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ABSTRACT
Vetting of exoplanet candidates in transit surveys is a manual process, which suffers from a large
number of false positives and a lack of consistency. Previous work has shown that convolutional
neural networks (CNN) provide an efficient solution to these problems. Here, we apply a CNN
to classify planet candidates from the Next Generation Transit Survey (NGTS). For training
data sets we compare both real data with injected planetary transits and fully simulated data,
as well as how their different compositions affect network performance. We show that fewer
hand labelled light curves can be utilized, while still achieving competitive results. With our
best model, we achieve an area under the curve (AUC) score of (95.6 ± 0.2) per cent and an
accuracy of (88.5 ± 0.3) per cent on our unseen test data, as well as (76.5 ± 0.4) per cent and
(74.6 ± 1.1) per cent in comparison to our existing manual classifications. The neural network
recovers 13 out of 14 confirmed planets observed by NGTS, with high probability. We use
simulated data to show that the overall network performance is resilient to mislabelling of the
training data set, a problem that might arise due to unidentified, low signal-to-noise transits.
Using a CNN, the time required for vetting can be reduced by half, while still recovering the
vast majority of manually flagged candidates. In addition, we identify many new candidates
with high probabilities which were not flagged by human vetters.

Key words: methods: data analysis – techniques: photometric – planets and satellites: detec-
tion.

1 IN T RO D U C T I O N

Exoplanets detected via the transit method constitute 80 per cent
of the total confirmed population (Akeson et al. 2013).1 However,
current detection methods produce large numbers of false positives.

� E-mail: a.chaushev@tu-berlin.de
1https://exoplanetarchive.ipac.caltech.edu, online 2018 September 15.

Since these candidates are analysed manually by several human
vetters, this is a time-consuming process that lacks consistency.

Recent results (Ansdell et al. 2018; Shallue & Vanderburg 2018;
Dattilo et al. 2019; Osborn et al. 2019; Schanche et al. 2019; Yu et al.
2019) have shown that a convolutional neural network (hereafter
CNN) provides an efficient, automatic approach to classifying
exoplanet candidates. A CNN can be used to reduce the time burden
on human vetters, as well as to identify promising candidates which
may have been missed, particularly those in lower signal-to-noise
(S/N) regimes where there are many false positives.
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In this paper, we present the first application of a CNN to
data from the Next Generation Transit Survey (NGTS) (Wheatley
et al. 2018) and show that it is effective in classifying exoplanet
candidates found by ORION, an implementation of the box least-
squares detection algorithm (BLS) (Collier Cameron et al. 2006).
We demonstrate that there is good agreement between the CNN
ranking and our extensive data base of classifications produced by
expert human vetters. In addition, we build on previous work by
investigating the optimal size and composition of the data set used
to train the neural network. Previous studies have relied on false-
positive candidates, identified during the human vetting process, to
formulate their CNN training data. By utilizing transit injections
we find that we can reduce the number of human labelled light
curves needed for training, while still achieving competitive results.
Labelling data are a time-intensive process and a key road block in
training a CNN.

In Section 2, we describe our data sets and data preparation
procedures. In Section 3, we describe the architecture of the neural
network and set out our methods for training and optimizing the
CNN. We discuss the results of training using simulated data in
Section 4. In Section 5, we characterize the performance of our
network using real NGTS data. We draw comparison to human
candidate classification in Section 6 and describe our search for
new, promising planet candidates in Section 7. Finally, we discuss
our results and present our conclusions in Section 8.

1.1 Transit search

Variants of the BLS fitting (Kovács, Zucker & Mazeh 2002) and
matched filter (Jenkins 2002; Bordé et al. 2007) methods have
become the canonical tools for the detection of exoplanet signals
in transit light curves. The facilities which use them include WASP
(Collier Cameron et al. 2006, 2007; Pollacco et al. 2006), XO
(McCullough et al. 2005), HATNet (Bakos et al. 2007), CoRoT
(Cabrera et al. 2011), Kepler (Jenkins et al. 2010; Cabrera et al.
2012), KELT (Siverd et al. 2012; Kuhn et al. 2016), MASCARA
(Talens et al. 2017), NGTS (Wheatley et al. 2018), and TESS (Ricker
et al. 2015). Unfortunately these methods yield vast numbers of false
positives.

For instance there are more than 58 500 targets with ORION

candidates in NGTS data. With up to five different detections
considered per target, this gives over 212 000 candidates in total.
Günther et al. (2017a) estimated that ∼ 97 per cent of these are
false positives, reducing to 82 per cent after initial vetting tests.
These numbers are broadly consistent with false positives from
other missions such as CoRoT and Kepler, which can range from
∼ 50 per cent to ∼ 90 per cent (Akeson et al. 2013; Santerne et al.
2016; Deleuil et al. 2018)

Large numbers of candidates with a high false positive rate
demand many resources during the vetting process, since candidates
are analysed visually by a human being. It is also difficult to ensure
consistency across expert vetters, as some of the judgements may
be subjective, particularly for marginal candidates.

1.2 Deep learning

Machine learning is a subset of artificial intelligence which studies
algorithms that ‘learn’ to perform a task instead of following explicit
steps. Machine learning approaches have become increasingly
popular in the field of exoplanet detection and vetting, and are being
applied to address the shortcomings of transit detection algorithms.

McCauliff et al. (2015) and Mislis et al. (2016) utilized a random
forest classifier (Breiman 2001) on transit crossing events (TCEs)
in Kepler data. Others have used self-organizing maps to group
Kepler light curves with similar features and to classify new objects
according to their similarity with each group (Thompson et al. 2015;
Armstrong, Pollacco & Santerne 2017). Armstrong et al. (2018)
combined a self-organizing map with a random forest model to rank
NGTS candidates produced by ORION. The Autovetter algorithm
achieved an area under the curve (AUC) score of 97.6 per cent in
ranking injected transits against false positives in the NGTS data
set.

More recently, a variety of machine-learning techniques, called
‘deep learning’, have provided performance improvements for many
applications (LeCun, Bengio & Hinton 2015; Khamparia & Singh
2019). A deep neural network (DNN) consists of three or more
layers of interconnected neurons, and is capable of learning useful
features for classifying the data automatically. Performance of deep
learning techniques have also been shown to scale well with large
volumes of data (Sun et al. 2017). These traits are advantageous
for the exoplanet candidate classification problem. A CNN is a
common form of a DNN, which is loosely based on the architecture
of the animal visual cortex (LeCun et al. 1990, 1998). CNNs are
particularly suited to data that contain spatial structure, such as
transit light curves when represented as one-dimensional images.
Both Pearson, Palafox & Griffith (2018) and Zucker & Giryes
(2018) presented important case studies demonstrating the ability
of CNNs to detect exoplanet candidates directly from light curves.
However, they focused mainly on simulated data and did not proceed
with applying their networks to search for new candidates.

Shallue & Vanderburg (2018) applied their CNN, ASTRONET,
to classify new candidates in known planetary systems, using
Kepler light curves. The authors showed that CNNs yielded greater
success than alternative DNN architectures. A key result was
that multiple ‘views’ of the network input representation boosts
performance. Ansdell et al. (2018) built on this work by showing
that incorporating the object centroid time series and stellar scalar
properties (e.g. radius, temperature, density etc) in the network
input, also increased the performance of the CNN. Other authors
have applied CNNs to classify transiting exoplanet candidates:
WASP: Schanche et al. (2019); K2: Dattilo et al. (2019); TESS:
Osborn et al. (2019); Yu et al. (2019).

In this paper, we apply a CNN to classify exoplanet candidates in
NGTS, developing a different method to that previously employed
by Armstrong et al. (2018). We draw a detailed comparison to
human classifications from the vetting process and investigate how
well the network performs with respect to the S/N of the transit
detection.

Importantly, we build on previous work by investigating how
the composition of the non-planet class of the training data set
influences the network performance. We show that we can reduce
the number of manually labelled light curves required for training,
by utilizing injections of planetary transits and astrophysical false
positives instead, while achieving similar performance. Finally,
using simulated data, we show that network performance increases
with training data set size and also that it is robust to a small amount
of contamination in the form of incorrectly labelled light curves.

2 DATA SE T P R E PA R AT I O N

In this work we are concerned with distinguishing promising
exoplanet candidates from false positives. Therefore, we focus on
training data sets with two classes; a planet class comprised solely
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of light curves with injected planetary transit signals and a non-
planet class, containing either a false positive signal or no signal at
all. These are labelled as ‘1’ and ‘0’, respectively, with the CNN
outputting a normalized score in this range that is interpreted as the
probability of the light curve containing a transit.

Previous studies utilized light curves of confirmed exoplanets and
promising candidates identified from manual vetting, for their planet
class (Ansdell et al. 2018; Shallue & Vanderburg 2018; Dattilo et al.
2019; Yu et al. 2019). Typically, the distribution of labelled light
curves from the vetting process is highly imbalanced towards the
non-planet class. Ideally the classes should be balanced so that the
network is equally trained to recognize both.

Label imbalance is more prevalent in NGTS data, as the survey
has not been operational for long enough to accrue a sufficiently
large variety of confirmed planets and candidates, from which
to produce a training set representative of the true population.
Confirmed planets and planet candidates constitute only 1 per cent
and 8 per cent, respectively, of NGTS vetting labels. We note that
even the long-established WASP survey was noted as having a
deficiency of planet labels in their label distribution, with Schanche
et al. (2019) opting to augment them via injection of simulated
transits into real data. A similar strategy is necessary for the training
of a CNN on NGTS data.

Injection of artificial planetary transits into real data is a compro-
mise which guarantees appropriate properties of the underlying data
but with sufficient flexibility to produce transit signals of interest.
However, the use of light curves contaminated by real transit-
like signals for either class, e.g. shallow signals, may confuse the
network and lead to lower performance. This potential issue was
first highlighted by Zucker & Giryes (2018) and is discussed further
in Hou Yip et al. (2019).

Fully simulated data are an alternative means of training a
network, and one which offers full control over the parameter space
as well as a pristine environment for validation and testing. The
challenge for simulated data is in replicating the observation pattern
and systematics inherent to the real data, such that the network is
adequately trained for the task. Osborn et al. (2019) noted a reduced
performance of their network when validated on real data, compared
to Shallue & Vanderburg (2018) and Ansdell et al. (2018). The
authors highlighted that training on simulated TESS data may be
a contributing factor. Indeed Yu et al. (2019) trained their network
on real TESS data and achieved better performance, although we
note that results from these studies are not directly comparable as
there are many differences between the network inputs and the data
themselves.

In this work we consider both fully simulated data and injections
of simulated transits into real data, when training our CNN. We
discuss these separately in Sections 2.1 and 2.2. In addition, we
also consider the effect of varying the data set composition of the
non-planet class. We do this by including injections of artificial false
positives such as eclipsing binaries, as well as true planet and false
positive signals deliberately phase-folded on an incorrect period.
Previous studies concerned with the classification of real planet
candidates, relied solely on the use of real false positive candidates
identified via vetting.

