

M A S T E R T H E S I S

 Title: Semantics of Non-Deterministic Repairable Fault Trees

 Submitted by: Yogeswari Renganathan (Matr. No. 752471)

 1st Academic Supervisor: Prof. Dr.-Ing Karl Kleinmann

 2nd Academic Supervisor: Prof. Dr.-Ing Markus Haid

 Industrial Supervisor: Sascha Müller

 Completion Date: 20.09.2019

i

 Student:

 Yogeswari Renganathan
 First (Given) Name Last (Family) Name

 Date of Birth: 03.07.1991 Matr.-No.: 753471

 1st Academic Supervisor: Prof. Dr.-Ing Karl Kleinmann

 2nd Academic Supervisor: Prof. Dr.-Ing Markus Haid

 Title: Semantics of Non-Deterministic Repairable Fault Trees

 Abstract: (max 10 Lines)

 Fault Tree Analysis is a popular technique used to support the design of critical systems. In a

prior work, fault tree semantics have been developed for Non-Deterministic Dynamic Fault

Trees that introduces non-determinism to the recovery actions to solve the problem of

spare races and improve system reliability. However the existing work only deals with

permanent faults. The focus of the thesis work is extending the formalism of Non-

Deterministic Dynamic Fault Trees to support the notion of repair and develop semantics for

Non-Deterministic Repairable Fault Trees to achieve higher availability of system. It

includes formalizing the gate semantics and adapting the algorithms for analyzing the fault

tree. Furthermore, the thesis work also adapts the minimization algorithms to produce a

more compact version of the Recovery Automaton with fewer states.

 In partial fulfilment of the requirements of the University of Applied Sciences Hochschule
 Darmstadt (h_da) for the degree Master of Science in Electrical Engineering carried out in
 collaboration with Industrial Enterprise

 Company: German Aerospace Center (DLR), Simulations- und Softwaretechnik

 Address: Lilienthalplatz 7, 38108 Braunschweig

 This Master Thesis is subject to a non-disclosure agreement between the University of Applied
 Sciences Hochschule Darmstadt (h_da) and the industrial partner.

(Signature)

 1st Academic Supervisor:

ii

Student:

Yogeswari Renganathan

First (Given) Name Last (Family) Name

1st Academic Supervisor: Prof. Dr.-Ing Karl Kleinmann

2nd Academic Supervisor: Prof. Dr.-Ing Markus Haid

Declaration

I hereby declare that this thesis is a presentation of my original research work and that no other
sources were used other than what is cited.
I furthermore declare that wherever contributions of others are involved, this contribution is indicat-
ed, clearly acknowledged and due reference is given to the author and source.
I also certify that all content without reference or citation contained in this thesis is original work.
I acknowledge that any misappropriation of the previous declarations can be considered a case of
academic fraud.

Darmstadt,
 (Date) (Signature)

iii

Contents

List of Figures viii

List of Tables x

1 Introduction 2
1.1 Motivation . 3

1.2 Goals . 3

1.3 Thesis Outline . 4

2 Technical Background 5
2.1 Fault Detection, Isolation and Recovery . 5

2.2 Fault Tree Analysis . 6

2.2.1 Need for Semantics in Fault Trees 7

2.3 Types of Fault Trees . 8

2.3.1 Static Fault Trees . 8

2.3.2 Metrics . 10

2.3.3 Dynamic Fault Trees . 11

2.3.4 Repairable Fault Trees . 14

2.3.5 Other Fault Tree Extensions . 15

2.4 Existing Work . 16

2.4.1 Non-Deterministic Dynamic Fault Trees 16

2.5 Fault Tree Analysis Tools . 21

2.5.1 Galileo . 21

2.5.2 DFTCalc . 22

2.5.3 PRISM . 22

2.5.4 MRMC . 22

2.5.5 STORM . 22

3 Concept 24
3.1 Non-Deterministic Repairable Fault Trees 24

iv

CONTENTS v

3.2 Semantics . 25

3.2.1 Semantics of Gates . 26

3.3 Transformation of Fault Tree to Markov Automata 34

3.4 Synthesizing Recovery Automata from Markov Automata 35

3.5 Minimization of Recovery Automata . 36

3.5.1 Trace Equivalence . 36

3.5.2 Active Fault . 38

3.5.3 Removing Untakeable Transition 39

3.5.4 Merging Orthogonal States . 39

3.5.5 Merging Final States . 40

4 Implementation 42
4.1 Development Environment . 42

4.2 Architecture . 43

4.3 Gate Semantics . 44

4.3.1 Static and Priority Gates . 44

4.3.2 FDEP Semantics . 44

4.3.3 SPARE Semantics . 47

4.4 Algorithms . 48

4.4.1 Markov Automaton Generation Algorithm 48

4.4.2 Recovery Automaton Synthesis Algorithm 49

4.4.3 Minimization Algorithm . 50

4.5 Implementation of Unit Test cases . 52

4.5.1 Input Format . 52

4.5.2 JUnit Tests . 53

5 Evaluation 55
5.1 System Specification . 55

5.2 System Evaluation . 55

5.2.1 Test Verification of Semantics . 56

5.2.2 Test Verification of Minimization 57

5.2.3 Measurement of system metrics . 58

5.2.4 Comparing NDRFT with Repair and DFT 59

5.2.5 Evaluating State Space growth and reduction 61

5.3 Discussion of the Results . 65

6 Conclusion 67
6.1 Summary . 67

CONTENTS vi

6.2 Conclusion . 68

6.3 Future Work . 69

Bibliography 69

List of Abbreviations

FDIR Fault Detection, Isolation and Recovery

FTA Fault Tree Analysis

FT Fault Tree

SFT Static Fault Tree

DFT Dynamic Fault Tree

RFT Repairable Fault Tree

RDFT Repairable Dynamic Fault Tree

NDDFT Non-Deterministic Dynamic Fault Tree

NDRFT Non-Deterministic Repairable Fault Tree

PAND Priority AND Gate

POR Priority OR Gate

FDEP Functional Dependency Gate

SPARE Spare Gate

BE Basic Event

TLE Top Level Event

ES Event Set

RES Repairable Event Set

MA Markov Automaton

RA Recovery Automaton

vii

List of Figures

1.1 Abstract Representation of the Existing and To be implemented Semantics . . 3

2.1 Fault Detection, Isolation and Recovery . 5

2.2 Fault Tree . 6

2.3 System analysis from Fault Tree . 8

2.4 Gates used in a Static Fault Tree . 9

2.5 A Static Fault Tree . 10

2.6 Reliability vs Availability Curve . 10

2.7 Dynamic Fault Tree Gates . 12

2.8 A Dynamic Fault Tree . 13

2.9 A Classical Repairable Fault Tree . 15

2.10 Workflow of Fault Tree Analysis using NDDFT 17

2.11 Markov Automata . 18

2.12 Two Labeled Transition Systems that are trace equivalent 19

2.13 A Recovery Automaton a) before and b) after applying the orthogonal state

rule . 20

2.14 A Recovery Automaton a) before and b) after applying the final state rule . . 21

2.15 A Markov Chain . 21

3.1 Relationship between different Fault Trees 25

3.2 (a) AND Gate and (b) Markov Chain generated from AND 26

3.3 (a) OR Gate and (b) Markov Chain generated from OR 27

3.4 (a) PAND Gate and (b) Markov Chain generated from PAND 28

3.5 Example Computing Device and Actuator connected by Data link 29

3.6 (a) POR Gate and (b) Markov Chain generated from POR 29

3.7 (a) FDEP Gate and (b) Markov Chain generated from FDEP for case 1 30

3.8 SPARE Gate Semantic . 32

3.9 Spare Gate and section of generated Markov automata 32

3.10 Pump System using PAND - Spare combination 33

3.11 Spare gates sharing common spare resources 34

viii

3.12 Transformation Flow . 35

3.13 General Structure of a Recovery Automata 36

3.14 A Recovery Automaton a) before and b) after applying the Partition Refine-

ment with Trace Equivalence . 37

3.15 Section of Recovery Automata . 38

3.16 A Recovery Automaton a) before and b) after applying the adapted orthogo-

nal state rule . 40

3.17 A Recovery Automaton a) before and b) after applying the Final state rule . . 41

4.1 Virtual Satellite 4 Framework . 42

4.2 VirSat FDIR Tool . 44

4.3 Component Diagram of the System . 45

4.4 The activity diagram of Fault Tree Analysis with NDRFT 45

4.5 Semantics Heirarchy in Implementation . 46

4.6 A Recovery Automaton of a 2 input SPARE 50

4.7 Orthogonal refinement algorithm on Recovery Automaton of a 2 input SPARE 51

4.8 JUnit Test run . 53

5.1 Sub-System of Binary Hypercube architecture 56

5.2 Cardiac Assistant System . 57

5.3 Availability . 58

5.4 Result of test verification of minimization in HCAS 58

5.5 Measured System Metrics of HCAS . 59

5.6 Active Heat Rejection System . 60

5.7 Hypothetical Example Computer System . 61

5.8 Growth and Minimization of Recovery Automata a) States and b) Transitions 63

5.9 Growth of Markov Automata a) States and b) Transitions 64

5.10 Execution Time for Fault Tree Analysis . 65

ix

List of Tables

4.1 Comparison of number of states generated for individual 2 input gates with

repair . 54

5.1 Test Verifying Semantics . 57

5.2 Minimization . 58

5.3 Recovery Automata State Space of HECS System with different sub-systems

being repairable . 63

5.4 Markov Automata State Space of HECS System with different sub-systems

being repairable . 64

x

Abstract

Fault Tree Analysis is a popular technique used to support the design of critical systems. In

a prior work, fault tree semantics have been developed for Non-Deterministic Dynamic Fault

Trees that introduces non-determinism to the recovery actions to solve the problem of spare

races and improve system reliability. However the existing work only deals with permanent

faults. The focus of the thesis work is extending the formalism of Non-Deterministic Dy-

namic Fault Trees to support the notion of repair and develop semantics for Non-Deterministic

Repairable Fault Trees to achieve higher availability of system. It includes formalizing the

gate semantics and adapting the algorithms for analyzing the fault tree. Furthermore, the

thesis work also adapts the minimization algorithms to produce a more compact version of

the Recovery Automaton with fewer states.

1

Chapter 1

Introduction

This chapter introduces the topic for the thesis work and explains the motivation and the

expected goals of the thesis. An outline of the report is also provided at the end of the

chapter.

Space missions and safety critical applications demand high reliability and fault toler-

ance. Spacecrafts and satellites can only be controlled in a limited way from ground stations

due to the distance and time delay for sending signals. The spacecraft is exposed to the harsh

conditions in space, resulting from radiations. The large distance between the spacecraft and

ground maintenance also presents a challenge for the ground maintenance team to communi-

cate with the system in a timely manner. Due to these challenges, on-board Fault Detection,

Isolation and Recovery (FDIR) modules are needed to ensure stable operation of the space

craft with minimal human interactions [WF13]. Even well-designed systems are not free of

faults, but improving the fault tolerance of the system makes it more reliable. A fault tol-

erant system is a system that can preserve its operation without external assistance [Avi76].

For instance, a spacecraft uses redundancy by having duplicate critical components to ensure

fault tolerance. The on-board Fault Detection, Isolation and Recovery (FDIR) modules are

developed during the engineering phase of the spacecrafts and define how the system reacts

to failures and the recovery actions to be taken [SD13].

Fault Tree Analysis is a technique that is used in industries to support designing FDIR

concepts, which will be the focus of the thesis. Fault Tree Analysis (FTA) [Eri99] is an

analysis technique that can model the possible faults of a system and evaluate the system to

derive useful information like system vulnerability, system reliability and the most optimal

recovery action that should be taken by the system. It helps to minimize the occurrence of

faults and prepares the system in advance to different malfunctions that can occur in the given

system. This thesis work develops a new semantic for fault tree which is the core element in

FTAs for the application of modeling faults during the design phase of satellites.

2

Figure 1.1: Abstract Representation of the Existing and To be implemented Semantics

1.1 Motivation

Fault Trees are the core elements used in FTA for modeling the faults of the given sys-

tem. Different variants of Fault Trees that have different modeling capabilities have been

researched upon in literature. In a prior research work at the German Aerospace Center

(DLR), semantics for Non-Deterministic Dynamic Fault Trees [MGN18] have been devel-

oped. It is based on the Dynamic Fault Tree semantics and extends the formalism by intro-

ducing non-determinism for recovery actions concerning the spare resources. The optimal

transitions are then chosen based on a scheduler to improve the reliability of the system.

However, the formalism only considers permanent failures and does not capture transient

or repairable faults that can occur in the system. Transient and repairable faults affect the

actual availability of the system and thus need to be taken into consideration for system anal-

ysis. Though research on Repairable Fault Tree semantics and Repairable Dynamic Fault

Trees (RDFT) have been done before, there is no existing work that combines the repair

semantics with non-deterministic recovery actions and DFTs together. Combining the non-

deterministic recovery action with repair, the Fault Tree Analysis technique is expected to

achieve a higher availability for the system in comparison to RDFT. The focus of the thesis

is to extend the Non-Deterministic Dynamic Fault Tree formalism and add support for mod-

eling non-permanent faults by developing semantics for a repairable system and implement

the concept in the Virtual Satellite framework. The Fig. 1.1 shows the representation of the

existing work and the missing semantics that is to be implemented in this thesis.

1.2 Goals

The expected goals of this work have been defined below:

• Investigation of the state-of-the-art of Fault Trees and review of the variants of Fault

Trees that have already been developed

• Development of a semantics for a Fault Tree model that combines the following flavors:

3

– Non-deterministic recovery actions for spare resources

– Dynamic behaviour of faults

– Repairability of components in the system

• Adaption of the existing algorithms to generate Markov models from the Fault Trees

based on the semantics developed for system analysis

• Extension of the Recovery Automaton model and synthesis method to include the no-

tion of repair

• Adaption of the minimization algorithms to handle the state space explosion in Recov-

ery Automata and produce a more compact version of the Recovery Automata.

1.3 Thesis Outline

The thesis starts with an introduction and follows up with Chapter. 2 providing an overview

of the fundamentals and technical background relevant to the thesis work. An introduction

to the preliminaries and a review of state-of-the-art in Fault Trees and relevant research work

in the area of Fault Tree Analysis is discussed. The Chapter. 3 discusses the conceptual

aspect of the proposed idea for the thesis. The implementation for the proposed concept is

then discussed in Chapter. 4 which provides an overview of the architecture and algorithms

adapted. The thesis then covers the evaluation and results for the work done in Chapter. 5 and

finally based on the evaluation we conclude in the final Chapter. 6 by providing a summary

and future outlook.

