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ABSTRACT 

In this paper, we introduce a blind source separation (BSS) method as a novel approach to suppress range ambiguities in 

Synthetic Aperture Radar (SAR). The method is described and applied to a SAR image with simulated range ambiguity. 

Statistical analysis of the input image data is done to determine suitability of BSS implementation. The result is 

analyzed and there is a significant improvement in recovering the original image. The paper shows that the BSS method 

is promising enough to be further extended to more realistic range ambiguous SAR scenario. 

Index Terms – Range Ambiguities, Blind Source Separation, Multiple Elevation Beams 

 

1. INTRODUCTION 

A major challenge in the implementation of High Resolution Wide Swath (HRWS) Synthetic Aperture Radar (SAR) is 

the suppression of the range ambiguities. It is due to tradeoff between the desired wide swath on one side and the high 

PRF required to avoid azimuth ambiguity on the other. Several approaches have been developed in the past years such 

as SCORE [1] [2], Azimuth Phase Coding [3] [4] , Staggered SAR [1] [5] [6] and shown to be useful to suppress or 

mitigate the effect of range ambiguities.  The communality between these approaches is that they require a priori 

information about the topography [7] and are not scene-adaptive in the sense that they do not rely on measured 

backscatter statistics in eliminating range ambiguities. The complexity of getting accurate a priori information of 

topography motivates search of an alternative method that does not rely on information on topography.  

Blind source separation (BSS) is a technique of separating mixed signals back to its original signal without knowing the 

characteristic of original signal and how they are mixed [8]. This motivates introducing a new technique that requires no 

information about the topography. To begin with, it has to be made sure that the problem of range ambiguity in 

multichannel SAR is similar to the problem of BSS. Next, it is important to investigate the statistics of the SAR image, 

because the method relies on the assumption that the source signals are non-Gaussian and independent from one another 

[9]. In reality, the measured backscattered signals will neither pure Gaussian nor pure non-Gaussian, different scene will 

also have different statistics, so the successful implementation in one scene might be not working in another scene. 

Hence, the thorough analysis the statistic in different domain (range compressed, focused) is needed, to propose where 

the BSS is best implemented. 

This method will be performed a posteriori on-ground using multichannel Scan-on-Receive (SCORE) [1] [2] data as 

input. The approach followed here combines on-board SCORE with on-ground BSS [7]; this maintains efficiency of 

data transferred to the ground, while enabling more robust range ambiguity suppression because topography 

information is no longer required. 

 

2. PROBLEM PHENOMENON 

 

Fig. 1. (a) SAR Multiple Elevations Beams (b) Cocktail party problem where several listeners listen to several 

talkers that talk concurrently 

Multiple elevations beams are created from multichannel SAR in order to obtain wider swath and maintain high 

resolution, known as HRWS, as illustrated in Fig. 1(a). The number of elevation beams is equivalent to the number of 

sub-swath illuminated. The range ambiguities will arise from backscatter signals that simultaneously come from 



different sub-swaths; due to sidelobe, significant topography height difference, etc. and it will be added to the desired 

signal with a certain complex weighting. This phenomenon is similar to the cocktail party problem in Fig. 1(b), a 

classical example of BSS where a number of people talk simultaneously and a same number of microphones listen to 

the mixed voice. BSS is used to isolate the voice of single person. 

The goal of BSS (separating mixed voice to obtain the desired one in cocktail party problem) is similar to removing 

range ambiguity by separating mixed backscatter from several areas and recovering only the desired signal. This can be 

written in equation (1). 

𝑋 = 𝐴𝑆 

[
𝑥1(𝑡)
⋮

𝑥𝑁(𝑡)
] = [

𝑎11 … 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑁1 … 𝑎𝑁𝑁
] . [

𝑠1(𝑡)
⋮

𝑠𝑁(𝑡)
] 

   (1)

Where 𝑥𝑛(𝑡) denotes (mixed) observed signals, 𝑎𝑖𝑗  is complex mixing factors, and 𝑠𝑛(𝑡) are original signals that 

contains no ambiguity.  