2.1 NGTS data

NGTS is a wide-field, ground-based transit survey located at ESO’s
Cerro Paranal observatory, Chile (Wheatley et al. 2018). NGTS
comprises 12, fully roboticised 20 cm telescopes, each with an
8 deg2 field of view. The goal of the NGTS project is to detect

Super-Earths and Mini-Neptunes around bright host stars (mv

< 13) suitable for radial velocity confirmation and atmospheric
characterization. In survey mode, each NGTS field is observed for
approximately 8–9 months, for periods of time starting at 30 min
through to a full 8 h of continuous coverage. An image is taken every
12 s with a 10 s exposure time. For a full discussion of the processing
of NGTS data including reduction, photometry, and detrending, the
reader is referred to Wheatley et al. (2018). Each NGTS light curve
is further detrended to remove stellar noise and sidereal day artefacts
using a custom built detrending pipeline (Eigmüller in preparation).
As part of the additional detrending, data points that are affected by
bad weather or poor conditions are further removed from the light
curves. All data were drawn from the most recent NGTS pipeline
run, which is called ‘CYCLE1807 DC’ under the NGTS naming
convention.

In total, 91 fields were available for processing with the neural
network and from which data for a training set could be drawn.
This comprises over 890 000 light curves brighter than INGTS of
16th magnitude. While the primary goal of the survey is to find
planets around bright host stars (mv < 13), all light curves down to
16th magnitude are searched. Including these light curves increases
the parameter space to which the neural network will be sensitive
to and also allows us to boost our training data set size. Each light
curve has on average 178 000 data points, up to a maximum of
approximately 210 000. Six of the 91 fields have less than 100 000
measurements either due to weather, maintenance of equipment or
ongoing observations for fields which are incomplete.

The ORION detection package (Collier Cameron et al. 2006)
was run over the fully detrended data from all of the fields.
ORION produced 212 000 candidate transit detections from 58 500
separate targets, with at least one detection having a signal detection
efficiency (SDE) of greater than 5 (the lower threshold for the first
detection). ORION searches for candidates in the period range 0.35–
35 d. As part of routine NGTS operations, ORION candidates are
regularly vetted by members of the consortium. The vetting process
is organized by observed field, with every NGTS field being vetted
by at least two people. The initial screening of a field involves
marking interesting candidates for discussion using a D flag. These
D candidates are then further discussed by a larger group, before
either being unflagged or labelled as AS, BS, or AD if it is decided
they are promising. False positives have their own flags and a full
description of these can be seen in Table 1. Most candidates are left
unlabelled if they are not likely to be real or do not conform to a
clear false positive scenario.

To create the planet class of our network training, validation, and
test data sets, we first select a sample of light curves to be hosts
for planetary transit injections by filtering out light curves with
ORION candidates. This reduces the likelihood that the remaining
light curves contain real transits or false positive signals, which
the network might confuse with the injected signals. We utilized
the ELLC package (Maxted 2016) to perform transit injections.
Using a Monte Carlo method, parameters were drawn from allowed
ranges set out in Table 2. Our goal was to produce the maximum
variety of transit signals, sampled as uniformly as possible, and
not to emulate real world distributions. For each injection, we first
drew the following parameters uniformly from their allowed ranges:
orbital period, transit depth, Rstar, and third light ratio (L3). L3 is
defined as the ratio of flux from a third body in the aperture to that
originating from the target of interest, and we fixed its value to 0
for 50 per cent of the time. As can be seen from Table 2, our chosen
range of periods for injections differs slightly from the ORION search
period range (0.35–35 d). For the upper limit, detections of transits
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Table 1. List of initial flags assigned by human ‘eyeballers’ during the
NGTS planet candidate vetting process. Promising candidates identified by
individuals are first assigned a D flag, prompting discussion by the wider
consortium. Following discussion, a different flag is assigned from one of
two groups indicating whether the candidate requires further follow up or
has been rejected as a false positive. If a candidate is subsequently confirmed
as a planet, it is assigned a P flag.

Flag Description

D Marked for discussion
AD Planet candidate with deep transit
AS Planet candidate with shallow transit
BS Planet candidate with shallow transit being held for further

discussion before follow up
EA1 One eclipse visible and otherwise flat
EA2 Two eclipses visible otherwise flat
EB Continuously variable but with contact points and/or V-shaped

minima
SINE Sine-like continuously variable source (including asymmetric

pulsators)
OTH Other variability
UNF Candidate was unflagged after further discussion
P Confirmed planet

Table 2. Allowed parameter ranges for injection of artificial planetary
transits and eclipses of stellar binaries. The third light ratio is defined as
the ratio of flux originating from a third body in the aperture, to the flux
originating from the system of interest. Eclipsing binaries were injected into
real data but not simulated data.

Parameter Minimum value Maximum value

Period 0.1 d 15.0 d
Duration 10 min 6 h
Third light ratio (L3) 0 1.0
Planetary transits
Depth 0.5 mmag 6.0 percent
Rplanet 0.5 REarth 2.2 RJup

Rstar 0.2 R� 2.0 R�
Rplanet/Rstar 0.0022 0.25
Eclipsing binaries
Depth 0.5 mmag 100 per cent
TeffA, B 3030 K 9200 K
RA, B 0.2 R� 2.0 R�
RB/RA 0.1 10.0

with periods greater than 15 d in the NGTS data are not very robust
as often there is only a single transit event and a search in this
regime would be more suited to a specialized effort. However, we
note that in initial tests the CNN generalized well above this limit
for those few ORION candidates in the long period regime, therefore
we decided to include these in the comparison for completeness.
The decision to extend the lower limit for the injections was due to
the fact that we may search this area in future. So we decided to
choose a lower limit which was more physically justified than the
ORION one.

To give our CNN a fair chance at detecting the transit signals, we
ensured that the transit depth of any injected signal was no shallower
than the standard deviation of the host light curve, when binned to
15 min cadence. The planet-to-star surface brightness ratio and
orbital eccentricity were both fixed to 0. Next we randomly chose
to simulate either a full transit or a partial eclipse, each having equal
probability. For the full eclipse regime, we numerically solved Rp

based on our choice of: transit depth, Rstar, and L3. Finally, we

randomly selected an impact parameter in the range 0 < b ≤ 1 −
k, where b is the impact parameter and k is the planet-to-star radius
ratio. For the partial eclipse regime, we instead numerically solved
for the minimum allowed Rp value, and then randomly selected a
value for Rp between this value and our maximum allowed limit in
Table 2. Finally, we numerically solved for an impact parameter in
the range 1 − k < b ≤ 1 + k. Transit epochs were uniformly sampled
in the range of 0 to the chosen orbital period, and the semimajor
axis was set so as to permit the chosen transit depth.

Valid injection signals were those which had a minimum of 3
transits, each covering at least one third of a transit, and where all
parameters fell within the respective permitted ranges (Table 2). We
employed a simple trapezoidal transit model, neglecting the effects
of limb darkening and the signal was strictly periodic (no transit
timing variations). Similarly, we inject signals arising from a single
planet per light-curve, we did not consider multiplanetary systems.

For the object centroiding time series we applied shifts to the
measured CCD x- and y-position values, co-incident with transit
events in the flux time series, with 50 per cent probability. When
applied, the shifts were proportional to the flux dilution parameter
with a maximum absolute value of 0.5 pixels. Injecting the transit
directly into the time series in this way proved to be equivalent to
simulations of the centroid shift done directly using a pixel level
simulation.

For the non-planet class of the training, validation and test data
sets, we consider four categories of false positives. These are:

(i) ‘Non-periodic (NP)’ – light curves with no ORION candidates,
i.e. they contain no easily detectable, periodic transit-like signals.

(ii) ‘Eclipsing binary’ (EB) – Non-periodic light curves with
injections of eclipsing binary signals.

(iii) ‘Wrong fold’ (WF) – planetary transits and eclipsing
binaries folded on a randomly selected wrong period.

(iv) ‘ORION false positive’ (OFP) – ORION candidates rejected
as false positives during the vetting process.

For the EB category, we inject artificial binary eclipses into host
light curves with no ORION candidates, in a similar way to planetary
transit injections. However, for EBs we also include stellar effective
temperatures (Teff) as injection parameters, in addition to orbital
period, eclipse depth, Rstar, and L3. These are uniformly sampled
within the limits set out in Table 2. The stellar surface-brightness
ratio of the two components is then considered in the eclipse model.

OFP light curves are drawn from the pool of ORION candidates
which received either one of the following flags during the vetting
process: EA1, EA2, UNF, SINE, OTH, or received no specific flag.
These false positives have been checked by at least two independent
vetters who decided the candidate was not worth discussing further,
as they were confident it was unlikely to be of a planetary nature.
Those OFPs without flags include many targets with lower SDEs,
whose true nature is less certain. It could be argued that potential
real planetary signals are being introduced into the non-planet class
data in this way. While we do expect that some good candidates
may have been missed in the eyeballing process, the vast majority
of these are expected to be false positives, up to 97 per cent as
estimated by Günther et al. (2017b). We directly investigate the
effects of signal contamination in Section 4.

ORION false positives have a broad range of SDEs, as such
there are multiple ways of selecting them for inclusion in the
negative class. Previous studies utilized the entire pool of false
positives for training. However, the SDE distribution of false
positives may influence the network’s sensitivity to low and high-
S/N candidates. Therefore, we investigated how the mean SDE
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5236 A. Chaushev et al.

Figure 1. Distribution of SDE values for ORION false positive candidates
from 45 fields, corresponding to half the data set, are indicated by blue
bins. Each of the four subplots shows a sample which can be selected using
different criteria: uniform (purple bins), max (red bins), random (yellow
bins), and min (green bins). By including each sample in turn for the
OFP category, we investigate how the selection method affects network
performance.

of the non-planet class affects the final network performance. We
consider false positives drawn in four different ways, as shown in
Fig. 1, representing: a randomly drawn sample, a sample of the
lowest SDEs, a sample of the highest SDEs, and a sample drawn
uniformly across the SDE range.

In total we produced 15 different data sets, differing in the com-
position of their negative class. There are six unique combinations
of subclasses, each containing up to a maximum of four subclasses.
The data sets which contain the ORION false positive subclass each
have four variants, in which light curves were drawn from the
SDE distribution in different ways (Fig. 1). Each of the 15 data
set compositions contain 24 000 light curves in the training data
set, split evenly between the transit and non-planet class. Where
there are two or more subclasses, each subclass contains an equal
number of light curves. A summary of the different data sets is given
in Table 3.

An independent test of network performance must be carried out
using previously unseen data. We aim to classify ORION candidates;
however, our training data sets with the false positive subclass
contain a sample of the same light curves. To avoid training and
evaluating on the same light curves, we divide the ORION candidates
into two groups according to NGTS field. Fields with an RA of less
than 12 h comprise the first group, while fields with RA of 12 h or
more make up the second group. For each data set with the OFP
subclass, we train two separate versions of the network, one for each
group. Network performance for group one is evaluated on group
two and vice versa.