4

Chapter 2

Technical Background

This chapter provides an overview of the technical background and state of the art of the

relevant work done in Fault Tree Analysis. It also describes the existing work on which the

thesis was based on. The Chapter ends with a brief description of the list of existing tools for

Fault Tree Analysis.

2.1 Fault Detection, Isolation and Recovery

Fault Detection, Isolation and Recovery (FDIR) is a mechanism used in safety-critical appli-

cations to maintain stable operation of the system even in the presence of faults. The FDIR

module runs in parallel with the main system and tries to stabilize the system in case of mal-

function or fault, with minimal external control. [SD13] While faults are deviations of at

least one property that may lead to malfunctions, partial or total failure, failures are defined

as total shutdown of the system or subsystem under consideration [WF13]. Not all faults

lead to failure and this require appropriate FDIR techniques for ensuring stable operation of

the system. Especially in space applications where there might be delay in fault diagnosis by

ground operations team due to the time for the spacecraft to communicate with the ground

stations, on-board FDIR helps to respond to faults in a timely manner and increase the oper-

ational time of the spacecraft. Fig. 2.1 shows the role of FDIR from a malfunction to stable

operation of the system. According to [WF13], FDIR generally comprises of the following

procedure:

• Detection of the time and occurrence of a fault

Malfunction Detect Isolate Recovery StableOperation

Figure 2.1: Fault Detection, Isolation and Recovery

5

Figure 2.2: Fault Tree

• Isolation of the responsible component or subsystem and analysis of the fault

• Recovery of the system by reconfiguring it to a stable working condition

Various state of the art risk analysis techniques is used during design time to derive on-board

actions in the event of a fault. One of techniques used in the space industry, which we focus

on in this thesis, is Fault Tree Analysis.

2.2 Fault Tree Analysis

Fault Tree Analysis (FTA) is a state-of-the-art verification method used in many industries

to perform failure analysis and check system dependability. It helps identify all possible

error combinations that can lead to system level failure. They were first developed at Bell

Labs and eventually used by Boeing for the safety evaluation for their commercial aircrafts

[Eri99]. Since then, it has been adopted for different industries such as the aerospace, nuclear,

chemical, robotics and software. The definition of Fault Tree Analysis from [Kri06] is:

“a top-down (deductive) analysis, proceeding through successively more de-

tailed (i.e. lower) levels of the design until the probability of occurrence of the

top event (the feared event) can be predicted in the context of its environment

and operation”

The general role of using Fault Tree Analysis in system analysis is given below:

1. Visualize the combination of failures and how it propagates through a system.

2. Identify commonly occurred errors like human errors, software errors etc.

6

3. Obtain a deeper understanding of system vulnerabilities and identify areas of concern.

4. Help prevent future failure by improving system design.

5. Identify means to minimize the probability of occurrence of failure in the future.

6. Monitor performance of the system.

Fault Tree Analysis requires the construction a graphical diagram called the Fault Tree

to represent the system. It provides a mapping of the interactions of the failure causes with

the system. Fault Trees are the logical diagrams that are used to model potential faults of the

system. The definition of a Fault Tree from the Fault Tree Handbook [VGRH81] is:

“a graphic model of the various parallel and sequential combinations of faults

that will result in the occurrence of the predefined undesired event”

Fig. 2.2 shows the general structure and elements of a Fault Tree. They are directed

acyclic graphs and each node in a Fault Tree is either a gate or event. The elements of the

Fault Tree are described as below:

1. Events represent an occurrence in the system and can be of the types: Basic Event,

Intermediate Event(IE) and Top Level Event (TLE). A basic event represents the com-

ponent level failure and have a fail rate associated with them. They can also have a

repair rate associated with them if the fail event is non-permanent. The basic events

are represented as the leaves in a Fault Tree diagram. IE represent the sub-system fail-

ure i.e. the failure caused by two or more basic events. The TLE is the system level

failure and is represented by the root node in a Fault Tree diagram.

2. Gates are logical elements used to model the interrelation between faults. It represents

how the failure of the basic event propagates through the system and affect the top level

event. The different types of gates are discussed in section 2.3.

2.2.1 Need for Semantics in Fault Trees

There are various techniques and methods to analyse the Fault Tree of a system. The tech-

niques can be either qualitative or quantitative analysis. Qualitative analysis provides in-

formation about the vulnerabilities of a system from the structure of a Fault Tree [SD13].

However, quantitative analysis from the Fault Tree is only possible in some variants of Fault

Tree. For most cases they need to be transformed to mathematical models for further analy-

sis. Fig. 2.3 shows the transformations from a Fault Tree to derive system analysis. For the

purpose of the transformation to the mathematical models from a Fault Tree, the semantics of

the different versions of Fault Tree models need to be defined. It describes how the elements

of a Fault Tree can be represented in a mathematical model with equivalent behaviour.

7

Figure 2.3: System analysis from Fault Tree

2.3 Types of Fault Trees

Over time, extensive research on the area of Fault Tree analysis have led to the development

of different versions of Fault Trees. Static Fault Trees (SFT) are the earliest and most basic

version of Fault Tree. All Fault Trees have evolved from these Static Fault Trees. Some

of these versions which have been widely adopted in industries have been discussed in the

following sections.

2.3.1 Static Fault Trees

Static (or Standard) Fault Trees (SFT) refer to the earliest version [RS15] of Fault Trees

used in Fault Tree Analysis. These are the classical Fault Trees that were initially used for

safety analysis. The Fig. 2.4 shows the gates that were used for SFTs, that are referred to

as static gates. Static gates represent the static fault behaviour of the system, that is failure

combinations. We discuss the different gates of a SFT below:

• AND Gate: It models system failure that is caused by combination of failure. For the

gate to fail all the events connected to the AND input needs to fail.

• OR: It models system level failure caused by any one of its components. When any of

the basic events connected to the OR gate occurs, the gate fails.

• Vote: k-Vote Gate can model failures when k out of N of its components need to fail

for the gate to fail. Implementation wise both AND and OR gate can be modeled using

the k-Vote gate using the N/N-Vote and 1/N-Vote gate respectively.

8

Figure 2.4: Gates used in a Static Fault Tree

In addition to the above gates, NOT gates are used in some cases to represent non-coherent

systems which may include a component whose failure can repair the system or its function-

ing can cause system failure. They are generally dismissed as a modeling error [VGRH81].

The Fig. 2.5 shows a construction of a Static Fault Tree that uses the above described

gates.

2.3.1.1 Analysis of SFTs

SFTs can be analysed qualitatively to get an idea of the vulnerabilities of the system. It

involves looking at the failure combinations. The common methods used for SFT analysis

are:

1. Minimal Cut Sets (MCS): A Cut set is the set of components whose failure can cause a

system to fail. Minimal Cut Sets contain the minimum number of components required

to cause top level failure. A System is considered vulnerable if the minimum cut sets

have very few elements or if they have elements with high likelihood of failure. Two

of the most common methods to derive the cut sets of a system are based on: Boolean

Manipulation and Binary Decision Diagrams [BA78].

2. Common Cause Failure: We can also analyse the Fault Tree qualitatively by enlisting

the common cause failures of the system. Common Cause failures are failures of sep-

arate components that can be caused due to a common cause that cannot be modeled

in the Fault Tree. In the space industry, CCF is defined by NASA PRA guide, 2002

as “The failure (or unavailable state) of more than one component due to a shared

cause during the system mission”. Examples of Common Causes are manufacturing

defect, high temperature, lack of maintenance etc. Reliability of the system can thus

be improved by identifying these common cause failures and taking appropriate steps

like changing designs, avoid human errors, regular testing and maintenance etc., thus

reducing the likelihood of the occurrence of common cause failures.

The SFTs can also be quantitatively to find numeric values for commonly used system

metrics. The BEs are equipped with failure probabilities which are used for the computation

of the metrics.

9

Figure 2.5: A Static Fault Tree

2.3.2 Metrics

(a) Reliability (b) Availability

Figure 2.6: Reliability vs Availability Curve

Fault Tree Analysis can measure the fault of the system qualitatively and quantitatively.

We can qualitatively analyse simple fault trees by identifying cut sets as discussed in 2.3.1.1

and gain basic information about the risks and vulnerability of the system. However, to

analyse more complex systems and to get information of the system vulnerability at different

instances of time we perform quantitative analysis to get different metrics. Some of the

commonly used metrics [Rel] [Ava] are:

1. Reliability: It indicates probability of the system functioning without any failure up to

the time of measurement under given conditions. In system analysis, it is a commonly

measured metric for non-repairable systems.

2. Availability: Availability is the probability of the system running at the measured time

if it had run without any failure up to the time or if it had failed and repaired and runs

10

successfully up to the measured time, under given conditions. This metric takes into

account that the system can be operational again after failure due to repair or transient

faults. This metric is thus more relevant for systems with repairable components.

3. Steady-State Availability: It is the availability of the system as time tends to infinity.

It gives an idea of the long run availability of the system. For non-repairable systems

steady state availability is always zero as the system is expected to fail at some point

in infinity and not become operational again.

4. Mean Time To Failure: It is the mean time for a system to operate without faults

before the failure of the system. For a component with failure rate λ , mean time to

failure (MTTF) is equal to 1/λ .

The Fig. 2.6 shows the availability and reliability curves. As seen in the figure, the

reliability curve ultimately settles to zero indicating that the system will definitely fail some

time in the future. The availability curve however reaches a steady state value which is

referred as the steady state availability.

SFTs are a graphical, intuitive and easy to understand tool that can be used for simple

systems. However, SFTs are not expressive enough to model more complex systems as it only

takes into account the failure combinations and not the order or timing of the failure. In many

practical systems today the temporal ordering of the faults is also taken into consideration for

determining the failure status. SFTs also have no support to model functional dependencies

depicted by the components. For instance, a functioning CPU or a sensor has a functional

dependency on the power. This has led to various extensions to the formalism to increase the

expressiveness of fault trees.

2.3.3 Dynamic Fault Trees

Dynamic Fault Trees (DFT) are an extension to the Static Fault Tree. They can model tem-

poral dependencies, functional dependencies and management of spare resources in addition

to the existing semantics of a SFT. Temporal dependencies refer to the situation where the or-

der of failure of the components in a system is important to a system. The system fails only

when the components fail in a particular order when it has temporal dependencies. Func-

tional dependencies in a system is when some of the components require another component

to be functioning for its to be operational. Spare Management refers to the tasks involved

in organizing the usage of spare or backup resources when the primary unit of the system

component fails.

To implement the added expressiveness, the DFTs use the Priority-AND, Priority-OR,

SPARE gate and Functional Dependency (FDEP) Gates in addition to the already existing

static gates. Fig. 2.7 shows the gates introduced in Dynamic Fault Trees.

11

The different gates introduced by the DFT are discussed below:

1. Priority-AND gate (PAND) is an AND gate which fails only if the inputs fail from

left to right. In some cases, the PAND gates can be inclusive (≤) when the gate also

fails when all the inputs fail simultaneously. Exclusive gates (>), on the other hand,

allow strict ordering by only failing when the inputs fail left to right. The gates become

fail-safe when the order is not maintained.

2. Priority-OR gate (POR) is an OR gate which fails only when the first input fails before

the others. Like the PAND gate, they can also be both inclusive (≤) and exclusive (<)

and become fail-safe on not following the order.

3. Spare gates (SPARE) are used to model spare components in a system. The gate ini-

tially uses only the primary component which is connected as the first input. The spare

components at this point can be in active or dormant mode. Components in dormant

mode fail with a reduced failure rate determined by the dormancy factor d which lies in

the interval [0, 1]. Spares with dormancy factor 0 are called cold spares and those with

dormancy factor < 1 are called warm spares. Spares in active mode have a dormancy

factor of 1. Upon failure of the primary component, the SPARE switches to the next

spare component from left to right. The SPARE fails when there are no more spare

components for it to claim.

4. Functional Dependency (FDEP) gates are used to model functional dependencies in a

system. The first child is called the trigger and the rest of the connections are called

dependent events. Unlike other gates they have no parents. Upon occurrence of the

trigger event the FDEP forces failure of the dependent events.

The Fig. 2.8 illustrates an example of a Dynamic Fault Tree. It shows the use of the Spare

gate, priority gate and FDEP gate by modeling a pump system. The functional dependency

between power supply PS and motors P1 and P2 is shown. The temporal dependency between

the switch S and pump P1 is depicted using the priority gates where the PAND gate fails only

if the switch fails before pump. Since, when a switch has already failed, on failure of the

primary there is no way for the system to switch to pump P2 with faulty switch. SPARE gate

models the use of spare management with a back-up pump.

Figure 2.7: Dynamic Fault Tree Gates

12

Figure 2.8: A Dynamic Fault Tree

2.3.3.1 Analysis of DFTs

With increased expressiveness of DFTs, comes increased complexity in its analysis. Analysis

of DFT is no longer simple and requires sophisticated algorithms and tools. Since the tem-

poral ordering is important, minimal cut sets are no longer enough for quantitative analysis.

The paper [TD04] introduces the notion of minimal cut sequences for DFTs which is based

on the Minimal Cut Set generation. It involves using a Zero-Suppressed Binary Decision

Diagram method to generate the sequences. Zero-Suppressed Binary Decision Diagrams are

special types of Binary Decision Diagrams used for computational set representation and

manipulation.

The quantitative analysis of DFT can be done by translating it to a Markov Model and

applying quantitative analysis techniques on the Markov models to obtain system metrics.

The Markov models can be generated using a monolithic or compositional Approach:

• The monolithic method which is based on the Galileo Approach [VJK16] [SDC99], in-

volves iteratively generating the states starting from initial state. The states are gener-

ated by considering the basic events in the DFT as failed, propagate the failure through

the DFT and create a new state based on the resulting failure status of the DFT.

• The compositional Approach involves transforming the components or subsystems into

Markov chains and do the computation for the individual components and combine the

results.

Alternatively, DFTs can also be transformed to other models such as Petri Nets, Bayesian

Network etc. for analysis. In this thesis, we use Markov Automaton for analyzing. Quantita-

tive Analysis is used to measure numerical values to assess the dependability of the system.

