
Policy Search in Continuous Action Domains: an Overview

Olivier Sigaud

INRIA Bordeaux Sud-Ouest, équipe FLOWERS
Sorbonne Université, CNRS UMR 7222,

Institut des Systèmes Intelligents et de Robotique, F-75005 Paris, France

olivier.sigaud@isir.upmc.fr +33 (0) 1 44 27 88 53

Freek Stulp

German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Wessling, Germany
freek.stulp@dlr.de

Abstract

Continuous action policy search is currently the focus of intensive research, driven both by the recent
success of deep reinforcement learning algorithms and the emergence of competitors based on evolutionary
algorithms. In this paper, we present a broad survey of policy search methods, providing a unified perspective
on very different approaches, including also Bayesian Optimization and directed exploration methods. The
main message of this overview is in the relationship between the families of methods, but we also outline
some factors underlying sample efficiency properties of the various approaches.

Keywords: policy search, sample efficiency, deep reinforcement learning, deep neuroevolution

1. Introduction

Autonomous systems are systems which know
what to do in their domain without external in-
tervention. Generally, their behavior is specified
through a policy. The policy of a robot, for in-
stance, is defined through a controller which de-
termines actions to take or signals to send to the
actuators for any state of the robot in its environ-
ment.

Robot policies are often designed by hand, but
this manual design is only viable for systems act-
ing in well-structured environments and for well-
specified tasks. When those conditions are not met,
a more appealing alternative is to let the system
find its own policy by exploring various behaviors
and exploiting those that perform well with respect
to some predefined utility function. This approach
is called policy search, a particular case of reinforce-
ment learning (RL) (Sutton and Barto, 1998) where
actions are vectors from a continuous space. More
precisely, the goal of policy search is to optimize
a policy where the function relating behaviors to
their utility is black-box, i.e. no analytical model
or gradient of the utility function is available. In

practice, a policy search algorithm runs the system
with some policies to generate rollouts made of sev-
eral state and action steps and gets the utility as
a return (see Figure 1). These utilities are then
used to improve the policy, and the process is re-
peated until some satisfactory set of behaviors is
found. In general, policies are represented with a
parametric function, and policy search explores the
space of policy parameters. For doing so, rollout
and utility data are processed by policy improve-
ment algorithms as a set of samples.

Figure 1: Visualization of one episode, the information con-
tained in a rollout, and the definition of the episode utility
(which is also known as the episode return when the utility
is a reward).

In the context of robotics, sample efficiency is a
key concern. There are three aspects to sample ef-

ar
X

iv
:1

80
3.

04
70

6v
5

 [
cs

.L
G

]
 1

3
Ju

n
20

19

ficiency: (1) data efficiency, i.e. extracting more
information from available data (definition taken
from (Deisenroth and Rasmussen, 2011)), (2) sam-
ple choice, i.e. obtaining data in which more infor-
mation is available and (3) sample reuse, i.e. im-
proving a policy several times by using the same
samples more than once through experience replay.

In this paper, we provide a broad overview of
policy search algorithms under the perspective of
these three aspects.

1.1. Scope and Contributions

Three surveys about policy search for robotics
have been published in recent years (Deisenroth
et al., 2013; Stulp and Sigaud, 2013; Kober et al.,
2013). With respect to these previous surveys,
we cover a broader range of policy search algo-
rithms, including optimization without a utility
model, Bayesian optimization (BO), directed ex-
ploration methods, and deep RL. The counterpart
of this breadth is that we do not give a detailed
account of the corresponding algorithms nor their
mathematical derivation. To compensate for this
lack of details, we refer the reader to (Deisenroth
et al., 2013) for the mathematical derivation and
description of most algorithms before 2013, and we
provide carefully chosen references as needed when
describing more recent algorithms.

Furthermore, we focus on the case where the sys-
tem is learning to solve a single task. That is, we do
not cover the broader domain of lifelong, continual
or open-ended learning, where a robot must learn
how to perform various tasks over a potentially in-
finite horizon (Thrun and Mitchell, 1995). Addi-
tionally, though a subset of policy search methods
are based on RL, we do not cover recent work on RL
with discrete actions such as dqn and its successors
(Mnih et al., 2015; Hessel et al., 2017). Finally, we
restrict ourselves to the case where samples are the
unique source of information for improving the pol-
icy. That is, we do not consider the interactive con-
text where a human user can provide external guid-
ance (Najar et al., 2016), either through feedback,
shaping or demonstration (Argall et al., 2009).

1.2. Perspective and structure of the survey

The main message of this paper is as follows. In
optimization, when the utility function to be opti-
mized is known and convex, efficient convex meth-
ods can be applied (Gill et al., 1981). If the func-
tion is known but not convex, a local optimum can

be found using gradient descent, iteratively moving
from the current point towards a local optimum by
following the direction provided by the derivative of
the function at this point. If the function is black-
box, neither the function nor its analytic gradient
are known. In policy gradient methods, policy pa-
rameters are only related to their utility indirectly
through an intermediate set of observed behaviors.
Given that policy search corresponds to this more
difficult context, we consider five solutions:

1. searching for high utility policy parameters
without building a utility model (Section 2),

2. learning a model of the utility function in
the space of policy parameters and performing
stochastic gradient descent (SGD) using this
model (Section 3),

3. defining an arbitrary outcome space and us-
ing directed exploration of this outcome space
for finding high utility policy parameters (Sec-
tion 4),

4. doing the same as in Solution 2 in the state-
action space (Section 5),

5. learning a model of the transition function of
the system-environment interaction that pre-
dicts the next state given the current state and
action, to generate samples without using the
system, and then applying one of the above
solutions based on the generated samples.

An important distinction in the policy search
domain is whether the optimization method is
episode-based or step-based (Deisenroth et al.,
2013)1. The first three solutions above are episode-
based, the fourth is step-based and the fifth can be
applied to all others.

Resulting from the above perspective, this survey
is structured following the organization of methods
depicted in Figure 2. The rest of the paper de-
scribes the different nodes in the trees and high-
lights some of their sample efficiency factors. A
table giving a quick reference to the main paper for
each algorithm is given in the end of each section.

In Sections 2 to 5, we present Solutions 1 to
4 above in more detail, showing how the corre-
sponding methods are implemented in various pol-
icy search algorithms. We do not cover Solution 5
and refer readers to (Chatzilygeroudis et al., 2017)
for a recent presentation of these model-based policy

1This distinction exactly matches the phylogenetic RL
versus ontogenetic RL distinction in (Togelius et al., 2009).

2

Figure 2: Simplified classification of the algorithms covered in the paper. Θ is the space of policy parameters (see Section 2),
O is an outcome space (see Section 4) and X × U is the state and action space (see Section 5). Algorithms not covered in
(Deisenroth et al., 2013) have a lighter (green) background. References to the main paper for each of these algorithms is given
in a table in the end of each section. From the left to the right, algorithms are grossly ranked in order of increasing sample
reuse, but methods using a utility model in Θ and O show better sample choice, resulting in competitive sample efficiency.

search methods. Then, in Section 6, we discuss the
different elementary design choices that matter in
terms of sample efficiency. Finally, Section 7 sum-
marizes the paper and provides some perspectives
about current trends in the domain.

2. Policy search without a utility model

When the function to be optimized is available
but has no favorable property, the standard opti-
mization method known as Gradient Descent con-
sists in iteratively following the gradient of this
function towards a local optimum. When the same
function is only known through a model built by
regression from a batch of samples, one can also
do the same, but computing the gradient requires
evaluations over the whole batch, which can be
computationally expensive. An alternative known
as Stochastic Gradient Descent (SGD) circumvents
this difficulty by taking a small subset of the batch
at each iteration (Bottou, 2012). Before starting
to present these methods in Section 3, we first in-
vestigate a family of methods which perform pol-
icy search without learning a model of the utility
function at all. They do so by sampling the pol-
icy parameter space Θ and moving towards policy
parameters θ of higher utility J(θ).

