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Abstract

The objective of this thesis is to build a model that can be used to char-
acterise the components of a photovoltaic power plant with the final aim
of enabling an early and accurate detection of faults and thereby reducing
the cost of maintenance and minimizing downtime of the components of
the power plant.

Historical data from a monitoring system of a PV power plant in Egypt
collected over a span of one year is the basis for building the model used in
this thesis: The LFM/MPM Model. It is built based on a combination of
the features of two different models: Loss Factor Model (LFM), utilized to
determine the normalized parameters, and the Mechanistic Performance
Model (MPM), utilized to determine the optimized fitting method, in or-
der to make it capable of accurately fitting the performance measurements
(power, voltage, current) of one component (e.g. each inverter and string)
to different inputs: Irradiance, module temperature and wind speed.

Based on the results of the fitting, the model can describe the behavior
of one component in relationship to each of the inputs. The resulting
physical coefficients can then be used to predict the real time optimal
output of the different components of the plant from instantaneous input
measurements.

A comparison between the predicted real time optimal output and the
actual measurements will show if deviations exist. In the case of detection
of deviations, the model can use more parameters for further analysis to
identify faults. An in-depth analysis of selected components can locate
the faults.
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1 Introduction

Over the past few years, the PV market and technology have demonstrated
rapid growth and have become a mature technology for the production of power
from renewable energy sources and a widely-used strategy for the generation of
electricity on-site [15].

In recent years, research in the field of photovoltaics (PV) has moved from
focusing on increasing efficiency to aiming at increasing the reliability of per-
formance in the field, with a focus on the reliability of the installations and the
guaranteed lifetime output. This prioritization of reliability and guaranteed life-
time output is not limited to research activities, but is implemented in the field
through the continuous monitoring of the majority of PV installations, either
through the inverter or through proprietary monitoring hardware and software.
The monitoring data is then used for fault analysis through selected fault detec-
tion tools, which allow for the quick identification and accurate quantifying of
the factors leading to the failure of mechanisms of a power plant. Performance
losses or failures can be a result of several factors, including Maximum Power
Point Tracker (MPPT) error, electrical disconnection, wiring losses, shading ef-
fects, and faulty equipment. Such failures result in lower output power of the PV
system and also lead to degradation of the module’s properties. The detection
and diagnosis of potential failures at an early stage or even prior to occurrence
is crucial for the reduction of the cost related to operation and maintenance and
system downtime [12].

Although interest among PV project stakeholders to get a precise estimation
of the energy yield of the PV systems is growing, they often encounter significant
deviations between the estimated and the measured performance of utility-scale
photovoltaic power plants which can be a result of several possible malfunctions.
In order to be able to address and solve the malfunctions, stakeholders need the
tools that enable them to detect faults in an accurate and timely manner.

The growing need to better understand and improve the performance of
the existing and future photovoltaic power plants inspired the topic of this
thesis, which was written in cooperation with ib vogt GmbH. ib vogt GmbH
is a developer, investor and acting Engineering, Procurement and Construction
(EPC) contractor of large-scale PV power plants, which provides performance
warranties on realized PV plants under the scope of the EPC contract. In order
to increase its competitiveness, and be able to provide its services with the
highest levels of accuracy and quality, ib vogt GmbH has a growing interest
in better understanding the performance of the large-scale photovoltaic power
plants.

The main objective of the thesis is the identification of reasons for occurring
deviation between the estimated and the measured performance of the com-
ponents of one selected power plant using computational and statistical tools.
The thesis includes research and identification of the most suitable methodology
for accurate estimations of performance based on computational data analytics,
which facilitate fault detection and evaluate the performance of utility scale PV
plants.
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Such accurate PV measurements and performance models are important
to understand and enhance the system energy yield. The LFM/MPM Model,
built in this thesis, is based on a combination of the features of two different
models: LFM, utilized to determine the normalized parameters, and the MPM,
utilized to determine the optimized fitting method, in order to make it capable
of accurately fitting the performance measurements (power, voltage, current) of
one component (e.g. each inverter and string) to different inputs: Irradiance,
module temperature and wind speed.

This combination is applied to performance measurements, like monitored
large arrays power at maximum point (PMP ), current (IMP ) and voltage (VMP )
at maximum power point. It allows the prediction of PV performance and the
validation of the measurements, as well as the identification and quantification of
reasons for under-performance. Data filtering was used to enhance the predictive
accuracy of the models.

To do this, first a thorough characterization of the performance of the PV
power plant is carried out. The monitoring data of existing PV plants, which
will be analyzed during the course of the thesis, is provided by ib vogt. For
electricity yield measurements, string level monitoring devices, inverter data
logger and grid meters are used. Furthermore, meteorological data is collected
from three weather stations at different locations at the PV power plant. This
data includes the average global irradiation, the diffusive irradiation, the average
ambient temperature and the wind velocity. The method and approach used
for this thesis for fault detection and system assessment is applicable for similar
systems.

The LFM/MPM Model implemented in this thesis to detect faults was built
by one year historical measurements of a 64.1 MWp PV plant that is part of
1.86 GWp solar power complex located near the village of Benban, in the desert
650 km south of Cairo, Egypt. In this power complex up to 148,000 MWh of
electricity is produced yearly, using a single axis solar tracking system, which is
equivalent to the power needed for about 20,000 Egyptian households.

Moreover, the findings of the fault detection algorithm were validated with
actual daily reports provided by the operation and maintenance department
of the plant operator, which summarize the malfunctions that have to be ad-
dressed.

The thesis begins with a review of the related literature in chapter 2, which
introduces the main components of a PV power plant relevant for this thesis,
explains the importance of monitoring a PV power plant and the common faults
that can be found, and explores a number of implemented PV system perfor-
mance models and the analytic approach that was applied to fit the performance
models. Chapter 3 is concerned with data analytics. It introduces the experi-
mental setup, the model built and used in the thesis and the analytic approach
that is implemented. The chapter also describes the data collection and explains
how the model is trained. The fourth chapter presents the findings of this work.
It evaluates the model performance with the analyzed data and shows the accu-
racy of the estimation resulting from fitting the model with historical data. It
also explains how the model is utilized to characterize the modules of the plant
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to better understand the system behavior, and implements the fault detection
procedure and adapts it to the studied PV plant. The results are then validated
with daily reports provided by Operation and Maintenance (O&M). The final
chapter of the thesis is the conclusion summarizing the main findings and a
presentation future research which should be considered.
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2 Review of Related Literature and Research

This section first introduces the main components of a PV power plant that will
be analyzed in the course of this thesis to characterize the plant performance
and detect faults. Afterwards, the importance and the reason for monitoring a
PV power plant and the common faults found are presented.

Furthermore, a few PV system performance models that were implemented
are explained and the analytic approach that was applied to fit the performance
models is described.

2.1 Plant Equipment

Usually, photovoltaic systems consist of the following basic components: sub-
station, cables and cable runs, module fasteners/substructure, modules, com-
biner boxes, centralised or decentralised inverters and monitoring hardware.
The most relevant components for the analysis performed in the course of this
thesis are described in this sections.

2.1.1 Modules

The sunlight is converted by photovoltaic modules into electrical energy through
the photoelectric effect. The so-called PV generator is represented by a solar
string, which consists of a series of connected solar module units, which in turn
consist of a series of connected solar cells. Figure (1) displays the PV generator’s
main component parts.

Figure 1: PV generator components [1]

Figure (2) displays the PV module’s non-linear I-V and P-V characteristics.
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Three crucial points are shown on the curves, namely the short-circuit current
ISC , the open-circuit voltage VOC and the MPP. The I-V and P-V curves are
both based on the electrical performance of the solar cell and are given on the
module data sheet.

Figure 2: IV Curve of a PV module [1]

The common equivalent model of the solar cell, is presented in Figure (3).
The one-diode equivalent circuit is consistent with the following: A current
source of photocurrent Iph injection, a single diode reflecting the diffusion phe-
nomenon by Id, and a shunt resistance Rsh limiting the current Ish induced by
a solar cell structure manufacturing malfunction.

Figure 3: Equivalent circuit for one-diode model [1]

The solar cell generates heat, which lowers the cell efficient and is presented
by the series resistance Rs [1].
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2.1.2 Inverters

Photovoltaic systems are categorized as centralized or decentralized systems.
Several string lines are grouped together in a centralized system – typically up
to 100 or more – and then routed to a central inverter, through a combiner box.
The described system is identified by a ”small” number of inverters relative to
the complete plant.

Figure 4: Centralized inverter (left) and string inverters (right) [6]

On the other hand, a small number of strings are separately connected to a
string inverter in a decentralized system, which is identified by a rather large
number of inverters separated by many sub-distribution system. An example of
a centralized and a decentralized inverter is displayed in Figure (4).