13

More complex DFTs also lead to the state space explosion problem where the number of

states increase exponentially with the introduction of new events. However, a number of

reduction approaches are available to effectively handle the state explosion problem.

2.3.4 Repairable Fault Trees

Repairable Fault Trees (RFT) refer are the Fault Trees that can additionally model component

with repair. The Fault Trees discussed so far modeled permanent failures. Therefore, we

need to account for restoration, replacing components and transient faults as not all faults

are permanent and some faults can be restored. Occurrence of transient faults and repair

significantly increase the availability of the system. To capture this, Repairable Fault Trees

were introduced. In the simple repair rate model, the Static Fault Trees have an additional

repair rate associated with it which is a parameter for exponential distribution modeling the

time to repair the component. It captures systems where the repair of the component is

independent of other components and concerned only the repair of individual components.

The Fig. 2.9 shows a Repairable Fault Tree with a repair box.

In the work of Bobbio [RFIV04] , repair boxes were introduced to extend the expressive-

ness of simple repair rate model. The repair boxes were connected to the gates and repairs

the inputs to the gate when the gate fail. The repair boxes could carry different repair policies

such as restriction on the number of components repaired at a time and different repair strate-

gies, global or local repair or assigning priority to the repairs. This formalism was further

developed to allow non-determinism to the repair policies in the work of [BCRFH08] and

choosing the optimal repair strategy. The optimal repair policies are computed based on the

costs for unavailability, failure and repair.

Repair with Dynamic Fault Trees have also been researched upon in some papers. In

[MCD+12], a Repairable Dynamic Fault Tree (RDFT) was introduced that analyses the

RDFT by converting to an ATS model. It maintains the strict order of claiming (left to

right) for the SPARE gates and if a preceding component of the current active component

gets repaired, the SPARE gate switches to the restored component, thereby maintaining the

priority ordering. In case of Spare races, when two SPARE gates try to access a common

shared spare resource, a random SPARE gate is allowed to claim the SPARE resource. For

the FDEP Gate, the dependent events are set to an OFF state when a trigger event occurs,

thus allowing them to fail or repair even in the off state.

Similarly, in [GKS+14] DFTs to capture repair and maintenance in the application of

railways is introduced. The introduce work allows to compare different maintenance strate-

gies using stochastic model checking techniques. Repair Modules (RMs) that monitor the

components for failure are used and on failure sends a repair request to another entity called

the Repair Unit (RU) which in turn is responsible for choosing the repair strategy and acti-

14

Figure 2.9: A Classical Repairable Fault Tree

vation of repair process on the component and sending repaired signal back to the RM on

successful completion. The failed component is then reactivated by the RM. The RU also

decides the sequence of fault repair in case of multiple failures, to optimize the system ob-

jective. [GKS+14] transformed the Fault Tree into Markov Chains. [GKS+14] analyses

the Repairable Dynamic Fault Tree by converting it into Interactive I/O Markov Chains. In

[RFIV04], the Analysis of the Repair box elements and the sub trees of the FTs affected

by the repair were done by converting it into General Stochastic Petri Nets (GSPNs). This

allowed evaluation of the repair policies.

[AHMS19] Introduces the concept of temporal Dynamic Fault trees to capture the effect

of transient faults in a system. The Fault Tree formalism also introduces a Fault Tree Analysis

methodology based on statistical model checking. The Paper defines the semantics for all

static and dynamic gates except the SPARE gates.

2.3.5 Other Fault Tree Extensions

There have been other extensions to the Fault Trees introduced as well in the literature. State-

Event Fault trees introduced in [KGF07] combines the elements of Fault Trees and State-

machines to offer a more intuitive representation that can be used in industries. It is an

extension to Component Fault Trees, which uses a component-based structuring for Fault

Trees, by offering a graphical distinction between states and events. Unlike the Fault Trees,

the Gates in this variant are not just Boolean logical functions but it encompasses internal

state charts that capture the state changes in response to events. State Event Fault Trees are

analyzed by converting to extended Deterministic Stochastic Petri Nets (eDSPN).

Fuzzy Fault Trees [TFLT83] includes the notion of Fuzzy sets to represent the failure

probabilities instead of using exact numbers. It can effectively handle uncertainties in deter-

mining the failure probabilities of the components. Failure probabilities for system may be

15

difficult to estimate for systems with environment changes or for those components that have

not failed yet.

Fault Trees with dependent events were proposed in [B+99] that added dependencies

between components such that the fail and repair rates were affected. Since in a realistic sys-

tem, faults of one component can accelerate fault of another component. It allows modeling

of gradual degradation of system by having additional states for it by allowing components

to have more than failed and non failed state.

2.4 Existing Work

This section describes the existing work of Fault Tree on which the thesis is based. This was

developed at the German Aerospace Center and the following section describes the

2.4.1 Non-Deterministic Dynamic Fault Trees

The Non-Deterministic Dynamic Fault Trees [MGN18] is an extension to Dynamic Fault

Tree which introduces the concept of non/deterministic system recovery actions. The thesis

work is based on this version of Fault Tree. The recovery actions related to the actions taken

during spare management. It removes the syntactical restriction of fixed order claiming of

spare resources for increased flexibility and achieve improved reliability. Non-deterministic

recovery behavior also takes care of the problem of spare races which is not addressed in

DFTs. Spare race is a condition when the primary resource of two spare gates sharing a

common backup resource fails at the same time and both the spare gates try to claim the

spare resource at the same time. DFT semantics do not specify the action to be taken in

such situations. However, in the non-deterministic semantics the spare gates can choose to

either not take any action or claim any of the available resources. The formalism defines the

semantics of a spare gate to perform one of the recovery actions. According to the paper, the

recovery action is formally defined as follows.

Definition 1. (recovery action): A recovery action r in an NDDFT T is an action of the form:

• [] (empty action) or

• CLAIM(G,S),such that spare Gate G claims spare S,where S is a spare of G

The formalism does the analysis of the Fault Tree by converting it into a Markov Automa-

ton. It uses the monolithic approach to generate the state space of the Fault Tree. Two sets

of data are memorized: the history of occurred basic event sets and a mapping of the Spare

Gate to the claimed spares. Starting with the initial state, all active basic events are used

to determine the successor transitions and states. The process is iterated for each generated

16

Figure 2.10: Workflow of Fault Tree Analysis using NDDFT

state and possible events in the state till there are no new states generated. All fail states are

represented as a single final “FAIL” state.

Fig. 2.10 represents this transformation process in an NDDFT. The core elements of the

system are described in the following section.

2.4.1.1 Markov Automaton

Markov Automata (MA) are finite transition systems used to model systems with non-determinism.

It includes both immediate action based non deterministic transitions and Markov Transitions

which execute with an exponential time delay. Probabilistic Transitions have probabilistic

distribution for successor states. The Fig. 2.11 illustrates a simple Markov Automata. In

the figure, the non-deterministic transitions are depicted using dotted lines, the markovian

transitions depicted by non-dotted lines and the final states are represented by double circles.

The NDDFT on which the thesis work is based on uses a Markov Automata for its Fault Tree

Analysis. The extension work in the thesis also continues to use the Markov Automata as its a

good model for representing both the non-deterministic and the timed markovian transitions.

Additionally, the Markov models have been successfully used in a number of space ground

segments due to its capability to produce good approximations for steady state availability

of some space system (ECSS-Q-ST-30-0931). The formal definition of Markov Automaton

based on [EHZ10] is,

17

Figure 2.11: Markov Automata

Definition 2. (Markov Automaton) Markov Automaton is a 5-tuple (S,Act,→,⇒,s0) where,

• S is a non empty finite set of states,

• Act is a set of actions,

• →⊆ S×Act×Dist(S) is a set of Probabilistic transitions,

• ⇒⊆ S×R≥0×S is a set of Markov Timed transitions and

• s0 ∈ S is the initial state.

The non-deterministic transitions are chosen by a scheduler. Depending on the type cho-

sen the schedulers then calculate the failure probabilities for the non-deterministic transitions

from the given state.

Using existing Markov analysis techniques, a number of metrics can be calculated such

as Reachability, long run rewards etc.

2.4.1.2 Recovery Automaton

The next step in the work-flow of NDDFT is synthesizing a scheduler for the Markov Au-

tomaton. The value iteration algorithm is used to find the most optimal path for maximum

system reliability and produce a recovery automaton. A recovery automaton is a determin-

istic automaton that represents the best transitions that the Markov Automaton should take

when faced with non-determinism. The definition of Recovery Automaton is given as:

Definition 3. (Recovery Automaton): A Recovery Automaton RT = (Q,δ ,q0) of an NDDFT

T is an automaton in which

• Q is a finite set of states,

• q0 ∈ Q is an initial state, and

18

Figure 2.12: Two Labeled Transition Systems that are trace equivalent

• δ : Q×BES(T)→ Q×RS(T) is a deterministic transition function that maps the cur-

rent state and an observed set of basic events to the successor state and a recovery

action sequence.

Minimization in NDDFT However generated recovery automata may suffer from the

problem of state space explosion. It is desirable to find a smaller automaton with equiva-

lent recovery behavior. The properties or rules that were applied to reduce the state space of

recovery automata are given below:

• Trace Equivalence:

The notion of trace equivalence is used to merge equivalent states in systems where

we can not influence the interact with the system. A trace of a state is the sequence

of transitions or actions that can occur in the given state. Two states are said to be

trace equivalent when the set of traces are the same. When two transition systems,

have trace equivalent initial states, we consider them trace equivalent. For example, in

the Fig. 2.12, both transition systems have trace set = ab,ac and are considered trace

equivalent.

In the minimization of NDDFT, the notion of trace equivalence is used with partition

refinement algorithm to find trace equivalent states and produce a equivalent Recovery

Automaton with reduced number of states and transitions.

• Orthogonal States: In the work of [MMGN18], recovery automata are further mini-

mized by merging non trace equivalent states if they satisfy the property of orthogonal-

ity. This algorithm works on the assumption that every basic event can occur at most

once in a non-repairable system.

19

Figure 2.13: A Recovery Automaton a) before and b) after applying the orthogonal state rule

To capture the basic event sets that can no longer be produced upon reaching a state,

this rule calculates the guaranteed inputs for each state. Using the calculated inputs,

the rule eliminates transitions that can no longer occur and merge the orthogonal states.

The Fig. 2.13 depicts the application of this rule for a small automaton. The states

q1 and q2 are orthogonal with respect to B1 and B2 and thus can be merged to the

equivalent state q12 directing all the incoming and outgoing transitions of q1 and q2 to

and from this new merged state. The loop transitions at q1 and q2 are also eliminated

as they can no longer occur.

Merging Final States: In this rule, the FAIL states that have no recovery transitions

are identified. The transitions of the state that only lead to the FAIL state are turned

into a self loop and the Fail state removed in case its unreachable. The definition of a

FAIL state taken from [MMGN18] is:

Definition 4. (FAIL State). Let RT = (Q,δ ,q0) be an RA and q ∈ Q a state. Then q

is a FAIL state iff for any B ∈ BES(T), all transitions from q are of the form δ (q,B) =

(q,ε).

The Fig. 2.14 shows the abstract representation of the application of the rule. Using

this rule, the FAIL state q2 is eliminated and the transition from q1 to q2 is turned into

a self-loop.

2.4.1.3 Markov Chain

Markov Chain is used to represent the Fault Tree after the non-determinism has been solved

from the information derived from the recovery automata. It is a labeled transition system

20

Figure 2.14: A Recovery Automaton a) before and b) after applying the final state rule

that represents the sequence of events with each transition having a probability distribution.

Fig. 2.15 shows the resulting Markov chain representation of the Fig. 2.11 that was generated

with the help of scheduler information from Recovery Automaton.

Figure 2.15: A Markov Chain

2.5 Fault Tree Analysis Tools

Active Research in the field of model checking has led to a number of Fault Tree analysis

tools available. A brief discussion of some of the popular tools used in the industry is given

below.

2.5.1 Galileo

Galileo [SDC99] is a popular software tool for analysis of Dynamic Fault Trees developed

at the University of Virginia . It solves Fault Trees using a combination of Markov models

and Binary Decision Diagrams. It introduced the use of Galileo specification for Fault Trees

which has been adapted and used widely for specifying the Fault Trees in a textual manner.

21

2.5.2 DFTCalc

DFTCalc [ABVdB+13] is a verification Tool developed at University of Twente in the Formal

Methods and Tools group. It is used for DFT analysis and utilizes compositional semantics

for modeling. The elements of the DFTS are modeled as IO-Interactive Markov Chains. The

DFT in Galileo form and the mission time is given as the input to the tool which can then

calculate the unreliability of the system. It also includes support to measure Mean Time To

Failure and the steady-state availability. It comes with a web tool with user friendly UI and

it utilizes a number of commonly used model checkers to provide the tool.

2.5.3 PRISM

PRISM [KNP11] is an open source probabilistic model checking tool, implemented in C++

and Java. It can analyze different probabilistic models: Markov Chains, Markov Decision

Processes, Probabilistic Automaton and Probabilistic Timed automaton with the option to

include cost or reward to the models. It also has support for statistical model checking and

model checking stochastic multi-player games. It offers a Graphical User Interface (GUI)

as well as a Command Line Interface for the users. The input is given in the PRISM lan-

guage representation. It includes different algorithms and data structures like the BDD and

multi-terminal Binary Decision Diagrams. However, it does not have support for Markov

Automaton.

2.5.4 MRMC

The Model Reward Model Checker (MRMC) [KZH+11], developed in C, is a tool developed

for model checking probabilistic models. It supports continuous and discrete time Markov

models: Discrete-time Markov Chains, Continuous-Time Markov Chains, Discrete Time

Markov Reward Models, Continuous Time Markov Reward Models and Continuous Time

Markov Decision Processes. It provides a command-line tool and the input is given in the

form of files: a .tra file specifying transition rates, .lab file with the labels for each state, a

.ctmdpi file with the rate matrix and transition labeling of a CTMDPI and optionally .rew and

.rewi files. The .rew file specifies the reward structure and .rewi specifies the reward impulse

structure.

