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A B S T R A C T

The circum-Arctic transitional zone between forest and tundra, i.e. the treeline zone, is shifting northward due to
current Arctic warming and, therefore, requires systematic monitoring. Up to now, radar remote sensing was
hardly possible in the treeline zone due to spatial resolution and/or temporal decorrelation constraints of pre-
ceding satellite missions. The unique constellation of the TanDEM-X satellites with its bistatic mode and very
high spatial resolution opens up opportunities for monitoring small (≥0.01 km2) and isolated patches of very
sparse forest which are typical for the transitional zone. We focused on an area at the northern edge of the
treeline zone in the Northwest Territories, Canada, and evaluated the potential of TanDEM-X bistatic data to
characterize the tree height in the forest patches in this region. TanDEM-X data were acquired during the
TanDEM-X Science Phase in 2015, when the perpendicular baseline was large (corresponding to the height of
ambiguity of approximately 14.6 m) and kept constant. We employed TanDEM-X backscatter, bistatic coherence,
and interferometric height from the stack of seven multitemporal bistatic pairs and compared them to maximum
vegetation height obtained from full-waveform airborne LiDAR data. We found strong linear relationships be-
tween all TanDEM-X metrics and LiDAR vegetation height within the forest patches with r=0.67, r=−0.69,
and r=0.78 for the backscatter, coherence, and interferometric height, respectively. Furthermore, we extracted
the position of individual trees from the LiDAR data and estimated tree density as the number of trees per unit
area. The linear relationships between all TanDEM-X metrics and the tree density were very weak. The re-
lationships between all TanDEM-X metrics and tree height differentiated for three tree density classes (low,
medium, and high) remained strong. Random forests regression using all three TanDEM-X metrics predicted the
tree height with a mean absolute error of 0.7 m (mean forest height in the study area was 2.5 m). CoSSC pairs
were generally consistent with each other and the multitemporal averaging slightly improved the performance
compared to single pairs. Taking into account the global coverage of bistatic TanDEM-X data acquired for the
global digital elevation model, our results show a potential for quantifying the tree height in small forest patches
along the circum-Arctic treeline zone.

1. Introduction

The circum-Arctic treeline (or forest-tundra transition zone) is the
longest vegetation transition zone on Earth; it extends for> 13,400 km
around the North American and Eurasian continents. The position of

the treeline has shifted northward in the past in response to a warming
climate, e.g. during the Holocene Climate Optimum (e.g. MacDonald
et al., 1993). The current Arctic warming is expected to result in a
northward advance of the treeline by> 500 km during the 21st century
(Callaghan et al., 2005) as trees and shrubs encroach on the tundra
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(Chapin III et al., 2005). An advancing treeline has already been re-
ported from numerous sites in the circum-Arctic treeline zone (e.g.
Harsch et al., 2009; Frost and Epstein, 2014). The expansion of the
boreal forest into tundra areas might cause vegetation climate feedback
through radiation balance and snow cover changes (Chapin III et al.,
2005). Furthermore, the carbon budget is changed through increase of
carbon storage above ground with woodier biomass, as well as below
ground through changes in litter quality and production.

However, some studies also report no changes or even a retreat of
the treeline at some sites. Besides the spatial migration, treeline dy-
namics can also manifest in changes of vegetation structural properties,
i.e. height and density. It is recognized that the treeline dynamics de-
pend on a range of local conditions (e.g. Frost and Epstein, 2014). For
instance, moisture availability can be affected either by increased
drainage or by excessive melt water due to permafrost thaw (Lawrence
et al., 2015). Furthermore, a decades-to-centuries delay of treeline re-
sponse to climatic changes is possible due to seed dispersal limitations
and generally slow reproduction rates at high latitudes (e.g. Lenoir and
Svenning, 2015; Wieczorek et al., 2017). It is, therefore, essential to
monitor the changes in vegetation properties in the treeline zone and
the factors influencing these changes. One of the spatial forms re-
presented in the treeline zone is a forest patch, where a group of trees
grow in similar environmental conditions. Montesano et al. (2016)
suggest that the accurate estimation of tree height in such forest patches
is crucial for monitoring treeline changes and that improving the re-
mote sensing of this parameter is a high priority.

Remote sensing of the Arctic treeline has generally been limited to
optical sensors which vary in spatial resolution from the MODIS
(500m) to the Landsat (30m) and high-resolution satellite and airborne
imagery (few meters to sub-meter resolution) (e.g. Montesano et al.,
2009; Ranson et al., 2011; Mathisen et al., 2014). Sensors with coarse
resolution often cannot detect sparse forest at the northern edge of the
treeline. Moreover, optical imagery is highly affected by clouds and
generally insensitive to the vertical structure of vegetation. In contrast,
Synthetic Aperture Radar (SAR) remote sensing is unconstrained by
weather and light conditions, and can penetrate through a vegetation
layer to a depth that depends on the radar wavelength. The latter
property enables the SAR signal to be related to the structural char-
acteristics of the vegetation, making SAR extremely useful in boreal,
temperate, tropical and sub-tropical forest studies (e.g. Santoro and
Cartus, 2018). The vegetation characteristics (i.e. biomass) can be es-
timated via backscatter, which represents the amplitude from a single
SAR image, or via interferometry (InSAR) which is based on a complex
product of two SAR images acquired from different positions in space
and/or at different points in time. Therein, the phase differences be-
tween the two SAR images (InSAR phase) can refer to the vertical po-
sition of the scattering center in the case of no elevation change be-
tween acquisitions. An InSAR height, which can be attributed to the
vegetation height, can then be obtained by subtracting the bare ground
topography phase, i.e. the ground surface without elevated objects,
from the InSAR phase. The magnitude of the complex product - InSAR
correlation or coherence - indicates the stability of the phase and mostly
refers to the physical distribution of the scatterers in a volume (volu-
metric component of coherence) and/or physical change of the scat-
terers between acquisitions (temporal component of coherence). By
minimizing the temporal component of decorrelation, it is possible to
relate the total coherence to the vegetation structural properties. InSAR
techniques are widely used for estimating the biomass of boreal and
tropical forests (e.g. Treuhaft et al., 2015; Schlund et al., 2016; Thiel
and Schmullius, 2016). However, SAR interferometry has been unable,
thus far, to focus on the treeline, mainly due to spatial resolution and/
or temporal decorrelation constraints of most satellite constellations.
SAR backscatter from medium-resolution sensors (~25m pixel size)
was employed in few studies on the treeline but only as a source of
additional information together with optical sensors (Ranson et al.,
2004) and/or airborne Light Detection And Ranging (LiDAR) data

(Montesano et al., 2016).
The bistatic SAR mode typically employs two satellites flying close

to each other; one of the satellites transmits the signal, and both sa-
tellites receive the echo simultaneously. Such a mode removes most of
the temporal component of decorrelation and, therefore, the coherence
can be almost solely attributed to the scattering volume, determined by
vegetation properties. TanDEM-X (TerraSAR-X add-on for Digital
Elevation Measurement), operated by the German Aerospace Center
(DLR), is the first operational spaceborne bistatic SAR system (Krieger
et al., 2007). It consists of two nearly identical X-band satellites Ter-
raSAR-X and TanDEM-X. The constellation began global acquisition in
December 2010 with the primary goal of generating a global high-re-
solution and high-precision Digital Elevation Model (DEM). The high
potential of interferometric TanDEM-X data acquired for the global
DEM was already shown in the estimation of tree height and biomass in
the boreal (e.g. Askne et al., 2013; Solberg et al., 2013; Karila et al.,
2015; Soja et al., 2015; Persson et al., 2017; Sadeghi et al., 2018) and
tropical (e.g. Treuhaft et al., 2015; Solberg et al., 2017) forests. Fur-
thermore, Persson and Fransson (2017) and Sadeghi et al. (2016) show
the feasibility of TanDEM-X to replace airborne LiDAR data for the
biomass estimation in Swedish and Canadian boreal forest. Such fea-
sibility is essential due to a limited availability of LiDAR data on large
scale. The Arctic treeline lacks LiDAR and field observations especially
strong. TanDEM-X data with their ground resolution, unprecedented for
radar, provide unique opportunities for its accurate investigation.