The three types of inverter configurations available are central inverters,
string inverters and module integrated inverters. Although central inverters
are more economic, they have big problems while tracking the maximum power
point of the PV array. On the other hand, while the module inverters provide
the best option for getting maximum power point for every condition, the are
very expensive and complex. Hence, string inverters provide a good trade-off
and are usually preferred [8].

2.1.3 Maximum Power Point Tracking

Every inverter is equipped with an MPPT system which insures the maximal
energy production from the PV by driving the voltage and current close to MPP.

Cloudy days where the solar energy is delivered with highly fluctuating irra-
diance cause energy losses due to the non-ideal tracking of the actual position of
MPP. On clear-sky days the solar irradiance is changing slowly and is therefore
fairly stable which leads to very slow MPP-transitions. In this steady-state the
tracking algorithm oscillates around the true MPP and performs the operation
of static tracking as shown in Figure (5).

On the other hand, during the rapid irradiance fluctuations caused by pass-
ing clouds, the changes happen within very short time frames and this leads
to a very high irradiance gradient and this makes the MPP constantly change
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Figure 5: MPPT [13]

positions, that must be followed by a dynamic MPPT. The tracking system is
chasing a remote MPP and this leads to a mismatch between the actual oper-
ating point of the Inverter and the true MPPT which causes significant energy
losses [13].

2.1.4 Combiner Boxes

A combiner box, displayed in Figure (6), is a component that bundles the nu-
merous PV generator strings into one or more main string lines, leading to the
inverter.

In addition, the combiner box, together with a central inverter, monitors
strings through an integrated module string measuring system, and it provides
local voltage protection using overvoltage protection elements.

Where feasible, a combiner box includes a main switch to isolate the invert-
ers, and distinct elements to isolate individual strings, usually as a simple string
circuit breaker on the generator array’s positive and negative sides.

2.1.5 Tracking

PV modules are typically mounted on a substructure, which holds, and/or sup-
ports, the modules and provides both static and dynamic stability. Substruc-
tures may be roof-mounted, free field installations, floating, among other forms.
Free field substructures are to be classified into fixed-tilt, seasonal-tilt and track-
ing systems.

In Tracking systems, the substructure design integrates a drive unit, which
allows the photovoltaic module to follow the sun to maximize the irradiance
received on the module plane, thus increasing the PV generation. Those systems
are broadly categorized as single-axis and dual-axis tracking systems.

Single-axis tracking systems have one rotational axis and, almost always,
track the position of the sun from east-west. In addition to the east-west track-

7



Figure 6: Combiner box [6]

ing, dual-axis tracking systems enable north-south (seasonal) tracking of the
sun’s position.

Dual-axis tracking systems are able to track the daily and the seasonal move-
ments of the sun with two rotational axes; one along the north-south axis, and
another along the east-west one [6].

2.1.6 Monitoring Hardware

To monitor the performance and detect faults in a photovoltaic system, a moni-
toring tool is usually used, which consists of hardware at the system and software
running on a central monitoring portal.

The monitoring hardware, as displayed in Figure (7), is equipped with suit-
able interfaces to collect relevant data on electrical components, required for
monitoring and evaluating the PV system. Electrical components include in-
verters and module strings, among others. The overall energy production of the
complete plant is monitored with energy meters at the grid connection level.

Moreover, the majority of the monitoring systems are equipped with compo-
nents to register peripheral conditions for the system. An example would be a
meteorological station, which measures solar irradiation, temperature, humidity
and wind speed at the system’s location.

The PV system’s characteristics may be monitored and recorded. Exam-
ples include the module temperature and the insulation resistance of the PV
generator, usually at the inverter.
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Figure 7: Decentralized monitoring system [6]

One or more data loggers are used to log and evaluate all measured or derived
values.

The telecommunications unit is used by both types of the system to send data
centrally to an external evaluation medium. It also provides data transmission
into the internet via one or more commonly used paths.

For the case of a power cut, the system’s individual monitoring stations are
commonly equipped with a battery backup system to buffer monitoring. The
backup system as well is monitored [6].

2.2 Monitoring

Supervision and monitoring of photovoltaic systems is of high importance with
the main purpose of evaluating the performance of the plant, following up on
the energy yield and the early detection of system malfunctions. Other reasons
for monitoring an expensive and long-term system as a PV plant include the
documentation of the performance guarantee, electricity network interaction
assessment, system degradation diagnostics and forecasting performance.

In addition to measuring the electrical yield on different levels of the PV
plant and the temperature of the modules, it is necessary to collect meteorolog-
ical data to be able to compare actual monitored production to the estimated
production.

9



For utility scale PV power plants the electricity yield should be measured on
different levels of the plant to be able to distinguish for example between faults
on the AC-side or the DC-side of the plant. Usually the inverter-integrated
measurements alone are not sufficiently precise to analyze the performance of
the plant and therefor the power and current on the combiner box level or the
string currents should be measured [23].

In addition to that the installment of a pyranometer is recommended for
measuring the irradiance in the plane of array. Pyranometers are thermopile
sensors based on thermocouple devices.

The location of the sensor should be chosen carefully, because this might
affect the accuracy of the readings and with that the performance assessment.
Place with near or far shading should be avoided while installing the sensors,
even if parts of the plant are affected by shading. Furthermore, it is preferred to
have more than one sensor as spread as possible and that way the measurements
can be compared and detailed readings can be achieved by eliminating data
that is not really representing the actual irradiance. A yearly calibration of the
sensors is also of great importance [24].

2.3 Faults

This section defines and introduces the most commonly found faults in photo-
voltaic arrays. A fault is detected when there’s an output power reduction of
the PV array compared to the expected output power. These can be caused
by faults in a PV module or string of PV modules which may include shading,
degradation and corrosion, soiling effect and snow covering, by-pass or shunted
diode failure, electrical connections, short circuit, or wiring losses.

Faults in PV arrays can be categorized based on their time characteristic as
permanent, incipient, and intermittent. Permanent faults include PV module
damages such as short circuit, open-circuit, combiner box faults, and intercon-
nection damage. Incipient faults, on the other hand, can be a result of cells
degradation, corrosion, and partial damage in interconnections. It is worth
noting that incipient faults can lead to permanent faults. Finally, intermittent
faults have temporary effects such as shading, leaf, bird drop, and environmental
stress like dust, contamination, snow accumulation, and high humidity. Figure
(8) shows the most common types of faults in PV arrays.

The following describes some of the most common faults, that are also rele-
vant to the findings of this thesis, in more detail:

1. Degradation in PV Array

Degradation is an incipient fault that reduces the cell output and may lead to up
to 50% power output loss. There are multiple causes for degradation, including
the regression of adhesive material between glass and cells, which results in
decreasing the light reaching the solar cells and thereby reducing the generated
power. Other causes of degradation include delamination, which causes gaps
between different subsequent layers of the PV module where the adherence is
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Figure 8: Classification of faults in PV array [1]

lost; as well as the defect in the anti-reflective coating, which reduces the amount
of light reaching the cell.

2. Partial Shading Fault

Partial shading is an intermittent fault and refers to covering part of the PV
array and thereby reducing output. This can be the result of of passing clouds,
smoke, or other temporary effects.

3. Line-to-Line Fault

A line-to-line fault is a permanent fault that involves high fault current or DC
arcs between two potential points in the PV array, and causes a reduction in
the open-circuit voltage, while the short-circuit current could remain unchanged
[26].

4. Open-Circuit Fault

This is another permanent fault that results from disconnection problems in a
PV string or more, which are often due to poor soldering in strings intercon-
nections. An open-circuit fault decreases short circuit current and maximum
power, whereas open voltage stays close to its normal value.

5. Earth or Grounding Faults
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Figure 9: Typical faults in grid-connected PV systems [25]

A ground fault refers to a considerable increase in the current passing through
affected conductors, resulting in mismatched currents and changes of the PV ar-
ray configuration. This type of fault occurs due to an unexpected short-circuited
path involving one or more currying current conductors and the ground.

Ground faults can be caused by cable insulation failures and are considered
the most common faults in the PV system [1].

Figure (9) visualizes some of the typical faults described above.

2.4 PV System Performance Modelling

When precise PV measurements are available an accurate performance model
is vital in understanding and optimizing the energy yield. Since measuring IV
curves of single modules is easier than measuring those of strings of arrays, there
are more parameters available for individual modules. On the other hand it is
often the case that for multi MWp solar plants the measurements available for
the strings either just include the PMP or include also the IMP and the VMP . To
make the best use of whichever data parameters are available the model should
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be adaptable. Therefore the fitting modelling of the Mechanistic Performance
Model (MPM) was combined with the normalized Loss Factor Model (LFM)
parameters. This section introduces both models in detail and explains the
combination of both models.