2.5.5 STORM

Storm [DJKV17] is a probabilistic model checking tool, implemented in C++, developed at

RWTH Aachen which is open source since 2017. It provides model checking support for

Markov Chains, Markov Decision Processes and Markov Automaton well as extensions with

22

reward structure. The tool is flexible with the input model as it can parse a wide range of

model input formats such as PRISM, JANI, explicit etc. It features in memory representation

of the models as either sparse matrices for smaller sized models or multi-terminal Binary

Decision Diagrams for larger models. It includes the support of 15 different solvers in the

back end which are used by the model checking engines for different tasks. However, it does

not provide support for LTL model checking, statistical model checking and probabilistic

timed automaton. It offers interface via C++ API, python API and a command line interface

for users.

23

Chapter 3

Concept

This chapter explains the conceptual aspects of the contribution in this thesis. It explains

how the proposed semantics extends the Non-Deterministic Dynamic Fault Tree formalism,

the extended Recovery Automaton model and adapted algorithms for the minimization of

Recovery Automata.

3.1 Non-Deterministic Repairable Fault Trees

Non-Deterministic Repairable fault trees are extensions of the Non-Deterministic Dynamic

fault trees with support for repair of components. It combines the semantic flavour of dy-

namic fault trees, non-deterministic recovery behavior and repair capability of the compo-

nents. The repair event moves the failed component from a failed state to operational state.

As is in the case of fail event, the repair too propagates upwards towards its parent nodes.

Having repairable components in a system can affect the system in the following ways:

• Increase the availability of the system.

• Fail states may no longer be absorbing.

• A basic event can occur more than once if its repairable.

The Fig. 3.1 shows the abstract representation of the hierarchical relationship between the

different fault trees. The figure shows how the different variants of fault tree are extending

the previous version of fault tree with added functionalities. To support the modeling of

repairable systems as a non-deterministic repairable fault tree the gate semantics and the

associated definitions and algorithms of the NDDFT needs to be extended. The following

sections describe the relevant proposed modifications.

24

Figure 3.1: Relationship between different Fault Trees

3.2 Semantics

The semantics of the different gates in the non-deterministic fault trees need to be defined

since quantitative analysis of fault trees with dynamic gates is not possible directly from the

fault tree. The semantics is needed to transform the different elements in the fault tree into an

equivalent Markov model representation. In literature, semantics for Non-Deterministic Dy-

namic Fault Trees[MGN18] have been defined as well as some work on Dynamic Repairable

Fault Trees [MCD+12], but there is no work in literature that combines the advantage of

non-deterministic recovery behavior of NDDFT with the consideration of repair. For this

reason, it is important to define the semantics of NDRFT so that we can model and analyze

repairable systems with flexible recovery actions.

Before defining the semantics, the notations and sets used that are used need to be stated:

• The fault events as stated in the previous work of NDDFT are denoted as br
1,b2 . . .bn

and sets of fault events as B1, . . .Bn. We denote the repair events as br
1, . . . ,b

r
n and sets

of repair events as Br
1, . . .B

r
n. We use the sets to account for a possibility that multiple

components that are functionally dependent on a common component can fail or restart

together with the component that they are dependent upon. The set of non-empty repair

events is denoted as RES(T).

• Since the events may be either repair or fault events, we denote a set of events as

E1, . . . ,En and the set of all non empty set of events as ES(T) where ES(T) = BES(T)∪
RES(T).

• Every element in RES(T) has its corresponding inverse event i.e. the fault event in

BES(T). However, not every element in BES(T) does not have its equivalent repair

event in RES(T) as some may not be repairable.

Having stated the notations, let us now look into the semantics of each individual gate.

25

Figure 3.2: (a) AND Gate and (b) Markov Chain generated from AND

3.2.1 Semantics of Gates

Gate Semantics define how the fault tree is transformed to a Markov model for its analysis.

This section discusses the proposed semantics for the gates in case of Repairable Systems.

3.2.1.1 AND

In the proposed semantics, the AND gate semantics for fault events remain the same. The

gate fails when all of its inputs fail. In the case of the repair of any of its components, the gate

moves from failed to a non failed state just as in a real system, on a shutdown of a system

caused by a combination of failures, repairing any of the defective components can bring it

back to a functioning state. The semantics is illustrated with an example.

Example 1. As an example, we consider the memory unit sub-system MU of a computer

system. The memory unit has two redundant memory cards A and B. The combined failure

of both cards cause failure of the sub-system MU. This can be modeled with an AND gate

as shown in the Fig. 3.2. The resulting generated Markov chain shows that the gate moves

into the Fail state when both its components have failed. The failure transitions of A and B

are denoted as b1 and b2 respectively. We can also see that the repair transitions br
1 and br

2

change the state of the system from a failed state to non-failed state.

3.2.1.2 OR

In the proposed OR gate semantics, the fail states with different failed components need to

be differentiated. In a non-repairable version, the fail states could have been merged as any

further transition from the failed state won’t change the fail status of the gate. However, with

repair semantics a repair transition affects the gate’s fail status. Repair of any of the failed

26

Figure 3.3: (a) OR Gate and (b) Markov Chain generated from OR

component moves the state to another failed state if any other component is still in failed

state. The gate returns to its functioning state when all of its failed components have been

restored. This illustrates the real behavior of a system which has components that relate to

the top-level failure with an OR gate. The semantic is further illustrated below.

Example 2. Let us consider a computer system with two possible causes of system failure:

A hardware error and a software error. Occurrence of any of the events can cause the system

to fail. Restoration of the failed component brings it back to its previous state. This can be

modeled by the OR gate as shown in Fig. 3.3. As shown in the corresponding Markov chain

generated from the OR semantic, there are 3 fail states and one non fail state. The fail events

of Hardware Error and Software Error are denoted as b1 and b2 respectively. For the system

to return to its non failed state, both repair events need to have occurred.

3.2.1.3 PAND

The PAND semantics, like its non-repairable behavior, fails only if the order of failure is from

left to right. Any other order is not considered a fault. From the fail state, repair of any of its

components can bring it back to its non failed state as now the current failed components do

not fulfill the basic property of PAND gate that requires all of its child inputs to have failed,

for it to be in fail state. We understand the PAND semantics with a practical example.

Example 3. The example of a system with two pumps and a valve [JGKS16] is considered

to illustrate the semantic of a PAND gate with repair. The pump A is the primary resource

and pump B is the backup which can replace the primary unit after the valve opened the pipe

to the second pump. If the valve fails followed by Pump A, the system reaches the fail state

as we can no longer switch to the backup pump.Repair of either primary or valve can bring

it back to functioning state. Repair of pump enables us to open the pipe to the backup pump,

27

Figure 3.4: (a) PAND Gate and (b) Markov Chain generated from PAND

thus, bringing us to functioning state. Alternately, the repair of primary can also bring the

system from failed to non failed state. We can observe from the generated Markov Automata

in Fig. 3.4 that for fault sequence b2, b1 the system goes to a non-failed state. The system

moves into the non-failed state only for the sequence b1, b2. It returns to non-failed state

when either of the components repair event occurs.

3.2.1.4 POR

The POR gate fails as soon as the left most input fails before any of the other inputs have

failed. Any other order of failure will cause it to move into a non failed state. Repair of the

first child input brings the gate to a functioning state as it does not satisfy the basic property

of a POR gate that requires the first input to stay in failed state. We discuss the POR behavior

with a practical example.

Example 4. The behavior of POR gate is illustrated from the example of two computing

devices and an actuator connected by data link [JGKS16]. The system has two redundant

devices and is functional as long as one of it is in working state and no device blocks the data

link by constantly sending messages into the data link blocking communication with other

devices. Devices that block data communication are called babbling idiots. The dynamic

fault tree representations of the example is shown in Fig. 3.5. The system fails if either the

devices D fail or one of the devices turn into babbling idiots BI. The devices can fails if either

the processor stops working or a data link failure occurs. The device becomes babbling idiot

if the data link has failed before the failure of the processor.

28

Figure 3.5: Example Computing Device and Actuator connected by Data link

This babbling idiot occurrence is modeled using a POR gate with the data link as left

input and Processor as the right input. The figure shows the generated Markov automaton for

the subsystem of a babbling idiot. When the link fails, the system moves into the failed state.

Restoration of the link stops the device from being a babbling idiot and moves it back to the

previous state.

Figure 3.6: (a) POR Gate and (b) Markov Chain generated from POR

29

Figure 3.7: (a) FDEP Gate and (b) Markov Chain generated from FDEP for case 1

3.2.1.5 FDEP

The FDEP gate has a trigger input and dependent outputs. The occurrence of a trigger failure

event propagates the failure to the functioning dependent events. If the trigger is repairable

and it gets repaired, the FDEP propagates the repair to its dependent components that failed

due to the FDEP trigger as well, thus bringing the dependent events to functioning state

again. Dependent components that were already in the failed state before the occurrence of

the FDEP’s trigger event, remain unaffected by the fail and repair event of the FDEP trigger.

We assume that the repair of the dependent events cannot occur as long as the component it is

functionally dependent on is in failed state, since it would require the defective trigger event

on which it has its functional dependency to be working to carry out further repair work.

Example 5. For illustrating the FDEP semantics, we consider a simple system that has a

motor which is functionally dependent on the power supply P. The system is functional as

long as the motor is functional. We consider both the motor and power supply are repairable.

The generated markov chain based on FDEP semantics show that the power supply which is

the trigger propagates its failure and repair to its dependent event Motor. If the motor was in

a fail state before the failure of the power supply, the repair of the trigger does not propagate

to the motor. The Fig. 3.7 shows the generated markov chain for the given case.

30

3.2.1.6 SPARE

The SPARE gate semantics is extended from the semantics of the Spare Gate in Non-Deterministic

Dynamic Fault Tree. The SPARE gate is responsible for the non-deterministic transitions in

the fault tree. In the NDDFT, the spare gate can switch to any of the available spares or not

take any action when the primary fails. On failure of the claimed spare resource, the spare

gate can again chose to claim any of the working spares or not take any action. However, in

cases where the resources are repairable, the resource can come back to its functioning state

and become available to the spare gate for claiming. When the Primary resource gets re-

paired, the Spare gate can either free its claimed spare resource to switch back to its primary

or continue working with its currently claimed resource. The SPARE gate deactivates the

claimed spare before and returns it back to its previous state before switching to its primary.

The action to be taken by the SPARE gate is determined by a scheduler that is calculated

from the generated Markov Automaton which is discussed in the following sections.

In the proposed concept, an additional action called the Free Action is introduced to

allow the Spare gates to switch back to its primary. We require this action in an NDRFT

as the primary resource might be repairable and become operational again when its repair

occurs, and this action allows the flexibility for the system to go back to using its primary

resource again after it has been repaired. These actions have been referred to as the recovery

actions. It is the action taken by a system for management of its spares.

The revised recovery actions in an NDRFT can be formally defined below:

Definition 5. (Recovery Action): A Recovery Action r in an NDRFT T is an action of the

form of one of the following:

• [] (empty action) or

• CLAIM(G,S),such that spare Gate G claims spare S, where S is a spare of G or

• Free(S), where the claimed Spare S is freed

Thus in an NDRFT, the system can perform FREE action in addition to the already exist-

ing [] and CLAIM action.

As in the case of NDDFT, in the NDRFT semantics the actual recovery action r is defined

by recovery strategy. R(T) is the set of all recovery actions possible in an NDRFT T . The

set of recovery action sequences RS(T) = (R(T) \ {[]})∗. Given the observed events (repair

or fault), a recovery strategy is then a mapping that returns the recovery action sequence

that should be taken accordingly. The NDRFT considers recovery strategies that only have

recovery actions as defined in Definition 5 and is defined as follows:

31

Figure 3.9: Spare Gate and section of generated Markov automata

Definition 6. (Recovery Strategy): A recovery strategy for an NDRFT T is a mapping

Recovery : ES(T)∗→ RS(T)∗ such that

• Recovery(ε) = ε and

• Recovery(E1, . . . ,En) = Recovery(E1, . . . ,En−1),rsn with rsn ∈ RS(T)

We consider different examples to demonstrate the semantics for the different ways spare

gates are used in a system:

• The first example demonstrates the simple use case of a spare gate which has one

primary resource and one backup resource.

Example 6. Let us consider an example of a Motor Unit in a system that consists of

a primary motor P and a back up motor B that replaces it when failed. The fault tree

construction of the setup uses a spare gate with a primary input to the motor P and a

single secondary input to backup resource B. Fig. 3.9 shows the Fault Tree construction

and a section the generated Markov Automata of the example. As seen in the diagram,

after every fail action, the system has a choice to either claim the secondary resource or

not take any action. as denoted by the dotted non-deterministic lines. Similarly, after

the repair action, the system can choose to free its primary resource or not take any

actions.

• This example demonstrates the use of two input SPARE and PAND gate combination

which is commonly used in dynamic fault tree constructions. The PAND and spare

share a common input which is the second input to the PAND and first input to the

32

Figure 3.10: Pump System using PAND - Spare combination

spare. In the NDDFT, where the faults are permanent, failure of the first input to the

PAND means that the Spare cannot take any recovery action when the Common input

fails.

Example 7. Let us consider an example to understand this semantic. Consider the

pump system whose dynamic fault tree is shown in Fig. 3.10. Failure of the valve be-

fore the pump, means that the pump system cannot switch to the backup pump when

its primary fails. When the system becomes repairable, when the valve gets replaced

after the primary fails, the system can switch to its backup resource as the valve be-

comes available and hence the system becomes operational. The valve input which is

connected to the PAND gate, thus indirectly influences the recovery actions taken by

the spare in the NDRFT semantics. In the repairable semantics, when the first input to

the PAND is repaired after the gate has failed, if it shares the second input with a spare

gate, it induces the non deterministic recovery transitions from the spare gate.

• The spare resources can often be shared by two gates in a dynamic fault tree construc-

tion. This represents the systems that have a common set of backup resources that gets

shared by two are more primary components that are redundant in a system. Failure of

any of the primary components, the failed component can choose to claim one of the

available spares or not take any recovery action.

Example 8. Let us consider a hypothetical system that has a CPU unit with two redun-

dant processors and a pool of backup processors. The figure shows the dynamic fault

tree construction of this scenario. According to the spare semantics, when either of the

33

primary processors fail, the system can use any of the available processors. The figure

shows a section of the generated automaton and we can see that the

3.3 Transformation of Fault Tree to Markov Automata

As a next step i the workflow, the defined semantics of the gates are then used in the transfor-

mation of the fault tree to the Markov Automata for analysis. The transformation is done to

a Markov Automata rather than any other Markov model as they allow the representation of

non-deterministic actions in addition to the markovian transitions. The Markovian transitions

here represent the basic events i.e. the repair or fault events. The non-deterministic transi-

tions represent the recovery actions that can be taken, in this case, recovery actions related to

spare resources.

