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Abstract—Channel-SLAM is a multipath assisted positioning
algorithm that treats multipath components as line-of-sight (LoS)
signals from virtual transmitters. It maps the physical and
virtual transmitters’ locations simultaneously with estimating
the user position with simultaneous localization and mapping
(SLAM). Since Channel-SLAM is a relative localization system,
the coordinate systems of transmitter maps from different users
are subject to an unknown relative rotation and translation. In
this paper, we present a new algorithm to estimate this rotation
and translation, which we call map matching. Map matching is a
requirement for collaborative Channel-SLAM, where users share
transmitter maps to improve their positioning performance. Our
idea is to augment maps of transmitter locations in Channel-
SLAM with knowledge on from which locations there is a LoS
condition to a transmitter in order to increase the robustness of
map matching. We evaluate our algorithm by simulations in an
indoor scenario.

Index Terms—Channel-SLAM, cooperative positioning, map
matching, simultaneous localization and mapping

I. INTRODUCTION

Multipath propagation has universally been considered
harmful for wireless localization algorithms that are based
on the estimation of radio signal parameters such as phase,
time of arrival (ToA) or angle of arrival (AoA). To cope with
multipath propagation, standard approaches try to estimate the
channel impulse response in order to remove the influence
of multipath components (MPCs) on the line-of-sight (LoS)
component of the received signal. Contrarily, in multipath
assisted positioning, multipath propagation is regarded as a
source of information that is exploited for positioning.

In the past years, various multipath assisted positioning
approaches have emerged for different scenarios and technolo-
gies [1]–[5]. With Channel-SLAM [6], [7], we have introduced
an algorithm that treats MPCs as LoS signals from virtual
transmitters. The locations of both the virtual transmitters and
the physical transmitter(s) are in general unknown. However,
they can be estimated jointly with the user position with
simultaneous localization and mapping (SLAM) [8]. A user
hence estimates their own position and creates a map of
locations of physical and virtual transmitters.

In certain scenarios such as malls, museums or public
buildings, where many users require a positioning service,
maps of estimated transmitter locations can be shared. In
this sense, users cooperate by exchanging information on
the scenario. Though, a user does in general not have any
information on their position on a global scale if they do not

know their initial position and heading. Instead, they create
a local coordinate system in which they estimate their state
jointly with the transmitter states. Thus, Channel-SLAM is
only a relative positioning system. When a user shares a
transmitter map with another user, the coordinate system of
the shared map and the coordinate system of the user receiving
the map are subject to an unknown rotation and translation [9].
The rotation and translation parameters need to be estimated
to be able to exploit the information in a shared map.

We denote a set of transmitter states estimated by a user
by the term user map, and the map that this user receives
by the term prior map. Estimating the rotation and translation
parameters relating the coordinate systems of the two maps
and finding correspondences among transmitters within the
two maps is denoted by the term map matching.

Map matching is particularly difficult if only one physical
transmitter is present in the scenario. In such a case, the
physical and virtual transmitters lack diversity as they cannot
be distinguished based on their ID, the content of their signal,
such as the transmitted data, or transmit time and frequency,
for example. We have previously presented a paper with a
reliable map matching algorithm for Channel-SLAM based
on the estimated locations of transmitters in the user and the
prior map [10]. The algorithm is based on a variant of the
random sample consensus (RANSAC) algorithm [11], which
is a widespread tool, e.g. in image registration.

Though, we have observed that in scenarios with certain
geometries, map matching ambiguities may still arise. The
fundamental problem is the lack of diversity among virtual
transmitters, making it hard to differentiate among them. The
ambiguities result in wrong estimates for the correspondences
among transmitters in the two maps and thus in strongly biased
estimates for the rotation and translation parameters. As a
result, the user position estimate may become biased, and the
filter may even diverge.