Furthermore two empirical parametric models are introduced: The David L.
King Model and the η(G,T ) Model.

2.4.1 Loss Factor Model (LFM)

The LFM is a PV module performance model with coefficients relating directly
to IV characteristics (see Figure (10)) that allows the characterization of any
PV technology by outdoor IV measurements into six independent parameters.
These are normalized and physically significant. This leads to the ability of the
model to represent technology performance differences and changes over time
[20].

Figure 10: Loss Factor Model Parameters [20]

The LFM consists of a set of normalized parameters which represent each
IV curve and of fitting coefficients that describe the variation of the parameters
with irradiance in the array plane and module temperature as shown in equation
(1).

nLFM = C1 + C2 ∗ (TMod − TSTC) + C3 ∗ log10(GI) + C4 ∗GI (1)

where nLFM represents any normalized parameter to be analyzed with the
LFM and GI is the irradiance, TMod is the module temperature and TSTC is
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the temperature at Standard Test Condition (STC).
The product of the six LFM parameters result in the normalized efficiency

PRDC or the Module Performance Ratio (MPR) as shown in equation (2).

ηmeasured

ηnominal.STC
= nISC ∗ nRSC ∗ nIMP ∗ nVMP ∗ nROC ∗ nVOC (2)

where ηmeasured/ηnominal.STC is the efficiency, nISC is the short-circuit cur-
rent, nRSC the short-circuit resistance, nIMP and nVMP the current and voltage
at MPP, nROC the open-circuit resistance and nVOC the open-circuit voltage.
All the parameters are normalized (prefix = “n”) [18].

Figure 11: Example measured and reference IV curves showing key points in
the electrical coordinate System (V,I) [21]

The main requirement for this model is a measured IV curve (prefix = “m”)
and a reference IV curve at STC (prefix = “r”) shown in Figure (11) that can
be calculated with the aid of the module data sheet. Equations (3) to (8) define
the normalization of the variables for the LFM. The normalization allows for
cross-comparison of different modules or technologies.

nISC =
mISC

rISC ∗GI
(3)

nRSC =
mIr
mISC

(4)

nIMP =
mIMP

mIr
∗ rISC

rIMP
(5)
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nVMP =
mVMP

mVr
∗ rVOC

rVMP
(6)

nROC =
mVr
mVOC

(7)

nVOC =
mVOC

rVOC
(8)

mVr and mIr represent the coordinates of the intersection point of lines tangent
to the ends of the measured IV curve as shown in Figure (11).

Apart from the model being able to predict energy yield over time, it also
shows a low bias error. Furthermore, it is capable of fitting a wide variety
of modules with different quality. The LFM model can also detect the root
causes of degradation and seasonal variation due to the physical meaning of
the parameters since they relate directly to the behavior of the key points on
the normalized IV curve with changing irradiance. To conclude, the models
strengths lies in the quick identification of strange performance patterns through
accurate predictions [22].

2.4.2 Mechanistic Performance Model (MPM)

A new, optimized mechanistic performance model was developed by testing 11
different empirical models for outdoor PV monitored data and combining their
best features.

The empirical models did not deliver the required accuracy, because of their
nonphysical coefficients. Hence, the MPM was proposed with five physical co-
efficients C1 to C5 defined in equation (9) and explained in table (2). Table (1)
shows a comparison between the existing empirical models and the MPM.

Table 1: Empirical vs. Mechanistic Models
Empirical Model Mechanistic Model

not normalized- coefficients values normalized- values independent
scale with array size of array size

nonphysical coefficients physically significant dependencies
are used

not easy to use to compare easy to validate and compare
and contrast arrays of different sizes different sized arrays

PRDC = C1 +C2 ∗ (TMod − TSTC) +C3 ∗ log10(GI) +C4 ∗GI +C5 ∗WS (9)

where PRDC is the normalized Power on the dc side, TMod is the measured
module temperature (◦C), TSTC is the STC temperature (◦C), GI is the mea-
sured irradiance in the plane of array (kW/m2) and WS is the measured wind
speed (m/s) [17].
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Table 2: Explanation of MPM coefficients
Coefficient Dependency Comment Unit

C1 Performance Tolerance Actual/Nominal %
C2 Delta TMod Temperature Coefficient %/K
C3 log10 low light fall %
C4 GI high light fall %
C5 WS wind speed %/(ms−1)

The MPM is a normalized and optimized model that works well with all PV
technologies and can be used to fit outdoor data. The model is very robust and
therefore predicts the energy yields with much less variability compared to the
empirical models and is able to fit rough data with the least possible errors [16].

2.4.3 LFM/MPM Model

Features from the LFM which is used to define the parameters and the MPM
which determines the optimized fitting method have been combined to give an
advanced analysis of IV or MPPT data using the same procedure.

The electrical measurements in a PV plant differ based on which monitoring
system is available. If a system is installed that sweeps between the short-
circuit current and the open-circuit voltage than the IV curve is measured.
In other cases the monitoring data just measures the parameters at maximum
power point tracking. This leads to a differing number of parameters. Since
performance modeling should be able to adapt to the number of parameters
available, both the LFM and the MPM were adjusted accordingly.

For the LFM the normalization has been changed as shown in equations (11)
to (13) so that the product of all the normalized parameters equals the PRDC

as shown in equation (14) It was also shown that the LFM can analyze fewer
parameters as opposed to it previously only being implemented to analyze six
independent parameters from the IV curve. Furthermore, the MPM which was
originally developed only to fit the PRDC is generalized to fit all the normalized
LFM parameters according to equation (10).

nLFM = C1 + C2 ∗ (TMod − TSTC) + C3 ∗ log10(GI) + C4 ∗GI (10)

PRDC =
mPMP

rPMP ∗GI
(11)

nIDC =
mIMP

rIMP ∗GI
(12)

nVDC =
mVMP

rVMP
(13)

PRDC = nIDC ∗ nVDC (14)

This model allows for the prediction of the optimum PV system output and
thereby the validation of the instantaneous measurements in real time, which
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in return makes the reason for any under-performance or faults to be easily
identified and quantified to minimize any downtime errors. By integrating the
LFM, seasonal effects and degradation can also be identified and quantified [19].

The LFM/MPM Model requires the use of two weather data sets: these are
the irradiance in the plane of array and the wind speed. The module temper-
ature is also used as an input for the model to calculate the output variable.
Furthermore, the output variables are needed to fit the curves according to the
LFM/MPM Model. These are defined in equations (11 - 13).

For the normalization, the reference voltage and current of the module need
to be extracted from the module data sheet.

While Mechanistic Models are based on an understanding of the behavior of
a component in a system, Empirical Models are based on direct observations,
measurements and large-scale data records.

2.4.4 Empirical Parametric Model (EPM)

The David L. King Model is a straight-forward model for predicting array
performance and works for all operation conditions.

The model is described in equations (15) and (16) which reflect linear rela-
tionships closely related to the fundamental electrical characteristics of cells in
the module [10].

IMP (Ee, Tc) = Ee ∗ (IMPo + αIMP
∗ (Tc − To)) (15)

VMP (Ee, Tc) = VMPo + C2 ∗ ln(Ee) + C3 ∗ (ln(Ee))
2 + βVMP

∗ (Tc − To) (16)

where IMP (Ee, Tc) and VMP (Ee, Tc) the current (A) and the voltage (V) at
MPP, Ee the effective irradiance, IMPo and VMPo the current and the voltage
at MPP at the reference cell temperature To (◦C). Furthermore αIMP

(A/◦C)
and βVMP

(V/◦C) are the temperature coefficients for the IMP and the VMP

and finally Tc is the temperature of the cells inside the modules (◦C).
The parameters required for this model can be easily acquired through out-

door measurements and the performance is related to the cell temperatures and
not the module temperatures and thereby compensating for the situation where
the modules are not in thermal equilibrium [11].

The η(G, T ) Model represents a simple approach for estimating the grid-
connected PV-System MPP performance on the dc side in dependence of ir-
radiance in the array plane and module temperature. First a model for the
dependence of the efficiency at MPP operation on the irradiance G is intro-
duced:

ηMPP (G) = a1 + a2 ∗G+ a3 ∗ ln(G) (17)

where ηMPP (G) the efficiency at MPP, G the irradiance in the plane of array
and a1 − a3 device specific coefficients are.

Since the equation represents the efficiency at 25◦C another equation (18) is
applied that allows modeling of the performance at all operation temperatures.
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ηMPP (G,T ) = ηMPP (G, 25◦C) ∗ (1 + α ∗ (T − 25◦C)) (18)

where T is the operation temperature and α is the temperature coefficient.
The model uses the measured power output to fit the parameters and due

to its structure simple linear fit procedures may be applied. [2]

2.5 Model Performance Accuracy Metrics

To evaluate the predictive models’ output accuracy, two common performance
metrics are applied. This section will introduce these metrics, () and Root
Mean Square Error (RMSE), alongside the residuals that form the basis for
calculating these metrics.

