Measuring extinction using visibility sensors & modelling approaches based on DNI

Stefan Wilbert, Natalie Hanrieder et al.

Solar World Congress Chile 6.11.19

Content

Extinction measurements with visibility sensors

- Visibility and relation to beam attenuation between heliostat and receiver
- Test of different sensors

Deriving extinction time series from DNI data

- Idea of the model
- Validation, uncertainty

Extinction and Meteorological Optical Range (MOR)

•Target parameter for CSP: β_e from Beer-law (monochromatic, for all wvlgth)

$$I(x) = I_0 \exp(-\beta_e x)$$

- •Usually, β_e IS NOT measured \rightarrow Another variable might be used \rightarrow MOR
- -MOR is WMO recommended parameter to describe visibility
- -MOR is measured for traffic -roads, airports
- -Question from 2009: Can MOR be used to derive β_e ?

•**Def.:** MOR = Path after which a luminous flux from an incandescent lamp @ color temperature of 2700 K, is reduced to 5% of its original value (WMO, CIMO Guide).

MOR \approx -In 0.05 / β_e

Evaluated MOR instruments

- -2 transmissometers & 3 scatterometers
- -co-located measurements and data comparison

Vaisala FS11 scatterometer

- NIR light beam through volume of air
 → measures forward scattering of pulsed beam
- MOR range: 5m 75km
 Corresponds to max. measureable transmittance for 1km light path of T_{1km} = 0.961

Campbell Scientific scatterometer CS 125

- Principle of operation as FS11
- 1/₃ of FS11 price
- MOR range: 5m 75km
 - Corresponds to max. measureable transmittance for 1km light path of T_{1km} = 0.961
- Center wavelength 850 nm

- Also tested newer CS120 (similar to CS125, 1/4 of FS11 price)

Optec LPV-4 Transmissometer

- measures transmittance of pulsed beam
- VIS light beam λ= 532nm
- Path length: up to 20km (selected 487m)
- MOR range: 0.5km 300km
 - •Corresponds to a maximum measureable transmittance for 1km light path of 0.99

Degreane TR30 Transmissometer

Receiver Transmitter

path

- measures transmittance of pulsed beam
- White light beam $\lambda = 400 700 \text{ nm}$
- path length: 75 m
- •MOR range: 5 m to 70 km
 - -Corresponds to a maximum measureable transmittance for 1km light path of 0.958
- Conclusion

Instrument not reliable for relevant high MOR range (already visible from measurement data)!

Validation of FS11 and LPV4

- 1 year processed data in 10 min time resolution
- Deviation between sensors noticeable and understandable
 - Spectral measurements (532nm vs. NIR) although broadband target value
 - Variation of absorption not measured by FS11
- No bias after physical correction "ABC"
- FS11 and LPV4 are applicable for CSP!

ABC- Absorption and Broadband Correction

libRadtran

- 1. Simulate spectral DNI at ground level with libRadtran
 - Use T, rel. hum., press. and AERONET data if available.
- 2. Simulate spectral DNI after passing through a layer of air with homogeneous properties representing air between heliostat and receiver
- 3. Calculate absorption and scatter effect for each wavelength
- → Spectral correction factor of signal of the LPV4
 - → 532nm -> broadband 280-4000nm
- → Spectral & absorption correction factor of FS11
 - → NIR -> broadband
 - → deviation from average absorption

Uncertainty of FS11 and LPV4 based T_{1km} measurement

- Significant reduction for LPV4 possible when used with longer distance (e.g. 2km)

Adaptations for different MOR sensors

- Comparison of CS125 and FS11 at CIEMAT's PSA and IRESEN's GEP
- Systematic deviations that can be corrected well
- Similar results for CS120

Further comments on extinction measurement

- Assumption that measurement at the ground represents slant range from heliostat to receiver:
 - Tested at PSA with FS11 and particle counters on ground and at 90m height.
 - -> At PSA no deviation due to height
 - During high DNI well mixed atmosphere in the boundary layer is expected
 - LPV4 can be used along slant path
- Many MOR sensors only have measurement range up to \sim 20km (T_{1km} = 0.86):
 - If working with such data statistical methods or models must be used to derive data for high MORs

