simulator oSimulator ;
2 oSimulator . InitFromConfig (c on f i g) ;
3 oSimulator . S ta r t () ;

Reading the JSON Con�guration File

1 Simulator ReadSimulatorConfig (std : : s t r i n g const& f i l e p a t h)
2 {
3 std : : cout << "Reading s imu la to r c on f i g from json f i l e : " << f i l e p a t h << std : :

endl ;
4 Simulator oConfig ;
5 std : : i f s t r e am i (f i l e p a t h) ;
6 j s on j_s e t t i n g s ;
7 i >> j_se t t i n g s ;
8

9 return j_ s e t t i n g s ;
10 }

Initialization Step

After reading the JSON con�guration �le, the simulator starts initializing the di�erent blocks.
It initializes the state vector, components and interfaces respectively.

1 void Simulator : : InitFromConfig (std : : s t r i n g s t rCon f i g)
2 {
3 // I n i t i a l i z i n g the s imu la tor from JSON con f i g
4 c f g = SimulatorConf ig : : ReadSimulatorConfig (s t rCon f i g) ;
5

6 // I n i t i a l i z i n g the S ta t e Vector
7 std : : map<std : : s t r i ng , double>:: i t e r a t o r i t ;
8 for (i t=c f g . mapStateVectorConfig . begin () ; i t != c f g . mapStateVectorConfig . end () ;

++i t)
9 {

10 m_oSimSateVector . addState (i t−>f i r s t , i t−>second) ;
11 }
12

13 // I n i t i a l i z i n g the Simulat ion Duration
14 m_dSimStart = c f g . dStart ;
15 m_dSimEnd = c fg . dEnd ;
16 m_dStepsize = c f g . dSteps i z e ;
17

18 // I n i t i a l i z i n g the Components
19 for (int i = 0 ; i < c f g . mapComponents . s i z e () ; ++i)
20 {
21 FMUSimulation* pObj = new FMUSimulation ;
22

23 pObj−>InitFMU(c f g . mapComponents [i] . path , c f g . mapComponents [i] . unzipPath , c f g .
dStart , c f g . dEnd , c f g . dS teps i z e) ;

24

25 // Se t t i n g the s imu la t ion parameters
26 std : : map<std : : s t r i ng , double>:: i t e r a t o r it_param ;
27

28 for (it_param = c fg . mapComponents [i] . mapWriteParameters . begin () ; it_param !=
c fg . mapComponents [i] . mapWriteParameters . end () ; ++it_param)

29 {
30 pObj−>SetS imulat ionVar iab leValue (it_param−>f i r s t , it_param−>second) ;
31 }
32

33 m_mapSimulatedComponents [pObj] = c f g . mapComponents [i] ;
34 }
35

36 // I n i t i a l i z i n g the i n t e r f a c e s
37 for (int i = 0 ; i < c f g . mapInter faces . s i z e () ; ++i)
38 {
39 FMUSimulation* pObj = new FMUSimulation ;
40 pObj−>InitFMU(c f g . mapInter faces [i] . path , c f g . mapInter faces [i] . unzipPath , c f g .

dStart , c f g . dEnd , c f g . dS teps i z e) ;
41 m_mapSimulatedInterfaces [pObj] = c f g . mapInter faces [i] ;
42 }
43 }

Iteration over all Components and Interfaces

Consequently, the simulator starts executing the simulation task. It begins simulating each
of the components and interfaces con�gured in the JSON �le.