The goal of this paper is to increase the robustness of our
map matching algorithm for Channel-SLAM by increasing the
diversity among transmitters. A higher transmitter diversity
can be achieved by exploiting the information on from where
transmitters are visible. We say that a transmitter is visible
to a user, if a signal from a transmitter is received by a user
carrying a receiver in a LoS condition. Information on the
locations from which a transmitter is visible or not can be
mapped by users as they travel through a scenario, and it can
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Fig. 1. The physical transmitter Tx transmits a signal that arrives at the user
via three different propagation paths. On its first path drawn in red, the signal
is reflected by the wall, and the corresponding signal component is regarded
a LoS signal from the virtual transmitter vTx1. On the second path in blue,
the signal is scattered at a point scatterer. The signal component arriving at
the user is regarded a LoS signal from the virtual transmitter vTx2, which is
located at the point scatterer’s location. On the third propagation path drawn
in green, the signal is first scattered at the point scatterer and then reflected at
the wall. The corresponding virtual transmitter vTx3 is at the scatterer location
mirrored at the wall.

help in distinguishing among the various transmitters.
The remainder of the paper is organized as follows. Sec-

tion II introduces multipath assisted positioning and the
Channel-SLAM algorithm. Visibility maps are presented in
Section III. In Section IV, we introduce our new map matching
algorithm. After the simulation results in Section V, Section VI
concludes the paper.

II. MULTIPATH ASSISTED POSITIONING AND
CHANNEL-SLAM

A. The Principle of Multipath Assisted Positioning

The idea of multipath assisted positioning is exemplarily
depicted in Fig. 1. The physical transmitter Tx broadcasts a
signal that arrives at the user via different propagation paths.
For the sake of clarity, the LoS path is omitted.

The first propagation path is drawn in red. The signal is
reflected at the wall, representing a planar surface. In multipath
assisted positioning, the user interprets the corresponding MPC
as a LoS signal from the virtual transmitter vTx1, which is
located at the location of the physical transmitter mirrored at
the reflecting wall. The location of vTx1 is independent from
the user position and thus static. Geometrical considerations
show that the transmitters Tx and vTx1 are perfectly time
synchronized.

On its second propagation path in blue, the signal is scat-
tered at the point scatterer. The user again regards the arriving
MPC as a LoS signal, transmitted by the virtual transmitter
vTx2, whose location coincides with the scatterer’s location.
The location of vTx2 is thus static as well. However, there
is a delay offset τ0 between Tx and vTx2. The delay offset
corresponds to the Euclidean distance τ0c0 between the two,
where c0 is the speed of light. The delay offset can be regarded
as a clock offset.

The third propagation path in green combines the above
two cases. The signal is first scattered and then reflected
at the wall. The corresponding MPC arriving at the user is
interpreted as a LoS signal from the virtual transmitter vTx3.
In accordance with the above two cases, vTx3 is located at
the scatterer location mirrored at the wall and has a delay
offset τ0. Any sequence of reflections and scattering can be
described likewise.

B. The Channel-SLAM Algorithm

In Channel-SLAM, a single user equipped with a receiver
moves through a static multipath scenario. In the scenario,
there is one physical transmitter. We consider a time variant,
linear multipath channel. The time variance of the channel is
only due to the movement of the user. The transmit signal
is denoted by s(t). The received signal at the user is a
superposition of signal components. We describe the jth signal
component at time t by a complex amplitude aj(t) and a delay,
or ToA, τj(t). The received signal at time t at the receiver is
described as

y(τ, t) =
∑
j

aj(t)s (τ − τj(t)) + n(τ), (1)

where n(τ) is colored noise that incorporates additive white
Gaussian noise and dense multipath components. The receiver
records a snapshot of the received signal at time instants k.
We assume that the channel is constant for the length of one
snapshot.

Channel-SLAM is a two-step approach. In a first step, a
channel estimator estimates the parameters of signal com-
ponents and tracks them over time based on the received
signal. Within this paper, we use the Kalman Enhanced Super
Resolution Tracking (KEST) estimator, which works in two
stages. An inner stage is based on a snapshot-based algo-
rithm such as the Space-Alternating Generalized Expectation-
Maximization (SAGE), which estimates the parameters of
the signal components. Each signal component may be char-
acterized at the receiver by a complex amplitude, a delay,
corresponding to a ToA, and an AoA, for example, depending
on the available receiver hardware. An outer stage keeps track
of the estimates from the inner stage using parallel Kalman
filters. Each Kalman filter holds a hypothesis for the number
of signal components. Hence, the outer stage also estimates
the number of signal components. Although KEST estimates
the parameters of signal components jointly, we assume that
these estimates are uncorrelated. This assumption is on the
one hand based on the uncorrelated scatterer assumption. On
the other hand, if such correlations occur, we expect them to
affect the estimates only on a short term basis. Therefore, the
KEST estimates are unbiased in the long term.