This study is the first to evaluate the potential of TanDEM-X data for
estimating tree height in small forest patches in the Canadian Arctic. In
particular, we test the performance of TanDEM-X backscatter, bistatic
coherence, and InSAR height from several TanDEM-X bistatic pairs
obtained with the same geometry and baseline during the TanDEM-X
Science Phase. As a reference, we use full-waveform Airborne Laser
Scanning (ALS) data. We investigate the relationship between three
TanDEM-X variables and ALS-based forest height, and, additionally, the
effect of tree density (i.e. number of trees per unit area) on these re-
lationships. Furthermore, we investigate the temporal consistency of
the TanDEM-X pairs with respect to the potential weather influence.

2. Study area

The study area covers the Trail Valley Creek research basin
(68°44′17″ N; 133°26′26″W), which is located about 50 km northeast of
Inuvik, Northwest Territories, Canada (Fig. 1). Research has been
conducted in this basin is subject to research since 1991 with a focus on
snow, permafrost, and hydrology. The area is characterized by gentle
topography with prominently incised river valleys. It belongs to the
continuous permafrost zone, with permafrost thicknesses up to 100m
and very high ground ice content (Burn and Kokelj, 2009). The climate
features long and cold winters and short and cool summers, with mean
annual temperature of −7.3 °C, mean February temperature of
−22.8 °C (the coldest month), and mean July temperature of 12.9 °C
(the warmest month) over the last decade (Environment and Climate
Change Canada, 2019). Snowmelt typically occurs during May and
June (Marsh et al., 2002). The region is experiencing rapid climate
change. Serreze et al. (2000) report an increase in mean annual air
temperature at all meteorological stations in Yukon and the Northwest
Territories for two 30-year periods, from 1951 to 1980 and from 1971
to 2000. Burn and Kokelj (2009) analyzed air temperatures in Inuvik
and observed an increase of the annual mean temperature by>2.5 °C
since 1970. Following the rise of air temperature, the ground tem-
perature also increased by approximately 1.6 °C. Ecologically, the area
is located at the northern edge of the treeline zone. According to Marsh
et al. (2010), the land cover consists of tundra (lichen, mosses, herbs,
and low shrubs< 0.5m in height), shrub tundra (deciduous shrubs
from 0.5 to 3.0m in height), and sparse forest with black spruce trees
(> 3.0 m in height) (Fig. 2). Shrub expansion, reported from many
Arctic sites, was also observed in this region (e.g. Lantz et al., 2010).
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3. Data

3.1. ALS data

Full-waveform 3D point cloud data were captured with a Riegl LMS-
Q680i airborne laser scanner on board the Alfred Wegener Institute's
Polar 5 research aircraft. The survey took place in September 2016 and
covered an area of about 20 km×6 km (cf. Fig. 1). The point density
was approximately 5 points per square meter. The ALS point cloud with
detailed description is published in PANGAEA and open for further use
(Anders et al., 2018).

3.2. TanDEM-X data

During the TanDEM-X Science Phase (15months during
2014–2015), special configurations of satellites and imaging modes
were set up to perform various scientific experiments, including mon-
itoring of vegetation (Hajnsek et al., 2014). Within the Science Phase,
acquisitions with a long and extremely stable perpendicular baseline
were available in summer 2015 for our research area. We used seven
co-registered single look slant range complex (CoSSC) pairs acquired in
the StripMap mode from 1 June to 28 August 2015. Table 1 lists the
main parameters of the TanDEM-X dataset.

Height of ambiguity (HoA) is related to the perpendicular baseline
and shows the sensitivity of InSAR phase to the height. If an object is

lower than the HoA, the InSAR height can be unambiguously retrieved.
If an objects is higher than the HoA, the phase unwrapping, i.e. finding
a correct multiplier to the 2π phase change, can introduce errors that
potentially impede the data examination. The effective baseline (half
the length of the perpendicular baseline for the TanDEM-X bistatic
products) and HoA for the dataset used in this study are given in
Table 2. For all acquisitions, baselines were kept extremely stable, with
a maximum difference of 1.5 m. This provides an opportunity to com-
bine acquisitions without accounting for differences in geometry. The
weather conditions were taken from the Environment and Climate
Change Canada (2019) and are given in Table 2. Negative air tem-
perature was observed at the time of the 1 June 2015 acquisition.
Precipitation of 8.4mm was recorded on 6 August 2015.

4. Methods

4.1. Derivation of DTM and vegetation properties from ALS

A Digital Terrain Model (DTM) was derived from the ALS point
cloud in two main steps. In the first step, points were classified as ter-
rain based on a probability value derived from the relationship between
the echo width and amplitude values of each laser return (Mücke et al.,
2010). These terrain points were rasterized into the DTM with a cell size
of 1m using a moving planes interpolation strategy (Pfeifer and
Mandlburger, 2008) and then resampled to a cell size of 10m to match

Fig. 1. Study area near the Mackenzie Delta, Northwest Territories, Canada. Geographical extents of TanDEM-X and ALS datasets are shown as white rectangles, the
Inuvik-Tuktoyaktuk highway is shown with a solid yellow line, and the approximate position of the treeline (Brown et al., 1998) is shown with a dashed white line.
Underlying image is the mosaic of true color Landsat-8 images from 2015 to 2016 (images are courtesy of the U.S. Geological Survey). The inset map at the top left
shows the location of the study area in North America. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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the resolution of multilooked TanDEM-X data.
Vegetation height was derived by subtracting the terrain elevation

(i.e. DTM pixel values) from the non-ground points in the ALS point
cloud. A raster of vegetation height was generated with a 1m cell size
by using the maximum vegetation height values per cell and then re-
sampled to a cell size of 10m to match the resolution of multilooked
TanDEM-X data. The maximum value was chosen to include the re-
sponse from the tallest trees. Finally, the vegetation height raster was
smoothed with a low-pass filter, 3× 3 pixels in size. Further details on
the derivation of DTM and vegetation height can be found in Anders

et al. (2018).
Additionally, the position of individual trees was extracted from the

1m cell size vegetation height raster based on local maxima within a
search radius of 3m. A local maximum was considered a tree if its
height was at least 1.5 m. Using local maxima is a well-established
method for the single tree detection (e.g. Hyyppä et al., 2001; Kaartinen
et al., 2012) and is especially suitable for sparse forest as one in our
study. The search radius of 3m was chosen based on the typical
minimum distance between the trees, which according to the field
knowledge and visual analysis of open-access high-resolution (0.5 m)

Fig. 2. Ground-based photos showing forest areas and the structure of a typical black spruce tree. Persons are for scale.

Table 1
General characteristics of the TanDEM-X dataset.

Relative orbit 61
Local time of acquisitions (UTC − 6 h) 20:26
Path Ascending
Looking direction Right
Incidence angle 45–47°
Polarization Single, VV
Slant range pixel spacing 1.36m
Azimuth pixel spacing 2.04m

Table 2
Characteristics of the TanDEM-X acquisitions and meteorological conditions.
Temperature is given for 20:00 local time (station TRAIL VALLEY); precipita-
tion is given as the daily total (station INUVIK CLIMATE). Date format is
YYYYMMDD.