2.5.1 Residuals

The residual measures the deviation between an observed value and the esti-
mated value of a certain quality and is given by:

rt = yt − ŷt (19)

where yt and ŷt are the actual measured and the corresponding predicted
value by the model.

2.5.2 R Squared (R2)

In statistical literature, the R2 measure is referred to as the coefficient of de-
termination. Its value lies between 0 and 1 and indicates in how far a set of
predictions fit to the actual measured values, 0 indicating no-fit and 1 being
perfect-fit.

However, R2 is not the optimal measure for assessing the fitting accuracy,
as it only explains the proportion of variation in the dependent variable that
is explained by the independent variable. Moreover, R2 may not describe the
importance of a variable, because when a new variable is added, the error de-
creases, hence R2 always increases when a new variable is added to the model,
without any addition information provided by this variable. R2 is given by:

R2 = 1−
∑m

t=1(yt − ŷt)2∑m
t=1(yt −mean(Y ))2

(20)

where yt and ŷt are the actual measured and the corresponding predicted
value by the model and m is the number of samples for the calculation [4]

2.5.3 Root Mean Square Error (RMSE)

Similar to the Mean Absolute Error, Mean Squared Error (MSE) provides a
gross idea of the magnitude of error. Units can be converted back to the original
units of the output variable, by taking the square root of the mean squared error,
which is referred to as the Root Mean Squared Error (RMSE).
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RMSE is another measure of accuracy, which can be used to compare fore-
casting errors of different models for a selected dataset. In general, a lower
RMSE indicates lower levels of errors than a high RMSE. However, RMSE is
sensitive to outliers because the effect of each error on RMSE is proportional to
the size of the squared error. As a consequence, larger errors have a dispropor-
tionately large effect on RMSE.

RMSE is given by:

RMSE =

√∑m
t=1(yt − ŷt)2

m
(21)

where yt and ŷt are the actual measured and the corresponding predicted
value by the model and m is the number of samples for the calculation [7].

2.6 Analytic Approach

2.6.1 Linear Regression

Linear Regression is an algorithm that was developed in the field of statistics and
borrowed by machine learning, more specifically the field of predictive modeling.
This field is essentially concerned with making the most accurate predictions by
minimizing the error of a model.

Due to the simplicity of the representation, the Linear Regression is perceived
as an attractive model to understand the linear relationship between input and
output numerical variables. The output variable y is either calculated from
a single input variable x in the case of a simple linear regression or from a
combination of multiple variables in the case of a multiple linear regression.

To each input value or column in a linear equation one scale factor, referred
to as a coefficient, is assigned. An additional coefficient, usually called the
intercept or the bias coefficient, gives the line an added degree of freedom.
Equation (22) shows an example of a model in a simple regression problem with
a single x and a single y.

y = B0 +B1 ∗ x, (22)

where B0 is the bias coefficient and B1 is the coefficient for input value or
column.

A good set of coefficient values are found through implementing a learning
technique, after which different input values can be plugged in, in order to
predict the output. When a coefficient equals zero, it removes the influence of
the input variable on the model and thereby removes it also from the prediction
made from the model (0 ∗ x = 0).

The equation mentioned above could be plotted as a line in two-dimensions,
by plugging in several input values, predicting output values and thereby creat-
ing a line as shown in an example in Figure (12). Making the predictions is as
simple as solving the equation for a specific set of inputs, since the representation
is a linear equation.
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Figure 12: Simple Linear Regression Predictions.

In higher dimensions with more than one input (x), the line is referred to
as a plane or a hyper-plane and in such cases, the representation is defined by
the equation and the specific values used for the coefficients (B0 and B1 in the
above example).

Learning a linear regression model means estimating the values of the co-
efficients used in the representation using available data. This section briefly
examines one technique of preparing a linear regression model.

The most commonly used method is the Ordinary Least Squares. Although
with simple linear regression with a single input, statistics can be used to es-
timate the coefficients, requiring the calculation of statistical properties from
the data such as means, standard deviations, correlations and co-variance; this
method is not really useful in practice . One of the main requirements of this
method is the availability of all of the data to traverse and calculate statistics.

Ordinary Least Squares can be used when there is more than one input to
estimate the values of the coefficients. The Ordinary Least Squares procedure
seeks to minimize the sum of the squared residuals, meaning that given a regres-
sion line through the data, the distance from each data point to the regression
line is calculated and squared, and all of the squared errors are summed. This
is the quantity that Ordinary Least Squares seeks to minimize.

This approach treats the data as a matrix and uses linear algebra operations
to estimate the optimal values for the coefficients, which requires the availability
of all of the data and of enough memory to fit the data and perform matrix
operations. It is more likely that you will call a procedure in a linear algebra
library. This procedure is very fast to calculate [3].
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2.6.2 Non-Linear Regression

Nonlinear regression is a type of regression analysis that models observational
data by a function that is a nonlinear combination of the model parameters.
The function depends on one or several independent variables, and the data are
fitted by a method of successive approximations.

Unlike in linear regression, generally, there is no closed-form expression for
the best-fitting parameters. Those are usually determined by applying numerical
optimization algorithms.

The Ordinary Least Squares introduced in the preceding section again is
presumed to be the best curve fit for a non-linear equation. It is based on an
approximation based on a linear model and an optimization of the parameters
through successive iterations [14]
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3 Data Analysis

This chapter is concerned with the data analytics part of this thesis. First
the experimental setup, model and the analytic approach that are used are
briefly introduced. The data collection is described, before going through the
preparation and the understanding of the data. Afterwards the way the model
is trained is explained.

The main purpose of this study is to analyze the behavior of PV plant
components and as a result detect faults. Therefor a tool was developed in the
programming language Python, which allows the analysis of an inverter with all
the combiner boxes and strings connected to it. The tool fits curves using the
LFM/MPM Model (2.4.3) for the power, current and voltage of each device and
then uses the model to predict data. This data is then compared to the actual
measured data and the deviations are saved. The deviations allow faults to be
detected.

3.1 Experimental Setup

The structure of the plant plays an important role in the analysis and is therefore
introduced in this section.

Historical data were collected from a large-scale photovoltaic power plant
that has a DC nominal capacity of 64.1 MWp, generated by almost 200,000
Trina Solar 320/ 325 Wp 72-cell PV modules spread over an area of 954,000 m2.
The entire system has AC power capping at 50,000 kV A. The geographical
coordinates of the plant are given by a latitude of 24.447889◦and a longitude of
32.716741◦. Figure (13) shows the PV power plant.

Figure 13: PV power plant located in Benban, Egypt [6]

The grid-connected PV plant consists of several major components, including
a solar PV array, 80 centralized inverters with MPPT algorithm and electrical
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connection wirings. The inverters are from the manufacturer Schneider Electric,
each with a rated output power of 680 kV A AC.

Figure 14: Single Axis Tracker with 2 in Portrait Configuration [6]

20 PV modules, which represent the fundamental building blocks of the PV
system, are assembled in series to build a PV string. Then, 24 or in very few
cases 12 strings in parallel construct a combiner box. Five of these combiner
boxes are connected in parallel to one of the 80 central inverters. An extract from
the single line diagram as shown in Figure (15) demonstrates the centralized
configuration of the system.

The PV module are mounted on a free field substructure that holds them and
provides a static as well as a dynamic stability. A single axis tracking system
with two modules arranged in portrait is installed as shown in Figure (14). The
single axis tracking system has one rotational axis and tracks the position of
the sun from east to west with a rotation limitation between a minimum of -45◦

and a maximum of 45◦.
The actual monitoring system involves two different types of measurements.

Built-in electrical measurement channels in system devices (inverters, combiner
boxes, additional monitoring devices) and three meteorological stations posi-
tioned at strategical locations in the power plant.

Figure (16) shows the different sensors that form the meteorological station.
These include a module temperature sensor, a pyranometer in the horizontal
plane and one in the array plane, an anemometer and an ambient temperature
sensor. The anemometer is an instrument to measure the speed of wind and the
pyranometer measures the solar irradiance.

3.2 Model Selection

To achieve a high accuracy for the prediction model three different models were
implemented and compared for the course of this thesis.

First the η(G,T ) model was applied for power, current and voltage, but
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Figure 15: Extract from the single line diagram [6]

only delivered good prediction accuracy for the power. Hence, the equations
(15) and (16) from the the David L. King were used for the voltage and current
fitting. The reason for implementing these empirical models was their ability
to provide a straightforward procedure for fitting the parameters without the
need for running many iterations.