The estimates from the channel estimator at time instant k
are combined in the vector zk. Within this paper, we use ToA
and AoA estimates. They are used as measurement inputs in
the second step of Channel-SLAM to estimate the state of the
user and the states of the transmitters. The user state consists



of their position pu,k and velocity vu,k. At time instant k, the
user state vector xu,k is

xu,k =
[
pTu,k v

T
u,k

]T
= [xk yk vx,k vy,k]

T
. (2)

As transmitters are considered static, their state at time
instant k comprises a location pTX,k and a delay offset
τ0,k. A delay offset can be interpreted as clock offset or
synchronization bias towards the user. Channel-SLAM covers
both physical and virtual transmitters by the same model and
does therefore not require differentiating between the LoS
component and MPCs of a received signal: each received
signal component is regarded as a LoS component from a
transmitter. The state of the jth transmitter at time instant k is

x<j>TX,k =
[
p<j>TX,k

T
τ<j>0,k

]T
=
[
x<j>TX,k y<j>TX,k τ<j>0,k

]T
. (3)

The full state vector is

xk =
[
xu,k

T x<1>
TX,k

T
. . . x

<NTX,k>
TX,k

T
]T

=
[
xu,k

T xTX,k
T
]T
,

(4)

where NTX,k is the number of transmitters detected at time
instant k.

In Channel-SLAM, the state vector in Eq. (4) is estimated
with Bayesian recursive estimation. In particular, a Rao-
Blackwellized particle filter [12], [13] is implemented [7].
Generally, in a particle filter, the involved probability density
functions (PDFs) in Bayesian recursive estimation are repre-
sented by a set of samples in the state space. These samples
are called particles, and each of the particles is assigned a
weight. A particle can be regarded as one hypothesis for the
true state. The structure of the Rao-Blackwellized particle filter
in Channel-SLAM is such that a user particle filter estimates
the user state. The states of the transmitters are estimated with
a particle filter for each user particle independently from the
other user particles. Mathematically, the posterior PDF for the
history of the state vector x0:k from time instants zero to k is
factorized by

p (x0:k|zR,1:k,u1:k) = p (xTX,0:k,xu,0:k|zR,1:k,u1:k)

= p (xu,0:k|zR,1:k,u1:k)

× p (xTX,0:k|xu,0:k, zR,1:k) ,

(5)

where u1:k is a control input, zR,1:k are the measurements,
i.e., estimates from the channel estimator, for time instants
one to k. With the control input, additional sensors such as
from a gyroscope may be incorporated. The first factor in the
second line of Eq. (5) is the posterior PDF of the user state.
Following the idea of the particle filter, it is represented by

p (xu,0:k|z1:k,u1:k) =

Np∑
i=1

w<i>0:k δ
(
xu,0:k − x<i>u,0:k

)
, (6)

with x<i>u,0:k being a particle in the user particle filter, also called
user particle, w<i>0:k its associated weight, and Np the number
of user particles.

The states of the transmitters can be estimated indepen-
dently from each other for each user particle, as the estimates
from KEST are assumed uncorrelated. Hence, for each particle
in the in user particle filter, there is one particle filter for each
transmitter estimating the transmitter’s state. The posterior
PDF of the history x<i,j>TX,0:k of the jth transmitter’s state for
the ith user particle from time instants zero to k is factorized
by

p
(
x<i>TX,0:k|x

<i>
u,0:k, zR,1:k

)
=

NTX,k∏
j=1

p
(
x<i,j>TX,0:k|x

<i>
u,0:k, zR,1:k

)
,

(7)
where the number of transmitters NTX,k corresponds to the
number of signal components detected by the channel esti-
mator. The `th of the Np,Tx particles of the jth transmitter of
the ith user particle is denoted by x<i,j,`>TX,0:k , and its associated
weight by w<i,j,`>0:k . The posterior PDF of the jth transmitter
for the ith user particle is represented by

p
(
x<i,j>TX,0:k|z1:k,x

<i>
u,0:k

)
=

Np,Tx∑
`=1

w<i,j,`>0:k δ
(
x<i,j>TX,0:k − x

<i,j,`>
TX,0:k

)
.

(8)

The number of transmitter particles Np,Tx may differ for
different time instants, user particles and transmitters. For
the sake of notational brevity, the corresponding indices are
omitted in Np,Tx.