𝑆̂ = 𝐵𝑋    (2)

The task is to recover the original signal, i.e. finding the unmixing matrix 𝐵 as written in equation (2).  

 

3. BLIND SOURCE SEPARATION – THE METHOD 

Independent Component Analysis (ICA) is the most used technique in BSS that allows separation of original signal 

from complex mixture of signals based on 2 assumptions: the original signals need to be non-Gaussian and independent 

from each other. There are 3 processing steps of ICA as depicted in Fig. 2. 

 

 

Fig. 2. The graphical illustration of full processing of ICA. Red and black arrow represent vector of the principal 

component of the joint distribution of the input data  

3.1. Pre-Processing 

Pre-processing consist of centering and whitening. Centering is a step to center the input by subtracting the mean of all 

signals. The main strategy of ICA is to decompose matrix 𝐵 in equation (2) into smaller operations and solve it one by 

one. According to Singular Value Decomposition (SVD) [10], any matrix can be decomposed into smaller operations: a 

rotation U𝐻, a stretch along axis Σ−1, and a second rotation V as shown in Fig. 2. It can be written that: 

 

 𝐵 = U𝐻Σ−1V    (3)
 

Whitening consists of decorrelation and normalization. Decorrelation is a step to rotate the observed signals 𝑋 to align 

the eigenvectors of the covariance matrix 𝑋 along the cartesian basis by multiplying with a rotation matrix 𝑈𝐻, this step 

has familiar name: Principal Component Analysis (PCA). The eigenvectors of the covariance of 𝑋 shows the principal 

components of 𝑋. Projecting 𝑋 onto its principal components removes linear correlations and provides a strategy for 

dimensional reduction. Normalization is aimed to normalize the variance along all dimensions by multiplying by a 

scaling matrix Σ−1. A more detailed explanation on how to obtain 𝑈𝐻 and Σ−1 can be found in  [9] [10].  

 

3.2.  Main Processing 

After pre-processing, the degree of freedom is reduced from (𝑁2 − 1) to 𝑁(𝑁 − 1) 2⁄  where 𝑁 equals to the number of 

signals. Main processing is a step to find rotation matrix 𝑉 that maximize the independence between the signals. From 

the central limit theorem, it can be derived that a sum of two independent random variables tends to be more Gaussian 

than the original. This implies that independence can be obtained by maximizing non-Gaussianity. 

The algorithm used here is Joint Approximation Diagonalization of Eigen-matrices (JADE). This algorithm works by 

exploiting the 4
th

 order moment (cumulant) of the signals where iterative process is used to find the rotation matrix 𝑉 

that diagonalize set of cumulant’s eigenpairs; maximizes auto-cumulant and minimizes cross-cumulant eigen-matrices 

[11] [12]. 

 



3.3.  Post-Processing 

The post processing step is required to recover scaling and permutation uncertainties. Otherwise, equation (1) will not 

have unique solutions because there are 2 unknowns; 𝐴 and 𝑆. In order to do that, in this case it is assumed that 
{𝑎𝑥𝑥|1 ≤ 𝑥 ≤ 𝑁} = 1, this is supposedly a valid assumptions because a mixed signal is consist of an original signal and 

several ambiguity that have lower coefficient. 

 

4. SIMULATION APPROACH AND STATISTICS EVALUATION OF INPUT DATA 

In this section, a SAR image data with range ambiguity is simulated and their statistics are evaluated to know how 

independent and non-Gaussian the input data is. This is essential because the performance of the method is heavily 

affected by how good the requirements are fulfilled  

 

 

Fig. 3. (a) Range Ambiguity Simulation Design (b) Original Range Compressed (c) Original Focused (d) 

Normalized Ambiguous Range Compressed (e) Normalized Ambiguous Focused 

As shown in Fig. 3(a), each range ambiguous (observed) signal in multichannel SAR is simulated as a weighted sum of 

the original signal and arbitrary weighted unwanted signals coming from different ranges as given in (4) 

 

[
𝑥𝑘(𝑡, 𝜏)