Date Effective
baseline, m

Height of
ambiguity, m

Air
temperature, °C

Precipitation, mm

20150601 584.147 14.164 −2.7 3.0
20150623 584.202 14.162 12.6 0.9
20150715 584.392 14.157 15.2 0.0
20150726 584.456 14.113 12.0 1.4
20150806 583.836 14.128 4.2 8.4
20150817 582.919 14.152 6.9 2.4
20150828 583.844 14.126 4.9 0.5

Fig. 3. ALS-detected single trees (white empty circles) on top of the high-re-
solution airborne orthophoto (© Northwest Territories Centre for Geomatics).
Trees can be identified on the orthophoto by their linear shadows.
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airborne orthophotos acquired in 2004–2008 (Northwest Territories
Centre for Geomatics, http://www.geomatics.gov.nt.ca) is larger than
3m. Comparison between detected single trees and orthophotos con-
firms a reasonable performance of the method (Fig. 3). Furthermore, we
manually removed some misidentified trees, e.g. tall shrubs.

Based on the position of single trees we derived a metric for the tree
density as the number of trees per area, i.e. per 10×10m to match the
resolution of TanDEM-X data. The number of trees per area is a
meaningful representation of the tree density for our study area where
trees have very narrow crown and trunk (see Fig. 2). To count the trees
in a pixel in a continuous way, and, thus, to account for an arbitrary
grid structure, we used a multivariate kernel density estimator with the
maximum likelihood cross-validation method (Python module stats-
models). This method allows finding the optimal bandwidth (i.e. width
of the kernel, also known as smoothing parameter) which is neither
over-smoothing nor under-smoothing the data. The found optimal
bandwidth was 12.7 m and 13.8 m in longitude and latitude directions
respectively.

4.2. TanDEM-X data processing

The TanDEM-X data were processed using the Gamma radar soft-
ware (Werner et al., 2000). SSC data were converted to Gamma Single
Look Complex (SLC) format. We obtained three different metrics from

the CoSSC pairs: (i) backscatter from the master image of each pair; (ii)
InSAR height from each pair; (iii) bistatic coherence from each pair.

For backscatter derivation, SLC data were multi-looked by factors of
5 in range and azimuth directions, in order to obtain intensity values
with reduced speckle and roughly squared pixels with a ground range
size of 9.5 by 10.2 m. Pixel-area correction was performed to account
for terrain-induced variation of radar brightness (Small, 2011). Terrain-
based normalization area was calculated using the ALS-based DTM.

In general, InSAR height (or scattering phase center height) is a
result of subtracting a DTM, which represents the ground surface
without elevated objects (e.g. Höfle and Rutzinger, 2011), from a SAR-
derived Digital Surface Model (DSM). In our study, we used the ALS-
based DTM to simulate the bare ground topography phase. For each
TanDEM-X bistatic pair we obtained the differential interferogram by
subtracting the simulated topography phase from the TanDEM-X InSAR
phase. The differential interferograms were then smoothed using an
adaptive filter based on the local fringe spectrum (Goldstein and
Werner, 1998). The filtered interferograms were unwrapped using the
minimal cost flow algorithm (Costantini, 1998), where zero-height
value was assigned to a ground pixel with minimum vegetation. To
avoid water bodies, a mask with coherence values> 0.5 (mean co-
herence value for the water bodies) was used for the unwrapping. After
that, the unwrapped phase was converted to the delta height in meters,
which represents the InSAR height.

Fig. 4. ALS vegetation height map with heights> 1.5m (white areas are pixels with heights ≤1.5 m). Forest patches (in solid black) were manually delineated using
this map and orthophotos. Black lettered boxes A, B, and C locate forest patches which are enlarged in Fig. 5.
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To attribute the bistatic coherence to the volumetric component we
assume that the other potential sources of decorrelation such as thermal
and quantization noise, residual co-registration errors or range spectral
mismatch are negligible for the TanDEM-X. Thermal noise is generally
characterized by the signal-to-noise ratio which is typically high for the
TanDEM-X system and increases after subsequent multilooking. Co-re-
gistration of the images within a CoSSC pair is precise with subpixel

accuracy. The range spectral decorrelation was minimized by range
spectral filtering, and residual decorrelation was deemed small due to
the subdued topography and the moderate baseline length (compared
to the critical baseline). Ambiguities, which can also contribute to
decorrelation, were not apparent owing to the relatively uniform
backscatter cross-sections. Bistatic coherence images were derived from
corresponding differential interferograms and multilooked CoSSC

Fig. 5. Detailed examples of delineated forest patches A, B, and C from Fig. 4. Left column: ALS vegetation height map with heights> 1.5m (white areas are pixels
with heights ≤1.5 m). Color scale is the same as in Fig. 4. Right column: high-resolution airborne orthophotos (© Northwest Territories Centre for Geomatics).
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intensity images with an estimation window of 5× 5 pixels.
For both terrain-based normalization of backscatter and InSAR

height calculation, a precise co-registration of the ALS-based DTM to
the TanDEM-X pairs was needed. For the precise offsets calculation, we
simulated an intensity image from the ALS-based DTM. We derived
range and azimuth offsets using cross-correlation optimization of ori-
ginal and simulated SAR images. The algorithm calculates offset fields
by correlating images in multiple windows across the scene. We cal-
culated the registration polynomials from the offset fields, and applied
them to correct the small shift between the ALS-based DTM and the
TanDEM-X pairs.

Backscatter, InSAR height, and the coherence images were geo-
coded, using the ALS-based DTM, to the Universal Transverse Mercator
(UTM) projection, zone 8 N WGS84, with a pixel size of 10m. Water
bodies were clipped out from all maps. We combined all seven images
of each TanDEM-X metric in three temporal stacks and derived a mean
image for each of the stacks. Finally, the mean images were additionally
smoothed with low-pass filter 3×3 pixels in size. Note that the geo-
metry of the acquisitions, including the very stable baselines, was the
same for all scenes, and, therefore, stacking of the images without any
correction is justified. Hereinafter, backscatter, InSAR height, and co-
herence represent the temporal means of each metric.

4.3. Delineation of forest patches

We manually delineated 22 forest patches of different sizes using the
ALS vegetation height map and the orthophotos. To do this, we re-
moved all pixels with the heights of< 1.5m from the ALS vegetation
height map (Fig. 4). We visually checked the remaining groups of pixels
against the orthophotos. If a group of pixels was identified as a forest
patch on the orthophotos, we manually delineated this group. There
were no strict criteria on where to draw the border of a forest patch but
we aimed to delineate all groups with compactly growing trees and
ignored standalone trees. Three detailed examples are shown in Fig. 5.
Areas of the delineated forest patches varied from 0.005 km2 to
0.33 km2 and the total area of the combined patches was 1.3 km2. To
make the forest sample as large as possible, we included even the
smallest forest patches into the analysis. Most of the patches were si-
tuated on the hillslopes with the exception of one specific area with
elongated shape which was situated along a stream channel (Fig. 5C).

We extracted the TanDEM-X metrics (backscatter, coherence, InSAR
height) as well as ALS vegetation height and tree density within the
delineated forest patches. We use simple linear regression to examine
the relationship between all three TanDEM-X metrics and the ALS ve-
getation height within the combined area of all forest patches.
Additionally, we estimated the effect of tree density on the relationship
of TanDEM-X metrics to ALS vegetation height. In the end, we used
random forests regression to build a prediction model for ALS vegeta-
tion height using all TanDEM-X metrics together.