Tracking the signal components’ parameters with filters as
done in KEST inherently yields associations of the signal
components from one time instant to another. Following the
idea of multipath assisted positioning, it yields associations
between signals and transmitters at consecutive time steps.

III. VISIBILITY MAPPING

As a user travels through a scenario, a LoS signal from a
transmitter may be received or not. If such a signal is received,
we say that a transmitter is visible.

We propose to store information on transmitter visibilities
in a location-based hexagonal grid map. The two-dimensional
space is divided into adjoining hexagons. In one hexagon, a
transmitter may be visible at one time, and not visible another
time. There are multiple possible reasons for that. The first rea-
son corresponds to a discretization error. A transmitter might
be visible from one part of the hexagon, but not from another
part, due to the geometry of the environment. The larger the
size of the hexagon, the more likely is such a case. The second
reason stems from the channel estimator in the first step of
Channel-SLAM. It might track a signal component one time
and not track it another time for the same or a very close user
location as before, although the corresponding transmitter is in
LoS. Such a behavior may occur if the received power of the
signal component is near the receiver sensitivity, resulting in a
missed detection. In addition, two or more signal components
may be close to each other in terms of tracked parameters,
such as ToA or AoA. Thus, they may arrive at the receiver



from similar angles almost simultaneously. In such a case,
the channel estimator may mistake the two signal components
for only one, as it is not able to resolve them. The smaller
the signal bandwidth, the more likely is such a case. A third
reason for changing visibilities of transmitters is a change in
the environment. Objects or people may temporarily block or
shadow signal components, or cause additional MPCs. Further
reasons include a wrong data association or a biased user
position estimate.

To map information on visibilities, the user records at every
time instant k which transmitters are visible and which are not
from the hexagon they are currently in. If the jth transmitter is
visible in the hth hexagon, at time instant k, the counter C<j>h,k

is increased by one. Otherwise, the counter C̄<j>h,k is increased
by one. The counters C<j>h,k and C̄<j>h,k store how often a
transmitter has been visible or not within a hexagon from
time instants zero to k. The information whether a transmitter
is visible or not at a time instant is obtained from the outer
stage of the KEST estimator.

If only one such observation is available in a hexagon, say
the user has been in the hexagon only once when a certain set
of transmitters was visible, the estimate that these transmitters
are always visible purely based on that one observation would
be presumptuously confident. Therefore, we model the belief
that a transmitter is visible from within a hexagon with a
Beta distribution. A Beta distribution can incorporate prior
knowledge to prevent overconfident estimates on probabilities
if only few observations and thus unreliable information are
available. If no prior knowledge on visibilities is available,
as is in general the case, the prior visibility probabilities are
assumed uniform. The PDF of a Beta function with parameters
p and q is defined as

B (x; p, q) =
1

B (p, q)
xp(1− x)q (9)

for x the interval (0, 1), and B (x; p, q) = 0 otherwise. The
function B (p, q) is the Beta function [14].

Observations on the visibilities of a transmitter can be
regarded as the realization of a binomially distributed random
variable. The Beta distribution is the conjugate prior of the
binomial distribution. Hence, over time, as more and more
observations on the visibility of a transmitter are made in a
hexagon, the parameters of the Beta distribution are updated
by these observations, and the expectation value of the belief
that a transmitter is visible or not gets closer to the actual
probability. The parameters of the Beta distribution represent-
ing the belief at time instant k that the jth transmitter in the
hth hexagon is visible are

p<j>h = C<j>h,k + ν<j>h and

q<j>h = C̄<j>h,k + ν̄<j>h .
(10)

With the scalars ν<j>h and ν̄<j>h , prior knowledge on the trans-
mitter visibility may be incorporated. For notational brevity,
the time index k is omitted in p<j>h and q<j>h .

Tx
0

1

0.5

Fig. 2. The hexagonal visibility map is exemplarily plotted for the transmitter
Tx. The black lines are walls that reflect the transmit signal. The colors of
the hexagons indicate the probabilities that a transmitter is visible for the user
from an arbitrary point within the hexagon.