2.1. Truly random search

At one extreme, the simplest black-box optimiza-
tion (BBO) method randomly searches Θ until it
stumbles on a good enough utility. We call this

method “Truly random search” as the name “ran-
dom search” is used in the optimization commu-
nity to refer to gradient-free methods (Rastrigin,
1963). Its distinguishing feature is in its sample
choice strategy: the utility of the previous θ has no
impact on the choice of the next θ.

Quite obviously, this sample choice strategy is
not efficient, but it requires no assumption at all
on the function to be optimized. Therefore, it is
an option when this function does not show any
regularity that can be exploited. All other methods
rely on the implicit assumption that J(θ) presents
some smoothness around optima θ∗, which is a first
step towards using a gradient.

So globally, this method provides a proof of
concept that an agent can obtain a better utility
without estimating any gradient at all. Recently,
other forms of gradient-free methods called ran-
dom search though they are not truly random have
been shown to be competitive with deep RL (Mania
et al., 2018).

The next three families of methods, population-
based optimization, evolutionary strategies and es-
timation of distribution algorithms, are all variants
of evolutionary methods. An overview2 of these
methods is depicted in Figure 3.

2A blog with dynamical visualizations and more technical
details can be found at http://blog.otoro.net/2017/10/

29/visual-evolution-strategies/.

3

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

Figure 3: One iteration of evolutionary methods. (a) Population-based methods (b) Evolutionary Strategies (c) EDAs. Blue:
current generation and sampling domain. Full blue dots: samples with a good evaluation. Dots with a red cross: samples with
a poor evaluation. Green: new generation and sampling domain, empty dots are not evaluated yet. Red dots: optimum guess.
In population-based methods, the next generation are offspring from several elite individuals of the previous generation. In
ES, it is obtained from an optimum guess and sampling from fixed Gaussian noise. In EDAs, Gaussian noise is tuned using
Covariance Matrix Adaptation.

2.2. Population-based optimization

Population-based BBO methods manage a lim-
ited population of individuals, and generate new
individuals randomly in the vicinity of the previ-
ous elite individuals. There are several families of
population-based optimization methods, the most
famous being Genetic Algorithms (GAs) (Goldberg,
1989), Genetic Programming (GP) (Koza, 1992),
and the more advanced NEAT framework (Stan-
ley and Miikkulainen, 2002). In these methods, the
parameter θ corresponding to an individual is often
called its genotype and the corresponding utility is
called its fitness, see (Back, 1996) for further read-
ing. These methods have already been combined
with neural networks giving rise to neuroevolution
(Floreano et al., 2008) but, up to recently, these
methods were mostly applied to small to moderate
size policy representations. However, the availabil-
ity of modern computational resources have made it
possible to apply them to large and deep neural net-
work representations, defining the emerging domain
of deep neuroevolution (Petroski Such et al., 2017).
Among other things, it was shown that, given large
enough computational resources, methods as simple
as GAs can offer a competitive alternative to deep
RL methods presented in Section 5, mostly due
to their excellent parallelization capabilities (Pet-
roski Such et al., 2017; Conti et al., 2017).

2.3. Evolutionary strategies

Evolutionary strategies (ES) can be seen as spe-
cific population-based optimization methods where
only one individual is retained from one generation

to the next. More specifically, an optimum guess is
computed from the previous samples, then the next
samples are obtained by adding Gaussian noise to
the current optimum guess.

Moving from one optimum guess to the next im-
plements a form of policy improvement similar to
SGD, but where the gradient is approximated by
averaging over samples instead of being analytically
computed. Hence this method is more flexible but,
since gradient approximation uses a random explo-
ration component, it is less data efficient. However,
data efficiency can be improved by reusing samples
between one generation and the next when their
sampling domain overlaps, a method called impor-
tance mixing (Sun et al., 2009). An improved ver-
sion of importance mixing was recently proposed
in (Pourchot et al., 2018), showing a large impact
on sample efficiency, but not large enough to com-
pete with deep RL methods on this aspect. Fur-
ther results about importance mixing can be found
in (Pourchot and Sigaud, 2018), showing that more
investigations are necessary to better understand in
which context this mechanism can be most useful.

The correlation between the direction of the gra-
dient given by SGD and the same direction for ES
depends on the evolutionary algorithm. Interest-
ingly, good ES performance can be obtained even
when the correlation is not high, though this re-
sult still needs to be confirmed in the case of policy
search (Zhang et al., 2017).

A specific ES implementation of deep neuroevolu-
tion where constant Gaussian noise is used at each
generation was shown to compete with deep RL
methods on standard benchmarks (Salimans et al.,

4

2017). This simple implementation generated an
insightful comparison with methods based on SGD
depending on various gradient landscapes, showing
under which conditions ES can find better optima
than SGD (Lehman et al., 2017).

Finally, instead of approximating the vanilla gra-
dient of utility, nes (Wierstra et al., 2008) and xnes
(Glasmachers et al., 2010) approximate its natural
gradient (Akimoto et al., 2010), but for doing so
they have to compute the inverse of the Fisher In-
formation Matrix, which is prohibitively expensive
in large dimensions (Grondman et al., 2012). We re-
fer the reader to (Pierrot et al., 2018) for a detailed
presentation of natural gradient and other advanced
gradient descent concepts.

2.4. Estimation of Distribution Algorithms

The standard perspective about EDAs is that
they are a specific family of ES using a covari-
ance matrix Σ (Larrañaga and Lozano, 2001). This
covariance matrix defines a multivariate Gaussian
function over Θ, hence its size is |θ|2. Samples
at the next iteration are drawn with a probability
proportional to this Gaussian function. Along it-
erations, the ellipsoid defined by Σ is progressively
adjusted to the top part of the hill corresponding
to the local optimum θ∗.

The role of Σ is to control exploration. The ex-
ploration policy can be characterized as uncorre-
lated when it only updates the diagonal of Σ and
correlated when it updates the full Σ (Deisenroth
et al., 2013). The latter is more efficient in small pa-
rameter spaces but computationally more demand-
ing and potentially inaccurate in larger spaces as
more samples are required. In particular, it can-
not be applied in the deep neuroevolution context
where the order of magnitude of the size of θ is
between thousands and millions.

Various instances of EDAs, such as cem, cma-
es, pi2-cma, are covered in (Stulp and Sigaud,
2012a,b, 2013). Among them, the cma-es algo-
rithm is also shown to approximate the natural gra-
dient (Arnold et al., 2011). By contrast, the piBB al-
gorithm, also described in (Stulp and Sigaud, 2013),
is a simplification of pi2-cma where covariance ma-
trix adaptation has been removed. Thus it should
be considered an instance of the former ES cate-
gory.

2.5. Finite difference methods

In finite difference methods, the gradient of util-
ity with respect to θ is estimated as the first order

approximation of the Taylor expansion of the utility
function. This estimation is performed by applying
local perturbations to the current input. Thus these
methods are derivative-free and we classify them as
using no model, even if they are based on a local
linear approximation of the gradient.

In finite difference methods, gradient estimation
can be cast as a standard regression problem, but
perturbations along each dimension of Θ can be
treated separately, which results in a very simple
algorithm (Riedmiller et al., 2008). The counter-
part of this simplicity is that it suffers from a lot of
variance, so in practice the methods are limited to
deterministic policies.

2.6. Reference to the main algorithms

Algorithm Main paper

cma-es (Hansen and Ostermeier, 2001)
cem (Rubinstein and Kroese, 2004)
finite diff. (Riedmiller et al., 2008)
nes (Wierstra et al., 2008)
xnes (Glasmachers et al., 2010)
piBB (Stulp and Sigaud, 2012b)
pi2-cma (Stulp and Sigaud, 2012a)
OpenAI-ES (Salimans et al., 2017)
Random Search (Mania et al., 2018)

Table 1: Main gradient-free algorithms. Above the line, they
were studied in (Deisenroth et al., 2013), below they were
not.

