

THE ECO-COMPASS EU-CHINA PROJECT

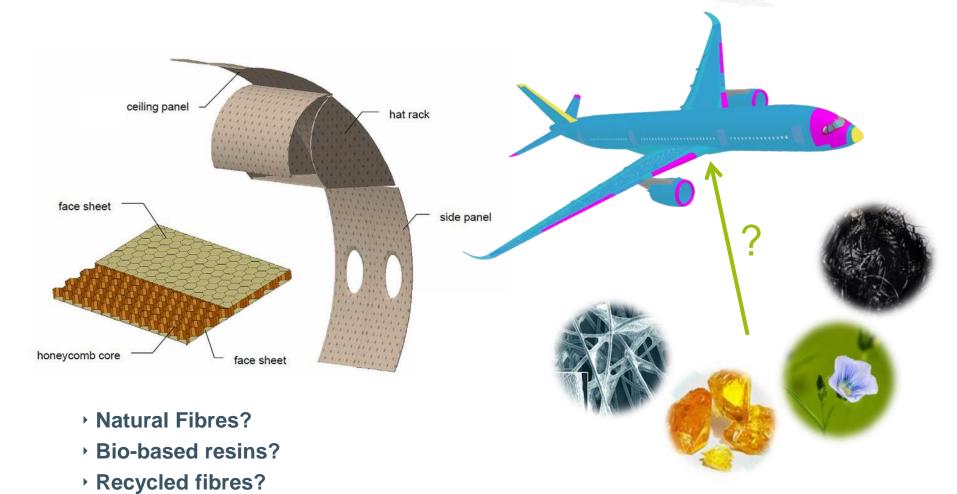
Barcelona, June 2019

EMUS 2019

Jens Bachmann* (DLR)

YI Xiaosu* (AVIC BIAM)

*) Coordinators of the ECO-COMPASS project


This project has received funding from:

- The European Union's Horizon 2020 research and innovation programme under grant agreement No 690638
- The Ministry for Industry and Information of the People's Republic of China under grant agreement No [2016]92

Background

Multifunction?

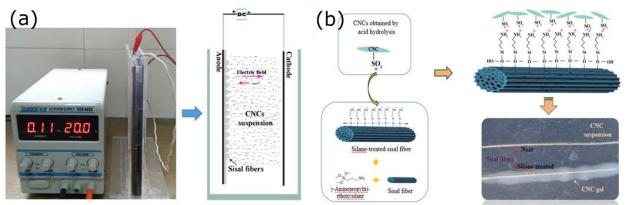
ECO-COMPASS

Ecological and Multifunctional Composites for Application in Aircraft Interior and Secondary Structures

- Cooperation of Chinese and European partners
- +2016 2019
- Identification of applications for eco- and multifunctional composites
- Development, characterization and simulation of eco-materials to give a broad overview of the possibilities in aviation with leverage to other transport sectors like automotive and railway.
- Application / Demonstrators
- Life Cycle Assessment (LCA)