The actual probability that the jth transmitter is visible from
an arbitrary location in hexagon h is in general unknown.
We denote the random variable for this probability by V <j>

h .
The set of the random variables for the N a

TX,k transmitters’
visibilities is denoted by

M =

{{
V <1>
h , . . . ,V

<N a
TX,k>

h

}h=1,...,NH
}
, (11)

which we call a visibility map. The number N a
TX,k is the overall

number of transmitters that have been detected by the channel
estimator throughout the user trajectory up to time instant
k. Likewise, the overall number of hexagons that a user has
visited is denoted by NH . Although this number of hexagons
may grow over time, the time index in NH is omitted.

Fig. 2 illustrates a hexagonal visibility map for one trans-
mitter Tx. In the scenario, there are four black lines that
represent walls reflecting the transmit signal. The color a
hexagon is filled represents the probability that the transmitter
Tx is visible from an arbitrary position within this hexagon.
For example, in the yellow hexagons, this probability of
the transmitter being visible is 0.5, corresponding to the
probability that the user is in front or behind a wall.

IV. MAP MATCHING

When maps are exchanged among users, the unknown rela-
tive rotation β and translation x̄ and ȳ between the coordinate
systems of the map and the user receiving the map need to
be estimated. A map consists of the estimates, i.e., PDFs, of
transmitter states and the visibility map as described in Sec-
tion III. We denote a map that is transmitted by the term prior
map, and the transmitter states and visibilities estimated by the
user receiving the prior map by user map. In addition to the
transformation parameters, the correspondences of transmitters
in the user map and the prior map need to be found. Estimating
such correspondences in and the transformation parameters
between two maps is denoted by the term map matching.

A. Map Matching Based on Transmitter Locations

We have previously presented a map matching algorithm
that is based purely on the transmitter’s locations in the two
maps [10], which is briefly summarized in the following.



The absolute locations of transmitters in the two maps
have no informative value without the rotation and translation
parameters relating the coordinate systems of the user and the
prior map. However, the relative distances among transmitters
may be used to obtain a map match. Given a set of NT
transmitters in the prior map and a set of NT transmitters
in the user map, the best correspondences among the trans-
mitters are obtained in a least squares (LS) sense regarding
these relative distances. Once the correspondences are known,
the transformation parameters can be calculated with an LS
approach.

Based on the underlying user trajectories of the user map
and the prior map, though, certain transmitters do have an
actual correspondence in the respective other map, and some
others do not. The above two steps would therefore have to
be performed for all possible subsets of NT transmitters in
the two maps. Instead, we apply a variant of the RANSAC
algorithm. In each iteration of our adapted RANSAC, NT
transmitters from both maps are chosen randomly, where NT
is the minimum number of transmitters to calculate a unique
map match solution. For the one rotation and two translation
parameters, NT = 3. Based on these transmitters, the best
map match is calculated based on LS. With this map match
and the corresponding transformation parameters, further cor-
respondences of transmitters are sought. In particular, the prior
map is transformed into the coordinate system of the user. If
the distance between a transformed transmitter in the prior
map and a transmitter in the user map is below a threshold δd,
this pair is added to the set of correspondences.

The RANSAC algorithm chooses a set of NT transmitters
repeatedly for a number of times. The best map match is
chosen based on an error term EC for each possible map
match returned by RANSAC. The error term includes on the
one hand the distances between corresponding transmitters in
the user and the prior map. On the other hand, the number
of correspondences is included as well to account for the fact
that the more correspondences are found, the more reliable the
map match is considered.

B. Map Matching with Visibilities

Yet, in scenarios with certain geometries, ambiguities in
map matching arise, in particular if only few transmitters
can be used to find a map match. Such a case is drawn
as an example in Fig. 3. In Fig. 3 (a), the green circles
represent transmitter location estimates for a prior map, and
the red squares are estimates for transmitter locations of a
user map. Fig. 3 (b) shows a possible map match where a
correspondence for three transmitter pairs was found. The
dashed red circles around the user map transmitters are of
radius δd. If a transmitter from the prior map falls within such
a circle after the transformation, a correspondence between
the two transmitter has been found. In Fig. 3 (c), only two
correspondences are found, whereas in Fig. 3 (d), its again
three transmitter correspondences. There is now an ambiguity
between the map matching solutions in Fig. 3 (b) and Fig. 3
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Fig. 3. In (a), the green circles represent are transmitter locations from the
prior map, and the red squares transmitter locations from the user map. In
(b)-(d), different map matching solutions with three (b), two (c), and again
three (d) correspondences are found.