The empirical models are partly based on system output dependencies on
the irradiation and the module temperature derived for ideal cell characteris-
tics and partly based on direct observations and measurements of large-scale
data records. Therefore their implementation did not deliver the required accu-
racy needed for a precis fault detection procedure, because every plant behaves
differently depending on location, weather conditions and plant structure. Fur-
thermore, the empirical models did not help in the understanding of the system
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Figure 16: Example of a meteorological station

behavior and consequently an implementation of a different model was neces-
sary.

Furthermore, as shown in Figure (17) the fitting using the EPM has increas-
ing errors for low irradiance as opposed to the more accurate fit generated by
the MPM.

Therefore, the combination of the LFM/MPM model described in (2.4.3)
delivered physical coefficients that can be analyzed and thereby can help in
characterizing the system. Moreover, the model allowed for more accurate pre-
dictions.

Finally, the fact that all parameters are normalized allows for a comparison
between different components.

3.3 Analytic Approach Selection

Because of the simplicity of the linear regression and it’s ability to produce
curved fits, it was implemented as the first analytic approach for the model
introduced in (2.4.3). After observing the fitted data compared to the train set,
a bad fit was indicated. Therefore, a more complex approach was required.

Figure (18) displays the bad fit in the case of applying a linear regression
model. This is visible by observing the residuals especially for low irradiance.
An ordinary least squares regression was implemented with a tool called lin-
ear model.LinearRegression() provided by the open-source scikit learn.

On the other hand, it is shown in Figure (19) how the non-linear model is
more robust and results in a noticeable increase in the accuracy of fitting shown
through the decrease in residuals. The tool optimize.curve fit() provided by
the open-source software SciPy is used for the non-linear least squares fit of a
function, f, to data.

By applying a non-linear approach the RMSE for the example above im-
proves from 1.6% to 1.0%.
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Figure 17: Fitting the inverter DC power with EPM (top) and MPM (bottom)

3.4 Data Collection

To be able to analyze the correlation between weather variables and each com-
ponent’s power, current and voltage generation, a huge amount of electrical
measurements and the corresponding weather data is required.

First step of the analysis is collecting the specific system characteristics.
This is vital for calculating the performance ratio and the normalized param-
eters. They consist of the system geographic location and the PV module pa-
rameters from manufacturer data sheet, which include the module class [Wp],
the reference maximum power point voltage VMPP [V] and current IMPP [A]
at STC and the power temperature coefficient tc [%/◦C].

The next step is collecting the monitoring data, which is provided as data
packages through a web portal shown in Figure (20) and is managed by a third-
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Figure 18: The low accuracy of the linear regression fit represented by the
residuals as an example for the normalized voltage of one inverter especially for
low irradiance

party, Gantner Instruments. They are specialized in precision, industrial mea-
surement data acquisition and signal conditioning. The data output is received
in the file format Comma Separated Values (CSV).

The only analysis the web portal provides is a simple visualization of the
monitored parameters over time shown in Figure (21). Very few information
of the performance of the plant can be extracted from this and therefore the
development of a detailed analysis tool was necessary.

The sampling rate of the measurements is 5 min, covering a period from the
1st of November 2018 till the 31st of October 2019. A long period guarantees
a better representation of the system behavior under varying weather condi-
tions. Finally, the data is saved in a dictionary which entails the measurements
required for the evaluation process. These include the solar irradiance (Global
Horizontal Irradiance (GHI) and Global Tilted Irradiance (GTI)), ambient tem-
perature, PV module temperature, total plant electricity generation at energy
meter, AC output power of each inverter, DC input power, voltage and current
of each inverter, DC output voltage of each combiner box and DC input current
of each combiner box measurement channel.

Furthermore, parameters that are used for calculating the reference values
from the module data sheet are collected. These include the number of strings
per inverter and the number of strings per combiner box.
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Figure 19: The high accuracy of the non-linear regression fit represented by
the residuals as an example for the normalized voltage of one inverter for the
complete irradiance spectrum

3.5 Data Preparation

This section introduces the manipulation of the data collected from the moni-
toring system as a preparation step before the start of the actual analysis. This
is crucial and it involves cleaning, transforming, reshaping the data. Its main
purpose is to guarantee high consistency and low uncertainty of the analysis
results.

The evaluation of the availability of the data is one of the first steps per-
formed in the process of data preparation. Due to the great importance of the
influence of the irradiance on the energy generation of the plant, the missing
timestamps are determined based on the irradiance dataset and erased for all
the datasets.

The irradiance, as the backbone of all measurements, is manipulated by a
set of standard rules. For the rules to be applicable to similar datasets, they
are represented as functions to automate the application. One of the functions
replace the negative readings of the irradiance with a zero. Another function
performs the averaging over the three meteorological stations for all weather
data and the PV module temperature, except when measurements are detected
that are out of range for the particular variable. It compares the readings from
the three different weather stations and removes the data that shows strong
deviations, if it is only the case for one station, before calculating the mean of
the measurements from the remaining stations. That way if one of the readers
was not working properly it would not contaminate the data.
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Figure 20: Gantner web portal

The power plant is equipped with three different meteorological stations
spread as much as possible with the purpose of getting the best possible accuracy
and avoiding contaminating the irradiance measurements by a cloud that might
be passing and covering only one area of the plant. An example of a cloud
passing first over one meteorological station and afterwards passing over another
one is shown in Figure (22).

First to get the power output at grid level of the plant the readings from
three different feeders are summed. If the readings are negative the positive
values are set to zero and the absolute value of the power is taken and else
the negative power values are set to zero. The reason this is done is because
the energy meters sometimes deliver negative power readings instead of positive
ones.

After processing the data that is used as inputs for all the models or for
setting filters for all components in the plants now the preparation commences
for the different components that will be analyzed.

For the inverter the name is specified and given a string input. Then the
tool builds a different data frame for each component, including all combiner
boxes and strings connected to the specified inverter, separately. This includes
the power on the DC side, the voltage and the current as the main outputs of
the different models.

Furthermore, depending on which component is being analyzed more vari-
ables are required for calculating the times where there were outages. This is
used later for filtering the data. For instance, for the inverter a function has
the outages as an output and takes the power on AC side and the power of the
combiner boxes connected to this inverter as an input.

For the normalization of DC power, current and voltage more inputs and
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Figure 21: Time-based visualization of the irradiance and the DC power for one
month provided by the web portal

calculations are required. The normalization functions are demonstrated below.
The power, current and voltage are divided by the reference values at standard
test conditions (STC). Furthermore, the power and current are also divided by
the irradiance in the plane of array. Since the modules are connected in series,
the reference voltage of one module is multiplied by the number of modules
connected to one string. The reference voltage at combiner box and inverter
level are the same as on string level since all the strings and combiner boxes are
connected in parallel. The reference current of a string is equal to the reference
current of one module, but is multiplied by the number of strings connected
to the studied component, either inverter or combiner box, to determine the
reference current at the different levels. The reference power is calculated by
multiplying the reference current with the reference voltage. A function calcu-
lates the number of strings connected to one component.

To save memory while running the code only the necessary variables for
one component are added to the data frame used for the regression model and
the predictions later on. It contains the module temperature, irradiance in
the plane of array and the wind speed which constitute the model inputs and
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Figure 22: Drops in irradiation readings from single meteo stations caused by
the passing of a cloud

the normalized power, current and voltage which constitute the model outputs.
There are three different functions for building the data frames for the different
types of components in the plant. The weather corrected performance ratio of
the plant as a whole is also added to each data frame to be used for filtering later.
The weather corrected performance ratio is calculated using formula (. . . ).

The data frame is ready to proceed with the preparation. A new function is
implemented for filtering the data frame. First, the data frame is copied into a
version for fitting the model. This copy is first cleaned for all outages detected
before and then the data is filtered for the clear days by eliminating all the data
corresponding to cloudy days. Furthermore, another function allows the user to
specify the threshold for the data to perform the regression for. This is done
by adding filters on many variables for instance removing the data where the
overall performance of the plant is either too low or unrealistically high. The
data corresponding to low irradiance in the plane of array is also eliminated.
The influence the filtering has on the model results are discussed in the Findings
section.

3.6 Data Understanding

Before starting the analysis an understanding of the data is of vital importance.
A very fast way of understanding the data is through visualization. This is

done with the help of the Matplotlib in Python. It represents an initial analysis
for the data which gives a first impression of the system’s behavior.

By plotting the GHI and the GTI as displayed in Figure (23) the effect of
having a tracking system is visible. The amount of irradiance over the course of
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Figure 23: GHI and GTI, ambient and module temperature for a typical day

the day that can be transferred by the PV modules into electricity in the case of
a tilted pyranometer that follows the sun position is much higher. Furthermore,
the increase of the module temperature with higher ambient temperatures and
irradiance can also be seen in the figure.