2.7. Sample efficiency analysis

In all gradient-free methods, sampling a vector
of policy parameters θ provides an exact informa-
tion about its utility J(θ). However, the J function
can be stochastic, in which case one value of J(θ)
only contains partial information about the value
of that θ. Anyways, sample reuse can be imple-
mented by storing an archive of the already sampled
pairs < θ, J(θ) >. Each time an algorithm needs
the utility J(θ) of a sample θ, if this utility is al-
ready available in the archive, it can use it instead
of sampling again. In the deterministic case, using
the stored value is enough. In the stochastic case,
the archive may provide a distribution over values
J(θ), and the algorithm may either draw a value
from this distribution or sample again, depending
on accuracy requirements.

5

Message 1: Policy search without a util-
ity model is generally less data efficient
than Stochastic Gradient Descent (SGD).
Though sample reuse is technically possi-
ble without a utility model, in practice it
is seldom used. Despite their lower sam-
ple efficiency in comparison to SGD, some of
these methods are highly parallelizable and
offer a viable alternative to deep RL pro-
vided enough computational resources.

3. Policy search with a model of utility in
the space of policy parameters

As outlined in the introduction, the utility of a
vector of policy parameters is only available by ob-
serving the corresponding behavior. Although no
model that relates policy parameters to utilities is
given, one may approximate the utility function in
Θ from these observations, by collecting samples
consisting of (policy parameters, utility) pairs and
using regression to infer a model of the correspond-
ing function (see e.g. (Stulp and Sigaud, 2015)).
Such a model could either be deterministic, giving
one utility per policy parameters vector, or stochas-
tic, giving a distribution over utility values.

Once such a model is learned, one could perform
gradient descent on this model. These steps could
be performed sequentially (first model learning and
then gradient descent) or incrementally (improving
the model and performing gradient descent after
each new utility observation). In the latter case, the
model is necessarily persistent: it evolves from iter-
ation to iteration given new information, in contrast
with the sequential case where it could be transient,
that is recomputed from scratch at each iteration.

3.1. Bayesian Optimization

Though the above approach seems appealing, we
are not aware of any algorithm performing what is
described above in the deterministic case. A good
reason for this is that utility functions are gener-
ally stochastic in Θ. Thus, algorithms which learn
a model J(θ) have to learn a distribution over such
models. This is exactly what Bayesian optimization
(BO) does. The distribution over models is updated
through Bayesian inference. It is initialized with a
prior, and each new sample, considered as some new
evidence, helps adjusting the model distribution to-
wards a peak at the true value, whilst keeping track

of the variance over models. By estimating the un-
certainty over the distribution of models, BO meth-
ods are endowed with active learning capabilities,
dramatically improving their sample efficiency at
the cost of a worse scalability.

A BO algorithm comes with a covariance func-
tion that determines how the information provided
by a new sample influences the model distribution
around this sample. It also comes with an acquisi-
tion function used to choose the next sample given
the current model distribution. A good acquisition
function should take into account the value and the
uncertainty of the model over the sampled space.

By quickly reducing uncertainty, BO implements
a form of active learning. As a consequence, it is
very sample efficient when the parameter space is
small enough, and it searches for the global opti-
mum, rather than a local one. However, given the
necessity to optimize globally over the acquisition
function, it scales poorly in the size of the param-
eter space. For more details, see (Brochu et al.,
2010).

The rock∗ algorithm is an instance of BO that
searches for a local optimum instead of a global one
(Hwangbo et al., 2014). It uses cma-es to find the
optimum over the model function. By doing so, it
performs natural rather than vanilla gradient opti-
mization, but it does not use the available model
of the utility function, though this could improve
sample efficiency.

Bayesian optimization algorithms generally use
Gaussian kernels to efficiently represent the distri-
bution over models. However, some authors have
started to note that, in the specific context of policy
search, BO was not using all the information avail-
able in elementary steps of the agent. This led to
the investigation of more appropriate data-driven
kernels based on the Kullbak-Leibler divergence
between rollout density generated by two policies
(Wilson et al., 2014).

Using BO in the context of policy search is an
emerging domain (Lizotte et al., 2007; Calandra
et al., 2014; Metzen et al., 2015; Martinez-Cantin
et al., 2017). Furthermore, recent attempts to com-
bine BO with reinforcement learning approaches,
giving rise to the Bayesian Optimization Reinforce-
ment Learning (BORL) framework, are described
in Section 5.

6

3.2. Reference to the main algorithms

Algorithm Main paper

Bayes. Opt. (Pelikan et al., 1999)
rock∗ (Hwangbo et al., 2014)

Table 2: Main Bayesian Optimization algorithms

3.3. Sample efficiency analysis

Learning a model of the utility function in Θ
should be more sample efficient than trying to opti-
mize without a model, as the gradient with respect
to the model can be used to accelerate parameter
improvement. However, learning a deterministic
model is not enough for most cases, as the true util-
ity function is generally stochastic in Θ, and learn-
ing a stochastic model comes with an additional
computational cost which impacts the scalability of
the approach.

Message 2: Bayesian Optimization is BBO
managing a distribution over models in the
policy parameter space. Its sample effi-
ciency benefits from active choice of sam-
ples. But as it performs global search, it
does not scale well to large policy parame-
ter spaces. Thus, it is difficult to apply to
deep neural network representations.

4. Directed exploration methods

Directed exploration methods are particularly
useful in tasks with sparse rewards, i.e. where large
parts of the search space have the same utility sig-
nal. These methods have two main features. First,
instead of searching directly in the policy parame-
ter space Θ, they search in a smaller outcome space
O (also called descriptor space or behavioral space)
and learn an invertible mapping between Θ and O.
Second, they all optimize a task-independent cri-
terion called novelty or diversity which is used to
efficiently cover the outcome space.

The outcome itself corresponds to properties of
the observed behavior. The general intuition is that
if the outcome space is properly covered by known
policy parametrizations, and if utility can be easily
related to outcomes, then it should be easy to find
policy parameters with a high utility, even when

the utility function is null for most policy param-
eters. Figure 4 visualizes why it is generally more
efficient to perform the search for novel solutions in
a dedicated outcome space and learning a mapping
from Θ to O than performing this search directly
in Θ (Baranes et al., 2014).

So, for the method to work, the outcome space
has to be defined in such a way that determining
the utility corresponding to an outcome is straight-
forward. Generally, the outcome space is defined
by an external user to meet this requirement. Nev-
ertheless, using representation learning methods to
let the agent autonomously define its own outcome
space is an emerging topic of interest (Pere et al.,
2018; Laversanne-Finot et al., 2018).

Figure 4: A standard mapping between a policy parameter
space Θ and an outcome space O. Most often, many pol-
icy parameters result in the same outcome (for instance, in
the case of a robotic arm which must move a ball around,
if the policy defines arm movements and the outcome space
is defined as ball positions, most policy parameters will re-
sults into a static ball). In that case, sampling directly in Θ
works poorly: you have to sample in such a way to efficiently
cover O.

Directed exploration methods can be split into
novelty search (NS) (Lehman and Stanley, 2011),
quality-diversity (QD) (Pugh et al., 2015) and
goal exploration processes (geps) (Baranes and
Oudeyer, 2010; Forestier and Oudeyer, 2016;
Forestier et al., 2017). The first two derive from
evolutionary methods, whereas geps come from the
developmental learning and intrinsic motivation lit-
erature.

An important distinction between them is that
NS and geps are designed to optimize diversity
only3, thus they do not use the utility function at
all, whereas QD methods rely on multi-objective
optimization methods to optimize diversity and
utility at the same time.

3Hence the dotted line in Figure 2.