The algorithm for transforming NDRFT to Markov Automaton is adapted from the Markov

Automaton generation algorithm of NDDFT 2.4.1.2. It is originally based on [DBB92].

The adapted algorithm will use the updated DFT semantics that have been defined above

for the transformation. The transitions generated can be either Markov transition or non-

deterministic Transitions. The markovian transitions in an NDRFT can be either repair tran-

sition or failure transition. Additionally, each state will also store a list of currently failed

components and generates the next state and transitions using this information and the DFT

gate semantics.

Figure 3.11: Spare gates sharing common spare resources

34

Figure 3.12: Transformation Flow

3.4 Synthesizing Recovery Automata from Markov Automata

The next step is to generate a scheduler for the Markov Automaton. The scheduler represents

the best transitions that should be taken whenever the system faces non-deterministic actions.

Based on the information from a scheduler, we can resolve the non-determinism in a Markov

Automaton and generate the Markov chain. Markov chains are deterministic continuous-

time Markov models. For the purpose of extracting the recovery strategy from a scheduler

we need to formally represent this decision process and thus require Recovery Automaton.

Recovery Automaton was introduced in 2.4.1.2 and we adapt it for the NDRFT. The thesis

also adapts the algorithm used in NDDFT to generate the Recovery Automata for NDRFT.

The Recovery Automata of a NDRFT is an automata that reads the occurred events (repair or

fault) and outputs the next state and the recovery action sequence to be taken. The transitions

in a recovery automaton can be either a Fault Transition or repair transition.

The input alphabet of the Recovery Automaton of NDRFT is the power set of repair and

fault events ES(T) and the output alphabet is the recovery action sequences RS(T). Formally

the Recovery Automaton for NDRFT is restated as:

Definition 7. (Recovery Automaton): A Recovery Automaton (RA) RT = (Q,δ ,q0) of an

NDRFT T is an automaton in which

• Q is a finite set of states,

• q0 ∈ Q is an initial state

• δ : Q×ES(T)→ Q×RS(T) is a deterministic transition function that maps the cur-

rent state and an observed set of events to the successor state and a recovery action

sequence.

The generated Recovery Automata have their transition labeled in the format:

< MarkovianTransition >:< OptimalNon−DeterministicTransition >.

Fig. 3.13 shows the general structure of a RA. Using the RA, the non-determinism can be

handled in the NDRFT to generate the Markov Chain. The system can then be evaluated

deterministically and also achieves better handling of the spare resources to improve system

availability.

35

Figure 3.13: General Structure of a Recovery Automata

3.5 Minimization of Recovery Automata

Introduction of repair transitions and recovery actions lead to increase in state space of the

generated automata. However, recovery automata usually have a lot of redundant states and

transitions with empty transitions.By investigating the properties of the states of Recovery

Automata we can reduce the state space size of Recovery Automata. In this section, we dis-

cuss the minimization algorithms that were adapted from NDDFT 2.4.1.2 in order to produce

a more compact representation of the generated Recovery Automata. The minimization is

done to remove redundant and non vital information from a Recovery Automata and produce

equivalent Recovery Automata with fewer states and transitions.

The term recovery equivalence introduced in NDDFT captures the notion of two Re-

covery Automata having same behavior. We restate the definition of recovery equivalence

between two Recovery Automata of NDRFT as follows:

Definition 8. (RA Recovery Equivalence). Let R1 = (Q1,δ1,q01) and R2 = (Q2,δ2,q02) be

two RAs. We define a binary relation≈R such that it holds true for any two RA that R1≈R R2

iff for any sequence of sets of events E1, . . . ,En it holds that:

RecoveryR1
(E1, . . . ,En) = RecoveryR2

(E1, . . . ,En)

given that the for all i ∈ N, Ei ∈ ES(T) where N = {0,1,2, . . . and ES(T) = BES(T)∪
RES(T).

3.5.1 Trace Equivalence

The previous work in NDDFT also employed the trace equivalence for the minimization of

Recovery Automata. The algorithm can also be used for the Recovery Automata generated

from NDRFT as well. The definition of Trace Equivalence had been lifted to the states

of Recovery Automaton in [MMGN18]. We redefine this definition to cover the Recovery

Automata of NDRFT as follows:

36

Figure 3.14: A Recovery Automaton a) before and b) after applying the Partition Refinement

with Trace Equivalence

Definition 9. (Trace Equivalence). Let RT = (Q,δ ,q0) be an RA. A trace equivalence ≈ ⊆
Q×Q is a maximal binary relation such that it holds for any states q1,q2 ∈Q that q1 ≈ q2 iff

for any E ∈ ES(T) it holds that:

δ (q1,sE) = (q′1,rs1) and δ (q2,E) = (q′2,rs2) with q′1 ≈ q′2 and rs1 = rs2

Partition Refinement Algorithm with the trace equivalence concept is used to identify

equivalent states. The equivalent states are then merged to produce smaller Recovery Au-

tomata with equivalent recovery behavior. Fig. 3.14 shows an example output of the applica-

tion of this rule with NDRFT.

Additionally, the previous work also included algorithm to combine non-trace equivalent

states to yield a smaller Recovery Automaton introduced in section 2.4.1.2. It works on

the concept of removing untakeable transitions and combining states that are orthogonal

with respect to its guaranteed inputs. Untakeable transitions are those traces in a Recovery

Automata that can never occur and are thus considered invalid. Both the methods of removing

untakeable transitions and merging orthogonal states work on the assumption that all events

are permanent and that an event can occur only once. However, this condition does not

hold true with repairable fault trees as some events can occur more than once in a repairable

system.

In the adapted algorithm for Orthogonal minimization of Recovery Automata generated

from NDRFT, we calculate the active faults for each state instead of the guaranteed inputs.

Guaranteed inputs calculated the guaranteed components to have failed in a given state based

on the inputs to the state. In a NDDFT, the guaranteed inputs reflected the actual components

37

Figure 3.15: Section of Recovery Automata

failed since only failure events can occur and all events are permanent. However, with the

NDRFT calculating guaranteed inputs fail to reflect the components failed in a state, since

not all events are failure events or permanent events. It fails to capture the current failure

status of the system since repair transitions can change the fail status of the components.

For this reason, we need to calculate the active faults in an NDRFT by identifying repair

transitions and updating the set of failed components. In the Fig. 3.15, we can see a sequence

of a Recovery Automata with failure and repair transitions. The guaranteed inputs for the

state q4 is B1,B2,Br
1,B3 and the active fault of the state is B2,B3.

In the following subsections we discuss the calculation of the active faults and the adapted

orthogonal merging rule that will be used in the thesis work.

3.5.2 Active Fault

Active Faults represent the failure status of the components in a system at a given state.

Computation of active faults is calculated from the incoming transitions to a state. Failure

transitions add the component to the list of failed components and repair transitions remove

it from the failed set. The initial state of a Recovery Automaton always has no active faults

since all the components are considered operational and without faults in the initial state. The

active faults are calculated by employing the work-list algorithm [Kil73] using the transfer

function given below:

AF(q0) := /0

AF(q) :=


⋂

(p,E)∈pred(q)
AF(p)∪{E}, when E ∈ BES(T)

⋂
(p,E)∈pred(q)

AF(p)\{F(E)}, when E ∈ RES(T)

where pred(q) := {(p,E) | δ (p,E) = (q,rs)for some rs, p 6= q} denoting the set of predeces-

sor transitions of a state q and F(E) is the mapping of a repair event to its equivalent Fault

event in the set BES(T). The calculated active faults are next used in removing untakeable

transitions and in the orthogonal rule in the next steps.

38

3.5.3 Removing Untakeable Transition

The previous work of removing untakeable transitions is based on the property that a basic

event can occur only once and if we can confirm that the basic event has occurred in every

path leading to the state, it can never occur again in the future. In the adapted version, a tran-

sition is considered invalid and can be removed without affecting the Recovery Automaton,

based on the active faults in a particular state. We calculate the set of active faults for a given

state and then identify transitions that can not occur for the given state. A state having an

active fault of a particular component can discard any failure transitions of the component

in that state. Similarly, when there is no active fault of the component for a given state, no

repair transition is expected to take place and we can safely remove repair transition of the

associated fault. In this way, the invalid traces are identified and safely removed without

affecting the recovery behavior of the automata.

In the Fig. 3.16, we can see that the untakeable transitions in state q1 and q2 are B1 : ε

and B2 : ε since they have an active fault of B1 and B2 in their respective states and are thus

removed in the next step as depicted in the figure.

The next step after eliminating invalid traces from a Recovery Automata is identifying

orthogonal states. The orthogonal states are identified using the criteria given below. Af-

ter the identification, the orthogonal states are merged. The concept of orthogonality in an

NDRFT extends the original orthogonal rule to merge non-trace equivalent states. Formally,

the orthogonal states in the Recovery Automata of a NDRFT can be defined as below

3.5.4 Merging Orthogonal States

Definition 10. (Orthogonal States). Let RT = (Q,δ ,q0) be an RA. Let p,q ∈ Q be two non-

initial distinct states and B ∈ BES(T). Then p,q are orthogonal with respect to B iff

B ∈ AF(p)∪AF(q)

The definition of orthogonality is illustrated with the example as shown in Fig. 3.16. The

Recovery Automata reacts to event sets {B1,B2,Br
2} where {Br

2} is the repair event set for

{B2}, with associated recovery actions {rs1,rs2,rs3}. The different event sets involved are

• BES(T) = {B1,B2},

• RES(T) = {Br
2} and

• ES(T) = BES(T)∪RES(T) = {B1,B2,Br
2}.

Based on the sets of events and the active fault definition 3.5.2, the active faults for each state

is calculated as follows:

39

• AF(q0) = /0,

• AF(q1) = AF(q0)∪{B2}= {B2},

• AF(q2) = AF(q0)∪{B1}= {B1} and

• AF(q2) = (AF(q1)∪{B1})∩ (AF(q2)∪{B2}) = {B1,B2}.

Based on the calculated active fault and orthogonal rule, it holds that states q1 and q2

are orthogonal with respect to active faults B1 and B2. The orthogonal states are merged to

produce the equivalent state q12 and all the incoming and outgoing transitions of the original

states are redirected to the merged state as shown in the figure.

The Orthogonality concept can now be extended with the trace equivalence definition to

redefine the Recovery State Equivalence from the original work as follows:

Definition 11. (RA State Recovery Equivalence). Let R(T) = (Q,δ ,q0) be an RA. A state-

based recovery equivalence ≈R⊆ Q×Q is a maximal relation such that it holds for any state

q1,q2 ∈ Q that q1 ≈R q2 iff for any E ∈ ES((T)) it holds that either:

• δ (q1,E) = (q′1,rs1) and δ (q2,E) = (q′2,rs2) with q′1 ≈ q′2 and rs1 = rs2 or

• q1,q2 are orthogonal with respect to B.

3.5.5 Merging Final States

The algorithm also uses the rule of merging fail states discussed in 2.4.1.2. The rule states

that if there is fail state that does not contribute to any new recovery actions, the transition

Figure 3.16: A Recovery Automaton a) before and b) after applying the adapted orthogonal

state rule

40

from its previous state can be made into a self loop. The state can then be eliminated if it is

unreachable.

However, this rule considers all fail states to be absorbing which is true for NDDFT, but

not for NDRFT. The rule of merging the fail state to its predecessor state is not applicable

when the fail states have outgoing repair transitions that lead them to other states. Since

some fail states may carry valid recovery sequence information, the rule is not applicable for

fail states that are not absorbing states. This restricts the minimization effect of the rule for

merging fail states. The rule is still used in the minimization for the Recovery Automaton for

NDRFT to remove fail states that conform to the definition of FAIL states in 4.

In the Fig. 2.14, we can see a Recovery Automaton with both absorbing fail state and

non-absorbing state. Applying the rule, we can see that the Recovery Automaton can be

reduced to some extent when the system has both repairable and non-repairable components.

(a) Before Rule (b) Applying the rule

Figure 3.17: A Recovery Automaton a) before and b) after applying the Final state rule

41

Chapter 4

Implementation

This Chapter describes the implementation of the proposed concept. The following sections

briefly describe the development framework and an overview of the implementation of the

discussed concepts. The section end with a brief description of the implementation of the

unit testing done.

4.1 Development Environment

Figure 4.1: Virtual Satellite 4 Framework

A proof of concept is implemented in Java 8 in the Eclipse plug-in Development Environ-

ment of the Virtual Satellite FDIR application to provide a proof of concept. Virtual Satellite

4 FDIR is based on the Virtual Satellite 4 framework (VirSat). VirSat is a framework devel-

oped at German Aerospace Center (DLR) to support Model Based System Engineering for

the entire life cycle of a satellite mission. It is developed in the Java programming language

built on the Eclipse Rich Client Platform (RCP). The Eclipse RCP supports the develop-

42

ment of plug-in-based applications. The Virtual Satellite 4’s plug-in based framework and

its flexible data model can be extended to implement specific application to support different

projects and engineering processes. The extensions are done through Concepts that provide

the corresponding user interface and basic functionalities for further development. The Con-

cepts are delivered as an Equinox Feature containing plug-ins and it describes the extensions

to the core data model. Based on the Concept extension, there are three product lines:

1. Virtual Satellite 4 Core: It is the core application of the VirSat Framework and pro-

vides basic functionality needed to design a space system. Through the concepts and

Virtual Satellite development tools, advanced functionalities can be added.

2. Powered by Virtual Satellite 4: These are the specific applications that were extended

from Virtual Satellite for different Projects. The functionalities are tailored to meet the

requirements of the requirements of specific projects.

3. Virtual Satellite 4 Research: These applications are based on the Virtual Satellite

Core created for research and experimentation for individual applications. Since they

are separated from production line, this provides an interface to perform experimenta-

tion for scientific research. One of such application is VirSat FDIR.

VirSat 4 FDIR is an extension with the Fault Detection, Isolation and Recovery con-

cept. The features supported by VirSat 4 FDIR include Fault Modeling of a system,

Quantitative analysis of the fault trees, modeling recovery strategies and synthesizing

recovery strategies. The VirSat FDIR has implementation for Non-Deterministic Dy-

namic Fault Trees, introduced in section 2.4.1 in addition to the Standard Dynamic

Fault Tree implementation. In the thesis work, the implementation of the proposed

concepts of the Non-Deterministic Repairable Fault Tree is done in the VirSat FDIR 4

framework to support NDRFT semantics in addition to the existing fault tree semantics.