2.2 Simulated data

We generated 100 000 pure noise light curves that modelled the
observational properties of the NGTS survey. To determine the
time sampling of each light curve we first defined a corresponding

Table 3. Summary of the different neural network training data sets used
in this study. Values indicate the number of light curves each training data
set comprises, in units of one thousand light curves, broken down by class
and sub-class. Models trained on simulated data and real data are grouped
separately. The planet class is composed of synthetic planetary transits
injected into either real or simulated light curves. The non-planet class is
composed of up to four sub-classes: non-periodic (NP), eclipsing binary
(EB), wrong fold (WF), and ORION false positives (OFP), which are defined
in Section 2.1. The OFP selection refers to one of four distributions use to
select the ORION false positives via their SDE. These are shown in Fig. 1.

Model name OFP Non-planet class Planet
selection NP EB WF OFP class

Simulated data:
– – 12 – – – 12
– – 50 – – – 50
Real data:
NP – 12 – – – 12
NP/EB – 6 6 – – 12
NP/EB/WF – 4 4 4 – 12
NP/EB/OFP/WF Max 3 3 3 3 12

Min
Random
Uniform

NP/EB/OFP Max 4 4 – 4 12
Min

Random
Uniform

OFP Max – – – 12 12
Min

Random
Uniform

pseudo-field. For each field we chose the baseline length of night
from a uniform distribution in the range of 7–9 h. We modelled the
duration of darkness at Cerro Paranal between astronomical dusk
and dawn, during the course of a year, with a sinusoid function
and chose a random phase corresponding to the epoch at which
observations commenced. Beginning with a rising field visible for
30 min at the end of the first night, and which rises 4 min earlier
each successive night, we stepped through nights to construct a time
series with the maximum length of night set by the chosen baseline.

Each night we sampled the observation window every 10 min up
to either a total of 4278 data points or when the field became visible
for less than 30 min, whichever came first. We added noise in the
form of time offsets by drawing both the nightly observation start
times and durations from normal distributions, with means equal to
their nominal values and standard deviations of 10 min. To simulate
bad weather and operational issues, we implemented entire night
drop outs with a probability of 35 per cent and intranight drop outs of
a random number of adjacent points with probability 5 per cent. To
obtain the corresponding flux to the light curve time series, we used
the Gaussian process (GP) kernel from Zucker & Giryes (2018) to
simulate intrinsic stellar variability with quasi-periodic and white
noise components:

k(ti , tj ) = A2
s exp

[
−

(
ti − tj

λs

)2]

+A2
q exp

[
− 1

2
sin2

(
π (ti − tj )

Tq

)
−

(
ti − tj

λq

)2]

+A2
wδ(ti − tj ) , (1)
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Classifying exoplanet candidates with CNNs 5237

Table 4. GP kernel hyperparameter ranges used in equation (1), from
which values are sampled in order to create fully simulated data sets. A
full explanation of these data sets is given in Section 2.2.

Hyperparameter Minimum value Maximum value

As 200 μmag 5 mmag
Aq 200 μmag 5 mmag
λs 1 min 10 h
λq 1000 min 500 h
Tq 10 h 500 h

where As, Aq, and Aw are the amplitudes of each component; λs

and λq are the length-scales of variations in the time axis; Tq is
the period of the periodic component; ti and tj are the times at
different epoch and δ is the Kronecker delta. We implemented
our GP kernel using the GEORGE package (Ambikasaran et al.
2015). The hyperparameters of the kernel were drawn from uniform
distributions within the limits set out in Table 4. We utilized the same
periodic limits as Zucker & Giryes (2018) but we chose a range of
amplitudes spanning larger values, as NGTS is not as sensitive as
Kepler. For each light curve we selected a corresponding stellar
radius and V-band magnitude from uniform distributions in the
range 0.2 R� ≤ R ≤ 2.0 R� and 8 mag ≤ V ≤ 16 mag, respectively.
We utilized the following relation for the white noise amplitude and
V-band magnitude

Aw = a exp

[
0.4

(
V − 8.0

)
b

]
. (2)

Parameters a and b in equation (2) were determined by fitting to
the NGTS noise model from Wheatley et al. (2018), giving 61 and
0.59 μmag, respectively.

To emulate real data artefacts, we created outliers by re-scaling
randomly chosen flux points with an occurrence probability and
maximum adjustment of 1 per cent. Simulated stellar flares were
also injected using the model from Davenport et al. (2014), with
occurrence probability of 5 per cent. We chose the flare amplitude
and duration uniformly from the ranges 0 to 7 per cent and 20–75
min, respectively.

We note that our chosen cadence of 10 min is much longer than
the actual 12 s cadence of the NGTS survey, and was a practical
compromise since the time taken to sample from the GP scaled as
the number of points to the third power. The effect of increasing the
cadence is analogous to binning up the data, since for NGTS data
white noise dominate the light curves on these time-scales.

To create network training, validation, and test data sets, we
formulate the planet class by injecting artificial planetary transits
into half of the 100 000 light curves using the same procedure as
for real data, described in Section 2.1. For the non-planet class we
take the remaining 50 000 light curves with no modifications.

2.3 Input representations

Shallue & Vanderburg (2018) utilized both ‘global’ and ‘local’
views of their light curves, covering the entire light curves and
a limited region of the primary transit event, respectively. They
found that while the global view shows the out-of-transit noise as
well as any secondary eclipses, the local primary view draws out the
details of the primary transit. This is particularly important for short-
duration transits and longer orbital periods. We adopted this method
but expanded it to include local views of any secondary transit,
as well as the primary event. Ansdell et al. (2018) incorporated

auxiliary scalar stellar host properties, as well as the target centroid
time series in their network input representations. The former
allowed the network to discriminate transit-like signals from signals
consistent with exoplanet transits. The latter allows identification of
centroid shifts indicative of diluted binary star eclipses, a common
false positive. We adopted the centroid views and auxiliary stellar
properties as inputs to our network.

First, we generated global view input representations of the entire
light-curve flux series. We phase folded the light curves on their
orbital periods, ignoring transit epoch, such that the transit event can
be centred at any phase value. This makes the network more robust
to uncertainties in ephemerides for ORION candidates and improved
performance during early tests. Bad datapoints, such as those with
non-zero flags from the pipeline output, were removed. The light
curves were then split into the same number of uniformly spaced
bins. We normalized the light-curve views such that the maximum
depth had a value of −1 and the median (baseline) value was 0.

The global views of the centroid series were generated in the
same way as per the flux, except that we did not normalize by
the maximum depth. Instead, following Ansdell et al. (2018), we
normalized by the standard deviation of the centroid series scaled
by that of the flux series, calculated from the out-of-transit regions
across the entire data set

Local views of the flux and centroid series were produced in a
similar way to the global views, but instead of using the whole light
curves, we considered windows of the phase 0 and 0.5 regions,
spanning three times the average transit duration of the confirmed
exoplanet population (3.23 h). To account for uncertainties in transit
ephemerides in a similar way to the global views, we randomly
offset the events from the centre of the window, up to a maximum
of 2/3 of the centre to edge span.

We opted to provide the orbital period as an auxiliary scalar input,
to explore whether it can be utilized by the network to disregard
spurious signals resulting from the observation window function
of the NGTS survey, e.g. signals whose periods are integers of a
day, or harmonics. Secondly, normalizing the maximum depth of
the flux series views allows the network to better interpret the data.
However, in doing so we destroy information about the real transit
depth. To prevent this information from being lost, we provide
the maximum depth normalization factor as an auxiliary input.
Finally, the stellar host radius was included to allow discrimination
between real exoplanet and exoplanet-like transits. For example,
a deep transit of a large star is more likely to be an eclipsing
binary system rather than an exoplanet transit. The auxiliary scalar
inputs were normalized by the standard deviations of their respective
distributions.

For network training and evaluation, ideally the distributions of
light-curve transit injection and stellar host properties would be
uniform, since we consider a broad range of planet, stellar host,
and light-curve properties, as shown in Fig. 2. Although parameters
were initially sampled from uniform distributions, their non-linear
relationships coupled with a Monte Carlo selection method result
in departures from uniformity. Balancing the value distributions of
multiple parameters in combination is a non-trivial task. In addition,
light curves belonging to the non-periodic subclass did not undergo
transit injection and so were not assigned transit related parameters.
For these, we sampled ephemerides and auxiliary stellar scalar
values from the planet class population, so as not to introduce any
biases in the training procedure.

In summary, we generated the following input representations:

(i) Global view of flux series.
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5238 A. Chaushev et al.

Figure 2. Posterior density distributions of transit injection parameters,
for the planet class of real data sets. Although period, transit depth, and
stellar radius parameters are originally sampled uniformly, our Monte Carlo
approach combined with our allowed parameter combination criteria result
in departures from uniformity. For partial eclipses, the planetary radius is
uniformly sampled. However, for full transits and eclipses, the planetary
radius is numerically solved based upon the chosen transit depth, stellar
radius, surface brightness ratio, and third light ratio. The distribution of
planetary radii is skewed towards larger values since for partial eclipses,
larger radii can produce the same transit depth as a smaller planet undergoing
full transit, if the impact parameter is increased proportionately.

(ii) Global view of centroid series.
(iii) Local primary transit view of flux series
(iv) Local primary transit view of centroid series
(v) Local secondary transit view of flux series
(vi) Local secondary transit view of centroid series.
(vii) Auxiliary scalar orbital period.
(viii) Auxiliary scalar depth normalization factor.
(ix) Auxiliary scalar stellar host radius.

Fig. 3 depicts the flux input representations for the planet class
and for 3 of the 4 subclasses of the non-planet class.

3 N E U R A L N E T WO R K A R C H I T E C T U R E A N D
T R A I N I N G

Fig. 4 shows the structure of the CNN used in this work. The archi-
tecture has been adopted from ASTRONET (Shallue & Vanderburg
2018), including the use of a global and local view, and all pa-
rameters governing the fully connected, pooling, and convolutional
layers. However, we extended it by utilizing additional inputs from
other work (Ansdell et al. 2018; Osborn et al. 2019; Yu et al. 2019)
as discussed in Section 2.3. Our neural network is called ‘PlaNET’
and was implemented using the PYTORCH PYTHON package (Paszke
et al. 2017).

3.1 Optimization

Since a CNN can only take a fixed-size input, two key parameters
in the network architecture are the sizes of the input vector time
series. We adopted sizes of 2001 and 201 for the global and local
views, respectively, which Shallue & Vanderburg (2018) found to
be optimal for Kepler data. However, NGTS is a ground-based
survey with a much shorter baseline and exposure time compared
to Kepler. In order to see if a different vector size may improve
performance we tested a full combination of 1001, 2001, and 3001
vector input sizes for the global view; and 151, 201, and 251 sized
input vectors for the local view. Additional network parameters
may also affect performance, so for each combination of view size
we used the HYPEROPT (Bergstra, Yamins & Cox 2013) package,
with Tree-structured Parzen Estimator (TPE) algorithm, to conduct
a Bayesian optimization over the model hyperparameter space. We
considered 19 hyperparameters (Table 5), including those associated
with training (e.g. learning rate, dropout probability, number of
epochs) and network architecture (e.g. kernel size, quantities of
different layers).

