

SuCoHS

SUSTAINABLE & COST EFFICIENT HIGH-PERFORMANCE COMPOSITE STRUCTURES DEMANDING TEMPERATURE AND FIRE RESISTANCE

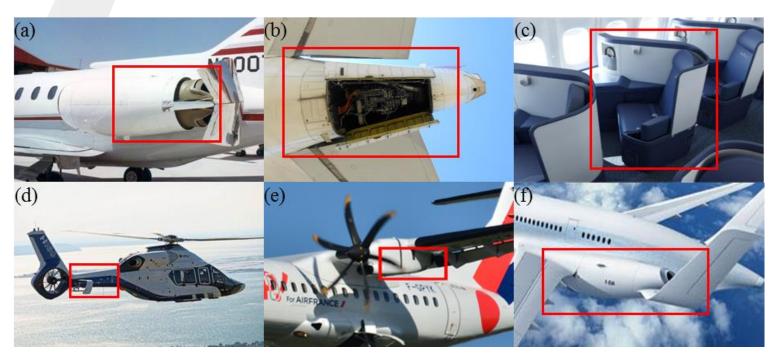
SuCoHS Project

Sustainable Cost Efficient High Performance Composite Structures demanding Temperature and Fire Resistance

Date: 05 September 2019 Tobias Wille (DLR), Project Coordinator

SuCoHS project, Grant Agreement N° 769118

Outline


Background
Objectives
Concept and Methodology
Consortium
First results
Outlook

Background

© Several aeronautical applications demanding high thermal conditions

TemperatureFire

Background

Current metal designs could be replaced to reduce weight or improve performance

[Bombardier]

Current composite designs could be improved to increase efficiency for multidisciplinary requirments or to reduce manufacturing costs

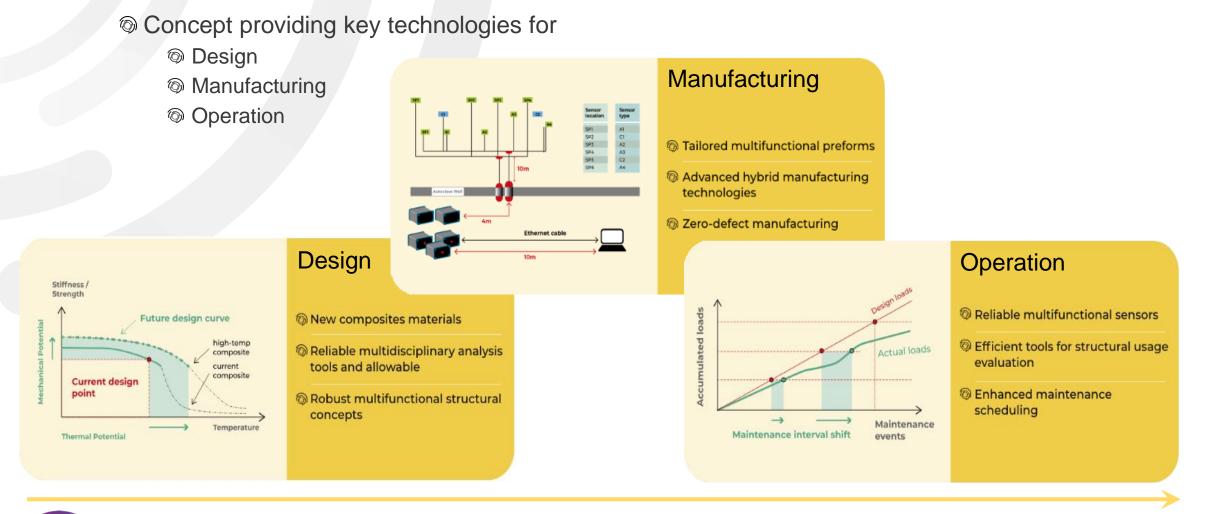
Objectives

Overall objective of EC

Maintain European leadership through weight and cost savings in expanding the use of composite materials in areas of demanding high thermal conditions (temperature and fire)

Technological objectives of SuCoHS project

- 1. Multi-material systems/ structures to increase mech. performance, fire and thermal resistance up to 350°C, reduce weight 12-15% and costs up to 17%
- 2. Systems for multiple sensing during production and operation to increase safety and aircraft availability and decrease maintenance costs by up to 15%
- 3. Tailored composite manufacturing with in-situ structural assessment to reduce time and costs for individual production steps by up to 30%
- 4. Multi-disciplinary analysis methods and allowables to reduce weight and cost of selected parts by additional 3-8%
- 5. Building block for designing multifunctional structures validated by representative prototypes with integrated systems
- 6. Pilot demonstration of future composite part development with horizontal & vertical integration of disciplines, methods and requirements