7

The NS approach arose from the realization that
optimizing utility as a single objective is not the
only option (Doncieux and Mouret, 2014). In par-
ticular, in the case of sparse or deceptive reward
problems, it was shown that seeking novelty or di-
versity is an efficient strategy to obtain high utility
solutions, even without explicitly optimizing this
utility (Lehman and Stanley, 2011). The gep ap-
proach was more inspired by thoughts on intrinsic
motivations, where the goal was to have an agent
achieve its own goal without an external utility sig-
nal (Forestier et al., 2017). However, researchers
in evolutionary methods also realized that diver-
sity and utility can be optimized jointly (Cuccu
and Gomez, 2011), giving rise to more advanced
NS and QD algorithms (Pugh et al., 2015; Cully
and Demiris, 2017).

All these methods share a lot of similarities.
They all start with a random search stage and,
when they evaluate a policy parameter vector θ re-
sulting in a point o in the outcome space O, they
store the corresponding < θ, o > pair in an archive.
Because they use this archive for policy improve-
ment, they all implement a form of lazy learning,
endowing them with interesting sample efficiency
properties (Aha, 1997). The archive itself can be
seen as a stochastic model of the function relating
Θ to O, as made particularly obvious in the MAP-
Elites algorithm (Cully et al., 2015).

In more details, the main differences between
these methods lie in the way they cover the out-
come space O. NS and QD methods perform undi-
rected variations to the elite θ vectors present in
the archive. More precisely, in NS, the resulting
solution is just added to the archive, whereas in
QD the new solution replaces a previous one if it
outperforms it both in terms of diversity and util-
ity. By contrast, geps choose a desired outcome
o∗ and modify a copy of the θ leading to the clos-
est outcome in the archive. The choice of a de-
sired outcome o∗ can be performed randomly or
using curriculum learning or learning progress con-
cepts (Baranes and Oudeyer, 2013; Forestier et al.,
2017). Similarly, the modification of θ can be per-
formed using undirected Gaussian noise or in more
advanced ways. For instance, some gep methods
build a local linear model of the mapping from Θ
to O to efficiently invert it, so as to find the θ∗ cor-
responding to the desired outcome o∗ (Baranes and
Oudeyer, 2013).

Thus directed exploration methods all learn a
stochastic and invertible mapping between Θ and

O. When they also learn a model of J(o), this
model is stochastic with respect to Θ, which makes
them similar to BO methods. In that case, the out-
come space is an intermediate space between Θ and
utilities: policy parameters are first projected into
the outcome space, and then a model of the utility
function in this outcome space can be learned.

Learning a model of the utility in O shares some
similarities with learning a critic in the state action
space X × U , as presented in Section 5. From this
perspective, these methods can be seen as provid-
ing an intermediary family between evolutionary,
BO and reinforcement learning methods. However,
we shall see soon that learning a critic in the state
action space X ×U benefits from additional proper-
ties related to temporal difference learning, which
limits the use of the above unifying perspective.

4.1. Reference to the main algorithms

Algorithm Main paper

Novelty Search (Lehman and Stanley, 2011)
Quality-Diversity (Pugh et al., 2015)
Goal Exploration (Forestier et al., 2017)

Table 3: Main directed exploration algorithms

4.2. Sample efficiency analysis

The defining characteristic of all directed explo-
ration methods is their capability to widely cover
the outcome space. This provides efficient explo-
ration, which in turn critically improves sample ef-
ficiency when combined with more standard evo-
lutionary methods mentioned in Section 2 (Conti
et al., 2017) or deep RL method mentioned in Sec-
tion 5 (Colas et al., 2018).

Even though our article focuses on single-task
learning, it is worth mentioning that direct explo-
ration methods may very much improve sample ef-
ficiency in multi-task learning scenarios. This is
because such methods aim at covering the (inter-
esting) outcome space, and can thus more easily
adapt when facing multiple tasks, and thus poten-
tially multiple outcomes.

8

Message 3: Looking for diversity only in
a user defined outcome space is an efficient
way to perform exploration, and can help
solve sparse or deceptive reward problems,
where more standard exploration would fail.
Directed exploration methods are thus use-
ful complements to other methods covered
in this survey.

5. Policy search with a critic

The previous two sections have presented meth-
ods which learn mappings from policy parameter
space Θ to utilities or outcomes. We now cover
methods which learn a model of utility in the state-
action space X × U .

An important component in the RL formaliza-
tion, the utility U(x,u) corresponds to the return
the agent may expect from performing action u
when it is in state x and then following either its
current policy πθ or the optimal policy π∗. This
quantity may also depend on a discount factor γ
and a noise parameter β.

The true utility U(x,u) can be approximated
with a model Ûη(x,u) with parameters η. Such
a model is called a critic. A key feature is that the
critic can be learned from samples corresponding
to single steps in the rollouts of the agent, either
with temporal differencing or Monte Carlo meth-
ods. Methods that approximate U by Ûη, and de-
termine the policy parameters θ by descending the
gradient of θ with respect to Ûη are called actor-
critic methods, the policy πθ being the actor (Pe-
ters and Schaal, 2008b; Deisenroth et al., 2013).

This actor-critic approach can be applied to
stochastic and deterministic policies (Silver et al.,
2014). The space of deterministic policies being
smaller than the space of stochastic policies, the
latter can be advantageous because searching the
former is faster than searching the latter. How-
ever, a stochastic policy might be more appropriate
when Markov property does not hold (Williams and
Singh, 1998; Sigaud and Buffet, 2010) or in adver-
sarial contexts (Wang et al., 2016b).

5.1. Exploration in parameter or state-action space

As mentioned in Section 3, learning a model of
the utility in the space Θ is a regression problem
that is performed by sampling and exploring di-
rectly in Θ. In contrast, X ×U cannot be sampled

directly, as one does not know in advance which pol-
icy parameters will result in visiting which states
and performing which action. Exploration is there-
fore performed in either by adding noise to the θ
(policy parameter perturbation), or adding noise
to the actions the policy outputs (action perturba-
tion). In the latter case, exploration is generally
undirected and adds Gaussian noise or correlated
Ornstein-Ulhenbeck noise to the actions taken by
the policy. Policy parameter perturbation is done
in pepg, power and pi2, and more recently to
ddpg (Fortunato et al., 2017; Plappert et al., 2017),
whereas action perturbation in the other algorithms
presented in this paper.

All actor-critic algorithms iterate over the follow-
ing three steps:

A Collect new step samples from the current pol-
icy with policy parameter perturbation or ac-
tion perturbation for exploration,

B Compute a new critic Ûη based on these sam-
ples, by determining η through a temporal dif-
ference method,

C Update the policy parameters θ through gra-
dient descent with respect to the critic.

A distinction here should be made on whether
1) the critic is discarded after step C, and must thus
be learned from scratch in step B in the next iter-
ation, or 2) the critic is persistent throughout the
learning, and incrementally updated in step B. We
discuss the differences between these two variants
– which we denote transient critic and persistent
critic respectively – in more detail in the next two
sections.

5.2. Transient Critic Algorithms

In methods with a transient critic, Monte Carlo
sampling – running a large set of episodes and aver-
aging over the stochastic return – is used to evaluate
the current policy and generate a new set of step
samples. Then, determining the optimal critic pa-
rameters given these samples can be cast as a batch
regression problem.

Among these methods, one must distinguish be-
tween three families: likelihood ratio methods such
as reinforce (Williams, 1992) and pepg (Sehnke
et al., 2010), natural gradient methods such as nac
and enac 4 (Peters and Schaal, 2008a) and EM-

4The critic is generally persistent in actor-critic methods,
but this is not the case in nac and enac.

9

based methods such as power5 (Kober and Peters,
2009) and the variants of reps (Peters et al., 2010).
All the corresponding algorithms are well described
in (Deisenroth et al., 2013).

Although they derive from a different mathe-
matical framework, likelihood ratio methods and
EM-based methods are similar: they both use un-
biased estimation of the gradient through Monte
Carlo sampling and they are both mathematically
designed so that the most rewarding rollouts get
the highest probability.