Thousands of models were evaluated in total, spanning hundreds
of hours of computation time, using NVIDIA Tesla P100 GPUs.
Each model took on average 11 min to train using all inputs, and
6 min using only global and local primary flux inputs. Overall, we
found no statistically significant improvement in performance of the
network for alternative input vectors sizes or other hyperparameters.
However, we note that we were only able to search an extremely
small area of the overall hyperparameter space, due to resource
limitations. Further work is needed to clarify whether a different
network architecture could boost performance for NGTS.

3.2 Network training

Finally, after completing the architecture search, we trained PlaNET
on the different data sets we constructed using both real and
simulated data. We trained using a batch size of 50, a learning
rate of 1 × 10−5 and for a maximum of 20 epochs. We employed
early stopping to prevent over fitting, if the generalization loss
exceeded 20 per cent. We refer the reader to Prechelt (2012) for a
detailed discussion on early stopping. In short this meant that if the
error on the validation set after any epoch exceeded the smallest
error over all previous epochs by 20 per cent or more, training
was immediately stopped. During training, the ADAM optimization
algorithm (Kingma & Ba 2014) with default decay rates was utilized
to minimize the cross-entropy loss function. To further prevent
overfitting, dropout regularization with a probability of 0.5 was
applied to the fully connected layers, which acts to deactivate
random neurons with some probability for the pass of every batch
(Hinton et al. 2012). We employed model averaging in the form of
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Classifying exoplanet candidates with CNNs 5239

Figure 3. Example global and local view inputs for the phase folded light curves. The top three rows show three of the four categories of non-planet class light
curves: Non-periodic (NP), eclipsing binary (EB), and wrong fold (WF); ORION false-positives (OFPs) are not shown. The bottom row shows an example light
curve from the planet class. Light curves has been normalized to have a median value of 0 and maximum depth of −1. To account for uncertainties in ORION

ephemeris, transit epoch is ignored for global views when phase folding the light curves, so the transit event can have any phase. Similarly for local views, the
transit event is deliberately offset from the window centre.

k-fold cross-validation, to increase the reliability of our results.
We achieved this by splitting every data set into 10 segments,
with 80 per cent of the segments used for training, 10 per cent
for validation and 10 per cent for testing at any one time. This
corresponds to 24 000 light curves for training, 3000 for validation
and 3000 for testing, respectively. Ten different copies of each
model were trained by rotating the segment used for validation and
testing, while keeping the remaining ones for training. Additionally,
a different random seed value was used each time. The mean
predictions from each of the 10 copies are then adopted as the
final values.

4 TR A ININ G WITH SIMULATED DATA

Using the procedure described in Section 3.2, a neural network was
trained on 100 000 fully simulated NGTS light curves, generated as
discussed in Section 2.2. We consider four metrics for determining
network performance:

(i) AUC: Area under the receiver operating characteristic curve.
This can be interpreted as the probability that a randomly chosen
planet scores more highly than a randomly chosen false positive.

(ii) Accuracy: The fraction of network classifications which are
correct.

(iii) Precision: The fraction of correctly classified planets over
the total number of candidates classified as planets.

(iv) Recall: The fraction of planets which are recovered by the
network.

The network achieved an AUC score of 98.82 per cent, an
accuracy of 95.31 per cent, precision and recall of 99.18 per cent
and 91.34 per cent, respectively, on the unseen test data. The high
performance of the network on simulated data is encouraging,
indicating that the neural network has the capacity to perform the
classification task well.

Pont, Zucker & Queloz (2006) have shown that correlated noise is
complex and that this can significantly reduce the transit recovery
rate. In order to quantify the effect of noise in the NGTS data,
we compare two models: one trained using real data (with planetary
transit and EB injections) and one trained using fully simulated data,
under similar conditions. As explained in Section 2, the simulated
data consists of pure noise light curves for the non-planet class, and
noise plus injected transits for the transit class. Therefore, for real
data it most closely resembles the NP data set (Section 2.1) and so
we use this as the basis of comparison between the two. To draw
a valid comparison we use only 24 000 simulated data light curves
for training, equal to the number of light curves in the real data sets.
Training on more data is likely to increase performance, which we
explore in more detail in Section 4.1.

Re-training the neural network using only 24 000 simulated light
curves, the model achieves an AUC of 98.12 per cent and an
accuracy of 94.38 per cent. In contrast, the NP data set achieves
an AUC of 96.00 per cent and an accuracy of 90.10 per cent,
respectively.

Reduced performance when training on real data appears to
support our hypothesis that the systematic noise properties of the
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Figure 4. Architecture of our best CNN model. Network inputs are
passed through repeated blocks of convolutional and max pooling layers;
global views, local views, and auxiliary scalars are stacked, respectively,
and passed through adjacent columns. The outputs from the different
columns are combined prior to being passed through fully connected layers.
Convolutional layers are denoted Conv-{kernel size}-{number of feature
maps}, max pooling layers are denoted MAXPOOL-{window length}-
{stride length} and the fully connected layers are denoted FC-{number
of units}. The output of the final sigmoid layer is the predicted probability
that each light curve contains a transiting exoplanet.

real data are more complex than that modelled for our simulated
data.

In order to draw a more direct comparison, we further investigated
how well a network trained on simulated data perform when
classifying real data. We trained a model using 100 000 simulated
light curves and subsequently classified the NP test data set. The
result was an AUC of 85.0 per cent and an accuracy of 80.1 per cent,

Table 5. Hyperparameters and corresponding trial values used in our
search for the optimal neural network architecture and training method.
We abbreviate the following terms: global view (GV), local view (LV), max
pooling (MP), and fully connected (FC). For the GV and LV, we define a
block of layers as two convolutional layers followed by an MP layer.

Hyperparameter Trial values

No. training epochs 5, 10, 15, 20, 25, 30, 40, 50
ADAM learning rate [5.0E−6, 1.5E−5]
Dropout probability 0, 0.125, 0.25, 0.375, 0.5
GV kernel size 3, 5
No. layers in block for GV 1, 2
No. blocks of layers for GV 1, 2, 3, 4, 5, 6
Conv. filter size in GV 2, 4, 6, 8, 16
MP layer kernel size for GV 3, 5
MP layer stride length for GV 1, 2, 3
GV input vector size 1001, 2001, 3001
LV kernel size 3, 5
No. layers in block for LV 1, 2
No. blocks of layers for LV 1, 2, 3, 4
Conv. filter size in LV 2, 4, 6, 8, 16
MP layer kernel size for LV 3, 5
MP layer stride length for LV 1, 2, 3
LV input vector size 151, 201, 251
No. FC layers 1, 2, 3, 4
FC layer filter size 64, 128, 256, 512, 1024

measured over 2000 light curves. In this case, performance is worse
than when the models are trained and validated on the same data set
compositions.

These results highlight the main issue with training a neural
network using simulated data. Previous works (Shallue & Vander-
burg 2018; Dattilo et al. 2019) have made efforts to remove data
artefacts and systematic effects prior to passing the data through
the network. The assumption being that this boosts performance.
However, Zucker & Giryes (2018) noted that CNNs are theoretically
capable of learning the noise properties of the data. Future work may
reveal the extent to which this is true.

4.1 Data set size

Given the large volume of simulated data available, we investigated
network performance as a function of the training data set size. The
results can be seen in Fig. 5, compared with the NP data set for
up to 24 000 light curves. Performance, as measured by both AUC
and accuracy metrics, clearly increases when training on more light
curves. Curiously, the performance increases faster for the NP data
set compared to the simulated data.

The higher initial performance for the network trained on simu-
lated data means that any gains made must be in the low-S/N regime,
which may explain why the neural network improves more slowly.
An example of the network performance as a function of S/N can
be seen in Section 5. As expected, most of the misclassifications are
for very shallow transits which are harder to correctly identify.

A side effect of this behaviour is that the performance metrics
of the neural network are correlated with the distribution of transit
S/N, though not in a trivial way. For example, increasing the number
of shallow transits with S/N < 5 may lower the performance as the
network will struggle to recover them, but this will be somewhat
compensated for by the improved performance from the larger
training set size. This points to the difficulty of comparing the
performance of different neural networks using the AUC and other
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Classifying exoplanet candidates with CNNs 5241

Figure 5. Network AUC (dashed line) and accuracy (solid line) metrics as
a function of the training data set size, for fully simulated (real data points)
and real NGTS data with planetary transit and EB injections (purple data
points). Data sets contain only the non-periodic subclass of light curves in
the non-planet class. Performance for simulated data is sampled at larger data
set sizes due to its increased ease of production. Quantities were measured
over the 10 per cent test data set, which was not used during training. The
learning rate and number of training epochs were fixed at 1 × 10−5 and
20, respectively. For each metric, the network trained on simulated data
scores more highly than training on real NGTS light curves (NP data set),
irrespective of data set size. AUC and accuracy are positively correlated
with the size of the training data set, although the gradient for real data is
steeper. The higher initial performance of the simulated data requires that
any performance increase has to be made for low-S/N transits. This likely
explains the difference in gradient, as the distribution of S/N is the same for
all data set sizes.

metrics alone, without fixing the underlying distributions of the
data.

Finally, Fig. 5 shows that additional gains may be made by
increasing the data set size beyond what is currently being used.
Simulated data are useful as the data set size is only constrained by
how much time is spent producing each light curve, so one potential
strategy may be to use ‘transfer learning’ whereby the neural
network is trained on simulated data first and then subsequently
trained with real data. This was tried, however, the performance
improvement was very small.

4.2 Label noise

As we discussed in Section 2, one potential issue with using real
light curves for training is that there may be contamination from real
low-S/N transit events. That is to say, light curves may have incorrect
class labels. Fully simulated data provide a pristine environment in
which to test the effect of this contamination, as the ground truth is
definitively known for each case.

Using the simulated data set, we explored our network’s suscep-
tibility to ‘noise’ in the training data set class labels. We achieved
this by inverting a varying percentage of labels prior to passing the
light curves through the network i.e. a proportion of class labels was
changed from 0 to 1 and vice versa. The performance of the network

Figure 6. Network AUC (pink data points with dashed lines) and accuracy
(purple data points with solid lines) metrics for the fully simulated data set
comprising 24 000 light curves, as a function of the fraction of deliberately
mislabelled light curves in the training data set. Quantities were measured
over the 10 per cent test data set, whose labels are unchanged. The learning
rate and number of training epochs were fixed at 1 × 10−5 and 20,
respectively. For both metrics, there is minimal impact on performance
up to an inverted label fraction of around 0.45, with a steep decline after.
Above 0.5 there is a label inversion and the performance of the network
approaches zero (within errors) on the test set.

was then measured on the test set, which had not been altered in
any way. Results are presented in Fig. 6.

It can be seen that performance degrades linearly up to a contam-
ination fraction of approximately 45 per cent, after which it declines
rapidly. The loss in accuracy up to 45 per cent contamination
was ∼4 per cent. Reis, Baron & Shahaf (2019) perform the same
experiment for probabilistic random forests and found a loss of
less than 5 per cent when more than 45 per cent of their data set
had incorrect labels, in-line with the performance drop we find.
Evidently label contamination does hinder performance, but the
network is robust to small contamination fractions. Levels of label
contamination for the real data sets are likely to be low, thus
network performance when training on real data is not significantly
impacted. Our findings are consistent with results from other work
showing that CNNs are robust to label noise (Rolnick et al. 2017;
Li, Soltanolkotabi & Oymak 2019).