The Fig. 4.2 shows the graphical interface of the VirSat 4 FDIR application.

4.2 Architecture

The Fig. 4.3 shows the overall updated component diagram of the Fault Tree Analysis section

of the VirSat FDIR. It shows the sections involved in the system analysis of the fault tree.

The fault Tree component represents the input to the system which is either given through the

graphical tool or read from the Galileo DFT file [SDC99]. The DFT to MA converter takes as

input the semantics and fault tree and then perform transformation of the fault tree to Markov

Automata. The Recovery Automata synthesizer component is dependent on the DFT to MA

converter to get the Markov Automata and produce the Recovery Automata. The Fault Tree

43

Figure 4.2: VirSat FDIR Tool

evaluator requires the Markov Automata and Recovery Automata to generate Markov chain

and perform fault tree analysis.

The thesis work is responsible for introducing the component NDRFT semantics to the

architecture. The DFT to MA converter can now read the NDRFT semantics in addition to

previous semantics. The Thesis work also modifies the already existing components: DFT to

MA and Recovery Automata to enable the support for the NDRFT.

Fig. 4.4 represents the activity diagram of the system analysis process using the NDRFT

semantics.

4.3 Gate Semantics

Below, the changes done in the implementation of the Gate semantics to support Repairable

systems with non-deterministic recovery actions is discussed. Fig. 4.5 represents the type

hierarchy of the different gate semantics. The FDEP Semantics and NDRSpare Semantics

were implemented for the thesis work. The other gate types involved adapting the already

existing implementation to include both repair and fail transitions.

4.3.1 Static and Priority Gates

The implementations for Static and Priority gates were reused from the NDDFT implementa-

tions. Based on the type of transition: Repair or Failure, the fail event list is updated through

the Markov Automata generation method.

4.3.2 FDEP Semantics

The FDEP Semantics needed to reimplemented for the case of NDRFT since now we need to

track the actual dependent events triggered by FDEP to perform repair on only affected com-

44

Figure 4.3: Component Diagram of the System

Figure 4.4: The activity diagram of Fault Tree Analysis with NDRFT

45

Figure 4.5: Semantics Heirarchy in Implementation

ponents. In the previous case, the implementation for handling FDEP update was handled in

Fault Semantics as it only involved transferring the failure from trigger to dependent events

and it did not matter in the NDDFT semantics whether the dependent events failed due to the

trigger event or some other cause.

In NDRFT, FDEP gates propagate the failure as well as repair to its dependent events

on the occurrence of its trigger event. A Trigger event to a FDEP may be either the failure

or repair of a component. To implement the proposed semantic, a map to store dependent

events that failed due to the FDEP trigger was used. This is needed to differentiate between

failed components that had already failed due to other fault events and failed components

that failed due to the FDEP trigger. This distinction is needed in the repair transition step

where the dependent events that were triggered by the FDEP are restored. Also, when the

FDEP Trigger is in fail state, the repair of its dependent events cannot take place regardless

of whether the failure of the dependent event was caused by the FDEP trigger or a previous

fault.

The pseudocode describing the process for updating the fail status with FDEP gate is

46

given below:
Algorithm 1: FDEP Event Update

1 T:= get child of FDEP;

2 DE:= get dependent events of FDEP;

3 FS:= get Current failed event;

4 FT:= get FDEP triggered set;

5 if T has Failed then
6 Add T to FS;

7 for ∀E ∈ DE do
8 if E is not in FS then
9 Add E to FS; Add E to FT;

10 end

11 end

12 else
13 Remove T from FS;

14 for ∀E ∈ FT do
15 if E is in FS then
16 Remove E from FS; Remove E from FT;

17 end

18 end

19 end

4.3.3 SPARE Semantics

The implementation for the proposed spare gate semantics involved extending the NDSPARE

Semantics to override the method to update the process to be followed in case of a failure

status update. It also includes the implementation for Free action. The free action removes

the claimed spare from the map of claimed spare resources and deactivates the spare resource.

The generated state from free action is a non failed state and represents the state where the

47

spare gate uses the primary input.
Algorithm 2: Spare Event Update

1 P:= get primary of SPARE;

2 S:= get secondary events of SPARE;

3 FS:= get current failed event; if P or S has failed then
4 Add P or S to FS;

5 for ∀E ∈ S do
6 E is not in FS Perform CLAIM(Spare,S);

7 end

8 else

9 end
10 P is Repaired CS:= Get Currently Claimed Spare;

11 Perform Free(CS);

12 else if S is Repaired then
13 Currently claimed Spare is failed Perform Claim(S);

14 Perform Empty();

4.4 Algorithms

The implementation for NDRFT required adapting the algorithms implemented for NDDFT

for generating the Markov Automata and Recovery Automata. The below sections describe

the changes made in the algorithm implementation to support NDRFT semantics.

4.4.1 Markov Automaton Generation Algorithm

The Markov Automaton generation algorithm that was used for Non-Deterministic Dynamic

Fault Trees was reused. The Markov Automaton generation algorithm includes the following

steps:

1. The algorithm starts with the initial state and generates the next states and successor

transitions based on the calculated occurable events for the state and the DFT seman-

tics.

2. A repair event for a component is included in the set of occurable events when the

component has already failed and has a repair rate assigned to it. A fault event is in-

cluded in the set of occur able events for a state if the related component is functioning

at the given state.

48

The algorithm also checks for the type of gate that is affected by the event and generates the

next state based on the updated gate semantics for repairable fault trees. It also updates the

changes in the parent nodes of the affected gates propagating upwards to the top level events

in case the child causes a change in state of its parent. Each state also carries information

regarding the active faults in the given state which is a representation of currently failed com-

ponents and an additional information of nodes affected by FDEP trigger and spare resources

claimed by the SPARE gate as required by its semantics. In every state the list of occurable

events is based on the active faults of the state. A repair event removes the associated active

fault from memory and a failure event adds the component to the list of failed components.

tarting with the initial state, the algorithm executes the list of occurable events to produce the

next state based on the DFT semantics. The same step is iteratively repeated for the generated

states until no new states can be produced. The generated states are also checked to see if an

equivalent state already exists and is merged with the previously existing state.

4.4.2 Recovery Automaton Synthesis Algorithm

Recovery Automaton is synthesized from the Markov Automaton by using the adapted value

iteration algorithm from [GHH+13] which calculates the expected time to reach the goal

states. Computation of maximum expected time reachability in the Markov Automaton is

done using the below formula [GHH+13] where MS is the Markovian state, PS is the prob-

abilistic state, S is the set of states, v(s′) is the reward to reach s’, Act(s) is the set of actions

from s, µ(s′) is the distribution over the action from s→ s′, P(s,s′) is the probability to move

from s→ s′ and E(s) is the exit rate of the state. :

[L(v)](s) =


1

E(s) + ∑
s′∈S

P(s,s′).v(s′), if s ∈MS

min
α∈Act(s)

∑
s′∈S

µ(s′).v(s′), ifs ∈ PS

The transitions in a Markov Automata are either probabilistic transitions or Markovian tran-

sitions and based on the outgoing transitions states may be either probabilistic states PS or

Markovian state MS. Unlike the algorithm in NDDFT, the failure states in NDRFT are not

absorbing and thus the expected time for the outgoing transitions from the failure state was

calculated as well. For a Markovian state s, the expected time to reach the failure state is the

sojourn time in state s plus the expected time to reach the failure states through its successor

states. For probabilistic states with multiple actions, the transition with the maximum time

required to reach the failure state was chosen. Thus, transitions that allow us to stay in non-

fail state are assigned higher rewards. The states are assigned scores based on the outgoing

transitions. As a final step, the Recovery Automaton is generated by choosing transitions that

lead to a better valued state.

49

Figure 4.6: A Recovery Automaton of a 2 input SPARE

The figure 4.6 shows a Recovery Automaton that was generated from a spare gate with

two repairable inputs A and B. The transitions are labeled as < transition>:<RecoveryAction>.

The transitions can be labeled as either F(< component >) or R(< component >). The states

in a Recovery Automaton are named as q0,q1 . . . qn.

4.4.3 Minimization Algorithm

The implementation of the minimization algorithm using the concept of Orthogonal states

was modified to reduce the states for Recovery Automata generated from repairable systems.

Based on the proposed concept the minimization algorithm requires calculation of active

faults for each state since events associated with repairable components can occur more than

once. The following section describes the implementations for calculating active faults and

merging states that are orthogonal. The Orthogonal Refinement Minimization algorithm is

adapted to support repair by calculating active faults instead of guaranteed inputs. The next

state of using partition refinement is also modified to support using the active faults for de-

termining equivalent states and handle repair transitions.

4.4.3.1 Computation of Active Faults

The active faults in each state are calculated from the incoming inputs to the state. The

transitions that are backward transitions and non-backward transitions were differentiated.

Backward transitions are those that come from a successor state to one of the previous states.

The backward transitions do not contribute to the current active fault of a given state. Based

on this, the active faults for an initial state is always empty despite having incoming transi-

50

(a) Initial blocks (b) Refined blocks

Figure 4.7: Orthogonal refinement algorithm on Recovery Automaton of a 2 input SPARE

tions as they are all backward transitions and are always repair transitions.

The concept from 3.5.2 for calculating active fault for the given state was used. The

incoming transitions are checked if they are repair. Only the Fault event transitions are added

to the set of active faults. When the transition is repair, the corresponding active fault is

removed. The results are then stored as a map mapping of state s→ Active Fault AF.

4.4.3.2 Merging Orthogonal States

The implementation for merging orthogonal states is adapted to support repair. The previous

implementation of using the Partition refinement algorithm with concept of orthogonality

to find orthogonal states was employed. The figure shows the process of grouping states

into blocks that are potentially equivalent based on active faults and outgoing transitions

and then refining the blocks to remove non-equivalent states. In the Fig. 4.7 the Recovery

Automaton of a 2-input spare with repairable components are considered. The initial blocks

are [q0,q1],[q2,q3] and [q4]. After the refining step, the blocks are [q0], [q1], [q2,q3] and

[q4]. The states in the blocks are merged in the next step where the incoming and outgoing

transitions of the states of the block are directed to and from the new merged state.

The algorithms shown takes as input the Recovery Automaton RA, the calculated active

fault AF, Mapping of state to Outgoing transition O, Guard Profile GP which stores a mapping

of the state to outgoing transitions with recovery transitions.

51

Algorithm 3: Orthogonal Minimization
Data: RA, AF, O, GP

Result: Reduced Recovery Automaton

1 : P := A1, . . . ,An such that state s ∈ A is Orthogonal w.r.t AF;

2 while ∃ A ∈ P such that A is splittable do
3 split A into A1, . . . ,An;

4 P := P−A∪{A1, . . . ,An};

5 for ∀A ∈ P do
6 Merge states in A;

4.5 Implementation of Unit Test cases

The implementation of the semantics was tested using unit tests. They test small function-

alities or part of the program for expected behavior. The below sections describe the input

format and the unit testing involved in the work.

4.5.1 Input Format

The input fault tree model was given in the Galileo format [SDC99]. It allows representation

of the dynamic fault trees in a textual format. A Galileo specification always begins with

specifying the top level failure as: toplevel < name >;. It is then followed by description for

each node of the fault tree. The general format for representation of gate is:

< name >< Gate >< input1 >< input2 > .. . < inputn >;.

The basic events are represented as:

< name>< attribute1 >=< value>< attribute2 >=< value> .. .< attributen >=< value>

The attributes can be lambda that represents failure rate, repair to indicate repair rate and

dorm that indicates the dormancy factor of the spare resources. The files are stored as .dft

files and are read during run time for fault tree analysis. An example DFT Galileo format of

the pump system is given below:

toplevel "System";

"System" and "OR1" "OR2";

"OR1" or "PAND1" "SPARE1";

"PAND1" pand "B1" "B2";

"SPARE1" csp "B2" "B3";

"OR2" or "PAND2" "SPARE2";

"PAND2" pand "B4" "B5";

"SPARE2" csp "B5" "B3";

52

Figure 4.8: JUnit Test run

"B1" lambda=3 repair=1;

"B2" lambda=6 repair=2;

"B3" lambda=4 repair=6;

"B4" lambda=2 repair=5;

"B5" lambda=6 repair=2;

4.5.2 JUnit Tests

JUnit Tests were created for validating the implementations. The unit tests are used to val-

idate the code for expected results. The unit tests are realized using the JUnit Tests that

provide assert methods to compare expected results with the actual results. The algorithms

for Markov Automaton, Recovery Automaton synthesis and Minimization were tested by

checking the state space size for the generated automaton for different gates. A visual analy-

sis of the generated automaton for smaller inputs is also done as we know the correct output

for each gate. Furthermore, the calculated availability values were also compared with the

deterministic approach to show that this approach produces an improvement in the availabil-

ity of the system. The test cases were written to check behaviour of each gate as well as

outputs of commonly used gate combinations. The Fig. 4.8 shows the test cases and test

runs. As can be seen from the figure, the test runs have been successful.

The percentage increase in the Recovery Automaton and Markov automaton state space

size is also compared with the introduction of repair. The table below shows the comparison

for each gates for the case of 2 inputs with a NDDFT and NDRFT semantic. The state space

size for MA and RA is the same for all gates except the SPARE due to non-determinism in

SPARE. The SPARE shows an increase of almost 3 times the state space size of a NDDFT.

Thus, introduction of repair shows a significant amount of state space growth for both Markov

Automata and Recovery Automata.

53

Gate NDDFT NDRFT % Increase

AND 4 4 0

OR 2 4 100

PAND/POR 5 5 0

FDEP 4 2 100

SPARE 5(MA) 14(MA) 180(MA))

3 (RA) 5(RA) 67(RA)

Table 4.1: Comparison of number of states generated for individual 2 input gates with repair

54

Chapter 5

Evaluation

This chapter describes the various aspects relating to how the implementation was evaluated.

The following sections describe the system specification where the evaluations were done,

the input format of the fault tree data and case study examples to evaluate the results of the

implementations and a discussion of the results.