The trpo (Schulman et al., 2015) algorithm also
follows an iterative approach and can use a deep
neural network representation, thus it can be clas-
sified as a deep RL method. Among other things,
it uses a bound on the Kullback-Leibler divergence
between policies at successive iterations to ensure
safe and efficient exploration. Finally, the Guided
Policy Search (gps) algorithm (Levine and Koltun,
2013; Montgomery and Levine, 2016) is another
transient critic deep RL method inspired from re-
inforce, but adding guiding rollouts obtained from
simpler policies.

5.3. Persistent Critic Algorithms

In contrast with transient critic algorithms, per-
sistent critic algorithms incrementally update the
critic during training. Most such algorithms use an
actor-critic architecture, with the notable exception
of naf (Gu et al., 2016b), which does not have an
explicit representation of the actor. To our knowl-
edge, before the emergence of deep RL algorithms
described below, the four inac algorithms were the
only representative of this family (Bhatnagar et al.,
2007).

The way to compute the critic incrementally can
be named a temporal difference (TD) method, also
named a bootstrap method (Sutton, 1988). They
compute at each step a temporal difference error or
reward prediction error (RPE) between the imme-
diate reward predicted by the current values of the
critic and the actual reward received by the agent.
This RPE can then be used as a loss that the critic
should minimize over iterations (Sutton and Barto,
1998).

5Interestingly, pi2 can also be seen as a transient critic
method, though it could in principle use a persistent oneand
fall into Section 5.3. This is just because using batch updates
make it more stable (Deisenroth et al., 2013).

5.4. Key properties of Persistent Critic Algorithms

Most mechanisms that made deep actor-critic al-
gorithms possible where first introduced in dqn
(Mnih et al., 2015). Though dqn is a discrete action
algorithm which is outside the scope of this sur-
vey, we briefly review its important concepts and
mechanisms before listing the main algorithms in
the family of continuous action deep RL methods.

5.4.1. Accuracy and scalability: deep neural net-
works

By using deep neural networks as approxima-
tion functions and making profit of large computa-
tional capabilities of modern clusters of computers,
all deep RL algorithms are capable of addressing
much larger problems than before, and to approxi-
mate gradients with unprecedented accuracy, which
makes them more stable than the previous linear
architectures of nac and power, hence amenable
to incremental updates of a persistent critic rather
than recomputing a transient one.

5.4.2. Stability: the target critic

Deep RL methods introduced a target critic as a
way to improve stability. Standard regression is the
process of fitting samples to a model so as to ap-
proximate an unknown stationary function (Stulp
and Sigaud, 2015). Estimating a critic through
temporal difference methods is similar to regres-
sion, but the target function is not stationary: it
is itself a function of the estimated critic, thus it is
modified each time the critic is modified. This can
result in divergence of the critic when the target
function and the estimated critic are racing after
each other (Baird, 1994). To mitigate this instabil-
ity, one should keep the target function stationary
during several updates and reset it periodically to a
new function corresponding to the current critic es-
timate, switching from a regression problem to an-
other. This idea was first introduced in dqn (Mnih
et al., 2015) and then modified from periodic up-
dates to smooth variations in ddpg (Lillicrap et al.,
2015).

5.4.3. Sample reuse: the replay buffer

Since they are based on value propagation, TD
methods can give rise to more sample reuse than
standard regression methods, provided that these
samples are saved into a replay buffer. Using a re-
play buffer is at the heart of the emergence of mod-
ern actor-critic approaches in deep RL. Actually,

10

learning from the samples in the order in which they
are collected is detrimental to learning performance
and stability because these samples are not inde-
pendent and identically distributed (i.i.d.). Stabil-
ity is improved by drawing the samples randomly
from the replay buffer and sample efficiency can be
further improved by better choosing the samples,
using prioritized experience replay (Schaul et al.,
2015).

5.4.4. Adaptive step sizes and return lengths

Modern SGD methods provided by most ma-
chine learning libraries now incorporate adaptive
step sizes, removing a difficulty with previous actor-
critic algorithms such as enac. Another important
ingredient for the success of some recent methods in
the use of n-step return, which consists in perform-
ing temporal difference updates over several time
steps, resulting in the possibility to control the bias-
variance trade-off (see Section 6.3.1).

5.5. Overview of deep RL algorithms

All these favorable properties are common traits
of several incremental deep RL algorithms: ddpg
(Lillicrap et al., 2015), naf (Gu et al., 2016b), ppo
(Schulman et al., 2017), acktr (Wu et al., 2017),
sac (Haarnoja et al., 2018), td3 (Fujimoto et al.,
2018) and d4pg (Barth-maron et al., 2018). As de-
picted in Figure 2, the last one, d4pg, is an instance
of Bayesian Optimization Reinforcement Learning
(BORL) algorithms which derive from BO but be-
long to the step-based category of methods de-
scribed in Section 5. These algorithms result from
an effort to incorporate Bayesian computations into
the deep RL framework, and correspond to a very
active trend in the field. Most of these works ad-
dress discrete actions (Azizzadenesheli et al., 2018;
Tang and Kucukelbir, 2017), but d4pg is an ex-
ception that derives from adopting a distributional
perspective on policy gradient computation, result-
ing in more accurate estimates on the gradient and
better sample efficiency (Bellemare et al., 2017).

Finally, a few algorithms such as acer (Wang
et al., 2016b), Q-prop (Gu et al., 2016a) and pgql
(O’Donoghue et al., 2016) combine properties of
transient and persistent critic methods, and are
captured into the more general framework of Inter-
polated Policy Gradient (ipg) (Gu et al., 2017). For
a more detailed description of all these algorithms,
we refer the reader to the corresponding papers and
to a recent survey (Arulkumaran et al., 2017).

5.6. Reference to the main algorithms

Algorithm Main paper

reinforce (Williams, 1992)
g(po)mdp (Baxter and Bartlett, 2001)
nac (Peters and Schaal, 2008a)
enac (Peters and Schaal, 2008a)
power (Kober and Peters, 2009)
pi2 (Theodorou et al., 2010)
reps (Peters et al., 2010)
pepg (Sehnke et al., 2010)
vips (Neumann, 2011)
inac (Bhatnagar et al., 2007)
gps (Levine and Koltun, 2013)
trpo (Schulman et al., 2015)
ddpg (Lillicrap et al., 2015)
a3c (Mnih et al., 2016)
naf (Gu et al., 2016b)
acer (Wang et al., 2016b)
Q-prop (Gu et al., 2016a)
pgql (O’Donoghue et al., 2016)
ppo (Schulman et al., 2017)
acktr (Wu et al., 2017)
sac (Haarnoja et al., 2018)
td3 (Fujimoto et al., 2018)
d4pg (Barth-maron et al., 2018)

Table 4: Main reinforcement learning algorithms. Algo-
rithms below the line have not yet been covered in (Deisen-
roth et al., 2013).

5.7. Sample efficiency analysis

Message 4: Being step-based, deep RL
methods are able to use more information
from rollouts than episode-based methods.
Furthermore, using a replay buffer leads to
further sample reuse.

6. Discussion

In the previous sections we have presented meth-
ods which: (1) do not build a utility model; (2)
learn a utility model: (2a) in the policy parame-
ter space Θ, (2b) in an arbitrary outcome space O,
(2c) in the state-action space X×U . In this section,
we come back to the sample efficiency properties of
these different methods. We do so by descending
the tree of design choices depicted in Figure 2.

11

6.1. Building a model or not

We have outlined that policy search methods
which build a model of the utility function are gen-
erally more sample efficient than methods which do
not. However, the reliance of the latter to SGD can
make them less robust to local optima (Lehman
et al., 2017) and it has been shown recently that
methods which do not build a model of utility are
still competitive in terms of final performance, due
to their higher parallelization capability and distin-
guishing properties with respect to various gradi-
ent landscapes (Salimans et al., 2017; Petroski Such
et al., 2017; Zhang et al., 2017).

6.2. Building a utility function model in the policy
parameter space versus the state-action space.

Several elements speak in favor of the higher sam-
ple efficiency of learning a critic in the state-action
space X ×U . First, it can give rise to more sample
reuse than learning a model of the utility function
in Θ. Second, learning from each step separately
makes a better use of the information available from
a rollout than learning from global episodes.