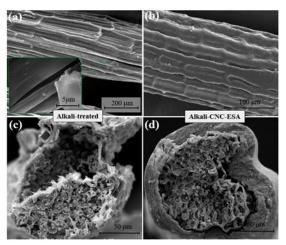
ECO-COMPASS

www.ECO-COMPASS.eu

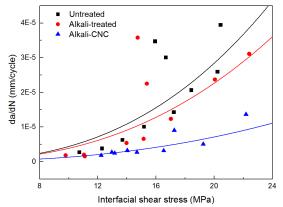


ECO-COMPASS RESULTS

EU & China

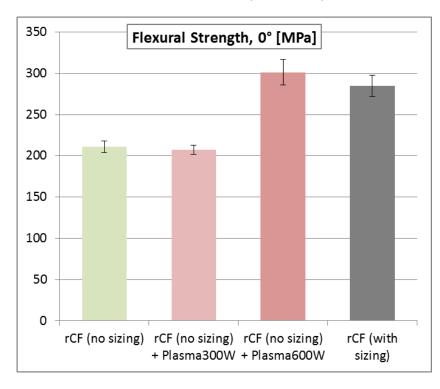


Improvement of fibre properties

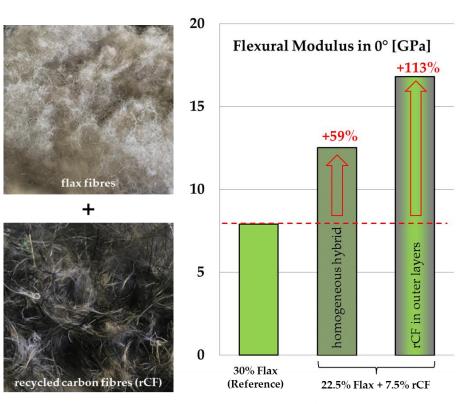


Modification of sisal fiber with CNC by (a) electrophoresis, (b) electrostatic adsorption

Treatment	Diameter (μm)	Tensile strength (MPa)	Young's Modulus (GPa)
Untreated	173.3 (31)	529.9 (102)	13.6 (2.9)
CNC-treated	175.3 (32)	511.5(97)	14.4 (3.3)
Alkali-treated	142.6 (18)	692.8 (92)	18.8 (3.0)
Alkali-CNC-EPD	156.4 (23)	614.9 (73)	22.0 (3.1)
Alkali-CNC-ESA	150.2 (20)	716.6 (110)	21.0 (2.6)



dynamic interface fatigue pull-out test


Plasma treatment (rCF, flax)

Techtextil 2019 forum, TTF 9 - sustainable fibre innovations & applications: "Plasma treatment of bio-based and recycled fibres for eco-composites", R Garcia, LEITAT

750

Hybrid nonwoven (rCF, flax)



Fibre volume content

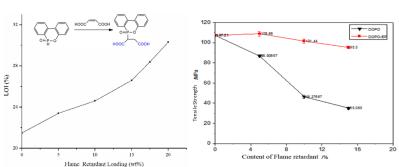
Aerospace 2018, 5(4), 107; https://doi.org/10.3390/aerospace5040107 Aerospace 2018, 5(4), 120; https://doi.org/10.3390/aerospace5040120

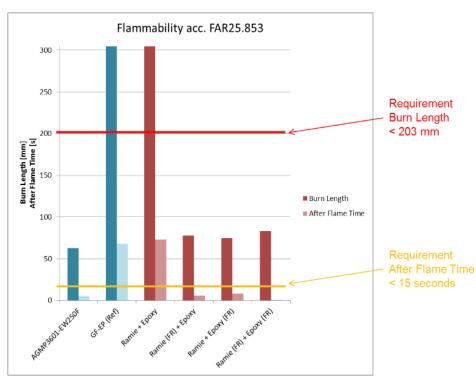
ECO-COMPASS bio-bases resins

Rosin-based curing agent epoxy resin

Property and test condit	Unit	Reference ¹	Test result	Standard		
Tensile strength warp	RT/dry	MPa	≥500	707		
Tensile modulus warp	RT/dry	GPa	65±8	62.3	ASTM D 3039	
Tensile strength weft	RT/dry	MPa	≥500	557	A51M D 3039	
Tensile modulus weft	RT/dry	GPa	65±8	60.9		
Compression strength warp	RT/dry	MPa	≥300	509		
Compression modulus Warp	RT/dry	GPa	58±8	61.2	ASTM D6641	
Compression strength Weft	RT/dry	MPa	≥280	362		
Compression modulus weft	RT/dry	GPa	57±8	57.7		
Bending strength warp	RT/dry	MPa	≥650	883	A CT3 4 D 700	
Bending modulus warp	RT/dry	GPa	58±8	56.8	ASTM D 790	
Short bean shear strength	RT/dry	MPa	≥50	55.7	ASTM D2344	
In plane shear strength	RT/dry	MPa	≥45	72.6	ASTM D3518	
In plane shear modulus	RT/dry	GPa	3.5±1	3.84		