We also conclude that label contamination is unlikely to be a
major contributing factor as to why our network trained on simulated
data, achieved better performance compared to training on real data,
which we discussed in Section 4.

5 TR A I N I N G W I T H N G T S DATA

As we have shown in Section 4, training on simulated data alone
is not sufficient to achieve the best possible performance of the
neural network. In this section, we expand on results obtained when
training PlaNET using real NGTS light curves. Table 6 shows the
AUC, accuracy, precision, and recall for each data set composition,
trained using the procedure outlined in Section 3.2 and measured
on test data sets. The OFP model performs best in training with
an AUC and accuracy of 99.3 ± 0.2 per cent and 95.8 ± 0.5
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5242 A. Chaushev et al.

Table 6. Network performance when training on the different real NGTS data sets, which differ in the compositions of the non-planet
class. Performance is measured on the their respective 10 per cent unseen test data set components of similar composition. Accuracy,
precision, and recall are based on a probability threshold of 0.5; AUC is independent of threshold. For models containing the OFP
category, there are four different versions corresponding to the different SDE selection methods of ORION false positive candidates.
Uncertainties are derived from k-fold cross-validation, using 10 model training repetitions with a different random seed and portion
of the data set. The model performing best in training is highlighted in bold.

Model OFP selection AUC Accuracy Precision Recall

OFP Max 0.992 ± 0.002 0.956 ± 0.006 0.960 ± 0.011 0.960 ± 0.011
Min 0.994 ± 0.000 0.964 ± 0.002 0.974 ± 0.003 0.974 ± 0.003
Uniform 0.993 ± 0.001 0.960 ± 0.002 0.968 ± 0.004 0.968 ± 0.004
Random 0.993 ± 0.000 0.960 ± 0.002 0.967 ± 0.004 0.967 ± 0.004

NP/EB/OFP/WF Max 0.958 ± 0.002 0.886 ± 0.002 0.902 ± 0.006 0.902 ± 0.006
Min 0.954 ± 0.002 0.882 ± 0.002 0.906 ± 0.007 0.906 ± 0.007
Uniform 0.955 ± 0.001 0.883 ± 0.002 0.905 ± 0.006 0.905 ± 0.006
Random 0.958 ± 0.001 0.887 ± 0.002 0.907 ± 0.005 0.907 ± 0.005

NP/EB/OFP Max 0.956 ± 0.002 0.885 ± 0.003 0.900 ± 0.006 0.900 ± 0.006
Min 0.953 ± 0.001 0.881 ± 0.002 0.904 ± 0.006 0.904 ± 0.006
Uniform 0.954 ± 0.002 0.882 ± 0.002 0.905 ± 0.006 0.905 ± 0.006
Random 0.957 ± 0.001 0.886 ± 0.002 0.903 ± 0.005 0.903 ± 0.005

NP/EB 0.968 ± 0.001 0.903 ± 0.001 0.924 ± 0.004 0.924 ± 0.004
NP/EB/WF 0.958 ± 0.002 0.891 ± 0.002 0.908 ± 0.004 0.908 ± 0.004
NP 0.960 ± 0.001 0.901 ± 0.002 0.933 ± 0.005 0.933 ± 0.005

per cent, respectively, compared with the remaining five models
which likewise score approximately 96.0 per cent and 90.0 per cent,
respectively. These scores are broadly consistent with other studies
(Shallue & Vanderburg 2018; Dattilo et al. 2019). Models which
contain ORION false positives have many high-S/N candidates in
the non-planet class, as these are preferentially selected by ORION.
This may account for why models containing ORION false positives
score more highly.

For the NP/EB/OFP and NP/EB/OFP/WF models, the data sets
using the max and random selection criteria perform equally well,
while for the OFP case the min variant is best. However, the
differences between the models are relatively small and within
errors. It can be seen from Table 6 that the best overall model
for classifying NGTS light curves is OFP Min.

Fig. 7 shows the fraction of recovered transits as a function of S/N
and period for one ensemble of the NP/EB/OFP/WF Max model.
Below S/N values of 10, the fraction of correctly classified transit
light curves decreases progressively. This is expected behaviour
as lower S/N transits will be harder to distinguish from noise. It
is particularly obvious for S/N lower than 5, where the detection
fraction reduces to 76.5 per cent compared to 95.4 per cent for higher
values. Most of the decrease seen below S/N of 5 is due to transits
with an S/N value less than 2.0, where the detection fraction is
50.3 per cent, while in the 2–5 S/N range the network still manages
a detection fraction of 83.5 per cent. As can be seen in the inset of
Fig. 7 there are several deep transits which are incorrectly classified.
These transits should be easy to identify, even prior to phase folding
the light curve; however, they are misclassified by the network.

Table 7 gives a breakdown of the performance of the different
models containing ORION false positives as a function of the S/N
of the injected transits. These are calculated as the mean across all
10 ensembles. The NP/EB/OFP/WF and NP/EB/OFP models have
the highest number of non-recovered high-S/N transits, while the
OFP model performs best. The OFP model does not contain any
non-periodic light curves, which may be hard to distinguish from
light curves injected with shallow transits. Furthermore, the large
number of ORION false positives in the OFP data set may make it
easier to separate the transits in general. There are no statistically

significant variations in the number of false negatives within the
different SDE variations of each data set. For the NP/EB/OFP/WF
and OFP models the number of transits not recovered at high S/N
is greater than that in the medium S/N range. This is paradoxical
as we would expect the former to be easier to detect than the latter.
No obvious features were present in these high-S/N transits which
might explain why they were not correctly classified. Our current
hypothesis is that it is necessary to increase the number of examples
of such transits in the training data. In practise this is limited by the
number of bright stars in the data set, as we do not want to inject
physically unrealistic planets.

6 C O M PA R I S O N TO N G T S EY E BA L L I N G

As discussed in Section 2.1 the NGTS data set used in this paper
consists of 91 fields, 890 000 + light curves and detections of a
transit event in 58 500 + targets. At the time of writing two fields
have not yet been vetted, these were excluded from our analysis.
For the remaining fields, 3042 detections were classified as either
a promising candidate or clear false positive. This presents an
opportunity to compare the performance of the neural network
classifications in detail to that of expert human vetters.

For each of these targets, ORION produces up to 5 separate
detections at different periods and epochs, corresponding to the
top-5 peaks in the BLS periodogram. Each peak corresponds to a
candidate which we classify using PlaNET, trained with all of the
data sets in Section 5, summarized in Table 3. For completeness we
included candidates with periods greater than 15.0 d in our perfor-
mance evaluation, despite not including these in the training data.
We remind the reader that for data set compositions which include
ORION false positives in the non-planet class, we divided the data
into two groups based on their NGTS field. We created two versions
of each data set, drawing OFPs from the respective groups. This is
to ensure that PlaNET has not been trained on the same light curves
it is later evaluating. For each classification we take the mean of the
probability coming from each of the 10 different copies of the model
(trained with a different random seed and a different data fold).
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Figure 7. Top panel: Histogram of detected and non-detected transits by the network, as a function of S/N. Performance is measured on the 10 per cent test
component of the real NGTS NP/EB/OFP/WF Max model. The S/N is calculated as the transit depth divide by the standard deviation before transit injection,
after phase folding the time series to the correct period and binning in exposure time to 30 min. The inset figure shows a zoomed in view of the high-S/N value
range. The distribution of injected transits is biased towards low-S/N values, because there are far more faint host light curves, which are comparatively noisy.
As expected the vast majority of undetected transits have low-S/N values; however, the network also fails to detect a small number of transits with high S/N.
Bottom panel: Similar to the top panel, but for the period of injected transits as opposed to the S/N. The distribution of periods is slightly skewed towards
shorter values, where it is more likely that a trial transit injection will meet our validation criteria of having at least three transits, each covering at least one
third of a transit. The fraction of undetected transits is higher for longer periods. This is because phase folding increases the S/N of the transit signal, but at
larger periods there are fewer individual transits available, so the benefits of phase folding are diminished.

6.1 Eyeballing flags

Table 8 shows the level of agreement between model predictions
and flags assigned by expert vetters. We define the agreement for
positive class flags (P, AS, BS, AD, D) as those receiving network
probabilities greater than 0.5, or those receiving 0.5 or less in the
case of false positive flags (EA1, EA2, EB, OTH, SINE, UNF, No
flag). Candidates which have been unflagged are included among the
negative labels. This is conservative, as being unflagged means that
at least one human eyeballer thought the candidate was interesting
enough to be discussed, but other eyeballers were not convinced
by its legitimacy. Targets without flags are also considered to be
part of the negative class, as the vast majority are expected to be
false positives from yield studies (Günther et al. 2017a) and from
ongoing follow-up work.

From Table 8 we see that models with no ORION false positive
subclass to their training data set, perform poorly compared to those
which include them. This is in contrast to performance measured
on the unseen test data set, which showed relatively similar AUC
values. This is not surprising since models containing ORION

false positives (OFP, NP/EB/OFP/WF, and NP/EB/OFP models)
more closely resemble the candidate light curves which have been
evaluated.

However, unlike in Table 6, the performance of the OFP model
is not better than the NP/EB/OFP/WF or NP/EB/OFP models.
Instead they achieve a very similar performance, despite the

NP/EB/OFP/WF and NP/EB/OFP models containing fewer false
positives. It is also worth noting that the Max version of each model
perform best across all three data sets.

The precision of models measured using eyeballing labels is not
as informative as when evaluated on the test data set. For the former,
the precision is at best only 1 per cent, but this is of little concern.
Precision means the fraction of candidates with probabilities greater
than 0.5, which also have one of the following flags: ‘P’, ‘AS’, ‘BS’,
‘AD’, ‘D’. The sample of candidates with such flags constitute only
1 per cent of the total population, but we showed in Section 5 that
the false positive rate is 10 per cent. Therefore even in the best
case scenario, where every true positive found by PlaNET had been
flagged as a promising candidate, the precision would still only
be 9 per cent. Put another way, there are many more false positive
ORION candidates in the data set than promising candidates, so even
a low false positive rate would reduce the precision substantially.

Table 9 also shows the agreement between the flag assigned by
NGTS vetters and the neural network, this time for specific flags and
for six out of the 15 models. Models with a larger proportion of false
positives perform worse in selecting AD, AS, BS, or D candidates
correctly. Conversely the models with no false positives perform
much worse when correctly identifying the various false positive
labels and the candidates with no given flag. The proportion of false
positives included appears to bias the network towards either being
‘strict’ or ‘lenient’ with regards to vetting the candidates.
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5244 A. Chaushev et al.