4.4. Pair consistency test and multitemporal stacking

The looking geometry and the perpendicular baselines were almost
identical for all the TanDEM-X pairs. Therefore, we expected the pairs
to be highly correlated with each other, given similar environmental
conditions at the time of acquisition. We compared all possible pairs of

TanDEM-X metrics within the combined forest patches to examine their
consistency and whether the meteorological conditions had an effect on
that consistency. There were two potentially influencing environmental
events: freezing conditions during the acquisition on 1 June 2015 and
precipitation on 6 August 2015. We also examined the effect of using
the temporal mean compared to single images for all TanDEM-X metrics
as they relate to the ALS vegetation height.

5. Results

5.1. TanDEM-X metrics and ALS vegetation height

First, we present a general overview of ALS vegetation height and
TanDEM-X metrics (backscatter, coherence, and InSAR height) over the
entire area covered by the ALS survey (Table 3). The area was generally
characterized by low vegetation, with the median of 0.21m and 99th
percentile of 2.68m. The coherence was generally high with the median
of 0.86. Standard deviation of both coherence and backscatter was low:
0.02 and 0.8 dB correspondingly. The InSAR height varied between −1
and 1m. A negative InSAR height value could indicate two phenomena.
First, it could indicate an increase of elevation between TanDEM-X
(2015) and ALS (2016) acquisitions. Second, the TanDEM-X signal can
penetrate to a slightly deeper layer than the ALS-based DTM, for in-
stance, when over bare ground.

We examined visually the spatial patterns of the backscatter, co-
herence, and InSAR height and compared them with the ALS vegetation
height, using orthophotographs as a reference (Fig. 6). In general, all
three TanDEM-X metrics were sensitive to the tall vegetation in the
stream channels, i.e. in the south eastern part of the area. Backscatter
and InSAR height were high and coherence was low within these areas.
A large shrub-covered zone in the western part of the area was well
identified by both high backscatter and InSAR height but not by co-
herence. A road, built in 2016 (after the TanDEM-X acquisitions and
during the ALS survey), is clearly visible as negative InSAR height. Over
the entire area, covered by the ALS survey, ALS vegetation height
correlated the most with InSAR height (r=0.52), only moderately in-
versely correlated with coherence (r=−0.4), and did not correlate
with backscatter (r=0.02).

We visually examined several parts of the study area with forest
patches more closely (Fig. 7). According to the ALS vegetation height
map, the tallest trees (> 10m) were within the forest patch along the
stream channel in C. The backscatter was high over the forest patches in
B and C but also over shrub covered areas such as a distinct shrub patch
in A (left of the road), areas from both sides of the forest patch in B, and
the area on the left side from the stream channel in C. Forest patches in
general were not well distinguished by backscatter. In contrast, the
coherence pattern mostly agreed with the border of delineated forest
patches. Coherence was generally not sensitive to shrubs, with the ex-
ception of low coherence in the shrub-covered slopes at the stream
channel in C. InSAR height was high over the forest patches and shrubs
in all areas. A general overview of ALS vegetation height and TanDEM-
X metrics (backscatter, coherence, and InSAR height) over the com-
bined area of all 22 delineated forest patches is given in Table 4.

We examined the relationship between ALS vegetation height and
all TanDEM-X metrics (backscatter, coherence, InSAR height), using the
data points (pixels) from the combined area of all 22 delineated forest

Table 3
Main statistics of the ALS vegetation height and TanDEM-X metrics for the entire area covered by the ALS survey (Fig. 6).

Min Max Median Mean Standard deviation p95 p99

ALS vegetation height 0.03m 12.6 m 0.21m 0.42m 0.56m 1.46m 2.68m
TanDEM-X backscatter −22.24 dB −6.78 dB −12.62 dB −12.56 dB 0.80 dB −11.17 dB −10.54 dB
TanDEM-X coherence 0.45 0.91 0.86 0.86 0.02 0.88 0.89
TanDEM-X InSAR height −0.97m 0.99m −0.03m −0.01m 0.13m 0.23m 0.43m
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Fig. 6. Overview of the area covered by the ALS survey: a) ALS vegetation height; b) TanDEM-X backscatter; c) coherence; d) InSAR height; e) orthophoto (©
Northwest Territories Centre for Geomatics). Zoom boxes in Fig. 7 are marked on all the maps as black rectangles.
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Fig. 7. ALS vegetation height (row 1); TanDEM-X backscatter (row 2); coherence (row 3); InSAR height (row 4); orthophoto (© Northwest Territories Centre for
Geomatics) (row 5) for three areas marked as black lettered rectangles on Fig. 6. Forest patches are delineated manually in solid black. Note the inverse coherence
scale, enabling an easier visual comparison with the other metrics. Letters A, B, and C correspond to the boxes in Fig. 6.
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patches. All three TanDEM-X metrics show a strong linear relationship
with the ALS height (Fig. 8). The Pearson correlation coefficient for the
backscatter was r=0.67, for the coherence r=−0.69, and for the
InSAR height r=0.78.

5.2. TanDEM-X metrics and tree density

We first present the result of kernel density estimated from the
number of trees exemplarily for the same three forest patches A, B, and
C (Fig. 9).

To detect whether there is a relationship between TanDEM-X me-
trics and the tree density, we first checked how the ALS vegetation

height and the tree density are related. We found a strong linear re-
lationship between these two parameters in the combined area of all
forest patches with Pearson correlation coefficient of r=0.58. This
strong relationship can be explained by the sparse nature of the studied
forest and the inevitable inclusion of pixels or even groups of pixels
without trees into the analysis. To eliminate this effect, we checked the
correlation coefficient between the ALS vegetation height and the tree
density for density threshold increasing from 0 to 1.5 with the step of
0.1 (Fig. 10). Number of included points ranged from 12,681 (den-
sity > 0) to 877 (density > 1.5). Correlation coefficient almost line-
arly decreased with the increase of the density threshold.

We chose the tree density > 1 (number of points= 3630) as a
threshold at which the correlation between the tree height and density
was below 0.15, and examined the relationships between tree density
and all TanDEM-X metrics only for the points with the tree density > 1
(Fig. 11). All three TanDEM-X metrics show a very weak linear re-
lationship with the kernel tree density. The Pearson correlation coef-
ficient for the backscatter was r=0.02, for the coherence r=−0.15,
and for the InSAR height r=0.19.

We also checked whether the relationship between the ALS vege-
tation height and TanDEM-X metrics depended on the tree density.
Using natural breaks, we chose three density classes: low (0–0.52);
medium (0.52–1.1); and high (1.1–2.07). For all density classes the
relationships between the ALS vegetation height and all TanDEM-X
metrics persisted their directions and remained strong (Fig. 12).

For the next step we combined the backscatter, coherence, and
InSAR height to predict ALS vegetation height with the random forests
regression. We used three sets of data: (i) all points from combined
forest patches; (ii) points from combined forest patches with the

Table 4
Main statistics of the ALS vegetation height and TanDEM-X metrics for the combined area of all 22 delineated forest patches.

Min Max Median Mean Standard deviation p95 p99

ALS vegetation height 0.12m 12.58m 2.06m 2.47m 1.88m 6.33m 8.86m
TanDEM-X backscatter −14.33 dB −8.38 dB −12.78 dB −12.57 dB 0.88 dB −10.8 dB −10.26 dB
TanDEM-X coherence 0.56 0.89 0.83 0.81 0.04 0.86 0.87
TanDEM-X InSAR height −0.16m 0.84m 0.05m 0.09m 0.15m 0.40m 0.64m

Fig. 8. Density scatterplots for ALS vegetation height and a) backscatter; b) coherence; c) InSAR height for the combined area of all delineated forest patches. Pearson
correlation coefficient is given for each plot. Data point density is shown as high and low for simplicity.