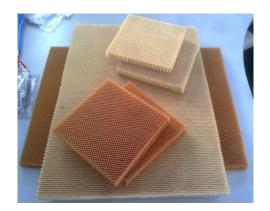
¹ A commercial product

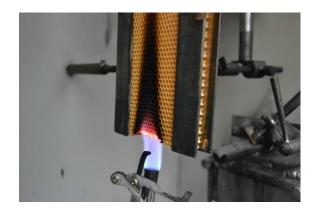




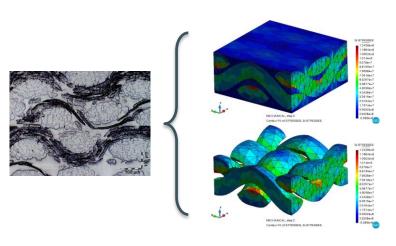
50

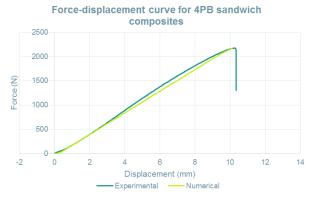
Flammability

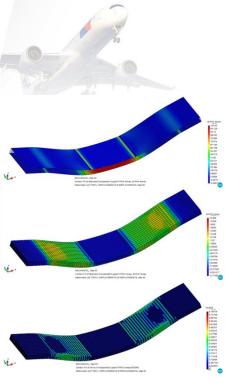


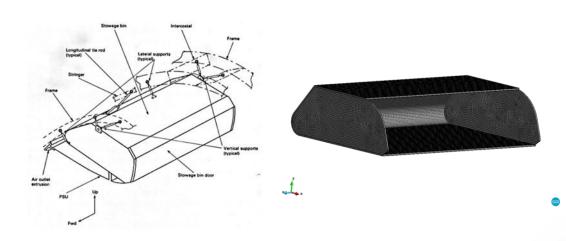


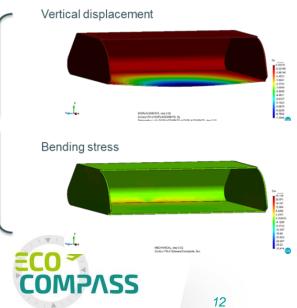
AGMH-1 "Green Honeycomb" is made of plant fiber hybrid paper containing 20% plant fibers.

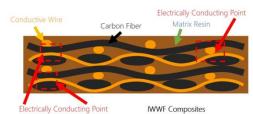

Items	Compression strength, MPa	Longitudinal shear strength, MPa	Transversal shear strength, MPa	Longitudinal shear modulus, MPa	Transversal shear modulus, MPa
Nomex, I	1.24	1.0	0.55	32.5	19.5
Nomex, II	1.64	1.07	0.58	36	19
GREEN Honeycomb	1.78	1.16	0.75	43.2	29.3



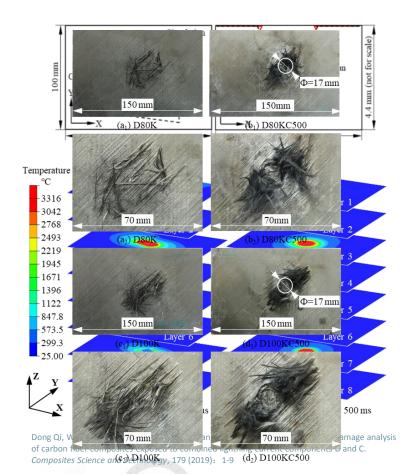




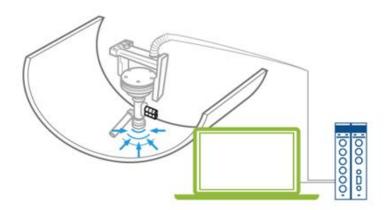


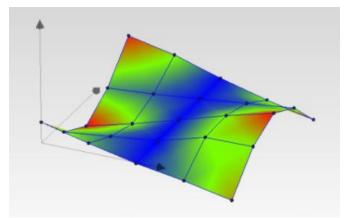


Composite Structures 131 (2015): 707-719. DOI: 10.1016/j.compstruct.2015.06.006 Composite Structures 206 (2018): 215-233. DOI: 10.1016/j.compstruct.2018.08.022