5.1 System Specification

The experiments are carried out on a system with the following specifications:

• Processor: Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz 2.70 GHz

• Installed Memory (RAM): 16 GB

• System type: 64-bit Operating System

5.2 System Evaluation

The implemented semantics and algorithms were evaluated to check the following aspects:

• Correctness of semantics

• Effectiveness of minimization rule

• Measurement of system metrics

• Improvement in availability of the system using the Non-Deterministic approach in

comparison to the Dynamic Repairable Fault Tree.

• State space growth and reduction.

The following sections discuss in detail the experiments done to test the given points.

55

Figure 5.1: Sub-System of Binary Hypercube architecture

5.2.1 Test Verification of Semantics

The semantics was verified for its correctness by comparing with the results of Temporal

Dynamic Fault Trees [AHMS19]. As introduced in previous section 2.3.4 [AHMS19], the

version of fault tree considers transient faults and has semantics for all gates without the

spare gate. The case study from the paper that uses an adapted extended fault tree of a

external event to the Binary Hypercube Architecture is used for this experiment.

5.2.1.1 Case Study: Binary Hypercube Architecture

The Binary Hypercube architecture example was originally taken from [DBB92]. It is a

common computer architecture for parallel computing using a network of processors. The

Fig. 5.1 shows the fault tree of a component of binary hypercube architecture used for the

analysis. The example uses the PAND, AND and OR gates and thus only the comparison

for the given gates can be performed. The case study considers different sub-systems X9,

X12 and X14 repairable separately and measures the effect of it in on availability. The basic

events have been assigned fail rates of 0.005 and the repair rates are assigned 0.33

5.2.1.2 Results

The results shown in the table 5.1 compares the values of the availability calculated for the

implementation with TDFT with the calculated availability of NDRFT for different repairable

sub-systems. The results how that the availability values are close and thus, it can be con-

56

NDRFT TDFT

X9 99.999 99.997

X12 99.998 99.893

X14 99.83 99.8

Table 5.1: Test Verifying Semantics

Figure 5.2: Cardiac Assistant System

cluded that the semantics implementation of the NDRFT is correct.

5.2.2 Test Verification of Minimization

The correctness of the minimization algorithms can be tested by evaluating the system with

a unminimized recovery automata and a minimized recovery automata and then comparing

the results of availability. It can be concluded that the minimized and unminimized recov-

ery automata have the same recovery information when both the automata can produce the

same results. For the purpose of this experiment, the use case study of Hypothetical Cardiac

Assistant System is considered.

5.2.2.1 Case Study: Hypothetical Cardiac Assistant System

The example of a Hypothetical Cardiac Assistant System was used for the evaluation of the

dynamic fault tree. The system comprises of four subsystems: CPU unit, Motors, pumps

and Trigger Unit. The system can fail if any of the four subsystems fail, thus using a OR to

represent this relation. The CPU Unit has a primary CPU P and backup CPU B which gets

activated when the primary fails. It is thus represented using a Spare gate. The Motor unit

required at least one of the motors to work to require functioning of the system. The Pump

system uses redundant pumps Pump 1 and Pump 2 and they both share a common backup

57

- States Transition

Unminimized 919 2280

Minimized 69 449

Table 5.2: Minimization

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Time T

A
va

ila
bi

lit
y

%

Figure 5.3: Availability

pump which will replace them when they fail. A pump unit fails when all the three pumps

fail. The crossbar switch (CS) and system supervisor (SS) can trigger the CPUs to shutdown.

This is represented using the FDEP gates showing the functional dependencies of the CPU

unit with the trigger system. The figure shows the dynamic fault tree construction of the

HCAS.

In this experiment, we consider the CPU unit as repairable and compare the calculated

availability before and after minimization.

5.2.2.2 Results

The table 5.2 shows the comparison of the state space size before and after minimization and

the availability of the system. There was a reduction of 92.4% for the states and 80.3% for the

transitions. The system was evaluated to calculated the availability upto T=1. Since, both the

minimized recovery automata and unminimized recovery automata showed the same results,

we can conclude that the minimization can reduce the state space size without altering the

recovery automata behavior.

5.2.3 Measurement of system metrics

For verifying the improvement in system metrics, the same case study example of HCAS

from 5.2.2.1 was used. The implementation was executed and system analysed to compare

the values of availability and mean time to failure. The experiments are run with the CPU unit

as repairable and also without consideration for its repair. It is expected that the availability

of the system improves with the introduction of repair.

58

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Time T

M
et

ri
c

%

Reliability
Availability

Figure 5.5: Measured System Metrics of HCAS

5.2.3.1 Case Study: Hypothetical Cardiac Assistant System

The description of the system is discussed in previous section 5.2.2.1. The basic events are

assigned fail rates of 0.5 and the repair rate 1 is assigned additionally to the CPU unit.

5.2.3.2 Results

Fig. 5.5 shows the calculated reliability and availability for the system upto time point T=1.

The mean time to failure was 0.706 and the system reaches a steady state availability of 0

since the other sub-systems of the system ae not repairable and when any of the basic event

occurs the system reaches a permanent failed state.

5.2.4 Comparing NDRFT with Repair and DFT

The NDDFT semantics achieves a higher reliability for the system than using the standard

DFT semantics [MGN18].Since NDRFT is an extension of the NDDFT, it is expected that the

non-deterministic aspect of the semantics ensure that the calculated availability is better than

the one with Repairable Dynamic Fault Trees. For this, the results of Repairable Dynamic

Fault Tree implementation in [MCD+12] was compared with the obtained results. The paper

uses the case study of Active Heat Rejection System (AHRS) to evaluate their semantics.

The AHRS case study was used on the NDRFT semantics and compare the availability with

their results.

59

Figure 5.6: Active Heat Rejection System

5.2.4.1 Case Study: Active Heat Rejection System

The Active Heat Rejection System models a system that uses two redundant thermal rejection

units 1 and 2. The Fig. 5.6 shows the dynamic fault tree representation of the system. Each of

the thermal units have a primary heat rejection unit A1 and B1, spare heat rejection unit A2

and B2 and a common spare heat rejection unit S that is shared by both the redundant units

1 and 2. This use of spare resources is depicted by the use of SPARE gates. All the spare

resources are cold spares i.e. they remain in a passive state unless they are activated and used

by the spare gate. The common spare unit S is powered separately by power source T3 and

is thus functionally dependent on it. Similarly, the units A1 and B2 are powered separately

by the power source T1 and units A2 and B1 powered by power source T2. This functional

dependency between the thermal units and power source are depicted by the use of FDEP

gate as shown in the figure.

5.2.4.2 Results

The availability of the system at T=100 is:

• NDRFT : 99.997 %

• RDFT : 99.891 %

The results show that the non deterministic approach in dynamic repairable fault tree analysis

produces slightly better results in terms of availability of the system than the fixed order DFT

60

Figure 5.7: Hypothetical Example Computer System

formalism with repair. The flexible order of claiming in NDRFT ensures that a better spare

resource is chosen over a bad spare which is not possible with fixed order claiming in DFT.

5.2.5 Evaluating State Space growth and reduction

We expect the state space of the generated Markov automaton and recovery automaton to

grow exponentially with the introduction of repair. We evaluate the effect of the new seman-

tics on the generated Markov automaton and Recovery automaton state spaces of each gate.

We use a case study to evaluate the increase in the state spaces as well as effectiveness of the

reduction algorithms on the generated automatons.

5.2.5.1 Case Study: Hypothetical Example Computer System

We consider the example of Hypothetical example computer system [SVD+02] referred to

as HECS, commonly used for analyzing Dynamic Fault trees. The HECS consists of four

sub-systems: Processor, Memory, Bus and Interface. Failure of any of its sub-systems will

lead to failure of computer system. The processor sub-system uses dual-redundant processors

P1,P2 and a cold spare processor Ps. This is modeled using a Spare gate with the secondary

input connected to the common spare. The memory system interface consists of 5 memory

units. The HECS is operational as long as 3 memory units are functioning. K-Vote Gate is

used to model this, such that failure of 3 units is required to propagate the failure to system

level failure. The Bus System uses two redundant buses B1,B2 thus using an AND to model

it. The interface sub-system of the HECS can fail either due to hardware failure or software

failure which can be conveniently modeled using an OR gate.

There were two experiments conducted using the given case study:

1. Experiment 1: The first experiment was done by gradually increasing the number of

61

components that are repairable. This was done to study the effect of the number of

components on the state space size of both the recovery automata and markov automata

and also to evaluate the effect of the minimization algorithm on the recovery automata.

2. Experiment 2: The second experiment using the same case study example by consid-

ering different sub-systems of the whole system as repairable. This was done to study

the effect of different type of gates with repair components on the overall state space

of the generated automata.

5.2.5.2 Results

1. Experiment 1: The Fig. 5.8 shows the increase in the recovery automaton states and

transitions with increasing repairable components. The components are made repairable

from left to right starting from p1 to S. The results show that the minimization algo-

rithms can reduce the state space of recovery automaton when the system has some

of the components repairable. The effect of minimization reduces as the numbers of

components considered repairable increases due to the introduction of more number of

outgoing transitions from each state.

The Fig. 5.9 shows a similar increase in state space of the markov automaton states and

transitions with increase in components considered repairable. We can see that there

is exponential growth of the state space size depending on the number of repairable

components.

2. Experiment 2: The Table. reftable:hecsra shows the number of states and transitions

of the generated recovery automaton with different sub-systems considered repairable

and also the effect of the minimizers on the state space. The Memory sub-system

which uses the 3/5 - Vote gate shows a maximum increase in recovery automaton state

space size when it is considered repairable. It is followed by the Interface sub-system

that uses the AND gate. Reducing the recovery automata using the minimization algo-

rithm reduces the state space for all cases. Among the reduced automata, the Memory

sub-system still has a higher number of states and transitions in comparison to other

gates due to more number of inputs. The RA state space of the system with Interface

repairable is also high.

The Table. 5.4 shows the number of states and transitions of the generated markov

automaton. When the interface sub-system is made repairable, the system generates

the markov automaton with more number of states and transitions. This is followed by

the Memory Unit which also generates a large state space.

62

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

·104

No. of Repairable Components

N
o.

of
St

at
es

Unminimized RA
Minimized RA

0 2 4 6 8 10 12
0

0.5

1

1.5

·105

No. of Repairable Components

N
o.

of
Tr

an
si

tio
ns

Unminimized RA
Minimized RA

Figure 5.8: Growth and Minimization of Recovery Automata a) States and b) Transitions

Minimization − None Processor Memory Bus Interface

None
States 549 1454 3462 313 3309

Transition 2893 10991 25655 2564 20235

Trace Equivalence
States 235 289 1795 313 937

Transition 1767 2784 16303 2564 7068

Adding Orthogonal
States 214 289 1770 299 867

Transition 1681 2784 16155 2513 6717

Table 5.3: Recovery Automata State Space of HECS System with different sub-systems

being repairable

63

Markov automaton None Processor Memory Bus Interface

States 1251 2462 5882 2395 6525

Transitions 5925 16688 31262 13220 35280

Table 5.4: Markov Automata State Space of HECS System with different sub-systems being

repairable

Additionally, the execution time for the fault tree analysis process that includes transfor-

mation to Markov Automata, synthesizing Recovery Automata, transformation to Markov

chain and measurement of system metrics were calculated. Fig. 5.10 shows the increase in

execution time with increasing the number of components considered repairable.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5
·104

No. of Repairable Components

N
o.

of
St

at
es

Markov Automaton

0 2 4 6 8 10 12
0

0.5

1

1.5

·105

No. of Repairable Components

N
o.

of
Tr

an
si

tio
ns

Markov Automaton

Figure 5.9: Growth of Markov Automata a) States and b) Transitions

64

0 2 4 6 8 10 12
0

5

10

15

20

No. of Repairable Components

Ti
m

e

Time (minutes)

Figure 5.10: Execution Time for Fault Tree Analysis

5.3 Discussion of the Results

The evaluation results show that the semantics developed produces the expected results.

From the first three experiments, the implementation of the semantics and correctness of

minimization was verified and the third experiment shows the calculated metrics using the

given semantics. The gate semantics when compared with the use case study of a similar

implementation showed similar results. The Recovery Automaton produced the same results

before and after applying the minimization algorithm, thus proving the correctness of the

minimization done. Additionally, the different system metrics were analysed for the NDRFT

semantics.

The developed semantics also shows improved availability in comparison to RDFT se-

mantics. Since the NDRFT semantic is an extension to NDDFT semantic, the NDRFT also

shows better availability of the system due to better management of spare resources. The

RDFT on the other hand, maintains the strict ordering of spare resources claiming as is the

case for DFTs.

The experiments for evaluating the state space show exponential increase in number of

states and transitions of Markov Automaton and Recovery Automaton when the number

of components that can be repaired gradually increase in a system. The introduction of

the notion of repair and additional recovery action is responsible for the additional increase

in states and transitions. The minimization algorithms for the Recovery Automaton were

effective in reduction when the system was partially repairable.

Finally, based on the evaluation results, the limitations that were observed were as follows

• State Space: For larger systems and systems with more number of repairable compo-

65

nents, the number of states increases exponentially. The effectiveness of minimization

algorithms reduce with the increase in number of components that are repairable, due

to more number of outgoing transitions per state.

• Execution Time: Exponential increase in execution time with larger systems due to the

larger state space. The time for execution includes the entire process of transforming

the Fault Tree to different automata, performing reduction and evaluating the system

metrics. Program times out in some cases when the fault tree is large.

Despite the limitations, we can still use the NDRFT analysis for smaller systems or con-

sidering only the sub-systems of a very large system. Also, in a system typically, not all

components can be repaired. Especially, in space applications, where the type of repair we

deal with is usually software faults since we have little control after we send the satellites to

space, the NDRFT analysis can still be applied to the system.

66

Chapter 6

Conclusion

This chapter provides a summary of the thesis work and discusses the conclusions drawn

from the results. A brief discussion on future work on the developed work is also discussed.

6.1 Summary

In this thesis work, semantics for the Non-Deterministic Repairable Fault Tree has been

developed. Initially, the state-of-the-art of Fault Trees was investigated to capture existing

work on different fault tree semantics and the variants of the fault tree that have been already

researched upon.

The Non-Deterministic Dynamic Fault Tree semantics was extended to include the no-

tion of repair and non-permanent faults. Therein, distinction was made between repair event

transitions and failure event transitions. Semantics for each individual gate was investigated.