Fig. 9. Kernel tree density estimated from the number of trees. Black dots on top show the single trees. Position of single trees was extracted from ALS vegetation
height map using local maxima.

Fig. 10. Pearson correlation coefficient between the ALS vegetation height and
tree density for tree density thresholds increasing from 0 to 1.5 with the step of
0.1.
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medium tree density; (iii) points from combined forest patches with
high tree density. Number of “trees” in the random forest regression
was set to 50 and the result did not significantly change with the in-
creasing number of “trees”. Regression “trees” were generated by
drawing a replacement from two thirds of the data for training and one-
third for testing for each tree. We ran the regression 20 times and took
the average result for the presentation. For the data points from all
forest patches, the relationship between the predicted and observed ALS
vegetation height featured a relatively high coefficient of determina-
tion, R2 of 0.72, a mean absolute error (MAE) of 0.72m, and an accu-
racy (which is defined as 100% - mean absolute percentage error) of
53.6% (Fig. 13a). For the medium density dataset, the relationship
featured a lower R2 of 0.66, a slightly higher MAE of 0.78m, and an

improved accuracy of 67.2% (Fig. 13b). For the high density dataset,
the relationship featured R2 of 0.63, MAE of 0.7m, and the best accu-
racy from three datasets of 79.8% (Fig. 13c).

In order to estimate the usefulness of the variables in the random
forest we evaluated the importance of each predictor. The importance
represents in percentages how much the prediction is improved by in-
cluding a particular variable. The best predictor variable for all three
datasets was the InSAR height, and the importance of the backscatter
and coherence slightly increased for the datasets with both high and
medium tree density (Table 5).

Fig. 11. Scatterplots for the ALS kernel tree density and a) backscatter; b) coherence; c) InSAR height for the combined area of all delineated forest patches with the
tree density > 1. Pearson correlation coefficient is given for each plot. Data point density is shown as high and low for simplicity.

Fig. 12. Density scatterplots for ALS vegetation height and TanDEM-X metrics for the high tree density (upper row); medium tree density (middle row); and low
density (lower row) classes. Pearson correlation coefficient is given for each plot.
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5.3. Consistency between the TanDEM-X pairs

For the demonstrated results we used the multitemporal stack of the
TanDEM-X pairs. To make sure that the temporal averaging of the
TanDEM-X pairs was not affected by some anomalous pair, we in-
vestigated the consistency between all TanDEM-X pairs. Since the
looking geometry and the baselines were the same for all the pairs,
weather conditions could be the main influencing factor. We compared
all possible pairs of TanDEM-X metrics within the area of combined
forest patches and calculated the correlation coefficients. Correlation
between backscatter pairs was generally high and varied between 0.62
and 0.77 with a mean of 0.7 ± 0.04 (Fig. 14). Generally, there was no
systematic difference between backscatter pairs.

Correlation between coherence pairs was also high and varied be-
tween 0.58 and 0.77 with a mean of 0.7 ± 0.05 (Fig. 15). Generally,
there was no systematic difference between coherence pairs.

Correlation between InSAR height pairs was the strongest of
TanDEM-X metrics, and varied between 0.78 and 0.92 with a mean of
0.86 ± 0.04 (Fig. 16). Generally, there was no systematic difference in
InSAR height between pairs.

For all metrics, two acquisitions with the most contrasting meteor-
ological conditions (20150601 with the slightly negative air tempera-
tures and 20150806 with the precipitation) yielded in the lowest cor-
relation coefficients among all pairs: r=0.62 for the backscatter,
r=−0.58 for the coherence, and r=0.78 for the InSAR height.

5.4. Effect of multitemporal averaging

We also examined for all TanDEM-X metrics whether using the
temporal mean is more advantageous than using single images. Pearson
correlation coefficients between TanDEM-X metrics and ALS vegetation
height are given in Table 6. The relationship was stronger for the mean
backscatter (r=0.67) compared to the single backscatter images where
r varied between 0.55 and 0.61. The relationship was in general slightly
stronger for the mean coherence (r=−0.69) compared to the single
coherence images with the exception of the one coherence image from
20150828 for which the relationship was stronger than for the mean.
The relationship was also slightly stronger for the mean InSAR height
(r= 0.78) compared to all single backscatter images where r varied

between 0.66 and 0.75.

6. Discussion

In our study we observed high correlation between ALS-derived tree
height and all three TanDEM-X variables: backscatter (r= 0.67), bi-
static coherence (r=−0.69), and InSAR height (r=0.78) obtained as
multitemporal mean of seven TanDEM-X CoSSC pairs with the same
geometry and baseline. The tree density showed almost no relationship
to the TanDEM-X metrics. We distinguished three tree density classes
and showed that the relationships between all TanDEM-X metrics and
tree height within each density classes remained strong. Random forests
regression using all three TanDEM-X metrics predicted the tree height
with a mean absolute error of 0.7m and the accuracy of 53%. The
contribution to the explained variation was the highest from the InSAR
height (70%) while backscatter and coherence contributed equally less
(15%).

Numerous studies related SAR backscatter to above-ground biomass
and reported a quick saturation especially for the X-band (e.g.
Woodhouse, 2005). We found a strong relationship between the
TanDEM-X backscatter and the ALS vegetation height for the forested
area (r= 0.67), which weakened with a denser class of forest. There
were some signs of saturation at approximately 5m of ALS vegetation
height. We showed no influence of the tree density on the TanDEM-X
backscatter in our study (r=0.02). It is possible, however, that the tree
density was in general too low to detect any influence of it on the
backscatter. On the other hand, such sparse forest is typical for the
northern edge of the treeline and, therefore, the insensitivity to tree
density that we have found is a useful observation. The fact that for the
entire area covered by the ALS survey, we found no correlation between
backscatter and ALS vegetation height, indicates that trees likely serve
as strong scatterers while the rest of the vegetation (e.g. dwarf and tall
shrubs, lichens, and sedges) influences the backscatter through its
density and roughness rather than the height.

We observed a strong inverse relationship between ALS vegetation
height and TanDEM-X bistatic coherence (r=−0.69) for the forested
area. Assuming that no external DTM is needed to derive coherence, we
suggest that this TanDEM-X metric can be very useful for the remote
sensing of the treeline. Similar to backscatter, we found only very weak

Fig. 13. Relationship between the observed and predicted (from all TanDEM-X metrics) ALS vegetation height for: a) the dataset from all forest patches; b) the
dataset from all forest patches with medium tree density; c) the dataset from all forest patches with high tree density. The solid line shows the best linear fit.

Table 5
Relative importance of predictor variables for the random forests regression. The importance represents in percentages how much the prediction is improved by
including a particular variable.

TanDEM-X metric Importance, % (all forest patches) Importance, % (medium tree density) Importance, % (high tree density)

Backscatter 14 20 20
Coherence 16 20 19
InSAR height 70 60 61
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relationship between the tree density and the coherence (r=−0.15),
although the relationship was also inverse as for the height. Sadeghi
et al. (2016) also did not find a relationship between tree density and
TanDEM-X coherence in the Canadian boreal forest with higher density
(13 stems per 100m2 on average). For the entire area covered by the
ALS survey, we found a rather moderate correlation between coherence
and ALS vegetation height, which likely indicates that besides the
height, other properties (i.e. density and coverage) of the typical tundra
vegetation influence the coherence.