To get a first overview of the performance of the plant the weather cor-
rected performance ratio is calculated and plotted for a complete year. This is
shown in Figure (24) and the seasonality affecting the performance of the plant
throughout the year is observable.

Another benefit from visualizing the data is understanding the correlation
between the variables. Moreover, by implementing a colour scale to the plot the
simultaneous influence of two variables on a third variable can be seen. Figures
(25) and (26) show the DC voltage of one inverter plotted over the irradiance
in the array plane and the module temperature.

Figure (25) shows the linear dependency of the voltage on the module tem-
perature and how the voltage decreases with increasing temperatures. Mean-
while Figure (26) displays the minimal dependency of the voltage on the irradi-
ance and it can also be seen that this small decrease of voltage with increasing
irradiance is mainly due to the correlation between the heating up of the mod-
ules with increasing irradiance.

Finally, Figure (27 the linear increase of the current with higher irradiance
and the negligible dependency of the current on the module temperature.
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Figure 24: Weather corrected performance ration of the complete year over one
year

Figure 25: DC voltage of one inverter plotted over the module temperature and
the GTI(color scale)

3.7 Model Training

First step for training the model is splitting the aquired datasets into two sub-
sets. The first subset is used to train the model and the second one is used to
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Figure 26: DC voltage of one inverter plotted over the GTI and the module
temperature(color scale)

Figure 27: DC current of one inverter plotted over the module temperature and
the GTI (color scale)

test how accurate the model is fitting the data and that relates to how good the
model is able to predict the output for new sets of inputs. The sklearn library in
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python provides a function named train test split that randomly spits the data
according to a specified ratio for training and testing the model.

During the course of this thesis 33% of the measurements were randomly
selected as the test set for the year analyzed in a uniform distribution manner.
Different model training conditions were then used and tested in order to develop
an effective model with high accuracy based entirely on the data acquired.

Next curve fitting is applied to the train data with an optimization based
on the least-squares minimization. This implementation fits the MPM equation
defined in (9) with a function provided by the open-source software SciPy called
optimize.curve fit.

3.8 Fault Detection and Identification Procedure

In this section, the procedure for finding and classifying a few examples of the
many faults detectable with the developed tool are introduced.

The main purpose of the tool is to assess when and where a fault occurred in
the PV plant and identify the type of the fault. Because of the low impact for
instance one faulty string out of 10,000 would have on the overall performance
of the complete plant the analysis is applied to one inverter with all its combiner
boxes and strings. By running the tool for each inverter separately a detailed
fault allocation is possible. For this thesis one inverter is considered as an
example to show the effectiveness of the procedure.

The real time measured irradiance, module temperature and wind speed
are used as inputs to the LFM/MPM model for each component to determine
its optimal expected DC power, current and voltage. Moreover, to be able to
conclude information about the inverters the model is also implemented for the
power of the AC side of the inverters.

To first decide whether or not a fault occurred at a certain time, a reference
is taken based on the absolute value of the difference between the measured
and the simulated PRDC of the analyzed inverter as shown in equation (23).
A deviation of zero or close to zero means no fault has occurred. The high
accuracy of the model was discussed above, but since the overall accuracy of
the procedure also depends on the accuracy and the sensors and components,
a tolerance is needed. A threshold of 0.07 was set to account for system losses,
measurement noise and losses.

|PRDC meas − PRDC sim| > 0.07 (23)

Now that a fault has been detected the tool proceeds with the identification
of the fault type. This requires the calculation of ratios between the estimated
and the measured power, voltage and current to allow for conditioning and
locating of the faults. These include the DC current ratio, the DC voltage ratio
and the DC-AC power ratio of the inverter and given by equations (24) to (26).

Rc =
IDC sim

IDC meas
(24)
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Rv =
VDC sim

VDC meas
(25)

RPDC AC =
( PDC sim

PDC meas
)

( PAC sim

PAC meas
)

(26)

By analyzing the ratios mentioned above a distinction between the different
fault types is possible. A RPDC AC less than one would indicate that the mea-
sured power on the AC side of the inverter is reduced, suggesting that either
the inverter is broken or a cable on the AC side was damaged.

On the other hand a value greater than one implies a fault on the DC side
and can be specified by further analyzing Rc and Rv. If the fault occurred in the
PV array it is indicated by both ratios being greater than one. The fault could
be due to partial shadowing of the modules, aging or an MPPT error. The case
where both ratios are less than one is an indication of an optimal behavior of
both the voltage and the current which means the fault detection delivered a
false alarm. If only the Rc delivers a value less than one it could be due to a
string breakdown or disconnection. Meanwhile, if only the Rv is less than one
then it can suggest a breakdown of modules or the disconnection of a module
in a string.

To further identify the exact location of the faulty strings the calculation
of the DC current ratio as given by equation (27) of each individual string is
required.

Rci =
IDC measi

IDC simi

(27)

Figure (28) displays a flowchart that demonstrates the fault identification
and location procedure [5].
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Figure 28: Flowchart of the fault detection and identification procedure

37



4 Findings

In this section the findings of this work are introduced. First by evaluating the
model performance with the analyzed data and showing the accuracy of the
estimation resulting from fitting the model with historical data.

Furthermore, the second part of this section explains how the model is uti-
lized to characterize the modules of the plant (or any other component) to
better understand the system behavior. By doing so the influence of seasonal
effects over the year can be identified dependencies of the system behavior on
the irradiance and module temperature can be quantified.

Finally, the fault detection procedure introduced in (3.8) is implemented
and adapted to the studied PV plant. The results are then validated with daily
reports provided by O&M.

4.1 Model Evaluation

In this section, the prediction performance of the model is evaluated.

4.1.1 Model Fit Robustness

In this subsection the robustness of the fit resulting from the model is intro-
duced.

Figure 29: Irradiance in array plane and module temperature for variable
weather, a clear day and a cloudy day.
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Figure (29) shows three different days that represent a clear day and two
cloudy days to examine the robustness of the model for predicting under differing
weather conditions. Plotted are the irradiance in the array plane and the module
temperature.

For this analysis the measured power on the DC side of one inverter is
normalized to create the parameter PRDC and this parameter is fitted with the
MPM and de-normalized to show the modeled power vs the measured power.
Many filters are applied to build a good model. These filters include fitting
with GTI > 100W/m2 and removing data where the weather corrected PR
is higher than 0.93 or lower than 0.7. Furthermore, the PRDC is filtered for
measurements above 1 and below 0.7. This leads to mean R2 of 0.995 and a
RMSE of 0.9%. By applying this data a fraction of 20% of the complete dataset
is eliminated.

Figure (30) shows the measured vs the predicted power for the same three
days shown in Figure (29). Additionally the residual is plotted to see how the
model behaves under different weather conditions.

Figure 30: Measured vs modeled inverter power on DC side and residual error

The model shows very accurate behaviour with errors usually below 3%.
The only discrepancies are during quickly changing irradiance periods. This is
because of the large size of the array and with the irradiance sensors being very
small, the clouds do not move over the modules and the sensors at the same
time.

Furthermore to evaluate the model robustness it is used to fit two other
normalized parameters, which are the nIDC and the nVDC . Figure (31) shows
the measured and the fitted parameters for one month plotted over GTI and
the calculated residuals. The parameter nVDC shows the lowest errors and the
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most accurate fit. nIDC is usually the most scattered and may benefit from
soiling, angle of incidence, shading and spectrum corrections.

Alongside this the coefficients that are shown in table (3) are used to plot
the different fits against GTI with each curve representing a different TMod.
The lines that can be observe in the figure represent the visualization of the
fits with increasing GTI. nIDC has clearly the least dependence on the model
temperature. This can also be derived from the low temperature coefficient
shown in table (3).
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Figure 31: Power, current and voltage fits and residuals (left) Parameter fits
against GTI for different TMod (right)
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Table (3) gives a summary of the normalized coefficients used in Figure (31)
for the three different parameters PRDC , nIDC and nVDC . Furthermore, it
also compares the RMSE and the R2. While all parameters show very good
RMSE and R2 the fit for the normalized voltage results in the highest scores.

Table 3: Fitting coefficients, R2 and RMSE for all the parameters
PRDC nIDC nVDC

C1 107.51% 101.22% 106.02%
C2 -0.41% -0.02% -0.42%
C3 30.40% 17.41% 12.60%
C4 -17.03% -7.22% -9.48%
C5 0.11% 0.07% -0.07%

RMSE 1.53% 1.81% 0.82%
R2 99.14% 99.23% 99.77%

To evaluate the accuracy of the model in predicting future data, the model
is fitted using measurements from January to May and then the inverter power
on the DC side output for the month of June is calculated with the fitted model.