(d), which result in a similar map matching error but are very
different in terms of rotation and translation parameters.

The problem of map matching purely based on transmitter
locations is a lack of diversity among the transmitters. Thus,
we propose to increase their diversity by including visibility
maps as described in Section III in the map matching process.

The RANSAC algorithm we use for map matching returns
a number Nhyp of hypotheses for a map match. Each hypoth-
esis includes the rotation and translation parameters and the
correspondence set Cs, where s is the hypothesis index. The
correspondence set consists of tuples (ju, jp), where ju is the
index of a transmitter in the user map, and jp the index of the
corresponding transmitter in the prior map. The cardinality of
Cs is donated by NC,s. Each hypothesis comes with a map
matching error EC,s that indicates the goodness of a map
match. The error is calculated as

EC,s =
1

NC,s

∑
(ju,jp)∈Cs

‖µuju
− µ̃pjp

‖ −NC,sρrew, (12)

where µuju
is the mean of the ju

th transmitter in the user map,
and µ̃pjp

the mean of the jp
th transmitter after the rotation

and translation. The term ρrew is a reward term that rewards
hypotheses with large correspondence sets.

For map matching, only transmitters with a small enough
variance are used, since a high uncertainty about the trans-
mitter locations leads to a high uncertainty about the map
match. Hence, the Euclidean distance between the means of
the transmitter location estimates is used as a distance metric
in Eq. (12).

The sth hypothesis from RANSAC is denoted by Hs. To
decrease the computational complexity and to reject very un-
likely map matching hypotheses, we consider only hypotheses
whose error EC,s does not exceed a threshold τE.

For a given map match hypothesis, the visibility map in
the prior map needs to be transformed with the estimated
parameters into the underlying hexagonal grid of the user’s
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Fig. 4. The hexagons A, B, C and D are in the equivalent prior map, which
is in the user’s hexagonal grid. The visibility infomation from the rotated and
translated hexagon from the prior map indicated by the thick dashed lines is
taken into the hexagons of the equivalent map considering the overlapping
area of the two respective hexagons. For example, the overlapping are of the
prior map hexagon and hexagon B is drawn in blue and hatched, and covers
5/12 of an entire hexagon’s area.

visibility map. We name such a transformed map an equivalent
prior map. For the transformation, the equivalent prior map
is empty in the beginning, i.e., the visibility counters for all
transmitters in all hexagons are set to zero. Each hexagon in
the prior map is transformed with the estimated rotation and
translation parameters if the hypothesis. The visibility counters
of a transformed hexagon are added for all transmitters to the
underlying hexagons in the equivalent prior map considering
the overlapping ratios. An example is depicted in Fig. 4. A
hexagon from the prior map indicated by the thick dashed
edges is rotated and translated. This transformed hexagon lies
now on top of the equivalent prior map that is aligned with the
hexagonal grid of the user’s visibility map. The overlapping
area of the transformed hexagon with hexagon B from the
equivalent hexagonal map, drawn in dark blue and hatched,
is 5/12 of the total area of one hexagon. Thus, the visibility
counters of hexagon B are increased by the visibility counters
of the transformed hexagon multiplied by 5/12. Likewise, the
counters of the hexagons A, C, and D in the equivalent prior
map are increased. The above procedure is performed for every
hexagon in the prior map, such that the equivalent prior map
holds the information on the original prior map in the user’s
hexagonal grid. While the hexagons in the user and the prior
map are of the same size in Fig. 4, visibility maps of different
hexagon sizes can be processed in the same way. The set of
indices of hexagons that are in both the user map and the
equivalent prior map for the sth hypothesis is denoted by Ho,s.