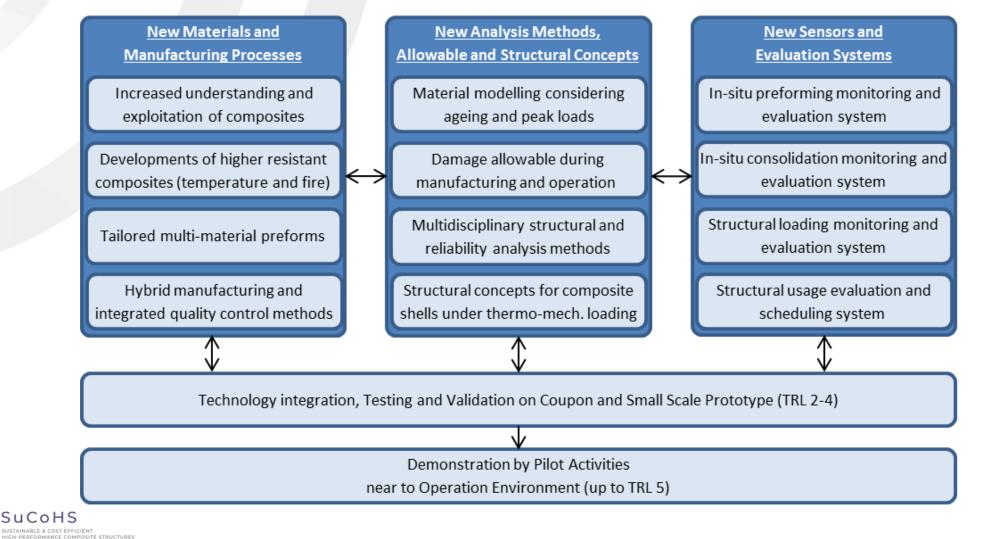


Concept and Methodology

SUCOHS SUSTAINABLE & COST EFFICIENT HIGH-PERFORMANCE COMPOSITE STRUCTURES

DEMANDING TEMPERATURE

AND FIRE RESISTANCE



Concept and Methodology

Methodology

EMANDING TEMPERATURE

ND EIDE DESISTANCE

Consortium

In a Nutshell

EU contribution 6 638 939 €

Project name:

Sustainable and Cost Efficient High Performance Composite Structures demanding Temperature and Fire Resistance

Project acronym: SuCoHS

Funding scheme: Research and Innovation Action (RIA)

Project Coordinator: Dr. Tobias Wille (DLR)

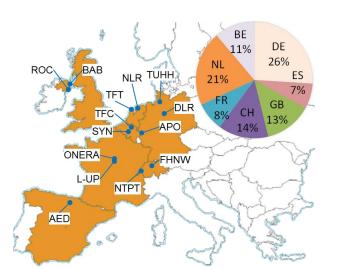
Contact: tobias.wille@dlr.de

Project start date: 01/09/2018

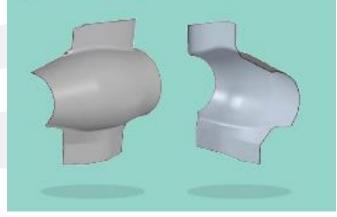
Project end date: 31/08/2021

Consortium

Oniversities


Material toughening
Process simulation
Probabilistic analysis

- Research Centers
 - Material testing and modeling
 - Manufacturing technologies
 - Structural analysis and testing methods
- SME and industrial facilitators
 - Material development
 - Sensor system development
 - Data base
- Industrial End users
 - Structural concepts and simulation methods
 - Production verification
 - Pilot demonstration



Collins Aerospace

Pilot Demonstrators

High temperature nacelle component (Bombardier)

Reduce part complexity
 Multidisciplinary loading
 Reduce number of subparts
 Use of composites Tg<335°C