Figure 32: Actual/predicted inverter power on DC side

The actual measurements of June are then divided by the predicted data
to evaluate the accuracy of the model. Figure (32) shows that the model is
very accurate in predicting for future months. A threshold of 95% to 105% is
met with very few outliers that are due to high weather variability. Accurate
predictions are impossible for these outliers, because the accuracy of the GTI
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measurements is very low and the model uses these as input to predict the
output power.

4.1.2 Influence of Data Filtering and Weighting with Gi

Given that it was proven that the model fits and predicts the data well, the
next step would be to examine the dependency of the model accuracy on data
filtering.

First a filter is applied that removes the data points where the component
being analyzed is completely out. This is done by running the power of the
component through a function that detects whenever the output is below a
threshold of 10W and filtering out all the measurements that occur at that
time. By removing this data the RMSE for the PRDC improves from 3.23%
to 2.71%. Meanwhile for the nIDC it reduces from 3.81% to 3.14% and for the
nVDC from 1.03% to 0.83%. This is due to the fact that measurements taken
when this specific component was out do not represent the system behaviour
and by that reduce the model accuracy.

The second filter applied is an irradiance condition filter. Figure (33) shows
an example of how the residuals increase exponentially for the low irradiance
points for the PRDC in the case of not applying any filter to the irradiance
before creating the fit. This again is due to the difficulty of prediction for low
irradiance, because of the inaccuracy of measurements during times with high
weather variability.

Figure 33: The influence of not applying a low irradiance condition filter on the
residuals.

Therefore, it is of great importance to apply a low irradiation condition filter.
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Table (4) summarizes the effects of low irradiance condition filters for all the
parameters on the RMSE.

Table 4: Influence of low irradiance condition filters on the RMSE of the different
parameters

PRDC nIDC nVDC

no Filter 3.23% 3.81% 1.02%
GTI > 20W/m2 2.78% 3.22% 0.86%
GTI > 50W/m2 2.47% 2.95% 0.84%
GTI > 60W/m2 2.97% 3.39% 0.92%

For each parameter a different low irradiance condition is applied depending
on the trade-off between getting rid of high residuals and not loosing much data.

The filter that leads to the greatest enhancement of the RMSE is the oultlier
filter which is also applied in the course of this thesis. Since the effect of each
error on RMSE is proportional to the size of the squared error, larger errors
have a disproportionately large effect on RMSE. Therefor, RMSE is sensitive to
outliers.

By only including data points, where 0.65 < PRDC < 1, 0.8 < nIDC < 1.03
and 0.7 < nVDC < 1 the RMSE shown in the first row of table (4) reduce to
1.58% for PRDC , to 1.74% for nIDC and to 0.63% for nVDC . Figure (34) shows
the high residuals caused by the outliers in the measurements for the nVDC .

Figure 34: Very high residuals caused by outliers in the measurements of nVDC .

Another filter applied is based on the weather corrected performance ratio of
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the whole plant, which is calculated with the power measurements at the meter
level. The meter is at the connection point to the grid. The reason for adding
this filter is to eliminate all the measurements where the local grid experienced
an outage or when the plant had tracking problems. Data that coincides with
a PR above one was removed for all parameters, since this is unrealistic and
can only mean the pyranometers were not working properly and were providing
false irradiance measurements due to soiling of the sensors or irregular clouds
leading to uneven irradiance measured by the sensors. Furthermore, for the
PRDC removing measurements where the PR is below 0.7 lead to a reduction
of the RMSE.

When analyzing inverters with higher capacities where inverter clipping
would take place, it was important to add another filter to remove the data
at the clipping point. Inverter clipping plays a decisive role in regulating the
amount of power generated by the PV array. According to the capacity of trans-
mission lines in the geographical area the inverters cut off the excess power to
adjust to the PV plant output. That way some potential electricity generation
will be lost, especially on sunnier days of the week [9].

Figure 35: Inverter Clipping

Data collected at times where inverter clipping took place do not represent
the actual physical behaviour of the PV plant and need to be filtered out while
training the model. Figure (35) shows a typical DC power graph of an inverter
that is limiting the system in comparison to another inverter with a lower ca-
pacity where no clipping takes place.

One of the main approaches for cleaning the data before fitting the model is
to filter for clear days. The purpose of this is to minimize as much inconsistencies
as possible to simulate the best possible physical behavior of the inverters. This
is due to the behavior of the MPP-Tracking system that was introduced in
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(2.1.3).
In order to identify the clear-sky days a function from the python library

pvlib is used. This function implements an algorithm to detect the clear and
cloudy points of a time series by analyzing the GHI. The detection is based
on comparing the actual measured time series with an expected clear-sky time
series as shown in Figure (36). The result of the comparison is a score between
one and zero with a higher score corresponding to a clearer sky. By setting a
threshold all the clear days can be specified.

Figure 36: Clear Sky Detection Function.

As a result removing the cloudy days before fitting the model improves the
scores and minimizes the root mean square error (RMSE) for the linear model
as shown in table (5). Though for the non-linear model this effect of the filtering
is negligible.

Table 5: Scores and RMSE improvements for linear and non-linear models by
adding a Clear-Sky Days filter

non-linear linear

no filter filter no filter filter
Score 0.9918 0.9921 0.7305 0.8254
RMSE 1.6% 1.4% 2.3% 1.6%

The reason for this is that the linear model is more sensible to fluctuations
while the non-linear model is more robust. As a conclusion filtering for clear-sky
days would only make sense if a linear model is implemented.

In the course of this thesis the model is weighted with the irradiance in the
plane of array as shown in equation (28).
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PRDC ∗GI = (C1+C2∗(TMod−TSTC)+C3∗log10(GI)+C4∗GI +C5∗WS)∗GI

(28)
For instance, multiplying the PRDC with GI means that the model is fit-

ting the PRDC , while giving the values at high irradiance more weight, as the
high irradiance PRDC is more important to energy yield than is low irradiance
PRDC .

Simultaneously, multiplying the PRDC with GI results in the nP = Pmax

Pref
,

which can also be seen as fitting the nP rather than the PR. This statistically
weights to the field performance and means the anomalous scatter at very low
light levels is eliminated; similarly multiplying nIDC by GI results in something
meaningful.

However nVDC does not include GI in the denominator, so multiplying it
by GI does not come up with a meaningful value, although it is useful in the
mathematics.

It is common in the industry to statistically weight parameters by GI , such
as V and TMod as these are used when averaging performance over whole days.
As V at night is 0 and TMod at night is irrelevant it is still useful to do this even
though V ∗GI and TMod ∗GI do not mean anything themselves.

Figure (37) shows the effect weighting has on fitting the different parameters.
The same data (top) is fitted once without (middle) and once with weighting
(bottom). The greatest influence is seen on the nIDC for low irradiance in the
case of weighting the fitted curve drops as opposed to the increase visible if no
weighting is applied.
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Figure 37: Data for fitting (top), Fitted curves without (middle) and with
weighting (bottom).
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The positive effect the weighting has on the RMSE and the R2 of all the
parameters is summarized in table (6).

Table 6: Scores and RMSE improvements for weighting the model with GI

not weighted weighted

PRDC

R2 81.05% 99.49%
RMSE 1.48% 1.28%

nIDC

R2 43.90% 99.75%
RMSE 1.93% 1.34%

nVDC

R2 97.49% 99.95%
RMSE 0.65% 0.53%

4.2 Fault Detection

Once an accurate performance model is calibrated, it is valuable to examine a
component’s model coefficients and loss factors and conclude something about
the condition or health of the analyzed component.

Furthermore, the model allows for real time validation of measurements by
predicting the optimal output and comparing it to the instantaneous readings.

Since it is easier to measure the IV curves of single modules than for strings
of arrays, it is often the case for multi MWp solar plants that the measurements
available for the strings either just include the PMP or include also the IMP

and the VMP .
For the course of this thesis no IV curve measurement were taken on site and

consequently only the power, current and voltage at maximum power point of
each component in the plant could be analyzed separately. These components
include all the inverters, combiner boxes and strings that make up the PV plant.

After the conformation of the model fitting accuracy in the preceding sec-
tion, the fits can be utilized for the module characterization analysis and the
prediction of the optimum output behavior.

4.2.1 Loss Factor Analysis

This section presents analysis results based on the LFM/MPM Model. The
model allows an evaluation of the different irradiance levels and temperature
behavior of PV modules.

To have the the best representation of the modules, the measurements from
one string are taken as an example.

Since the generated electricity depends on the measured output power of the
array, it is calculated by multiplying its measured voltage and current for the
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strings. And because of the great influence the irradiance has on the output
power, the fitted power of one string is evaluated first against the irradiance.

The dependency on the irradiance is shown in Figure (38). The PRDC

shows poor low and high irradiance behavior. It is hard to identify the root of
such behavior from observing only one parameter. Therefor, by adding more
parameters to the analysis the reason for this behavior can be identified. Figure
(38) also shows the fits for the nIDC and the nVDC and it becomes clear that
the poor low irradiance of the PRDC is caused by the nIDC , while the poor
high irradiance behavior is caused by the nVDC .