Additional recovery action was added to the SPARE semantics, thus giving it the choice to

switch between gates when the defective component has been repaired or restored. The de-

veloped semantics also tackles the indirect dependency when the primary input is shared with

a PAND gate, where the status of the PAND gate affects the possible recovery actions of the

Spare gate. Additionally, the semantics for FDEP gate was defined where the failure of a

trigger event causes all its dependent events to fail and repair of the trigger causes only the

components forced to fail by the FDEP trigger to be restored to working state. The Markov

Automaton generation algorithm was further adapted from NDDFT to use the updated se-

mantics of NDRFT.

In the Recovery Automaton synthesizing process, the new semantics requires that distinc-

tions be made between repair and fault event transitions. The already implemented recovery

automata synthesizing algorithm from NDDFT was adapted to include repair transitions in

addition to fail transitions. Thereby, the best transitions for non-deterministic choices are

chosen based on the calculated estimated time to reach the fail state from the given state.

67

Additionally, the existing minimization algorithms were investigated and adapted to re-

duce the recovery automaton generated from NDRFT. With the introduction of repair tran-

sitions, the recovery automaton has the problem of state space explosion. However, the

recovery automaton can be reduced to a smaller automaton with equivalent recovery behav-

ior. The Partition Refinement Algorithm that uses the concept of trace equivalence and Final

State rule that was implemented for NDDFT was reused to reduce the recovery automaton up

to some extent. Additionally, the algorithm that uses concept of Orthogonality was adapted

by extending the rule for repairable systems and applied for reducing the recovery automaton

further.

Finally, the implementations were evaluated using different case studies and JUnit test

cases. JUnit test cases were run to check the semantics for each gates and gate combinations.

The results show that the generated Markov automaton and recovery automaton is consistent

with the defined semantics. The correctness of the implementation was verified with different

case studies from literature. The state space growth and the effectiveness of the minimization

algorithms was also evaluated. The improvement in the achieved Availability of the system

when we use NDRFT in comparison to using the RDFT was evaluated.

6.2 Conclusion

Based on the evaluation and results for the implementation of the proposed semantics, the

following conclusions can be drawn:

• The state-of-the-art of Fault Tree Analysis was investigated and different varities of

fault trees were compared. Currently, in literature there is no existing work covering

repairability with non-deterministic recovery actions and dynamic fault trees.

• The Non-Deterministic Repairable Fault Tree semantics was developed that combines

Non-Deterministic Dynamic Fault Tree with the notion of repair. It improves the ex-

pressive power of the NDDFT fault tree. as it takes into account the non-permanent

faults in the system as well. The non-deterministic approach ensures better utilization

of spare resources which results in higher availability of the system in comparison to

the standard dynamic fault tree approach. Thereby, higher availability results in lower

downtime, reduced costs associated with failure and more robust systems.

• The existing Markov Automaton generation algorithm from NDDFT was extended and

successfully adapted to work with NDRFT semantics and repair events.

• The Recovery Automaton model and synthesis techniques from previous work was also

investigated and adapted for the case of Markov automaton generated from NDRFT

that has both repair and failure transitions.

68

• The developed semantics increases the state space of the generated recovery automaton

exponentially due to the introduction of repair transitions and more number of states.

The Trace Equivalence and Final State rule based algorithms for minimizing the re-

covery automaton was reused to reduce the the space size of recovery automaton. The

Orthogonal states based minimization algorithm needed to be modified and adapted to

work with NDRFT as the rule was based on the assumption that events can occur only

once in a system. The assumption is not true for NDRFT and thus the rule needed to be

changed to accommodate events occurring multiple times in a system. The algorithm

was then adapted and used to further reduce the recovery automaton.

• The minimization algorithms have lower effectiveness as the system has more number

of components that can be repaired. This maybe due to the more number of outgoing

transitions occurring per state.

• The goals defined in 1.2 have been realized for the semantics and adapting the al-

gorithms for automaton generation. The minimization algorithms have been adapted

successfully as well. However, the goal of reduction of the Recovery Automaton state

space was only realized for partially repairable systems.

• Additionally, the Markov automaton also suffers from the problem of state explosion.

This also has an effect on the time for analysis as larger state space require longer time

for analysis. Further work needs to be done to deal with this problem.

6.3 Future Work

In the future, the recovery automaton properties can be further investigated to reduce the

state space, since it still has transitions with empty recovery actions. For larger systems with

more number of repairable components, the existing minimization algorithms become less

effective and thus it needs further techniques to deal with the large state spaces.

The Markov Automaton also suffers from the problem of state space explosion and in-

creases the computation time. Thereby, the Markov automaton requires minimization to

improve the efficiency and time for the fault tree analysis.

We could also further account for the dependencies between different components failure

and repair events by allowing a component to have different states of degradation. A failure

of one of the redundant components can affect the failure rate of another component in some

cases due to increased dependency of the system functioning on the available components.

Thus taking this dependency into consideration will help model a system with improvement

in accuracy of calculated metrics.

69

Bibliography

[ABVdB+13] Florian Arnold, Axel Belinfante, Freark Van der Berg, Dennis Guck, and

Mariëlle Stoelinga, Dftcalc: A tool for efficient fault tree analysis, Computer

Safety, Reliability, and Security (Berlin, Heidelberg) (Friedemann Bitsch,

Jérémie Guiochet, and Mohamed Kaâniche, eds.), Springer Berlin Heidel-

berg, 2013, pp. 293–301.

[AHMS19] Marwan Ammar, Ghaith Bany Hamad, Otmane Ait Mohamed, and Yvon

Savaria, Towards an accurate probabilistic modeling and statistical analy-

sis of temporal faults via temporal dynamic fault-trees (tdfts), IEEE Access 7
(2019), 29264–29276.

[Ava] Introduction to repairable systems, http://reliawiki.com/index.php/

Introduction_to_Repairable_Systems, Accessed: 2019-03-11.

[Avi76] A. Aviziens, Fault-tolerant systems, IEEE Transactions on Computers C-25
(1976), no. 12, 1304–1312.

[B+99] Kerstin Buchacker et al., Combining fault trees and petri nets to model safety-

critical systems, High performance computing, The Society for Computer

Simulation International, 1999, pp. 439–444.

[BA78] Sheldon B. Akers, Binary decision diagrams, Computers, IEEE Transactions

on C-27 (1978), 509–516.

[BCRFH08] Marco Beccuti, Daniele Codetta-Raiteri, Giuliana Franceschinis, and Serge

Haddad, Non deterministic repairable fault trees for computing optimal repair

strategy, Proceedings of the 3rd International Conference on Performance

Evaluation Methodologies and Tools, 2008, p. 56.

[DBB92] Joanne Bechta Dugan, Salvatore J Bavuso, and Mark A Boyd, Dynamic fault-

tree models for fault-tolerant computer systems, IEEE Transactions on relia-

bility 41 (1992), no. 3, 363–377.

70

http://reliawiki.com/index.php/Introduction_to_Repairable_Systems
http://reliawiki.com/index.php/Introduction_to_Repairable_Systems

[DJKV17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk,

A storm is coming: A modern probabilistic model checker, International Con-

ference on Computer Aided Verification, Springer, 2017, pp. 592–600.

[EHZ10] Christian Eisentraut, Holger Hermanns, and Lijun Zhang, On probabilistic

automata in continuous time, 2010 25th Annual IEEE Symposium on Logic

in Computer Science, IEEE, 2010, pp. 342–351.

[Eri99] Clifton A Ericson, Fault tree analysis, System Safety Conference, Orlando,

Florida, vol. 1, 1999, pp. 1–9.

[GHH+13] Dennis Guck, Hassan Hatefi, Holger Hermanns, Joost-Pieter Katoen, and

Mark Timmer, Modelling, reduction and analysis of markov automata (ex-

tended version), arXiv preprint arXiv:1305.7050 (2013).

[GKS+14] Dennis Guck, Joost-Pieter Katoen, Mariëlle IA Stoelinga, Ted Luiten, and

Judi Romijn, Smart railroad maintenance engineering with stochastic model

checking, Proc. of RAILWAYS, ser. Civil-Comp Proceedings 104 (2014),

299.

[JGKS16] S. Junges, D. Guck, J. Katoen, and M. Stoelinga, Uncovering dynamic fault

trees, 2016 46th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), June 2016, pp. 299–310.

[KGF07] Bernhard Kaiser, Catharina Gramlich, and Marc Förster, State/event fault

trees—a safety analysis model for software-controlled systems, Reliability

Engineering & System Safety 92 (2007), no. 11, 1521–1537.

[Kil73] Gary A Kildall, A unified approach to global program optimization, Proceed-

ings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, ACM, 1973, pp. 194–206.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker, PRISM 4.0: Verification of

probabilistic real-time systems, Proc. 23rd International Conference on Com-

puter Aided Verification (CAV’11) (G. Gopalakrishnan and S. Qadeer, eds.),

LNCS, vol. 6806, Springer, 2011, pp. 585–591.

[Kri06] Duane Kritzinger, Aircraft system safety: Military and civil aeronautical ap-

plications, Woodhead Publishing, 2006.

[KZH+11] Joost-Pieter Katoen, Ivan S Zapreev, Ernst Moritz Hahn, Holger Hermanns,

and David N Jansen, The ins and outs of the probabilistic model checker

mrmc, Performance evaluation 68 (2011), no. 2, 90–104.

71

[MCD+12] Gabriele Manno, Ferdinando Chiacchio, D D’Urso, N Trapani, and L Com-

pagno, Raatss, an extensible matlab R© toolbox for the evaluation of re-

pairable dynamic fault trees, International Conference on Probabilistic Safety

Assessment and Management, ESREL, 2012, pp. 1–10.

[MGN18] Sascha Müller, Andreas Gerndt, and Thomas Noll, Synthesizing failure detec-

tion, isolation, and recovery strategies from nondeterministic dynamic fault

trees, Journal of Aerospace Information Systems (2018), 52–60.

[MMGN18] Liana Mikaelyan, Sascha Müller, Andreas Gerndt, and Thomas Noll, Synthe-

sizing and optimizing fdir recovery strategies from fault trees, International

Workshop on Formal Techniques for Safety-Critical Systems, Springer, 2018,

pp. 37–54.

[Rel] Time-dependent system reliability (analytical), http://reliawiki.com/

index.php/Time-Dependent_System_Reliability_(Analytical), Ac-

cessed: 2019-03-11.

[RFIV04] D. C. Raiteri, G. Franceschinis, M. Iacono, and V. Vittorini, Repairable fault

tree for the automatic evaluation of repair policies, International Conference

on Dependable Systems and Networks, 2004, June 2004, pp. 659–668.

[RS15] Enno Jozef Johannes Ruijters and Mariëlle Ida Antoinette Stoelinga, Fault

tree analysis: A survey of the state-of-the-art in modeling, analysis and tools,

Computer science review 15-16 (2015), 29–62 (English).

[SD13] F. SalarKaleji and A. Dayyani, A survey on fault detection, isolation and

recovery (fdir) module in satellite onboard software, 2013 6th International

Conference on Recent Advances in Space Technologies (RAST), June 2013,

pp. 545–548.

[SDC99] Kevin J Sullivan, Joanne Bechta Dugan, and David Coppit, The galileo fault

tree analysis tool, Digest of Papers. Twenty-Ninth Annual International Sym-

posium on Fault-Tolerant Computing (Cat. No. 99CB36352), IEEE, 1999,

pp. 232–235.

[SVD+02] Michael Stamatelatos, William Vesely, Joanne Dugan, Joseph Fragola, Joseph

Minarick, and Jan Railsback, Fault tree handbook with aerospace applica-

tions, 2002.

72

http://reliawiki.com/index.php/Time-Dependent_System_Reliability_(Analytical)
http://reliawiki.com/index.php/Time-Dependent_System_Reliability_(Analytical)

[TD04] Zhihua Tang and Joanne Bechta Dugan, Minimal cut set/sequence generation

for dynamic fault trees, Annual Symposium Reliability and Maintainability,

2004-RAMS, IEEE, 2004, pp. 207–213.

[TFLT83] Hideo Tanaka, LT Fan, FS Lai, and K Toguchi, Fault-tree analysis by fuzzy

probability, IEEE Transactions on reliability 32 (1983), no. 5, 453–457.

[VGRH81] William E Vesely, Francine F Goldberg, Norman H Roberts, and David F

Haasl, Fault tree handbook, Tech. report, Nuclear Regulatory Commission

Washington DC, 1981.

[VJK16] Matthias Volk, Sebastian Junges, and Joost-Pieter Katoen, Advancing dy-

namic fault tree analysis-get succinct state spaces fast and synthesise failure

rates, International Conference on Computer Safety, Reliability, and Security,

Springer, 2016, pp. 253–265.

[WF13] Alexandra Wander and Roger Förstner, Innovative fault detection, isolation

and recovery strategies on-board spacecraft: state of the art and research

challenges, Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth

eV, 2013.

73

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Thesis Outline

	Technical Background
	Fault Detection, Isolation and Recovery
	Fault Tree Analysis
	Need for Semantics in Fault Trees

	Types of Fault Trees
	Static Fault Trees
	Metrics
	Dynamic Fault Trees
	Repairable Fault Trees
	Other Fault Tree Extensions

	Existing Work
	Non-Deterministic Dynamic Fault Trees

	Fault Tree Analysis Tools
	Galileo
	DFTCalc
	PRISM
	MRMC
	STORM

	Concept
	Non-Deterministic Repairable Fault Trees
	Semantics
	Semantics of Gates

	Transformation of Fault Tree to Markov Automata
	Synthesizing Recovery Automata from Markov Automata
	Minimization of Recovery Automata
	Trace Equivalence
	Active Fault
	Removing Untakeable Transition
	Merging Orthogonal States
	Merging Final States

	Implementation
	Development Environment
	Architecture
	Gate Semantics
	Static and Priority Gates
	FDEP Semantics
	SPARE Semantics

	Algorithms
	Markov Automaton Generation Algorithm
	Recovery Automaton Synthesis Algorithm
	Minimization Algorithm

	Implementation of Unit Test cases
	Input Format
	JUnit Tests

	Evaluation
	System Specification
	System Evaluation
	Test Verification of Semantics
	Test Verification of Minimization
	Measurement of system metrics
	Comparing NDRFT with Repair and DFT
	Evaluating State Space growth and reduction

	Discussion of the Results

	Conclusion
	Summary
	Conclusion
	Future Work

	Bibliography