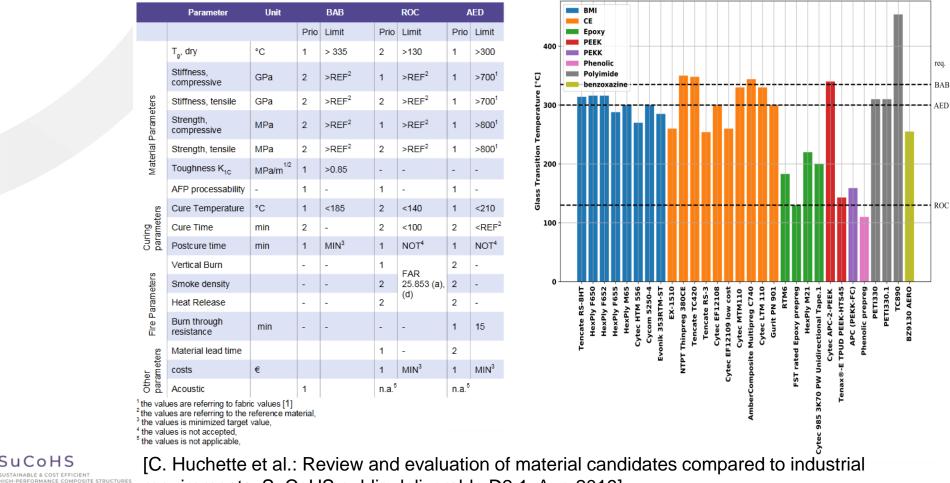
Tail cone panel substructure (Aernnova Engineering)

Avoid titanium APU housing
 Use of composites Tg<300°C
 Ensure fire resistance
 Ensure damage tolerance

Composite aircraft interior shell (Collins Aerospace)

- New structural concepts and materials for improved performance at reduced costs
- S Flammability and FST requ.

Material development

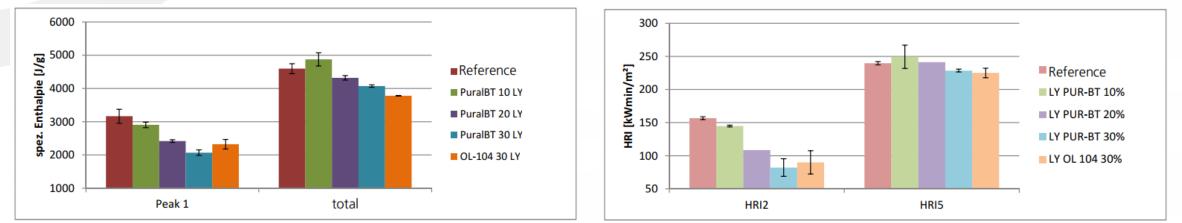

SuCoHS

SUSTAINABLE & COST EFFICIENT

DEMANDING TEMPERATURE

AND FIRE RESISTANCE

Material screening compared to requirements (mechanical, curing, fire and other parameters)


requirements, SuCoHS public deliverable D2.1, Aug 2019]

Material development

PFA material system ongoing

- Peak heat release substantially reduced
- Resin viscosity modified to manufacture prepreg with good tackiness
- toughened formulations by incorporating a number of liquid and solid modifiers

TGA/DSC as a method for the assessment of the fire behavior

Figure 8: Characteristics of TGA/DSC measurements of ATH-containing resins in air-like atmosphere

SUCOHS SUSTAINABLE & COST EFFICIENT HIGH-PERFORMANCE COMPOSITE STRUCTURES

EMANDING TEMPERATURE

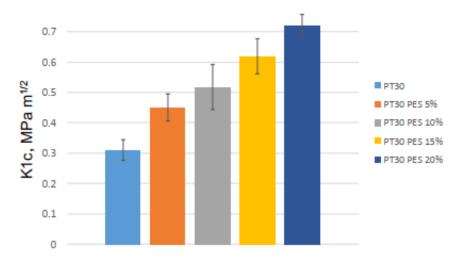
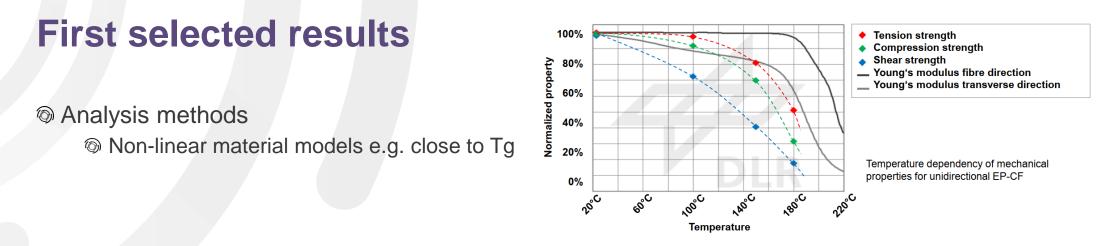

AND EIDE DESISTANCE

Figure 9: Characteristics of heat release measurements of ATH-containing resins in OSU-calorimetermeasurement