Table 7. Percentage of false negatives for models trained using the 12
real NGTS data sets containing OFPs, as a function of the injected transit
S/N, evaluated over their 10 per cent test data set components. The mean
and standard error values are calculated over the ensemble of 10 models
trained for each data set as discussed in Section 3.2. The S/N values are
taken as the transit depth divided by the standard deviation of the phase-
folded light curve binned to 30 min cadence. The standard deviation is
calculated prior to injection of the transit. The different SDE variations of
each model have false negative fractions within the statistical errors of each
other. However, the OFP model performs better than the NP/EB/OFP/WF
and NP/EB/OFP models in the high- and low-S/N regimes. On the low-S/N
end this may be because there are no non-periodic light curves included,
which are difficult to distinguish from shallow transits. Furthermore, the
inclusion of a large number of ORION false positives may make it easier
to distinguish between transits and non-transits in general. This perhaps
explains the better performance in the high-S/N regime as well.

Model SDE S/N > 20 10 < S/N < 20 S/N < 10

OFP Max 4.2 ± 0.8 3.3 ± 0.6 5.2 ± 0.4
Uniform 3.1 ± 0.5 2.5 ± 0.5 5.1 ± 0.3
Random 3.6 ± 0.4 3.1 ± 0.5 5.5 ± 0.5

Min 2.8 ± 0.5 2.7 ± 0.4 5.4 ± 0.3
NP/EB/OFP/WF Max 7.2 ± 1.0 3.3 ± 0.3 17.0 ± 0.8

Min 7.2 ± 0.8 3.6 ± 0.4 19.3 ± 0.8
Uniform 6.5 ± 1.0 3.1 ± 0.4 17.5 ± 0.9
Random 7.2 ± 0.9 3.5 ± 0.4 19.2 ± 1.0

NP/EB/OFP Max 6.7 ± 0.9 3.2 ± 0.3 16.6 ± 0.8
Min 7.5 ± 1.1 4.0 ± 0.5 19.1 ± 0.8

Uniform 6.6 ± 0.9 3.2 ± 0.3 16.8 ± 0.8
Random 7.0 ± 1.0 3.6 ± 0.5 18.4 ± 0.9

Within the different models we note that overall performance
is better for AD candidates than for AS or BS candidates. AD
candidates have deeper transits and so have a higher S/N than AS or
BS candidates and are therefore easier to classify. This is consistent
with the results in Fig. 2 which show that the detection fraction
decreases as the S/N value decreases.

6.2 Confirmed planets

At the time of writing, the NGTS data set contains light curves for 14
confirmed planets, with 10 of those discovered by NGTS and 4 other
planets which happened to fall within the NGTS fields. Table 10
shows the network probability values for each of these planets.
The Max data set versions have been adopted for models which
contain ORION false positives in the non-planet class, as Table 8
shows this model performs better than the three alternatives. From
left to right, models in Table 10 contain an increasing number of
false positives, which is correlated with a decrease in the number
of recovered planets. Taking NGTS-2b (Raynard et al. 2018) as
an example, the network predicts a lower planetary probability as
more false positives are included in the non-planetary class. This
effect culminates with the OFP model, comprised entirely of false
positives in the negative class, failing to recover additional planets.
We could not discern an obvious reason as to why the network
struggles to recover NGTS-2b in particular. With a 1 per cent transit
depth, this planet should be easily identifiable in the light curve. In
fact, the precision of the NGTS light curve is so high for this planet
that it was confirmed from 9 individual transits without the need
for follow-up photometry. Likewise, there was no obvious pattern
to the planets not recovered by the OFP model.

Conversely, models with no false positives in their training data
sets perform best, recovering all of the known planets, even NGTS-

4b (West et al. 2018) which with a transit depth of 1.3 ± 0.2 mmag,
represents the shallowest detection of a transiting exoplanet from the
ground with a wide-field survey. While this might imply that these
models are overall superior, we note that their precision is much
lower than models which include false positives. This adequately
highlights the trade-off between reducing the false positive rate
versus maximizing the planet recovery rate. Finally, we note that
only probabilities from the Max data set variants were shown.
The min, random, and uniform variants consistently missed more
confirmed planets than Max, with uniform performing the worst.
There appears to be no consistent pattern in which planets were
missed across the different SDE varients, making it difficult to
explain why they were not recovered.

6.3 Probability distribution and thresholds

Fig. 8 shows a histogram of network probabilities received by can-
didates for the NP/EB/OFP/WF model. The fraction of candidates
in a given bin which have been flagged either AS, BS, AD, or D,
is indicated by the colourbar. As can be seen, candidates typically
receive either low or high probabilities, with few clustered around
0.5. The vast majority of candidates receive a low probability from
the network, consistent with the high false-positive rate previously
established. Higher probability bins contain an increasing fraction
of promising candidates, with AS, BS, AD, or D flags, indicating a
good general agreement between the neural network and the model.

While it is desirable to remove a large number of the false posi-
tives, caution needs to be taken not to exclude genuine planets from
consideration. Fortunately in this case, approximately 50 per cent
of candidates can be excluded using a conservative probability
threshold of 0.1, reducing the time required to vet NGTS candidates
by half. We note that Osborn et al. (2019) and Dattilo et al. (2019)
also favoured a threshold of 0.1.

From Table 10 it can be seen that the NP/EB/OFP/WF model
recovers the largest number of confirmed planets from models
containing OFPs. Similarly from Table 9 it is clear that this model
also has the highest agreement fraction with eyeballing labels,
among the models which include OFPs. In deploying PlaNET as part
of the NGTS pipeline we would like to be conservative, minimizing
the risk that promising candidates may be missed while accepting
a slightly higher number of false positives. Therefore we determine
that our NP/EB/OFP/WF model provides the optimum balance. This
is the only model which recovers all known planets, when using a
threshold of 0.1, while still rejecting a substantial proportion of false
positives. It could be argued that since the OFP has the best overall
AUC, considering a lower probability threshold may improve the
recovery of candidates and outperform the NP/EB/OFP/WF model.
However in practise, even using a threshold of 0.1, two known
planets would have been missed by the OFP model.

7 N EW CANDI DATES

We used PlaNET trained on the NP/EB/OFP/WF Max data set,
chosen as it had the highest AUC value, to identify new highly
ranked candidates which had not previously been flagged by our
vetters. There are 13 253 such candidates with probabilities greater
than 0.5, of which 1309 have probabilities greater than 0.95.

Fig. 9 shows the transit depth versus orbital period for new
candidates with probability greater than 0.95, compared with known
candidates and confirmed planets. In general, transit signals with
shallower depths are detected towards shorter orbital periods. This is
likely because shorter periods allow a greater number of individual
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Table 8. Model performance when training on real NGTS data, measured as per Table 6 but compared to light-curve flags assigned
during the vetting process. Correct predictions from the network constitute a probability greater than 0.5 for flags P, AD, AS, and
BS, and less than 0.5 for the remaining flags. The low precision of the models is due to the unbalanced nature of the problem, with
planets and manually selected promising candidates only making up ∼1 per cent of the candidates. Therefore even with a relatively
low false positives rate, the number of false positives would greatly outnumber the true candidates resulting in a very low precision.

Model OFP selection AUC Accuracy Precision Recall

OFP Max 0.779 ± 0.004 0.877 ± 0.009 0.0137 ± 0.0004 0.42 ± 0.02
Min 0.737 ± 0.005 0.894 ± 0.007 0.0132 ± 0.0007 0.341 ± 0.007
Uniform 0.770 ± 0.004 0.902 ± 0.008 0.0147 ± 0.0007 0.35 ± 0.02
Random 0.765 ± 0.005 0.906 ± 0.009 0.0144 ± 0.0006 0.33 ± 0.02

NP/EB/OFP Max 0.775 ± 0.005 0.776 ± 0.009 0.0106 ± 0.0003 0.60 ± 0.02
Min 0.715 ± 0.005 0.804 ± 0.015 0.0094 ± 0.0004 0.45 ± 0.02
Uniform 0.764 ± 0.004 0.797 ± 0.009 0.0109 ± 0.0003 0.56 ± 0.01
Random 0.748 ± 0.004 0.836 ± 0.010 0.0112 ± 0.0004 0.46 ± 0.02

NP/EB/OFP/WF Max 0.765 ± 0.004 0.746 ± 0.011 0.0098 ± 0.0002 0.63 ± 0.02
Min 0.721 ± 0.005 0.753 ± 0.015 0.0084 ± 0.0003 0.52 ± 0.02
Uniform 0.761 ± 0.003 0.766 ± 0.010 0.0101 ± 0.0003 0.60 ± 0.02
Random 0.746 ± 0.006 0.799 ± 0.011 0.0102 ± 0.0002 0.52 ± 0.02

NP/EB/WF 0.652 ± 0.004 0.417 ± 0.011 0.0054 ± 0.0001 0.81 ± 0.02
NP/EB 0.639 ± 0.004 0.382 ± 0.011 0.0053 ± 0.0001 0.84 ± 0.01
NP 0.503 ± 0.006 0.094 ± 0.005 0.0039 ± 0.0001 0.913 ± 0.009

Table 9. Fraction of correct classifications of ORION candidates by the neural network, as a function of light-curve flag assigned during the vetting process.
Light curves with flags AD, AS, BS, and D are considered correctly classified if the network predicts probabilities greater than 0.5. For the remaining flags, a
correct classification requires probabilities less than or equal to 0.5. Uncertainties are derived from k-fold cross validation, using 10 model training repetitions
with a different random seed and portion of the data set. Results are presented for models trained on different real NGTS data sets. For models with ORION

false positives, we present results from the Max SDE variant. We determine that the best model, giving optimal balance between recovery of transits and a low
false positive rate, is the NP/EB/OFP/WF model, highlighted in bold. The motivation for choosing this model was to ensure as many of the AD, AS, and BS
candidates are recovered as possible. In practise, minimizing the risk of missing a promising candidate is more important than reducing the false positives by a
few additional per cent.

Model AD AS BS D EA1 EA2 EB OTH SINE No Flag

OFP 0.627 ± 0.027 0.321 ± 0.021 0.332 ± 0.026 0.302 ± 0.016 0.671 ± 0.028 0.796 ± 0.029 0.942 ± 0.010 0.870 ± 0.009 0.920 ± 0.007 0.877 ± 0.009
NP/EB/OFP 0.825 ± 0.011 0.485 ± 0.022 0.489 ± 0.023 0.515 ± 0.015 0.692 ± 0.014 0.848 ± 0.008 0.937 ± 0.003 0.771 ± 0.009 0.909 ± 0.006 0.767 ± 0.009
NP/EB/OFP/WF 0.855 ± 0.014 0.544 ± 0.025 0.521 ± 0.027 0.566 ± 0.018 0.677 ± 0.013 0.839 ± 0.008 0.949 ± 0.002 0.730 ± 0.011 0.926 ± 0.008 0.744 ± 0.011
NP/EB/WF 0.968 ± 0.003 0.726 ± 0.027 0.737 ± 0.026 0.805 ± 0.010 0.243 ± 0.009 0.298 ± 0.015 0.415 ± 0.007 0.229 ± 0.002 0.338 ± 0.008 0.413 ± 0.011
NP/EB 0.971 ± 0.002 0.774 ± 0.018 0.775 ± 0.020 0.836 ± 0.010 0.219 ± 0.009 0.282 ± 0.016 0.374 ± 0.008 0.214 ± 0.006 0.292 ± 0.008 0.378 ± 0.011
NP 0.996 ± 0.002 0.892 ± 0.015 0.861 ± 0.012 0.959 ± 0.005 0.006 ± 0.000 0.005 ± 0.000 0.021 ± 0.002 0.042 ± 0.005 0.100 ± 0.007 0.090 ± 0.005

Table 10. Predicted network probabilities for confirmed planets with NGTS light curves. Results are presented for models trained
on different real NGTS data sets, which differ in their composition of the non-planet class. Planets with all-numerical designations
are confirmed within the NGTS consortium but have not yet been published. Probabilities are the mean values averaged over 10
independent models, each trained with different portions of the overall data set and different random seeds. For models containing
false positives, we present results from the Max SDE variant. Models with no false positives are more optimistic, predicting high
probabilities for all planets. In contrast, the other models predict probabilities below 0.5 for some planets, these cases are highlighted
in bold.