Furthermore, X × U may naturally exhibit a hi-
erarchical structure – especially the state – which is
not so obvious for Θ. As a consequence, methods
that model utility in X ×U may benefit from learn-
ing intermediate representations at different levels
in the hierarchy, thus reducing the dimensionality
of the policy search problem. Learning such inter-
mediate and more compact representations is the
focus of hierarchical reinforcement learning, a do-
main which has also been impacted by the emer-
gence of deep RL (Kulkarni et al., 2016; Bacon
et al., 2017). Hierarchical reinforcement learning
can also be performed off-line, which corresponds to
the perspective of the DREAM project6, illustrated
for instance in (Zimmer and Doncieux, 2017).

Finally, an important factor of sample efficiency
is the size and structure of X × U with respect to
Θ. In both respects, the emergence of deep RL
methods using large neural networks as policy rep-
resentation has changed the perspective. First, in
deep RL, the size of Θ can become larger than that
of X ×U , which speaks in favor of learning a critic.
Second, deep neural networks seem to generally in-
duce a smooth structure between Θ and X × U ,
which facilitates learning. Finally, a utility func-
tion modeled in a larger space may suffer from fewer

6http://www.robotsthatdream.eu/

local minima, as more directions remain for improv-
ing the gradient (Kawaguchi, 2016).

The above conclusions might be mitigated by
considering exploration. Indeed, in several surveys
about policy search for robotics, policy parameter
perturbation methods are considered superior to ac-
tion perturbation methods (Stulp and Sigaud, 2013;
Deisenroth et al., 2013). This analysis is backed-up
with several mathematical arguments, but it might
be true mostly when the space Θ is smaller than the
space X × U . Until recently, all deep RL methods
were using action perturbation. But deep RL al-
gorithms using policy parameter perturbation have
recently been published, showing again that one can
model the utility function in X×U while performing
exploration in Θ (Fortunato et al., 2017; Plappert
et al., 2017). Exploration is currently one of the
hottest topics in deep RL and directed exploration
methods presented in Section 4 may play a key role
in this story, despite the lower data efficiency of
their policy improvement mechanisms (Conti et al.,
2017; Colas et al., 2018).

Message 5: There are more arguments for
learning a utility model in X × U than in
Θ, but this ultimately depends on the size
of these spaces and the structure of their
relationship.

6.3. Transient versus persistent critic

At first glance, having a persistent critic may
seem superior to having a transient one, for three
reasons. First, by avoiding to compute the critic
again at each iteration, it is computationally more
efficient. Second, immediate updates favor data
efficiency because the policy is improved as soon
as possible, which in turn helps generating better
samples. Third, being based on bootstrap meth-
ods, they give rise to more sample reuse. However,
these statements must be differentiated, as two fac-
tors (described below) must be taken into account.

6.3.1. Trading bias against variance

Estimating the utility of a policy in X × U is
subject to a bias-variance compromise (Kearns and
Singh, 2000). On the one hand, estimating the util-
ity of a given policy through Monte Carlo sampling
– as is generally done in transient critic approaches
– is subject to a variance which grows with the

12

http://www.robotsthatdream.eu/

length of the episodes. On the other hand, incre-
mentally updating a persistent critic reduces vari-
ance, but may suffer from bias, resulting in poten-
tial sub-optimality, or even divergence. Instead of
performing bootstrap updates of a critic over one
step, one can do so over N steps. The larger N ,
the closer to Monte Carlo estimation, thus tuning
N is a way of controlling the bias-variance compro-
mise. For instance, while the transient critic trpo
algorithm is less sample efficient than actor-critic
methods but more stable, often resulting in supe-
rior performance (Duan et al., 2016), its immediate
successor, ppo, uses N steps return, resulting in a
good compromise between both families (Schulman
et al., 2017).

6.3.2. Off-policy versus on-policy updates

In on-policy methods such as Sarsa, the sam-
ples used to learn the critic must come from the
current policy, whereas in off-policy methods such
as q-learning, they can come from any policy.
In most transient critic methods, the samples are
discarded from one iteration to the next and these
methods are generally on-policy. By contrast, per-
sistent critic methods using a replay buffer are gen-
erally off-policy7.

This on-policy versus off-policy distinction is re-
lated to the bias-variance compromise. Indeed,
when learning a persistent critic incrementally, us-
ing off-policy updates is more flexible because the
samples can come from any policy, but these off-
policy updates introduce bias in the estimation of
the critic. As a result, off-policy methods such as
ddpg and naf are more sample efficient because
they use a replay buffer, but they are also more
prone to sub-optimality and divergence. In that re-
spect, a key contribution of acer and Q-prop is
that they provide an off-policy, sample efficient up-
date method which strongly controls the bias, re-
sulting in more stability (Gu et al., 2016a; Wang
et al., 2016b; Wu et al., 2017; Gu et al., 2017).
These aspects are currently the subject of inten-
sive research but the resulting algorithms suffer
from being more complex, with additional meta-
parameters.

7The a3c algorithm is an incremental actor-critic method
which does not use a replay buffer, and it is classified as on-
policy.

Message 6: Persistent critic methods are
superior to transient critic methods in many
respects, but the latter are more stable be-
cause they decorrelate the problem of esti-
mating the utility function from the problem
of descending its gradient, and they suffer
from less bias.

7. Conclusion

In this paper, we have contrasted various ap-
proaches to policy search, from evolutionary meth-
ods which do not learn a model of the utility func-
tion to deep RL methods which do so in the state-
action space.

In (Stulp and Sigaud, 2013), the authors have
shown that policy search applied to robotics was
shifting from actor-critic methods to evolutionary
methods. Part of this shift was due to the use
of open-loop dmps (Ijspeert et al., 2013) as a pol-
icy representation, which favors episode-based ap-
proaches, but another part resulted from the higher
stability and efficiency of evolutionary methods by
that time.

The emergence of deep RL methods has changed
this perspective. It should be clear from this sur-
vey that, in the context of large problems where
deep neural network representations are now the
standard option, deep RL is generally more sam-
ple efficient than deep neuroevolution methods, as
empirically confirmed in (de Froissard de Brois-
sia and Sigaud, 2016) and (Pourchot et al., 2018).
The higher sample efficiency of deep RL methods,
and particularly actor-critic architectures with a
persistent critic, results from several mechanisms.
They benefit from better approximation capabil-
ity of non-linear critics and the incorporation of an
adapted step size in SGD, they model the utility
function in the state-action space, and they benefit
from massive sample reuse by using a replay buffer.
Using a target network has also mitigated the in-
trinsic instability of incrementally approximating a
critic. However, it is important to acknowledge that
incremental deep RL methods still suffer from sig-
nificant instability8.

8As outlined at https://www.alexirpan.com/2018/02/

14/rl-hard.html.

13

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

7.1. Future directions

The field of policy search is currently the object
of an intense race for increased performance, stabil-
ity and sample efficiency. We now outline what we
currently consider as promising research directions.

7.1.1. More analyses than competitions

Up to now, the main trend in the literature fo-
cuses on performance comparisons (Duan et al.,
2016; Islam et al., 2017; Henderson et al., 2017; Pet-
roski Such et al., 2017) showing that, despite their
lower sample efficiency, methods which do not build
a model of utility are still a competitive alternative
in terms of final performance (Salimans et al., 2017;
Chrabaszcz et al., 2018). But stability and sample
efficiency comparisons are missing and works ana-
lyzing the reasons why an algorithm performs bet-
ter than another are only just emerging (Lehman
et al., 2017; Zhang et al., 2017; Gangwani and Peng,
2017). By drawing an overview of the whole field
and revealing some important factors behind sam-
ple efficiency, this paper was intended as a starting
point towards broader and deeper analyses of the
efficacy of various policy search methods.