𝑥𝑙(𝑡, 𝜏)
] = [

𝑤11 𝑤12

𝑤21 𝑤22
] . [

𝑠𝑘(𝑡, 𝜏)

𝑠𝑙(𝑡, 𝜏)
] 

   (4)

 

The original image is obtained from 𝑁𝑏𝑒𝑎𝑚 = 2 elevation beams: 𝑠𝑘(𝑡, 𝜏) and 𝑠𝑙(𝑡, 𝜏) where 0 ≤ 𝑘 < 𝑁/2 and 𝑁/2 ≤
𝑙 < 𝑁, 𝑁 is range sample. The range ambiguity as implied in equation (4) is generated by circularly shifting the original 

range compressed image and multiplying by a weighted factor 𝑊; this is just an arbitrary number to show the existence 

of range ambiguity as shown in Fig. 3(d) and 3(e). In this simulation, 𝑊 = [
𝑤11 𝑤12

𝑤21 𝑤22
] = [

1 0.6 + 0.6𝑗
0.6 + 0.6𝑗 1

] 

Even though range ambiguity is introduced in the range compressed image, the statistical analysis will cover both range 

compressed and focused version of the range ambiguous image to explore where the method can be better implemented. 

Independence is measured by examining the joint probability density functions (pdf) of the original signals. The 

independent signals, either Gaussian or non-Gaussian, will have symmetric distribution, while dependent signals have 

skewed distribution, as shown in the reference column Fig. 4. The range compressed and original signals evaluated as 

shown in Fig. 4 takes a signal from range 𝑘 = 50 and 𝑙 = 306  that is mixed and becomes range ambiguity to one 

another. 

While independence can be determined from joint pdf, the gaussianity needs to be further investigated by measuring the 

excess kurtosis [13]. Excess kurtosis for Gaussian signal is 0 and beyond that value is considered non-Gaussian (super-

Gaussian or sub-Gaussian). As shown in Fig. 5, kurtosis of original signals vary highly along the swath; some ranges 

are extremely non-Gaussian, some ranges tend to be Gaussian. This condition creates performance gaps for the method. 

Besides that, according to Fig. 4, the original signals are not completely symmetric (independence). Therefore, it is a 

quite challenging condition even though in general the independence and non-Gaussianity requirements are relatively 

fulfilled. 
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Fig. 4. Joint probability density (pdf) function of 2 signals in range 50 and 306 
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Fig. 5. Kurtosis of SAR Image 

 

5. RESULT AND DISCUSSION 

The method is applied to the range compressed and focused image as shown in Fig. 6(a). The Mean Square Error 

(MSE) and Range-Ambiguity-to-Signal Ratio (RASR) are evaluated as shown in Fig. 6(b)-(e) and shows good 

performance in both range compressed and focused image. BSS has better performance in the focused image compare 

to the range compressed image, this due to the non-Gaussianity that is higher in focused image rather than range 

compressed image. However, in some ranges, the method is not performing well because as discussed in previous 

section, the independence and non-Gaussianity requirement is not ideally fulfilled.  

The performance is also worse in this condition; the original signal is only slightly non-Gaussian while the range 

ambiguities are highly non-Gaussian and the magnitude of range ambiguities is high enough compare to the original 



signal. In that condition, the general rule (derived from the central limit theorem explained in section 3) where the range 

ambiguous signal is more Gaussian than the original signal is no longer true. Thus, the method will falsely detect the 

range ambiguity as the original one and vice versa 

 

Fig. 6: BSS implemented in different domain (a) left: range compressed, right: focused image. Evaluation of 

MSE in (b) range compressed and (d) focused image. Evaluation of RASR in (c) range compressed and (e) 

focused image 

 

6. SUMMARY AND FUTURE WORKS 

As of now, according to the statistics and early result presented, the method seems promising enough to be further 

extended to a more realistic scenario. However, this works is still not complete as it doesn’t take into account the noise, 

range cell migration effect, and contains only two elevation beams. It also becomes more complicated when considering 

range ambiguity that is extended in azimuth [7]. In the future, those considerations will take into account and will be 

presented in follow on paper.  
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