1 void Simulator : : S ta r t ()
2 {
3 std : : map<FMUSimulation * , S imulatorConf ig : : FMUComponent>: : i t e r a t o r itComp ;
4 std : : map<FMUSimulation * , S imulatorConf ig : : FMUInterface >: : i t e r a t o r i t I n t e r f a c e ;
5

6 double sim_time = m_dSimStart ;
7 double end = m_dSimEnd ;
8 double h = m_dStepsize ;
9

10 while (sim_time <= end)
11 {
12 // Simulat ion o f a l l Components
13 for (itComp = m_mapSimulatedComponents . begin () ; itComp !=

m_mapSimulatedComponents . end () ; itComp++)
14 {
15 FMUSimulation* sim = itComp−>f i r s t ;
16 SimulatorConf ig : : FMUComponent c on f i g = itComp−>second ;
17

18 std : : map<std : : s t r i ng , std : : s t r i ng >: : i t e r a t o r i t I npu t s ;
19 for (i t I npu t s = con f i g . mapReadSlots . begin () ; i t I npu t s != con f i g . mapReadSlots .

end () ; i t I npu t s++)
20 {
21 double varTmp = m_oSimSateVector . g e tS ta t e (i t Input s−>f i r s t) ;
22 sim−>SetS imulat ionVar iab leValue (i t Input s−>second , varTmp) ;
23 }
24

25 sim−>DoStep () ;
26

27 std : : map<std : : s t r i ng , std : : s t r i ng >: : i t e r a t o r i tOutputs ;
28 for (i tOutputs = con f i g . mapWriteSlots . begin () ; i tOutputs != con f i g .

mapWriteSlots . end () ; i tOutputs++)
29 {
30 double varTmp = sim−>GetSimulat ionVar iableValue (itOutputs−>f i r s t) ;
31 m_oSimSateVector . addState (itOutputs−>second , varTmp) ;
32 }
33 }
34

35 // Simulat ion o f a l l I n t e r f a c e s
36 . . .
37 }
38 }

Do Step

The simulator calls the DoStep() function on each iteration of the components and interfaces.
The DoStep() is a function in the FMI 2.0 for Co-Simulation. It manages the computations
at each time step.

fmi2Status fmi2DoStep (fmi2Component c ,
fmi2Real currentCommunicationPoint ,
fmi2Real communicationStepSize ,
fmi2Boolean noSetFMUStatePriorToCurrentPoint) ;

where currentCommunicationPoint and communicationStepSize are the current communi-
cation point of the master and the communication step size respectively. The communicationStepSize
must be greater than 0.0. Furthermore, the argument noSetFMUStatePriorToCurrentPoint
is set to fmi2True if in this simulation run, the fmi2SetFMUState will no longer be called
for instants of time before currentCommunicationPoint.

	Acknowledgements
	Abstract
	Introduction
	Literature Review and State of the Art
	Spacecraft Systems Engineering
	Spacecraft System Simulation
	Functional Engineering Simulators (FES)
	Software Validation Facilities (SVF) Simulator
	Spacecraft Simulation Models

	Functional Mock-up Interface based Simulation Framework
	FMI Variants
	Industrial Domains

	Numerical Optimization
	Optimization in the context of Spacecraft Simulations
	Cost Function
	Parameter Sweep Technique
	Gradient Descent Search Algorithm

	System Design Methodologies and Implementation
	FMI-based Functional Engineering Simulators (FES)
	System Architecture
	Simulator Configuration (JSON) file
	Generalized Simulation Flow

	Design Optimization within the FMI Infrastructure
	Optimization Goal
	Parameter Sweep
	Gradient Descent Search

	Evaluation
	Evaluation of the FMI-based Spacecraft Simulator
	Use Case: Orientation and Charging Control
	Use Case Results

	Optimization Evaluation of the FMI Spacecraft Simulator
	Parameter Sweep
	Gradient Descent Search

	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	References
	Appendix Simulation Models
	Julian Date to Time Converter
	Mean Anomaly
	Solar Orbit
	Solar Flux
	Earth Eclipse
	Newton's Law of Universal Gravitation
	Spacecraft Dynamics
	Solar Panel
	Sun Sensor
	Star Tracker (STR)
	Reaction Wheels (RW)
	Power Control and Distribution Unit (PCDU)
	Battery

	Appendix Simulator Source Code