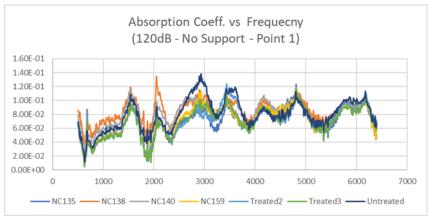


Electrical Conductivity Integration via InterWoven Wire Fabrics (IWWF)

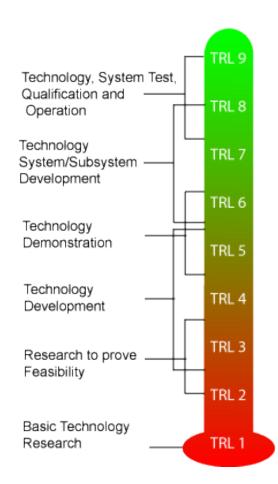



Damage analysis CFRP lightning

June 2019 13



1st Natural Frequency from Lineo UD flax prepreg at 109 Hz

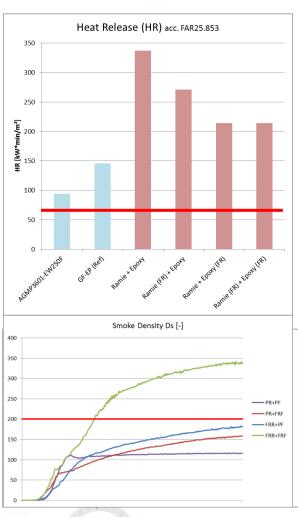


Absortion coefficient of the tested samples across the frequency range 500-6400 Hz

ECO-COMPASSTRL status

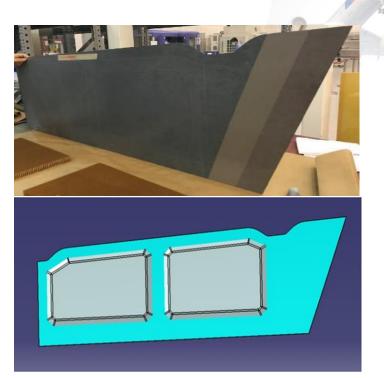
- TRL9: Actual Technology system qualified through successful mission operations.
- TRL8: Actual Technology system completed and qualified through test and demonstration.
- TRL7: Technology systems prototype demonstration in an operational environment.
- TRL6: Technology system/subsystem model or prototype demionstration in a relevant environment.
- TRL5: Technology component and/or basic technology subsystem validation in a relevant environment.
- TRL4: Technology component and/or basic technology subsystem validation in a laboratory environment.
- TRL3: Analytical and experimental critical function and/or characteristic proof-of-concept.
- TRL2: Technology concept and/or application formulated.
- TRL1: Basic principles observed and reported.

Materials Developed and Studied


Rosin-sourced curing agent EP composites and the structures

ECO-COMPASSPotential Gaps and Challenges


- Fire performance, especially the Heat Release of NFRP and (bio-based) epoxy resins.
- Long term behaviour
- Upscaling of fibre modification technologies
- Assessment of potential environmental impacts of treatments and processes to improve properties of eco-composites



ECO-COMPASS Demonstrators

Airbus

AVIC

This project has received funding from:

- The European Union's Horizon 2020 research and innovation programme under grant agreement No 690638
- The Ministry for Industry and Information of the People's Republic of China under grant agreement No [2016]92

THANK YOU FOR YOUR ATTENTION.