Figure 38: Fitted PRDC , nIDC and nVDC plotted over GTI

To further understand this behavior, it is important to also analyze the effect
of the module temperature on the parameters. First this is done by looking at
each parameter over the irradiance as in Figure (38) with additionally adding a
color scale for the module temperature as a third axis as shown in Figure (39).
This shows that the module temperature is responsible for the broad scatter
of the fitted curves of both the PRDC and the nVDC , while the nIDC shows a
narrow scatter, due to the low dependence of the current on the temperature.

Moreover, on the right side of Figure (39) the parameters are plotted over
the module temperature with a color scale for the irradiance as a third axis.
This displays a linear dependency of all the parameters on the module temper-
ature except in the case of very low irradiance. While the increase of module
temperature causes a slight increase in the current, it causes an obvious decrease
for both the voltage and the power.
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Figure 39: PRDC , nIDC and nVDC against irradiance with a color scale based
on the module temperature (left) and against module temperature with a color
scale based on the irradiance (right)
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An observation of the variation of the loss factors over time allows for the
evaluation of the degradation of the modules and components and the monitor-
ing of the influence of the seasonality over the year on the system behavior.

For this study monthly data is fitted and by using IEC 61853 test conditions
that are defined in table (7) the output of the analyzed component can be study
under varying weather conditions. STC stands for Standard Test Conditions,
PTC for PVUSA, NOCT for nominal operating cell temperature, LTC for low
temperature, LIC for low irradiance and HTC for high temperature.

Table 7: Definitions of IEC 61853 test conditions
STC PTC NOCT LTC LIC HTC

GI(kW/m2) 1 1 0.8 0.5 0.2 1
TAmb(

◦C) - 20 20 - - -
TMod(◦C) 25 ∼55 ∼47 15 25 75
WS(ms−1) 0 1 1 0 0 0
Tilt(◦) - - 45 - - -
AM 1.5 1.5 1.5 1.5 1.5 1.5

Figure 40: PRDC estimates for one string based on IEC 61853 test conditions
for each month of the year

Figure (40) displays the variation of the PRDC of one example string over
the year with varying weather data inputs for the model. The values shown
represent the optimal behavior of the studied string based on the fitted model.

To be able to detect degradation 13 months of are required at least to be
able to compare the behavior under similar weather conditions. Furthermore,
by collecting data over many years a degradation become easily quantifiable
with the application of this model. For the course of this thesis only one full
year is analyzed.
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The strong variation of the performance for the different months becomes
clear and shows how strongly the performance is correlated with the seasonality
over the year.

4.2.2 Fault Identification and Location

After characterizing the modules, the coefficients used by the model can be
utilized to predict the optimal output of any component in the plant in real-
time to validate the power, current and voltage measurements instantaneously.
That would facilitate the detection of faults or under-performance and help in
identifying the cause.

For this step the tool introduced in (3.8) is applied to an inverter with all
the connected combiner boxes and strings.

Since the number of strings connected to the inverter is 124 and this makes
the impact a faulty string would have on the inverter performance negligibly
small the fault detection procedure is run separately for each combiner box con-
nected to the inverter. Figure (41) shows the predicted versus the estimated DC
power on the inverter level for three days in October and how almost identical
the curves are.

Figure 41: Inverter DC power measured and estimated results for three days in
October 2019

Therefore, the reference PRDC deviation will be based on one single com-
biner box proceeding with the analysis. Due to the high accuracy delivered by
the implemented model the threshold of 0.07 for detecting a deviation between
the measured and estimated PRDC of the combiner boxes needed to be lowered
to 0.02.

Figure (42) displays the deviations for three days in October with two days
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exceeding the 0.02 threshold. Once the threshold is exceeded a diagnostic signal
is set to one, otherwise to zero.

Figure 42: Combiner box PRDC deviations between estimated and measured
for two faulty days and one one day that is only partly faulty in October 2019

The analysis is continued with the times corresponding to a diagnostic signal
equal to one.

After running fitting the PRDC , nIDC and nVDC for each component the
ratios are calculated and added to a DataFrame. Figure (43) shows the evolution
of the RPDC AC of the inverter and the Rc and Rv of the combiner box.

The next step is to identify the type of fault based on the flowchart as
shown in Figure (28). By running the conditions for each row of the DataFrame
containing all the calculated ratios the type of fault occurring in each 5 min
measurements can be classified separately.

Finally to identify the exact location of the string where a fault occurred,
the DC current ratio is calculated for each string and added as an extra column
to the data frame. Since for the analysed two strings are connected to one
measurement channel, a DC current ration of 0.5 indicates one of the two string
broke down or is disconnected. This is shown in Figure (44).
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Figure 43: Combiner box Rc and Rv and inverter RPDC AC evolution for three
days in October

Figure 44: String DC current ratio for three days in October

4.2.3 Validation of Fault Detection Procedure

This section introduces the verification of the performance of the applied tool.
By comparing the results from the fault identification procedure with the
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daily reports provided by the operation and maintenance team a verification is
possible. The daily reports contain a documentation of each string fuse that was
replaced at a specific day. After locating the faulty string, the documentation
of the fuse replacement can be an indicator if the resulting faulty string was in
fact broken or not.

Only three faulty strings were detected during the month of October for
the studied inverter, which was also confirmed by the O&M daily reports. The
identification procedure is able to detect the faulty strings a day ahead of the
documented fuse replacement, which could lead to a faster intervention and
avoidance of unnecessary downtime.
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5 Conclusion and Further Research

This section will provide a summary of the main findings and discuss future
research which should be considered.

5.1 Conclusion

In this thesis, a model was built with the main objective of enabling an early
and accurate detection of faults in a PV plant. The model was built based on a
combination of two models existing in the literature, it was implemented in this
thesis and it was evaluated based on real data from a recently built large-scale
power plant in Egypt. Unlike the common practice of detecting faults based
on comparing the actual measurements with estimations by theoretical models,
such as the one-diode-model, the model implemented in this thesis optimizes
accuracy of fault detection by using historical data for fitting, which leads to a
more accurate representation of the system behavior.

The model implemented in this thesis has the following outcomes: The first
outcome of the model is to accurately characterise the components (e.g. invert-
ers and strings) of the PV plant. The second outcome is to accurately predict
the optimal output of the components of the plant. A comparison between the
optimal outputs of the model and the measured value allows for the detection
of deviations, if they exist. Further analysis by the model of the deviations can
identify and locate faults that may exist in a plant.

The model is applied to one inverter with all the connected combiner boxes
and strings and fits the performance measurements of each component based
on historical data after filtering for outliers, very low irradiance and weighting
with the irradiance in the plane of array. The discussed procedure confirms
optimum output behavior, or else identifies faults by implementing a fault de-
tection procedure, which allows for quick real-time fault detection, identification
and location and thereby can lead to minimizing downtime. Moreover, seasonal
effects of the PRDC are identified by evaluating its variation over time. The
automatic real time detection procedure was able to detect faulty strings very
quickly.

Daily reports from the O&M department in Egypt which specified which
strings broke and had to be replaced were used to validate the results of the
procedure, which revealed that only three faulty strings were detected during
the month of October for the studied inverter.

The identification procedure was able to detect the faulty strings a day ahead
of the documented fuse replacement, which could lead to a faster intervention
and avoidance of unnecessary downtime.

It can therefore be concluded that the model built and implemented in this
thesis has achieved its objective of characterising the components of a pho-
tovoltaic power plant and thereby enabling an early and accurate detection of
faults and consequently reducing the cost of maintenance and minimizing down-
time of the components of the power plant.
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With further investigation and research the fault detection tools provided by
this model can enable PV operators to better understand the PV power plant,
detect faults in an accurate and timely manner, and allow them to address and
solve the malfunctions and increase the reliability of the installations and ensure
the guaranteed lifetime output.

5.2 Further Research

For the course of this thesis no IV curve measurement were taken on site and
consequently only the power, current and voltage at maximum power point of
each component in the plant could be analyzed separately.

By measuring high quality IV curves more parameters can be analysed which
in return would provide more detailed classification of the malfunctions or under
performance of the system’s components.

One of the main advantages of the LFM/MPM is that the resulting coef-
ficients from the fits represent physical coefficients. In further research their
values could be compared to the data sheet values of the modules, which would
allow for a study of the variations of the coefficients over the year.

To be able to detect degradation at least 13 months of data are required to
compare the performance evolution under similar weather conditions, which was
not present at the studied plant. Furthermore, by analyzing data from several
years the degradation can also be quantified.

Finally, by correcting the performance measurements for soiling and tem-
perature a more accurate optimal behavior of the plant can be estimated.
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