7.1.2. More combinations than competitions

An important trend corresponds to the emer-
gence of methods which combine algorithms from
various families described above. As already noted
in Section 4, directed exploration methods are of-
ten combined with evolutionary or deep RL meth-
ods (Conti et al., 2017; Colas et al., 2018). There is
also an emerging trend combining evolutionary or
population-based methods and deep RL methods
(Jaderberg et al., 2017; Khadka and Tumer, 2018;
Pourchot and Sigaud, 2018) which seem to be able
to take the best of both worlds. We believe we are
just at the beginning of such combinations and that
this area has a lot of potential.

7.1.3. Beyond single policy improvement

Though we decided to keep lifelong, continual
and open-ended learning outside the scope of this
survey, we must mention that fast progress in policy
improvement has favored an important tendency
to address several tasks at the same time (Yang
and Hospedales, 2014). This subfield is extremely
active at the moment, with many works in mul-
titask learning (Vezhnevets et al., 2017; Veeriah
et al., 2018; Gangwani and Peng, 2018), Hierar-
chical Reinforcement Learning (Levy et al., 2018;

Nachum et al., 2018) and meta reinforcement learn-
ing (Wang et al., 2016a), to cite only a few.

Finally, because we focused on these elemen-
tary aspects, we have left aside the emerging topic
of state representation learning (Jonschkowski and
Brock, 2014; Raffin et al., 2016; Lesort et al., 2018)
or using auxiliary tasks for improving deep RL
(Shelhamer et al., 2016; Jaderberg et al., 2016;
Riedmiller et al., 2018). The impact of these meth-
ods should be made clearer in the future.

7.2. Final word

As we have highlighted in the article, research in
policy search and deep RL moves at a very high
pace. Therefore, forecasting future trends, as we
have done above, is risky, and even attempts to
analyze the factors underlying current trends may
be quickly outdated, but this also what makes this
such an exciting research field.

Acknowledgments

Olivier Sigaud was supported by the European
Commission, within the DREAM project, and has
received funding from the European Union’s Hori-
zon 2020 research and innovation program under
grant agreement No 640891. Freek Stulp was sup-
ported by the HGF project “Reduced Complexity
Models” and received funding from the European
Commission through the project H2020 AnDy (GA
no. 731540). We thank David Filliat, Nicolas Per-
rin and Pierre-Yves Oudeyer for their feedback on
this article.

References

Aha, D. W., 1997. Editorial. In: Lazy learning. Springer, pp.
7–10.

Akimoto, Y., Nagata, Y., Ono, I., Kobayashi, S., 2010. Bidi-
rectional relation between cma evolution strategies and
natural evolution strategies. In: International Conference
on Parallel Problem Solving from Nature. Springer, pp.
154–163.

Argall, B. D., Chernova, S., Veloso, M., Browning, B., 2009.
A survey of robot learning from demonstration. Robotics
and Autonomous Systems 57, 469–483.

Arnold, L., Auger, A., Hansen, N., Ollivier, Y., 2011.
Information-geometric optimization algorithms: A unify-
ing picture via invariance principles. Tech. rep., INRIA
Saclay.

Arulkumaran, K., Deisenroth, M. P., Brundage, M.,
Bharath, A. A., 2017. A brief survey of deep reinforce-
ment learning. arXiv preprint arXiv:1708.05866.

Azizzadenesheli, K., Brunskill, E., Anandkumar, A., 2018.
Efficient exploration through bayesian deep q-networks.
arXiv preprint arXiv:1802.04412.

14

http://arxiv.org/abs/1708.05866
http://arxiv.org/abs/1802.04412

Back, T., 1996. Evolutionary algorithms in theory and prac-
tice: evolution strategies, evolutionary programming, ge-
netic algorithms. Oxford university press.

Bacon, P.-L., Harb, J., Precup, D., 2017. The option-critic
architecture. In: AAAI. pp. 1726–1734.

Baird, L. C., 1994. Reinforcement learning in continuous
time: Advantage updating. In: Proceedings of the Inter-
national Conference on Neural Networks. Orlando, FL.

Baranes, A., Oudeyer, P.-Y., 2010. Intrinsically motivated
goal exploration for active motor learning in robots: A
case study. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2010). IEEE, Taipei,
Taiwan, Province Of China.

Baranes, A., Oudeyer, P.-Y., 2013. Active learning of inverse
models with intrinsically motivated goal exploration in
robots. Robotics and Autonomous Systems 61 (1), 49–73.

Baranes, A. F., Oudeyer, P.-Y., Gottlieb, J., 2014. The ef-
fects of task difficulty, novelty and the size of the search
space on intrinsically motivated exploration. Frontiers in
neuroscience 8, 317.

Barth-maron, G., Hoffman, M., Budden, D., Dabney, W.,
Horgan, D., TB, D., Muldal, A., Heess, N., Lillicrap,
T. P., 2018. Distributional policy gradient. In: ICLR. pp.
1–16.

Baxter, J., Bartlett, P. L., 2001. Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence Re-
search 15, 319–350.

Bellemare, M. G., Dabney, W., Munos, R., 2017. A dis-
tributional perspective on reinforcement learning. arXiv
preprint arXiv:1707.06887.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., Lee, M.,
2007. Incremental natural actor-critic algorithms. In: Ad-
vances in Neural Information Processing Systems. MIT
Press.

Bottou, L., 2012. Stochastic gradient descent tricks. In: Neu-
ral networks: Tricks of the trade. Springer, pp. 421–436.

Brochu, E., Cora, V. M., De Freitas, N., 2010. A tutorial on
bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical rein-
forcement learning. arXiv preprint arXiv:1012.2599.

Calandra, R., Gopalan, N., Seyfarth, A., Peters, J., Deisen-
roth, M. P., 2014. Bayesian gait optimization for bipedal
locomotion. In: International Conference on Learning and
Intelligent Optimization. Springer, pp. 274–290.

Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp,
D., Vassiliades, V., Mouret, J.-B., 2017. Black-box
data-efficient policy search for robotics. arXiv preprint
arXiv:1703.07261.

Chrabaszcz, P., Loshchilov, I., Hutter, F., 2018. Back to
basics: Benchmarking canonical evolution strategies for
playing atari. arXiv preprint arXiv:1802.08842.

Colas, C., Sigaud, O., Oudeyer, P.-Y., 2018. GEP-
PG: Decoupling exploration and exploitation in deep
reinforcement learning algorithms. arXiv preprint
arXiv:1802.05054.

Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stan-
ley, K. O., Clune, J., 2017. Improving exploration in
evolution strategies for deep reinforcement learning via
a population of novelty-seeking agents. arXiv preprint
arXiv:1712.06560.

Cuccu, G., Gomez, F., 2011. When novelty is not enough. In:
European Conference on the Applications of Evolutionary
Computation. Springer, pp. 234–243.

Cully, A., Clune, J., Tarapore, D., Mouret, J.-B., 2015.
Robots that can adapt like animals. Nature 521 (7553),

503–507.
Cully, A., Demiris, Y., 2017. Quality and diversity optimiza-

tion: A unifying modular framework. IEEE Transactions
on Evolutionary Computation.

de Froissard de Broissia, A., Sigaud, O., 2016. Actor-critic
versus direct policy search: a comparison based on sample
complexity. arXiv preprint arXiv:1606.09152.

Deisenroth, M., Rasmussen, C. E., 2011. Pilco: A model-
based and data-efficient approach to policy search. In:
Proceedings of the 28th International Conference on ma-
chine learning. pp. 465–472.

Deisenroth, M. P., Neumann, G., Peters, J., et al., 2013.
A survey on policy search for robotics. Foundations and
Trends R© in Robotics 2 (1–2), 1–142.

Doncieux, S., Mouret, J.-B., 2014. Beyond black-box opti-
mization: a review of selective pressures for evolutionary
robotics. Evolutionary Intelligence 7 (2), 71–93.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel,
P., 2016. Benchmarking deep reinforcement learning for
continuous control. arXiv preprint arXiv:1604.06778.

