Retrieval of the fluid Love number k_2 from transit light curves

Hugo Hellard1,2, Szilárd Csizmadia1, Sebastiano Padovan1, Heike Rauer1,2,3, Juan Cabrera1, Frank Sohl1, Tilman Spohn1, and Doris Breuer1

1Deutsches Zentrum für Luft- und Raumfahrt, Berlin, Germany
2Technische Universität Berlin, Berlin, Germany
3Freie Universität Berlin, Berlin, Germany

Introduction

Knowledge of the planetary radius and mass is not sufficient to infer the interior structure, as different composition and density profiles can lead to the same solution [1]. Justifying the need for an additional observable.

The second-degree fluid Love number [2], k_2, is proportional to the mass concentration towards the body’s center, hence providing valuable information on the interior.

The tidal and rotational potentials can be expanded and expressed in spherical harmonics. Kopal [4] showed that omitting terms with degree $j < 4$ is equivalent to considering the Roche limit (mass-point surrounded by a massless envelope).

Planets orbiting close to their Roche limit exhibit large tidal surface deformations, respectively, which modify their shape from spherical to more complicated ones.

As a result, the corresponding transit light curve will differ with respect to a transiting sphere.

Question: can we measure the shape of an exoplanet from transit curves?

Shape model

Assumptions: spherical star, circular orbit, no interactions between tides and rotation, tilted spin axis with obliquity ψ.

The tidal and rotational potentials can be expanded and expressed in spherical harmonics. Kopal [4] showed that omitting terms with degree $j < 4$ is equivalent to considering the Roche limit (mass-point surrounded by a massless envelope).

Planets orbiting close to their Roche limit exhibit large tidal surface deformations, making them the best candidates for the retrieval of k_2.

The precision in k_2 reaches a plateau where a better photometric precision does not lead to a better precision in k_2. Only an improved knowledge of the planetary mean radius would improve the precision.

Using only one transit observation of WASP-121b from the GEMINI-North telescope, we managed to provide a rough 1.6σ detection of its Love number:

\[k_2 = 0.29_{-0.15}^{+0.22} \]

The current TESS and upcoming CHEOPS missions will help further constrain the interior of exoplanets by providing the first reliable k_2 estimations of exoplanets.

Feasibility: WASP-121b [5]

We considered several white noise levels and injected them into a simulated WASP-121b transit light curve, binned into 2 minute measurements.

Certain noise levels can be achieved by observing facilities with 10 observed transits.

<table>
<thead>
<tr>
<th>Noise level (ppm/2 minute)</th>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>JWST (NIRspec)</td>
</tr>
<tr>
<td>45</td>
<td>Kepler*</td>
</tr>
<tr>
<td>63</td>
<td>PLATO*</td>
</tr>
<tr>
<td>71</td>
<td>CHEOPS*</td>
</tr>
<tr>
<td>360, 1e3, 2e3, 5e3</td>
<td>TESS*</td>
</tr>
</tbody>
</table>

Application: WASP-103b

System: 1.53 μ_J hot Jupiter orbiting a 1.44 R_\odot, 12.0 V_{mag} star, at roughly 2.3 its Roche limit.

Data: one transit observed by the GMOS instrument at the 8.1m GEMINI-North telescope [7].

Result: we obtained a Love number equal to $k_2 = 0.29_{-0.15}^{+0.22}$.

Reference & Acknowledgements

We acknowledge support from the DFG via the Research Unit FOR 2440 Matter Under Planetary Interior Conditions.

Contact: hugo.hellard@dlr.de