Conclusion Extinction measurements with MOR sensors

- MOR measurements can be used to derive extinction data if:
 - adequate sensors are used (e.g. **real** measurement range)
 - ABC correction is applied
- Uncertainty of MOR based ABC corrected extinction data is known.
 - Allows selection of instrument and setup for individual application
- LPV4 is accurate option if daily cleaning and alignment control is possible
- Scatterometers are also interesting if maintenance & robustness are an issue
- Using existing visibility data from sensors already deployed close to a CSP site of interest (road, airports, ...) can be a big advantage:
 - Sensors should be characterized by comparison to known MOR sensors or extinction measurement systems (can be done using a sensor of the same model)

Content

Extinction measurements with visibility sensors

- Visibility and relation to beam attenuation between heliostat and receiver
- Test of instruments

Deriving extinction time series from DNI data

- Idea of the model
- Validation, uncertainty

Extinction model based on DNI

Compare clear sky DNI
measurement
to
clear sky DNI for one fixed
atmosphere without aerosol

=> Estimate of AOD

Assume that aerosol height profile is known

=>extinction coefficient close to ground

First version by NREL Sengupta et al., 2011: "Impact of aerosols on atmospheric attenuation loss in central receiver systems"

Enhancements of transmittance model

- Consider site altitude
- Consider water vapor content as time series derived from rel. hum. temp. & press.
- Select aerosol type for site of interest
- Vary aerosol height distribution
 - LIVAS LIDAR data
 - Standard libRadtran aerosol profiles
 - Homogeneous extinction up to
 - 1km
 - Ceilometer lowest aerosol layer
 - Boundary layer height data from numerical weather prediction model ECMWF

=> Validation at three sites with several years against FS11 data

Validation of transmittance model in terms of T1km

- Avg. transmittances T_{1km} at the three sites:
 - -PSA: 89%, MIS: 87%, ZAG 86%
- No advantage for complex evaluations with LIVAS or ECMWF BLH (same for ceilometer aerosol layer & libRadtran standard aerosol profiles)
- Considering uncertainties of the aerosol height profile, errors for "H1000" are low.

Model uncertainty and possible applications

- Uncertainty of aerosol height profile assumption is biggest influence for uncertainty of T_{1km}
 - Height estimate of homogeneous layer wrong by factor X => extinction coefficient wrong by 1/X.
 - However, low influence for high T_{1km}
 - A multiple of a low extinction coefficient is still low.
- => Model can identify clear sites and to indicate of a measurement is needed!
 -If low transmittance is found measurement campaign is required.

Conclusions – DNI based transmittance model

- DNI based modelling of transmittance is possible
- T_{1km} errors for 3 validation sites are within ~2% (bias)
 - Simple assumption of homogeneous 1km layer from NREL's original model performed best
- Model can identify clear sites with high transmittance
 - Model data only accurate for CSP plant simulation for high transmittance values
 - Lower model transmittances are estimates and indicate that a measurement campaign is required.

Thank you for your attention!

Thanks to all colleagues from CIEMAT, NREL, IRESEN, LMU Munich and HTW Berlin that contributed to the summarized studies.

Selected references

- Sengupta, M. and M. Wagner (2011). "Impact of aerosols on atmospheric attenuation loss in central receiver systems." In: SolarPACES. Granada, Spain.
- Sengupta, M. and M. Wagner (2012). "Estimating atmospheric attenuation in central receiver systems." In: Proceedings of the ASME 2012 6th International Conference on Energy Sustainability. San Diego, CA, USA.
- Sengupta, M. and M. Wagner (2012a). "Atmospheric attenuation in central receiver systems from DNI measurements." In: SolarPACES. Marrakech, Morocco.
- Hanrieder N., S. Wilbert, R. Pitz-Paal, C. Emde, J. Gasteiger, B. Mayer and J. Polo (2015), "Atmospheric extinction in solar tower plants: absorption and broadband correction for MOR measurements." In: Atmospheric Measurement Techniques 8, pp. 1–14.
- Hanrieder N., M. Sengupta, Y. Xie, S. Wilbert and R. Pitz-Paal (2016), "Modelling Beam Attenuation in Solar Tower Plants Using Common DNI Measurements." In: Solar Energy 129, 244-255.
- Hanrieder, N., S. Wilbert, et al. (2017). "Atmospheric extinction in simulation tools for solar tower plants." <u>AIP Conference Proceedings 1850(1): 140011.</u>
- Hanrieder, N., et al., Atmospheric extinction in solar Tower plants A review. Solar Energy, 2017.
- Hanrieder, N., et al., Atmospheric Transmittance Model Validation for CSP Tower Plants. MDPI, Special Issue: Remote Sensing, 2019. 11(9).