A number of previous studies have shown that InSAR height is
strongly related to above-ground biomass and canopy height for forests
with high biomass (e.g. Persson and Fransson, 2017; Solberg et al.,
2017; Sadeghi et al., 2018). In our study we observed a strong re-
lationship between InSAR height and ALS vegetation height (r= 0.78)
for the forested area. We also found a rather strong correlation between
InSAR height and ALS vegetation height (r=0.52) for the entire area
covered by the ALS survey – an expected observation, considering that
the InSAR height is the most direct expression of the vegetation height
among all TanDEM-X metrics. In general, InSAR height in our study was
about one order of magnitude lower than ALS vegetation heights. This
may indicate that the TanDEM-X signal is not able to accurately

estimate the height of such sparse forest, but can capture well the
spatial variations. Compared to the boreal or tropical forests, where the
X-band signal interacts with the upper few centimeters of dense canopy,
in the sparse forests of the treeline zone, the SAR signal likely has a
complex interaction between the ground and the tree elements which
do not form a considerable canopy. Furthermore, the derivation of the
InSAR height requires an independent, high-quality DTM, which often
is not available, especially in high latitudes. This is a very substantial
limitation.

Askne et al. (2013), Olesk et al. (2015), Soja et al. (2015), and Olesk
et al. (2016) used Interferometric Water Cloud Model and its mod-
ifications as well as empirical (data-driven) relationships to estimate
boreal forest biomass and height from TanDEM-X metrics. The former
models generally consider the forest as a layer (or multiple layers) of
volume scatterers located over the ground, with or without gaps in
vegetation. Some studies suggest that using simple regression models is
often preferable due to the many simplifications and assumptions re-
quired for physical models, or that multipolarization SAR data should
be used. Our data-driven model for forest height estimation implicitly
accounted for the unique structural properties of very sparse forest with
trees featuring very narrow trunks and crown. Such forest configuration

Fig. 14. Density scatterplots of TanDEM-X backscatter for all pair combinations. Pearson correlation coefficients are given for each plot. The one-to-one relationship
is shown as a black line.
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is difficult to capture in estimation algorithms based on scattering
models. In our study we used three metrics from single-polarization
TanDEM-X data (backscatter, coherence, InSAR height) in a random
forests regression model. Our data show a strong relationship between
reference and predicted forest height over the full range of heights. We
reached an R2 of 0.7 and a MAE of 0.7m which is better than, for in-
stance, in Karila et al. (2015), where the R2 between predicted and
observed forest height based on the TanDEM-X InSAR height and co-
herence, varied between 0.34 and 0.57 for different acquisition dates.

Current global land-cover maps are not able to resolve forest pat-
ches of the size we observed in our study. We delineated the forest
patches manually using high-resolution orthophotos together with the
ALS vegetation height map to have a better control over the sample. We
acknowledge that it was necessary to identify the forest areas prior to
estimating the tree height with the TanDEM-X metrics. With respect to
potential automated mapping, the TanDEM-X coherence demonstrated
the best sensitivity to the forest areas but still could not fully dis-
criminate them from some shrubby areas (Fig. 7). We did not aim at
achieving automated mapping of the forest patches in this study and
leave this accomplishment for future studies. Martone et al. (2018)

developed a global forest/non-forest (FNF) map at a ground pixel spa-
cing of 50m×50m, based on TanDEM-X data acquired for global DEM
formation. None of our forest patches were identified as forest in their
FNF map indicating that likely the FNF map is not usable at the
northern edge of the treeline where the forest patches are very small,
but probably can be used in the more southern areas.

In our analysis, we were limited to the area, covered by the ALS
survey, which included forest patches, similar in shape and located
mostly on gentle hillslopes. One elongated forest area, situated along a
stream channel, was, however, different in shape and in the positions
on the landscape (Figs. 4 and 5). We checked the correlation between
TanDEM-X variables and ALS vegetation height for this specific area.
The correlation was strong for the coherence (r=−0.73), and the
InSAR height (r=0.57) but rather low for the backscatter (r=0.28)
which can be related to the remaining shadow/layover effects influ-
encing this topographically complicated area, or to the tall shrubs in-
teracting with the backscatter signal. Therefore, we suggest using
backscatter cautiously over such areas, and that the further research
should be pursued in order to include a larger variety of spatial con-
figurations of the forest patches or other forms of tree growth at the

Fig. 15. Density scatterplots for TanDEM-X coherence for all pair combinations. Pearson correlation coefficients are given for each plot. The one-to-one relation is
shown as a black line.
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northern edge of the treeline.
In our study, the temporal stability between acquisitions was high

for the backscatter (mean r=0.7). This is in line with the findings of
Askne et al. (2017) who report a very high consistency between mul-
tiple TanDEM-X backscatter images over boreal forest, with the ex-
ception of acquisitions with high snow cover and precipitation. The

temporal stability of the coherence was also high (mean r= 0.7). Askne
et al. (2017) report a strong inconsistency between coherence pairs,
especially for scenes with snow cover. In general, their coherence va-
lues varied between 0.25 and 0.94 (compared to our study with a range
from 0.58 to 0.77), indicating much stronger volumetric decorrelation
in the canopy of the boreal forest, and potentially higher temporal in-
stability. The temporal stability of the InSAR height was the highest of
all metrics (mean r=0.86). The environmental conditions (freezing
and precipitation) possibly contributed to the lowest consistency be-
tween two acquisitions taken under these contrasting settings. Never-
theless, the consistency for this pair was still rather high for all
TanDEM-X metrics, indicating that the analysis of the TanDEM-X data
acquired under relatively mild meteorological conditions should not be
a problem. We also showed that in most cases the temporal mean of
TanDEM-X metrics yielded a stronger relationship with the ALS vege-
tation height, when compared to the performance of the single acqui-
sitions. In general, however, the performance of the single acquisitions
was comparable with the performance of the temporal mean, indicating
that a single acquisition can also be used when multiple pairs are not
available.

Fig. 16. Density scatterplots for TanDEM-X InSAR height for all pair combinations. Pearson correlation coefficients are given for each plot. The one-to-one relation is
shown as a black line.

Table 6
Pearson correlation coefficients between TanDEM-X metrics and ALS vegetation
height for all single acquisitions as well as for the temporal mean of acquisi-
tions.

Date of TanDEM-X pair r backscatter r coherence r InSAR height

20150601 0.57 −0.65 0.66
20150623 0.55 −0.66 0.75
20150715 0.58 −0.66 0.73
20150726 0.57 −0.61 0.75
20150806 0.6 −0.55 0.73
20150817 0.61 −0.58 0.74
20150828 0.56 −0.74 0.74
Temporal mean 0.67 −0.69 0.78
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7. Conclusions

This is the first study to explore the potential of TanDEM-X data for
estimating tree height in small forest patches at the northern edge of the
treeline zone in the Canadian Arctic. We tested the relationships be-
tween the ALS-derived forest height and SAR backscatter, bistatic co-
herence, and InSAR height from several TanDEM-X bistatic pairs of the
same geometry and baseline. The linear regression yielded correlation
coefficients of 0.57, −0.65, and 0.69 for the backscatter, bistatic co-
herence, and InSAR height correspondingly. The tree density derived
from ALS was low (≤2 trees per ca. 175m2) and showed almost no
relationship to the TanDEM-X metrics, meaning that very likely these
metrics can be solely attributed to the forest height in these environ-
ments. All three TanDEM-X metrics were then used as predictive vari-
ables for estimating the forest height with the random forests regres-
sion. Mean absolute error was 0.7 m, which represents 30% of the mean
forest height (2.5 m) in the study area. Using only bistatic coherence
would lead to a larger error, but can be valuable when the external
DTM, necessary for the formation of InSAR height, is not available.
InSAR height strongly correlated to the ALS vegetation height but the
absolute values differed by one order of magnitude. It is evident that
the TanDEM-X metrics behave differently in the sparse forest of the
transition zone than in dense forests. More studies from other sites in
the vicinity of the treeline as well as TanDEM-X acquisitions with other
geometries and baselines should provide more insights into the SAR
signal interaction with a sparse and low forest. Assuming the global
availability of the TanDEM-X bistatic data, acquired for the global DEM
production, we suggest that a circum-polar assessment of the tree
height in the forest-tundra transition zone can be pursued.