Planet Name NP NP/EB NP/EB/WF NP/EB/OFP/WF NP/EB/OFP OFP

NGTS-1b (Bayliss et al. 2018) 0.993 0.996 0.992 0.992 0.991 0.986
NGTS-2b (Raynard et al. 2018) 1.000 0.970 0.970 0.122 0.065 0.049
NGTS-3Ab (Günther et al. 2018) 0.998 0.995 0.995 0.933 0.927 0.835
NGTS-4b (West et al. 2018) 0.981 0.981 0.981 0.771 0.709 0.391
NGTS-5b (Eigmüller et al. 2019) 0.997 0.996 0.996 0.988 0.991 0.967
NGTS-6b (Vines et al. 2019) 0.949 0.915 0.915 0.923 0.921 0.969
NOI-101123 (in preparation) 0.992 0.983 0.983 0.792 0.729 0.761
NOI-101155 (in preparation) 0.996 0.993 0.993 0.860 0.845 0.146
NOI-102329 (in preparation) 0.995 0.991 0.991 0.741 0.631 0.441
NOI-101635 (in preparation) 0.998 0.996 0.993 0.945 0.943 0.603
WASP-68b (Delrez et al. 2014) 1.000 0.999 0.999 0.676 0.524 0.042
WASP-98b (Hellier et al. 2014) 0.992 0.992 0.992 0.935 0.888 0.94
WASP-131b (Hellier et al. 2017) 0.972 0.783 0.783 0.782 0.780 0.864
HATS-43b (Boisse et al. 2013) 0.999 0.998 0.994 0.786 0.685 0.273
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5246 A. Chaushev et al.

Figure 8. Histogram of probability predictions for ORION candidates and confirmed planets using the NP/EB/OFP/WF Max model. Probabilities are the mean
values averaged over 10 independent models, each trained with different portions of the overall data set and different random seeds. The colour bar indicates
the fraction of candidates in each bin which have AD, AS, BS, or P flags. The majority of candidates receive either very high or very low probabilities,
demonstrating that the network has good discriminatory power. There are a small number of candidates with probabilities close to the 0.5 threshold, for which
the network is less certain. Over 50 per cent of the ORION candidates are given a probability of less than 0.1, which could be de-prioritized during the human
vetting stage. Bins in the 0.9–1.0 range contain a larger fraction of promising candidates and confirmed planets, indicating good agreement between network
predictions and human vetters.

transits to be observed during the observing season, thus increasing
the S/N of the transit in the phase folded light curves.

Transit depths for new candidates are strongly clustered around
the 3 mmag level, which is comparable to known candidates and
confirmed planets. Although the majority of known and confirmed
planets lie at shorter orbital periods (<10 d), the period distribution
of new candidates is broader, spanning up to 35 d. With fewer
individual transits, these larger period signals are more susceptible
to, and likely originate from artefacts in the light curves of individual
nights. However, if validated they would increase the planet yield
of the NGTS survey in this region of parameter space – since all
currently confirmed planets have periods less than 5 d.

The network is not noticeably dissuaded from assigning high
probabilities to large orbital period candidates. However, there is
an apparent favouring of candidates with periods around 3 d for
all depths. Since NGTS is a ground-based facility ORION ignores
signals with periods within 5 per cent of 0.5, 1.0, and 2.0 d, where
signals typically arise due to systematics strongly correlated with
one sidereal day. This clustering at 3.0 d is also likely to be a one
sidereal day alias.

When considering all candidates with probabilities greater than
0.5, we find that the vast majority of new candidates have low
SDE. This is not surprising for several reasons. First, the underlying
distribution of ORION candidates is heavily skewed towards the low-
SDE range. With such a large number of ORION candidates being
analysed by the network, a random subset of the new candidates

will actually be false positives, but receive high probabilities due to
statistical effects. Therefore it is more likely these statistical false
positives will have low SDEs. Fig. 10 shows the probabilities for
NGTS candidates, plotted with respect to the S/N of the detection.
The confirmed planets and AD candidates have higher S/N values,
calculated as the transit depth divided by the standard deviation
of the light curve, when phase folded and binned to 30 min. The
distribution of probabilities is split, with fewer in the range of 0.3–
0.7, while the corresponding AS and BS distributions are much
more uniform. This suggests that PlaNET is less certain about the
nature of signals with lower S/N. It is also consistent with the lower
accuracy in the selection of AS, BS candidates compared to AD
candidates in Table 9.

Of additional consideration is that transit-like signals with higher
SDEs are more easily identified during the vetting process, as
they stand out more against the background noise. This is further
reinforced by the fact that ORION candidates are presented in
descending order of SDE and the vetter may become fatigued
towards the bottom of the list. It is therefore more likely that
overlooked candidates, will have low SDE. Similarly, low-SDE
candidates are less likely to be flagged during the vetting process as
they are more ambiguous, more difficult to validate and their true
nature is more likely to attract disagreement.

Though we expect most of these candidates to be false positives,
this reinforces the point that the new candidates need to be carefully
examined. Vetting and follow-up is on-going.
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Classifying exoplanet candidates with CNNs 5247

Figure 9. Transit depth versus orbital period for ORION candidates. For targets with more than one candidate detection, we adopt the detection with the highest
network probability. Blue data points show ‘new’ candidates, i.e. those with no eyeballing flags but with network probabilities greater than 0.95. Previously
known candidates (with AS, BS, and AD flags) are indicated by yellow data points where as confirmed planets are represented by green triangles. The black
dashed line indicates the transit depth of NGTS-4b, currently the exoplanet with the shallowest depth detected from the ground in a wide field transit survey.
There is no significant difference in the average depth of the different data series. Known candidates and confirmed planets typically have periods less than 5
and 10 d, respectively, whereas new candidates span continuously up to periods of 35 d.

8 D ISCUSSION

We trained a convolutional neural network, called ‘PlaNET’, to
rank the 212 000 transiting exoplanet candidates identified in NGTS
light curves. The network outputs a probability prediction of
each candidate being an exoplanet. The main network inputs are
the phase-folded NGTS light curves, but we also include inputs
suggested from previous studies (Ansdell et al. 2018; Dattilo
et al. 2019; Osborn et al. 2019; Yu et al. 2019) which have been
shown to increase performance. Our motivation was to aid the
manual candidate vetting process, by harnessing both the efficiency
and consistency of a deep learning method. In doing so, we
demonstrate that a large number of false positive candidates can
be de-prioritized, depending on the choice of probability threshold.
Even with a conservative threshold of 0.1, the network enables
the confirmation effort to focus on the most promising 50 per cent
of candidates, effectively reducing the vetting time by a factor of
two.

In this work, we focus on characterizing how varying the network
training data set affects performance. Previous work has relied on
the use of confirmed planets, as well as promising and rejected
candidates determined via the vetting process, for their training
data set. In contrast, we also utilize injections of artificial planetary
transits and false positive signals. For the non-planetary class, we
consider various combinations of four false positive categories:
(1) false positive candidates determined via vetting (OFP), (2)
injections of stellar binary eclipses (EB), (3) light curves with no
strong, periodic transit signals (NP) and, (4) transit and eclipsing
binary signals folded on the wrong period (WP).

We validate the network’s predictions by showing good agree-
ment with candidate labels assigned by human vetters, as well as
successful recovery of all but one of the 14 confirmed planet with
NGTS light curves. Performance is particularly strong for deep
transits and eclipsing binaries when both primary and secondary
eclipse signals are clearly visible. Network models trained without
OFPs in their data sets, recover all the confirmed planets. However,
we find that the more OFPs included in the data set, the more
confirmed planets the network fails to recover, particularly for
planets with higher S/N transits. A comparison of four different
selection methods for inclusion of OFPs in the training data,
showed that preferentially choosing the highest SDE OFPs gives
better performance. This is as opposed to selecting OFPs randomly,
uniformly, or preferentially selecting those with the lowest SDEs.

Our results show that models trained using all four categories
of false positives in the non-planetary class, perform almost as
well as models trained solely on OFPs in this class; they achieve
AUC values of approximately 76.5 per cent and 77.9 per cent,
respectively, when measured on vetting labels. This suggests that in
future, larger training data sets can be obtained by virtue of reduced
reliance on labelled candidates from the vetting process. Our model
of choice, NP/EB/OFP/WF, achieves an AUC, accuracy, preci-
sion, and recall of: (76.5 ± 0.4) per cent, (74.6 ± 1.1) per cent,
(0.98 ± 0.02) per cent, and (63.0 ± 2.0) per cent, respectively on
vetting labels.

Previous studies (Pearson et al. 2018; Zucker & Giryes 2018;
Osborn et al. 2019) explored the use of simulated data to train their
networks. We present the first study which directly compares per-
formance when training on fully simulated light curves versus real
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Figure 10. Left-hand panels: Comparison of network probability distributions for candidates with P, AD, AS, and BS flags (top to bottom), using the
NP/EB/OFP/WF Max model. Probabilities are the mean values averaged over 10 independent models, each trained with different portions of the overall data
set and different random seeds. Right-hand panels: Distribution in S/N for the same flags. S/N is measured as per Fig. 7. On average, P and AD and flagged
candidates have a higher S/N, with the probability distribution clustered towards larger values. This is consistent with a larger agreement fraction between the
network and these flags, shown in Table 9. The probability distribution for AS and BS flags is more uniform by comparison.

light curves with simulated planetary transits and eclipsing binaries,
to compare how the noise properties of the data affect network
performance. Although the network trained on fully simulated data
performs best when validated on a test set of similar composition,
the network trained using real data score highest when assessing
performance on the sample of NGTS light curves with vetting labels.
This highlights that while fully simulated data allow the creation of
larger data sets, adequately replicating the intricate noise properties
of the real data remain an issue.

In addition, by utilizing simulated data we present the first study
of a CNN applied to transit light curves, which explores two
important aspects of CNN training. First, how network performance
scales as a function of the number of light curves in the training
data set. Secondly, how performance is affected when training on
light curves with incorrect labels. We find that additional gains in
performance can be achieved by utilizing larger data sets, beyond the
sizes explored in both this work and previous work. As our results
indicate, utilizing transit injections and incorporating additional
categories of false positives appears to be a viable way of expanding
the data set to increase network performance. Incorrect light-curve
labels may arise for several reasons, particularly for genuine, low-
S/N transits which are not identified in the vetting process. It is
easy to see how this might confuse the network while it is learning,
an issue discussed by Zucker & Giryes (2018) and Hou Yip et al.
(2019). Knowledge of the ground truth is one of the main advantages
of training on simulated data. Interestingly, however, we find that our
networks are robust to contaminated labels; only minor degradation
in overall performance is experienced up to a contamination fraction
of 0.48, after which performance decreases rapidly. This result is
consistent with those from other studies (Rolnick et al. 2017; Li

et al. 2019; Reis et al. 2019) and suggests that label contamination
in real data is of little consequence to overall performance.

