Optimizing System Architectures by Leveraging Collaborative MDO

by Jasper Bussemaker jasper.bussemaker@dlr.de

Knowledge for Tomorrow

Trends in Complex System Design

Trends in Complex System Design

System Architecting

1. High-impact decisions

2. Large design freedom

3. Rough knowledge

Architecture Optimization

Design Optimization

1. Lower-impact decisions

2. Less design freedom

3. Detailed knowledge

Architecture Optimization Building Blocks

- 1. Modeling the Design Space
 - Mapping of function-form-structure
 - Identifying design decisions
 - Enable interfaces with MBSE
- 2. Enabling Efficient Optimization
 - Formulating the optimization problem
 - Low number of function evaluations
 - Multi-objective mixed-integer optimization
- 3. Leveraging Collaborative MDO
 - Compatibility with central data schema
 - Manage topology changes
 - Methodology usable by integrators

Modeling the Architecture Design Space as a Graph

Optimization Problem Characteristics

- Discrete architecture decisions
- Continuous sizing parameters

Hierarchical, mixed-integer, multi-objective optimization

Conditionally active design variables

Example: strut or not?

Strut? Yes Where to place strut?

Strut? No Where to place strut? Conflicting stakeholder requirements

• No a-priori objective weighting

Efficient Optimization Needs and Strategies

Problem

- High-dimensional multi-objective design space
- Cannot use gradient-based methods
- Could use evolutionary optimization algorithms
 - Requires many function evaluations
- Function evaluations are time/resource intensive!

Solution strategies

- 1. Detect convergence
- 2. Model-building optimization
- 3. Architecture preselection

Model-building optimization

- 1. Build model of design space
- 2. Use model to find new promising design points
- Surrogate modeling (e.g. Kriging, EGO)
- Probabilistic modeling (e.g. Bayesian Networks)

Architecture preselection

- Cheap-to-evaluate proxy-objectives and proxyconstraints (proxy-metrics)
- Complexity metrics as representation of development costs
 - TRL-based metrics

 $M(A) = n + \frac{1}{n} \sum_{i=1}^{n} z_i$

Leveraging Collaborative MDO

- Many disciplines involved in complex product 1. design
- 2. Distributed expert knowledge
- 3. System integrator has overview, but no expert knowledge

Collaborative MDO

- One data language (e.g. CPACS)
- Data transfer between organizations
- MDO workflow modeling techniques

Test Design Problem:

Onboard System Architecture Optimization from a Family Concept Perspective

After Cable

Design an aircraft family for a specific market segment

- Environmental Control System architecture
- Flight Control System architecture
- Commonality among family members

Acquisition costs vs operating costs (fuel burn)

Preliminary Collaborative XDSM

Amsterda

Netherlands

ermany

Prague Czechia

Austria

Italy

Next Steps

Design Space Modeling

- Intuitive GUI
- Formalization

Architecture Optimization

- Benchmark Architecture Optimization Problem
- Algorithm Development
- Preselection Proxy-Metrics

Collaborative Architecture Optimization

- Reusable graph to common language conversion
- Impact of topology changes
- Apply in AGILE 4.0 use cases
- Additional test cases:
 - System-of-Systems
 - Hybrid Electric propulsion

creasing Topological Complexi

Thank you! Questions?

DLR