Acknowledgments

This work was core funded by the Federal Ministry for Economic
Affairs and Energy (BMWi) and the German Aerospace Center (DLR),
Germany, in the framework of the project PermaSAR (FKZ: 50EE1418).
We thank Sina Muster, Inge Grünberg, and Stefan Kruse for the critical
reading of the manuscript and the valuable comments.

References

Anders, K., Antonova, S., Boike, J., Gehrmann, M., Hartmann, J., Helm, V., Höfle, B.,
Marsh, P., Marx, S., Sachs, T., 2018. Airborne Laser Scanning (ALS) point clouds of
Trail Valley Creek, NWT, Canada (2016). PANGAEA. https://doi.org/10.1594/
PANGAEA.894884.

Askne, J.I., Fransson, J.E., Santoro, M., Soja, M.J., Ulander, L.M., 2013. Model-based
biomass estimation of a hemi-boreal forest from multitemporal TanDEM-X acquisi-
tions. Remote Sens. 5 (11), 5574–5597.

Askne, J.I., Soja, M.J., Ulander, L.M., 2017. Biomass estimation in a boreal forest from
TanDEM-X data, lidar DTM, and the interferometric water cloud model. Remote Sens.
Environ. 196, 265–278.

Brown, J., Ferrians Jr., O.J., Heginbottom, J.A., Melnikov, E.S., 1998. Circum-Arctic Map
of Permafrost and Ground Ice Conditions. National Snow and Ice Data Center/World
Data Center for Glaciology, Boulder, CO revised February 2001. (Digital media).

Burn, C.R., Kokelj, S.V., 2009. The environment and permafrost of the Mackenzie Delta
area. Permafr. Periglac. Process. 20 (2), 83–105.

Callaghan, T.V., Björn, L.O., Chapin III, F.S., Chernov, Y., Christensen, T.R., Huntley, B.,
... Chaver, G., 2005. Arctic tundra and polar desert ecosystems. Arctic Climate Impact
Assessment 1, 243–352.

Chapin III, F.S., Sturm, M., Serreze, M.C., McFadden, J.P., Key, J.R., Lloyd, A.H., ...
Welker, J.M., 2005. Role of land-surface changes in Arctic summer warming. Science
310 (5748), 657–660. https://doi.org/10.1126/science.1117368.

Costantini, M., 1998. A novel phase unwrapping method based on network programming.
IEEE Trans. Geosci. Remote Sens. 36, 813–821.

Environment and Climate Change Canada, 2019. Historical Data, Weather and Climate
Hazards. http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
(accessed May 2019).

Frost, G.V., Epstein, H.E., 2014. Tall shrub and tree expansion in Siberian tundra ecotones
since the 1960s. Glob. Chang. Biol. 20 (4), 1264–1277. https://doi.org/10.1111/gcb.
12406.

Goldstein, R.M., Werner, C.L., 1998. Radar interferogram filtering for geophysical ap-
plications. Geophys. Res. Lett. 25 (21), 4035–4038.

Hajnsek, I., Busche, T., Krieger, G., Zink, M., Schulze, D., Moreira, A., 2014. TanDEM-X
Ground Segment Announcement of Opportunity: TanDEM-X Science Phase. German

Aerospace Center, Microwaves and Radar Institute, Germany, pp. 27 TD-PD-PL-0032,
19.05. 2014.

Harsch, M.A., Hulme, P.E., McGlone, M.S., Duncan, R.P., 2009. Are treelines advancing?
A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12 (10),
1040–1049.

Höfle, B., Rutzinger, M., 2011. Topographic airborne LiDAR in geomorphology: a tech-
nological perspective. Z. Geomorphol. Suppl. 55 (2), 1–29.

Hyyppä, J., Schardt, M., Haggrén, H., Koch, B., Lohr, U., Scherrer, H.U., ... Pyysalo, U.,
2001. HIGH-SCAN: the first European-wide attempt to derive single-tree information
from laserscanner data. The Photogrammetric Journal of Finland 17 (2), 58–68.

Kaartinen, H., Hyyppä, J., Yu, X., Vastaranta, M., Hyyppä, H., Kukko, A., ... Næsset, E.,
2012. An international comparison of individual tree detection and extraction using
airborne laser scanning. Remote Sens. 4 (4), 950–974.

Karila, K., Vastaranta, M., Karjalainen, M., Kaasalainen, S., 2015. TanDEM-X inter-
ferometry in the prediction of forest inventory attributes in managed boreal forests.
Remote Sens. Environ. 159, 259–268.

Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., Zink, M., 2007.
TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans.
Geosci. Remote Sens. 45 (11), 3317–3341.

Lantz, T.C., Gergel, S.E., Henry, G.H., 2010. Response of green alder (Alnus viridis subsp.
fruticosa) patch dynamics and plant community composition to fire and regional
temperature in north-western Canada. J. Biogeogr. 37 (8), 1597–1610.

Lawrence, D.M., Koven, C.D., Swenson, S.C., Riley, W.J., Slater, A.G., 2015. Permafrost
thaw and resulting soil moisture changes regulate projected high-latitude CO2 and
CH4 emissions. Environ. Res. Lett. 10 (9), 094011.

Lenoir, J., Svenning, J.C., 2015. Climate-related range shifts – a global multidimensional
synthesis and new research directions. Ecography 38 (1), 15–28.

MacDonald, G.M., Edwards, T.W.D., Moser, K.A., Pienitz, R., Smol, J.P., 1993. Rapid
response of treeline, vegetation and lakes to past climate warming. Nature 361,
243–246.

Marsh, P., Onclin, C., Neumann, N., 2002. Water and energy fluxes in the lower
Mackenzie Valley, 1994/95. Atmosphere-Ocean 40 (2), 245–256.

Marsh, P., Bartlett, P., MacKay, M., Pohl, S., Lantz, T., 2010. Snowmelt energetics at a
shrub tundra site in the western Canadian Arctic. Hydrol. Process. 24 (25),
3603–3620.

Martone, M., Rizzoli, P., Wecklich, C., González, C., Bueso-Bello, J.L., Valdo, P., Moreira,
A., 2018. The global forest/non-forest map from TanDEM-X interferometric SAR data.
Remote Sens. Environ. 205, 352–373. https://doi.org/10.1016/j.rse.2017.12.002.

Mathisen, I.E., Mikheeva, A., Tutubalina, O.V., Aune, S., Hofgaard, A., 2014. Fifty years of
tree line change in the Khibiny Mountains, Russia: advantages of combined remote
sensing and dendroecological approaches. Appl. Veg. Sci. 17 (1), 6–16.

Montesano, P.M., Nelson, R., Sun, G., Margolis, H., Kerber, A., Ranson, K.J., 2009. MODIS
tree cover validation for the circumpolar taiga–tundra transition zone. Remote Sens.
Environ. 113 (10), 2130–2141.

Montesano, P.M., Sun, G., Dubayah, R.O., Ranson, K.J., 2016. Spaceborne potential for
examining taiga–tundra ecotone form and vulnerability. Biogeosciences 13 (13),
3847–3861.

Mücke, W., Briese, C., Hollaus, M., 2010. Terrain echo probability assignment based on
full-waveform airborne laser scanning observables. In: Proceedings of ISPRS TC VII
Symposium - 100 Years ISPRS, Vienna, Austria, pp. 157–162.