Once the Nhyp equivalent prior maps are obtained, a likeli-
hood ratio test [15] on the hypotheses is performed to choose
the best hypothesis Ĥ for the map match. It is chosen as

Ĥ = arg max
Hs,s=1,...,Nhyp

p (Hs|M)

= arg max
Hs,s=1,...,Nhyp

p (M |Hs) p (Hs) ,
(13)

where the random variable M is the user visibility map. In
the second line of Eq. (13), we have used Bayes’s theorem,
allowing to incorporate prior knowledge of the hypotheses.
The prior knowledge is obtained from the map matching error

EC,s for the sth hypothesis as

p (Hs) =

Nhyp∑̃
s=1

E+
C,s̃

E+
C,s

, (14)

where E+
C,s = max{EC,s, 1 m}. The best hypothesis from

Eq. (13) can thus be written as

Ĥ = arg max
Hs,s=1,...,Nhyp

p (M |Hs)

E+
C,s

. (15)

The second term in the argument on the right hand side of
Eq. (14) is calculated following Eq. (9) as

p (M |Hs) =
∏

(ju,jp)∈Cs

∏
h∈Ho,s

1

B
(
p<ju>
h , q<ju>

h

)
× V <jp>

h

(p<ju>
h −1)

(1− V <jp>
h )

(q<ju>
h −1)

,

(16)

where V <jp>
h is the expectation value of the Beta distribution

regarding the visibility of the jp
th transmitter in the hth

hexagon in the equivalent prior map. The parameters p<ju>
h

and q<ju>
h are obtained from Eq. (10) referring to the user

map. The entire map matching algorithm is summarized in
Algorithm 1.

Algorithm 1: Map matching algorithm overview.
Input: user map, prior map
Output: error, parameters and transmitter

correspondences for best map match
1 get map matching hypotheses with RANSAC [10];
2 foreach hypothesis Hs do
3 calculate the error EC,s with Eq. (12);
4 transform the prior map to the equivalent prior

map;
5 calculate the likelihood factor with Eq. (16);
6 choose the best the hypothesis with Eq. (15);

For numerical stability, the arguments in Eq. (15) and the
factors in Eq. (16) are calculated in logarithmic domain.

Once a map match has been found, the information in the
transformed prior map can be used to improve the positioning
performance in Channel-SLAM by establishing associations
between signal components and transmitters in the prior map
as shown in [16].

V. SIMULATIONS

A. Simulation Scenario

To evaluate our approach, we performed simulations in an
indoor scenario depicted in Fig. 5, showing the top view
of a shopping mall with one physical transmitter depicted
by the red triangle labeled Tx. The transmit signal from
the physical transmitter is reflected at the thick black lines
representing walls, and scattered at the black dots representing
point scatterers. There are six user trajectories in the scenario
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Fig. 5. Overview of the indoor simulation scenario with one physical
transmitter labeled Tx. The black lines represent walls and the black dots point
scatterers. The different user tracks are drawn with different colors, where the
ith trajectory’s start and end points are labeled Si and Ei, respectively.

plotted in different colors. The start and end points of the ith

trajectory are labeled Si and Ei, respectively.
The physical transmitter continuously transmits a signal

of rectangular shape in frequency domain with a bandwidth
of 100 MHz. It is reflected and scattered in the environment
and arrives at the user as a superposition of different signal
components. In our simulations, single and double reflections
and/or scatterings are taken into account. The average signal-
to-noise ratios (SNRs) for the six tracks are 13.1 dB, 14.9 dB,
10.4 dB, 10.1 dB, 15.3 dB and 7.5 dB, respectively.

A user traveling with a constant speed of 1 m/s takes a snap-
shot of the received signal every 100 ms. In our simulations,
we create the true channel impulse response (CIR) at each user
position with ray-tracing, limit it to a bandwidth of 100 MHz
and add white Gaussian noise (WGN) to obtain a snapshot
of the received signal. The recorded snapshot is then used for
Channel-SLAM by a user. We assume that a user is equipped
with an antenna array and uses ToA and AoA estimates.

The side length of the hexagons in a visibility map is set
to 2 m.

The users do not know the locations of the physical trans-
mitter, the walls and scatterers, or the virtual transmitters.
Their starting location is unknown as well, and they define
their local coordinate systems arbitrarily.

B. Evaluations

We define the first track depicted in dark blue with start
point S1 and end point E1 as reference track. A user travels
along the reference track doing Channel-SLAM without a
prior map. Afterward, the user hands their estimated map
of transmitter states and visibilities as a prior map to the
other five users who then travel along the five other tracks.
Walking along their track, each user tries to find a map match
with and without using visibility information. If no visibility
information is used, the best map match is calculated as in
[10] purely based on transmitter locations following Eq. (12).