Finally, our analysis identified ‘new’, highly ranked candidates
which had not previously been flagged by the NGTS team. There are
13 253 such candidates with probabilities greater than 0.5, of which
1309 have probabilities greater than 0.95. At the time of writing,
further scrutiny of these new candidates is ongoing. Interestingly,
the period distribution of these candidates extends continuously up
to 35 d, whereas previously known NGTS candidates and confirmed
planets lie predominantly below 10 and 5 d, respectively. While
likely to be false positives, if any of these new candidates are
confirmed, they may present an opportunity to substantially expand
the parameter space in which NGTS is finding planets.

We highlight several areas of improvement for future work:

(i) Our networks do not recover all the confirmed planets or
all the high-S/N transits, particularly when there are more OFPs
in their training data set. On test data, the OFP models recover
the most high S/N candidates. While comparing against NGTS
vetting labels, the NP/EB/OFP/WF Max recovers the most deep
transit candidates. This difference was consistent across the entire
ensemble trained for each model. Further work is needed to clarify
why exactly this is happening, though we have two main hypotheses.
This may be because there are similar signals in the non-planet class
of training data, which cause the network to favour a non-planet
classification in these cases. Or alternatively, although we carefully
sampled period and stellar radius parameters to reduce network bias
between the planet and non-planet classes, we made no attempts to
reduce bias within each class, with respect to parameter distributions
such as the S/N. Our Monte Carlo injection method exacerbated this

MNRAS 488, 5232–5250 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/4/5232/5542238 by D
eutsches Zentrum

 fuer Luft- und R
aum

fahrt (D
LR

); Bibliotheks- und Inform
ationsw

esen user on 28 N
ovem

ber 2019



Classifying exoplanet candidates with CNNs 5249

issue by producing non-uniform posterior distributions. Ideally we
would prefer to construct data sets with more uniform parameter
distributions, though this is difficult to accomplish since there are
many parameters with complex interdependencies, and we would
be limited by the number of bright targets in our data. Finally, we
could employ the use of tools to gain additional insight into the
network’s logic behind mis-classifications (Philbrick et al. 2018),
such as class activation maps (Zhou et al. 2015) used in Hou Yip
et al. (2019), and visualisations of the final hidden layer geometric
space in fewer dimensions (van der Maaten & Hinton 2008).

(ii) We showed that using a larger training data set yields better
results. When training on real data, we used a total of 24 000 light
curves for all models. This choice was a practical compromise
between maximizing performance and minimizing the time for data
generation and preparation. However if we utilize all available data,
we estimate that the training data set could be nearly doubled to
41 000 light curves, assuming no inputs are rejected by our bad data
filtration criteria. The main limitation to the data set size comes from
the OFP model, specifically the number of false positive candidates
identified by ORION. If instead, we consider only models with more
than one category in the non-planet class, we can increase the
training data set size further. We showed that the NP/EB/OFP/WF
model was actually better overall for planet recovery than the OFP
model, and our preferred choice for the deployment of PlaNET in
the NGTS pipeline.

(iii) A prevailing trend across previous applications of CNNs to
transit light curve classification, is that adding additional network
inputs tends to increase performance. Increasing the number of
auxiliary scalar parameters is trivial since choices are in abundance
and they have minimal impact on computation time. Osborn et al.
(2019) utilized 16 auxiliary scalar parameters, mostly associated
with stellar parameters; however, in this work we considered only
three. This decision was motivated mainly by our use of simulated
data, for which producing a self-consistent set of additional stellar
parameters is non-trivial. However, if we were to consider only real
data, then we could expand the number of parameters.

(iv) We assessed network performance using the NGTS data base
of candidate labels, assigned during the main consortium vetting
process. As such it is likely that our network performance was
lower with respect to the human vetters, since NGTS eyeballers
had access to additional information at the time of making their
assessment, which the network did not. For instance: follow-up
photometry, radial velocities, results of fitting – all which can change
the outcome completely. In contrast, Yu et al. (2019) carried out
their own labelling exercise specifically for the network; conducting
a similar process for NGTS would increase the reliability of our
results.

(v) We would like to make a detailed comparison of the per-
formance of PlaNET to the Autovetter (Armstrong et al. 2018)
tool. Any systematic differences between the two algorithms may
highlight ways the design of PlaNET can be improved and which
additional information could be included to boost performance, e.g.
stellar parameters, transit information, etc.

(vi) We conducted a limited study to optimize our network
hyperparameters. We found no statistically significant combination
of hyperparameters which maximized performance. For lack of
a better choice, we adopted the same network architecture as
Shallue & Vanderburg (2018), with differences in: batch size,
number of epochs, dropout probability, and the local view time-
span. Unlike Kepler, NGTS is a ground-based instrument with
completely different noise properties; there is no evidence to
indicate that the Shallue architecture is also optimal for NGTS light

curves. A complete optimization using traditional grid or Baysian
TPE methods would have been prohibitively expensive. We note that
the majority of similar studies also carried out limited optimization
exercises. Nevertheless, alternative methods for optimizing neural
architecture could be investigated.
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Kovács G., Zucker S., Mazeh T., 2002, A&A, 391, 369
Kuhn R. B. et al., 2016, MNRAS, 459, 4281
LeCun Y., Boser B. E., Denker J. S., Henderson D., Howard R. E.,

Hubbard W. E., Jackel L. D., 1990, Handwritten digit recognition with a
back-propagation network, Advances in Neural Information Processing
Systems, San Diego, p. 396

LeCun Y., Bottou L., Bengio Y., Haffner P., 1998, Proc. IEEE, 86, 2278
LeCun Y., Bengio Y., Hinton G., 2015, Nature, 521, 436
Li M., Soltanolkotabi M., Oymak S., 2019, preprint (arXiv:1903.11680)
Maxted P. F. L., 2016, A&A, 591, A111
McCauliff S. D. et al., 2015, ApJ, 806, 6
McCullough P. R., Stys J. E., Valenti J. A., Fleming S. W., Janes K. A.,

Heasley J. N., 2005, PASP, 117, 783
Mislis D., Bachelet E., Alsubai K. A., Bramich D. M., Parley N., 2016,

MNRAS, 455, 626
Osborn H. P. et al., 2019, preprint (arXiv:1902.08544)
Paszke A. et al., 2017, Advances in Neural Information Processing Systems,

San Diego

Pearson K. A., Palafox L., Griffith C. A., 2018, MNRAS, 474, 478

Philbrick K. et al., 2018, Am. J. Roentgenol., 211, 1184
Pollacco D. L. et al., 2006, PASP, 118, 1407
Pont F., Zucker S., Queloz D., 2006, MNRAS, 373, 231
Prechelt L., 2012, Early Stopping — But When?. Springer, Berlin, Heidel-

berg, p. 53
Raynard L. et al., 2018, MNRAS, 481, 4960
Reis I., Baron D., Shahaf S., 2019, AJ, 157, 16
Ricker G. R. et al., 2015, J. Astron. Telesc. Instrum. Syst., 1, 014003
Rolnick D., Veit A., Belongie S., Shavit N., 2017, preprint (arXiv:1705.106

94)
Santerne A. et al., 2016, A&A, 587, A64
Schanche N. et al., 2019, MNRAS, 483, 5534
Shallue C. J., Vanderburg A., 2018, ApJ, 155, 94
Siverd R. J. et al., 2012, ApJ, 761, 123
Sun C., Shrivastava A., Singh S., Gupta A., 2017, preprint (arXiv:1707.029

68)
Talens G. J. J. et al., 2017, A&A, 606, A73
Thompson S. E., Mullally F., Coughlin J., Christiansen J. L., Henze C. E.,

Haas M. R., Burke C. J., 2015, ApJ, 812, 46
van der Maaten L., Hinton G., 2008, J. Mach. Learn. Res., 9, 2579
Vines J. I. et al., 2019, preprint (arXiv:1904.07997)
West R. G. et al., 2019, MNRAS, 486, 5094
Wheatley P. J. et al., 2018, MNRAS, 475, 4476
Yu L. et al., 2019, AJ, 158, 25
Zhou B., Khosla A., Lapedriza A., Oliva A., Torralba A., 2015, preprint

(arXiv:1512.04150)
Zucker S., Giryes R., 2018, AJ, 155, 147

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 488, 5232–5250 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/4/5232/5542238 by D
eutsches Zentrum

 fuer Luft- und R
aum

fahrt (D
LR

); Bibliotheks- und Inform
ationsw

esen user on 28 N
ovem

ber 2019

http://dx.doi.org/10.1051/0004-6361/201323204
http://dx.doi.org/10.1093/mnras/stw2908
http://dx.doi.org/ 10.1093/mnras/stx1920
http://dx.doi.org/10.1093/mnras/sty1193
http://dx.doi.org/10.1093/mnras/stu410
http://dx.doi.org/10.1093/mnras/stw3005
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/e-print
http://arxiv.org/abs/e-print
http://dx.doi.org/10.1086/341136
http://dx.doi.org/10.1088/2041-8205/713/2/L87
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1051/0004-6361:20020802
http://dx.doi.org/10.1093/mnras/stw880
http://dx.doi.org/10.1038/nature14539
https://arxiv.org/abs/1903.11680
http://dx.doi.org/10.1051/0004-6361/201628579
http://dx.doi.org/10.1088/0004-637X/806/1/6
http://dx.doi.org/10.1086/432024
http://dx.doi.org/10.1093/mnras/stv2333
http://arxiv.org/abs/1902.08544
http://dx.doi.org/10.1093/mnras/stx2761
http://dx.doi.org/10.1086/508556
http://dx.doi.org/10.1111/j.1365-2966.2006.11012.x
http://dx.doi.org/10.1093/mnras/sty2581
http://dx.doi.org/10.3847/1538-3881/aaf101
http://dx.doi.org/10.1117/1.JATIS.1.1.014003
http://arxiv.org/abs/1705.10694
http://dx.doi.org/10.1051/0004-6361/201527329
http://dx.doi.org/10.1093/mnras/sty3146
http://dx.doi.org/10.3847/1538-3881/aa9e09
http://dx.doi.org/10.1088/0004-637X/761/2/123
http://arxiv.org/abs/1707.02968
http://dx.doi.org/10.1051/0004-6361/201731282
http://dx.doi.org/10.1088/0004-637X/812/1/46
http://arxiv.org/abs/1904.07997
http://dx.doi.org/10.1016/j.icarus.2018.04.025
http://dx.doi.org/10.1093/mnras/stx2836
http://dx.doi.org/ 10.3847/1538-3881/ab21d6
http://arxiv.org/abs/1512.04150
http://dx.doi.org/10.3847/1538-3881/aaae05