[A. Kühn: "The TGA/DSC as a method for the assessment of the fire behavior", 2019]

Material development

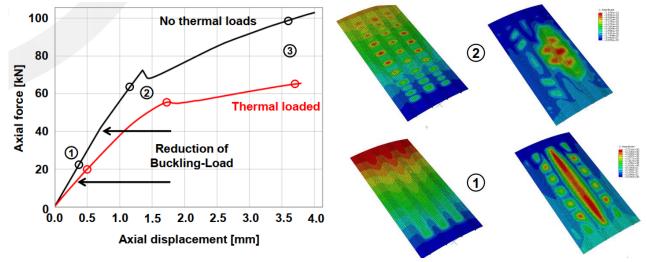
- Over the system modification
 - increasing toughness
 - accelerating curing at 180°C
 - Prepreg development
 - Manufacturing verification



Fracture toghness of PT30 - PES 1 system, [1]

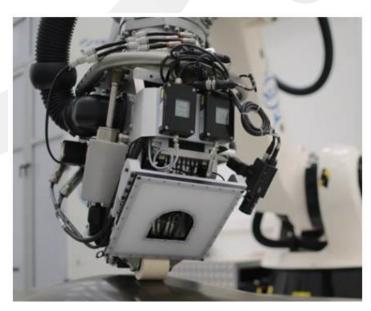
\rightarrow Detailed presentation of results:

- [1] L. Amirova, F. Schadt, C. Brauner, M. Grob: "Properties and structure of Cyanate Ester/Polyethersulfone composites", 9th EASN, 06.09.2019
- [2] F. Schadt, L. Amirova, C. Brauner, M. Grob: "Thermoplastic particle toughening of Carbon fiber / Cyanate Ester composites", 9th EASN, 06.09.2019

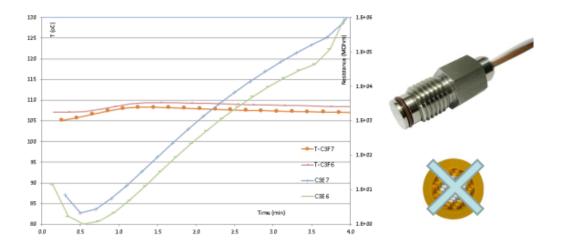


Robustness analysis procedure taking into account effects-of-defects and load uncertainties

\rightarrow Detailed presentation of results:


[3] M. Liebisch, T. Wille, G. Balokas, B. Kriegesmann: "Robustness analysis of CFRP structures under thermomechanical loading including manufacturing defects", 9th EASN, 06.09.2019

Sensor development


Camera based sensor system mounted to AFP robot

AFP monitoring sensor from Apodius integrated @ NLR

- Solution New disposable cure sensor for higher temperatures up to 250°C
- \rightarrow Detailed presentation of results:
 - [4] N. Pantelelis et al.: "Cure monitoring of high-temperature resins for enhancing the manufacturing of advanced composites", 9th EASN, 06.09.2019

New durable sensor for measuring CFRP without the need of protection developed by Synthesites, [4]

Outlook

Detailed coupon testing for down-selected materials

Material modelling and validation

Surther sensor developments e.g. for FBG integration

Structural concepts

Thermo-mechanical tests and fire tests of validation structures

Demonstrator preparation

Design

Manufacturing

Testing

Get together

Homepage <u>www.sucohs-project.eu</u>

Sewsletter No 1 released on 07/05/2019, next Newsletter No 2 in October

Linked In account created for SuCoHS ("company page") <u>https://www.linkedin.com/company/sucohs-project/</u>

Conferences

EASN Conference, 03-06 September 2019 in Athens
SAMPE Europe, 17-19 September 2019 in Nante
AEC conference, February 2020 in Bordeaux
JEC World, 03-05 March 2020 in Paris
ILA, 13-17 May 2020 (tandem with Aerodays 2019) in Berlin
ECCOMAS Congress, 19-24 July 2020 in Paris

Contact

SuCoHS Coordinator:

German Aerospace Center (DLR) Dr.-Ing. Tobias Wille Phone: +49 (0)531 – 295 3012 Mobile: +49 (0)173 – 276 4599 Email: tobias.wille@dlr.de

in

SUCOHS SUSTAINABLE & COST EFFICIENT HIGH-PERFORMANCE COMPOSITE STRUCTURES DEMANDING TEMPERATURE AND FIRE RESISTANCE

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 769178.

<u>www.sucohs-project.eu</u> <u>https://www.linkedin.com/company/sucohs-project/</u>