TABLE I
MAP MATCHING RESULTS WITH VISIBILITY INFORMATION

better worse same sum

Track 2 65 8 527 600
Track 3 45 8 547 600
Track 4 48 15 537 600
Track 5 32 7 561 600
Track 6 109 11 480 600
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Fig. 6. For each track, the normalized numbers of occurrences are plotted
for the three cases of a better, worse, or the same map match with using
visibility maps.

To evaluate our approach, all true virtual transmitter lo-
cations of order one and two are calculated based on the
scenario. For each user, the true and estimated transforma-
tion parameters are compared. For map matching with and
without exploiting the visibility map, we regard three possible
outcomes. In the first case, the transformation parameters are
the same. In the second case, they are in some sense better,
and in the third case they are worse.

The first case means that using the visibility map does not
influence the map matching outcome. In the second case, the
visibility map has indeed improved the map match due to the
likelihood ratio test. In the third case, this likelihood ratio test
decreases the goodness of the map match.

The locations of the transmitters in the two spatial di-
mensions have a certain mean and a covariance, which we
use to define a Gaussian distribution. This distribution of
the transmitter locations after the transformation with the
true parameters serves as the reference distribution. If the
parameters of two map matches are different with and without
using visibility maps, the map match with a smaller Kull-
back–Leibler divergence (KLD) between the corresponding
Gaussian distribution and the reference distribution is consid-
ered the better one.

We performed 600 runs of Channel-SLAM with map match-
ing for every of the five tracks. The results in terms of whether
a map match was the same, better or worse when using
visibility maps or not are given in Table I, and the relative
occurrences for the three cases are plotted in Fig. 6.

The sixth track drawn in light blue in Fig. 5 is never close
to the region where the reference track makes a loop near the
physical transmitter. Thus, the set of virtual transmitters that



both the sixth user and the user going along the reference track
observe is relatively small, and map matching ambiguities are
more likely. This observation is in accordance with Fig. 6,
where we see that the map matching results are influenced
by visibility information for the sixth track more than for the
other tracks.

C. Discussion

As can be seen in Fig. 5, the overlaps of the reference track
with the other tracks are relatively small. Hence, the contri-
bution of visibility information for map matching is limited,
since relatively few hexagons are taken into account. Nev-
ertheless, we observe in the simulation data, that when map
matching ambiguities occur, i.e., when different transformation
parameters seem likely given the locations of transmitters,
visibility information can help resolve these ambiguities. In
the long run, we want users to share transmitter maps in a
crowdsourcing scheme. Then, a prior map covers a larger area
and more hexagons in the user map and the prior map overlap.
We expect more improvement in the robustness in the map
matching results in terms of less cases where the information
on visibility of transmitters leads to a worse map match.

In addition, visibility maps considerably improve the posi-
tioning performance when they are used for data association as
shown in [17]. Thus, the memory and transmission overhead
of visibility maps in addition to transmitter state information
is justified, as visibility maps can be used for both data
association and map matching.

Map matching can be computationally expensive if there
are many transmitters in the user and in the prior map, as
typically a high number of different map matching hypotheses
are found and need to be tested regarding their likelihood.
However, the user map, i.e., the state and visibility estimates
for the transmitters estimated by the user, is not expected to
change a lot from one time instant to another. Thus, the result
of map matching is likely to stay the same during such a
short time interval, and it does not need to be performed at
every time instant. In our implementations, a new map match is
calculated after every meter the user has traveled, or when the
uncertainty about a transmitter in the user map has decreased
considerably in between. In addition, map matching can be
performed in parallel to the actual Channel-SLAM algorithm.

VI. CONCLUSION

A robust map matching scheme is a key enabler for coop-
erative Channel-SLAM. Since virtual transmitters arise only
due to reflections and scattering in the environment, they lack
diversity, which makes map matching a challenging problem,
in particular in situations when only few transmitters have a
correspondence in the respective other map.

Within this paper, we have investigated how mapping vis-
ibilities can improve the robustness and accuracy of map
matching in Channel-SLAM. We have derived a map match-
ing algorithm incorporating both the estimated locations of
transmitters in the user map and the prior map, and the corre-
sponding visibility maps. The novelty of our new algorithm is

to exploit visibilities of transmitters to increase the by nature
limited diversity of in particular virtual transmitters. We have
increased the robustness in our map matching algorithm if
a user had received a map from only one reference user. In
scenarios where many more user contribute to a map with
more overlaps of the user tracks, we expect the robustness to
increase even more.
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