Olesk, A., Voormansik, K., Vain, A., Noorma, M., Praks, J., 2015. Seasonal differences in
forest height estimation from interferometric TanDEM-X coherence data. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 (12),
5565–5572.

Olesk, A., Praks, J., Antropov, O., Zalite, K., Arumäe, T., Voormansik, K., 2016.
Interferometric SAR coherence models for characterization of hemiboreal forests
using TanDEM-X data. Remote Sens. 8 (9), 700.

Persson, H., Olsson, H., Soja, M., Ulander, L., Fransson, J., 2017. Experiences from large-
scale forest mapping of Sweden using TanDEM-X data. Remote Sens. 9 (12), 1253.

Persson, H.J., Fransson, J.E., 2017. Comparison between TanDEM-X-and ALS-based es-
timation of aboveground biomass and tree height in boreal forests. Scand. J. For. Res.
32 (4), 306–319.

Pfeifer, N., Mandlburger, G., 2008. Filtering and DTM generation. In: Shan, J., Toth, C.
(Eds.), Topographic Laser Ranging and Scanning: Principles and Processing. CRC
Press, 9781420051421, pp. 307–333 2008, (invited).

Ranson, K.J., Sun, G., Kharuk, V.I., Kovacs, K., 2004. Assessing tundra–taiga boundary
with multi-sensor satellite data. Remote Sens. Environ. 93 (3), 283–295.

Ranson, K.J., Montesano, P.M., Nelson, R., 2011. Object-based mapping of the cir-
cumpolar taiga–tundra ecotone with MODIS tree cover. Remote Sens. Environ. 115
(12), 3670–3680.

Sadeghi, Y., St-Onge, B., Leblon, B., Simard, M., 2016. Canopy height model (CHM) de-
rived from a TanDEM-X InSAR DSM and an airborne LiDAR DTM in boreal forest.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9
(1), 381–397.

Sadeghi, Y., St-Onge, B., Leblon, B., Prieur, J.F., Simard, M., 2018. Mapping boreal forest
biomass from a SRTM and TanDEM-X based on canopy height model and Landsat
spectral indices. Int. J. Appl. Earth Obs. Geoinf. 68, 202–213. https://doi.org/10.
1016/j.jag.2017.12.004.

Santoro, M., Cartus, O., 2018. Research pathways of forest above-ground biomass esti-
mation based on SAR backscatter and interferometric SAR observations. Remote
Sens. 10 (4), 608. https://doi.org/10.3390/rs10040608.

Schlund, M., von Poncet, F., Kuntz, S., Boehm, H.D.V., Hoekman, D.H., Schmullius, C.,
2016. TanDEM-X elevation model data for canopy height and aboveground biomass
retrieval in a tropical peat swamp forest. Int. J. Remote Sens. 37 (21), 5021–5044.

Serreze, M.C., Walsh, J.E., Chapin, F.S., Osterkamp, T., Dyurgerov, M., Romanovsky, V.,
... Barry, R.G., 2000. Observational evidence of recent change in the northern high-

S. Antonova, et al. Remote Sensing of Environment 231 (2019) 111251

16

https://doi.org/10.1594/PANGAEA.894884
https://doi.org/10.1594/PANGAEA.894884
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0010
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0010
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0010
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0015
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0015
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0015
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0020
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0020
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0020
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0025
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0025
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0030
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0030
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0030
https://doi.org/10.1126/science.1117368
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0040
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0040
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://doi.org/10.1111/gcb.12406
https://doi.org/10.1111/gcb.12406
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0055
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0055
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0060
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0060
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0060
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0060
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0065
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0065
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0065
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0070
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0070
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0075
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0075
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0075
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0080
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0080
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0080
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0085
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0085
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0085
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0090
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0090
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0090
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0095
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0095
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0095
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0100
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0100
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0100
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0105
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0105
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0110
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0110
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0110
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0115
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0115
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0120
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0120
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0120
https://doi.org/10.1016/j.rse.2017.12.002
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0130
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0130
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0130
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0135
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0135
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0135
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0140
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0140
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0140
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0145
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0145
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0145
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0150
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0150
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0150
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0150
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0155
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0155
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0155
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0160
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0160
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0165
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0165
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0165
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0170
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0170
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0170
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0175
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0175
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0180
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0180
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0180
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0185
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0185
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0185
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0185
https://doi.org/10.1016/j.jag.2017.12.004
https://doi.org/10.1016/j.jag.2017.12.004
https://doi.org/10.3390/rs10040608
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0200
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0200
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0200
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0205
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0205


latitude environment. Clim. Chang. 46 (1–2), 159–207.
Small, D., 2011. Flattening gamma: radiometric terrain correction for SAR imagery. IEEE

Trans. Geosci. Remote Sens. 49 (8), 3081–3093.
Soja, M.J., Persson, H.J., Ulander, L.M., 2015. Estimation of forest biomass from two-level

model inversion of single-pass InSAR data. IEEE Trans. Geosci. Remote Sens. 53 (9),
5083–5099.

Solberg, S., Astrup, R., Breidenbach, J., Nilsen, B., Weydahl, D., 2013. Monitoring spruce
volume and biomass with InSAR data from TanDEM-X. Remote Sens. Environ. 139,
60–67.

Solberg, S., Hansen, E.H., Gobakken, T., Naessset, E., Zahabu, E., 2017. Biomass and
InSAR height relationship in a dense tropical forest. Remote Sens. Environ. 192,
166–175.

Thiel, C., Schmullius, C., 2016. The potential of ALOS PALSAR backscatter and InSAR

coherence for forest growing stock volume estimation in Central Siberia. Remote
Sens. Environ. 173, 258–273.

Treuhaft, R., Gonçalves, F., dos Santos, J.R., Keller, M., Palace, M., Madsen, S.N., ...
Graça, P.M., 2015. Tropical-forest biomass estimation at X-band from the spaceborne
TanDEM-X interferometer. IEEE Geosci. Remote Sens. Lett. 12 (2), 239–243.

Werner, C., Wegmüller, U., Strozzi, T., Wiesmann, A., 2000. Gamma SAR and interfero-
metric processing software. In: Proceedings of the ERS-Envisat Symposium,
Gothenburg, Sweden. vol. 1620. pp. 1620.

Wieczorek, M., Kruse, S., Epp, L.S., Kolmogorov, A., Nikolaev, A.N., Heinrich, I., Jeltsch,
F., Pestryakova, L.A., Zibulski, R., Herzschuh, U., 2017. Dissimilar responses of larch
stands in northern Siberia to increasing temperatures-a field and simulation based
study. Ecology 98 (9), 2343–2355. https://doi.org/10.1002/ecy.1887.

Woodhouse, I.H., 2005. Introduction to Microwave Remote Sensing. CRC press.

S. Antonova, et al. Remote Sensing of Environment 231 (2019) 111251

17

http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0205
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0210
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0210
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0215
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0215
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0215
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0220
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0220
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0220
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0225
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0225
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0225
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0230
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0230
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0230
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0235
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0235
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0235
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0240
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0240
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0240
https://doi.org/10.1002/ecy.1887
http://refhub.elsevier.com/S0034-4257(19)30270-6/rf0250

	Estimating tree height from TanDEM-X data at the northwestern Canadian treeline
	Introduction
	Study area
	Data
	ALS data
	TanDEM-X data

	Methods
	Derivation of DTM and vegetation properties from ALS
	TanDEM-X data processing
	Delineation of forest patches
	Pair consistency test and multitemporal stacking

	Results
	TanDEM-X metrics and ALS vegetation height
	TanDEM-X metrics and tree density
	Consistency between the TanDEM-X pairs
	Effect of multitemporal averaging

	Discussion
	Conclusions
	Acknowledgments
	References