Floreano, D., Dürr, P., Mattiussi, C., 2008. Neuroevolution:
from architectures to learning. Evolutionary Intelligence
1 (1), 47–62.

Forestier, S., Mollard, Y., Oudeyer, P.-Y., 2017. Intrinsically
motivated goal exploration processes with automatic cur-
riculum learning. arXiv preprint arXiv:1708.02190.

Forestier, S., Oudeyer, P.-Y., 2016. Overlapping waves in
tool use development: a curiosity-driven computational
model.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I.,
Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin,
O., et al., 2017. Noisy networks for exploration. arXiv
preprint arXiv:1706.10295.

Fujimoto, S., van Hoof, H., Meger, D., 2018. Address-
ing function approximation error in actor-critic methods.
arXiv preprint arXiv:1802.09477.

Gangwani, T., Peng, J., 2017. Genetic policy optimization.
arXiv preprint arXiv:1711.01012.

Gangwani, T., Peng, J., 2018. Policy optimization by genetic
distillation. In: ICLR 2018.

Gill, P. E., Murray, W., Wright, M. H., 1981. Practical op-
timization. Academic press.

Glasmachers, T., Schaul, T., Yi, S., Wierstra, D., Schmid-
huber, J., 2010. Exponential natural evolution strategies.
In: Proceedings of the 12th annual conference on Genetic
and evolutionary computation. ACM, pp. 393–400.

Goldberg, D. E., 1989. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison Wesley, Read-
ing, MA.

Grondman, I., Busoniu, L., Lopes, G. A., Babuska, R., 2012.
A survey of actor-critic reinforcement learning: Standard
and natural policy gradients. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and
Reviews) 42 (6), 1291–1307.

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., Levine,
S., 2016a. Q-prop: Sample-efficient policy gradient with
an off-policy critic. arXiv preprint arXiv:1611.02247.

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E.,
Schölkopf, B., Levine, S., 2017. Interpolated policy gra-
dient: Merging on-policy and off-policy gradient esti-
mation for deep reinforcement learning. arXiv preprint
arXiv:1706.00387.

Gu, S., Lillicrap, T., Sutskever, I., Levine, S., 2016b. Con-
tinuous deep q-learning with model-based acceleration.
arXiv preprint arXiv:1603.00748.

15

http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1703.07261
http://arxiv.org/abs/1802.08842
http://arxiv.org/abs/1802.05054
http://arxiv.org/abs/1712.06560
http://arxiv.org/abs/1606.09152
http://arxiv.org/abs/1604.06778
http://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1711.01012
http://arxiv.org/abs/1611.02247
http://arxiv.org/abs/1706.00387
http://arxiv.org/abs/1603.00748

Haarnoja, T., Zhou, A., Abbeel, P., Levine, S., 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290.

Hansen, N., Ostermeier, A., 2001. Completely derandom-
ized self-adaptation in evolution strategies. Evolutionary
Computation 9 (2), 159–195.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., Meger, D., 2017. Deep reinforcement learning that
matters. arXiv preprint arXiv:1709.06560.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., Sil-
ver, D., 2017. Rainbow: Combining improvements in deep
reinforcement learning. arXiv preprint arXiv:1710.02298.

Hwangbo, J., Gehring, C., Sommer, H., Siegwart, R., Buchli,
J., 2014. ROCK∗:efficient black-box optimization for pol-
icy learning. In: IEEE-RAS International Conference on
Humanoid Robots. IEEE, pp. 535–540.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P.,
Schaal, S., 2013. Dynamical movement primitives: learn-
ing attractor models for motor behaviors. Neural compu-
tation 25 (2), 328–373.

Islam, R., Henderson, P., Gomrokchi, M., Precup, D.,
2017. Reproducibility of benchmarked deep reinforcement
learning tasks for continuous control. In: Proceedings of
the ICML 2017 workshop on Reproducibility in Machine
Learning (RML).

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,
I., Simonyan, K., et al., 2017. Population based training
of neural networks. arXiv preprint arXiv:1711.09846.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., Kavukcuoglu, K., 2016. Reinforce-
ment learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397.

Jonschkowski, R., Brock, O., 2014. State representation
learning in robotics: Using prior knowledge about physi-
cal interaction. In: Proceedings of Robotics, Science and
Systems.

Kawaguchi, K., 2016. Deep learning without poor local min-
ima. In: Advances In Neural Information Processing Sys-
tems. pp. 586–594.

Kearns, M. J., Singh, S. P., 2000. Bias-variance error bounds
for temporal difference updates. In: COLT. pp. 142–147.

Khadka, S., Tumer, K., 2018. Evolutionary reinforcement
learning. arXiv preprint arXiv:1805.07917.

Kober, J., Bagnell, J. A., Peters, J., 2013. Reinforcement
learning in robotics: A survey. The International Journal
of Robotics Research 32 (11), 1238–1274.

Kober, J., Peters, J., 2009. Learning motor primitives for
robotics. In: IEEE International Conference on Robotics
and Automation. IEEE, pp. 2112–2118.

Koza, J. R., 1992. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press, Cambridge, MA.

Kulkarni, T. D., Narasimhan, K. R., Saeedi, A., Tenenbaum,
J. B., 2016. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation.
arXiv preprint arXiv:1604.06057.

Larrañaga, P., Lozano, J. A., 2001. Estimation of distribu-
tion algorithms: A new tool for evolutionary computation.
Vol. 2. Springer Science & Business Media.

Laversanne-Finot, A., Péré, A., Oudeyer, P.-Y., 2018. Cu-
riosity driven exploration of learned disentangled goal
spaces. arXiv preprint arXiv:1807.01521.

Lehman, J., Chen, J., Clune, J., Stanley, K. O., 2017. ES is
more than just a traditional finite-difference approxima-
tor. arXiv preprint arXiv:1712.06568.

Lehman, J., Stanley, K. O., 2011. Abandoning objectives:
Evolution through the search for novelty alone. Evolu-
tionary computation 19 (2), 189–223.

Lesort, T., Dı́az-Rodŕıguez, N., Goudou, J.-F., Filliat,
D., 2018. State representation learning for control: An
overview. arXiv preprint arXiv:1802.04181.

Levine, S., Koltun, V., 2013. Guided policy search. In: Pro-
ceedings of the 30th International Conference on Machine
Learning. pp. 1–9.

Levy, A., Platt, R., Saenko, K., 2018. Hierarchical re-
inforcement learning with hindsight. arXiv preprint
arXiv:1805.08180.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., Wierstra, D., 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Lizotte, D. J., Wang, T., Bowling, M. H., Schuurmans, D.,
2007. Automatic gait optimization with gaussian process
regression. In: IJCAI. Vol. 7. pp. 944–949.

Mania, H., Guy, A., Recht, B., 2018. Simple random search
provides a competitive approach to reinforcement learn-
ing. arXiv preprint arXiv:1803.07055.

Martinez-Cantin, R., Tee, K., McCourt, M., 2017. Policy
search using robust Bayesian optimization. In: Neural In-
formation Processing Systems (NIPS) Workshop on Act-
ing and Interacting in the Real World: Challenges in
Robot Learning.

Metzen, J. H., Fabisch, A., Hansen, J., 2015. Bayesian opti-
mization for contextual policy search. In: Proceedings of
the Second Machine Learning in Planning and Control of
Robot Motion Workshop., Hamburg.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., Kavukcuoglu, K., 2016. Asyn-
chronous methods for deep reinforcement learning. arXiv
preprint arXiv:1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al., 2015. Human-
level control through deep reinforcement learning. Nature
518 (7540), 529–533.

Montgomery, W. H., Levine, S., 2016. Guided policy search
via approximate mirror descent. In: Advances in Neural
Information Processing Systems. pp. 4008–4016.

Nachum, O., Gu, S., Lee, H., Levine, S., 2018.
Data-efficient hierarchical reinforcement learning. arXiv
preprint arXiv:1805.08296.

Najar, A., Sigaud, O., Chetouani, M., 2016. Training a robot
with evaluative feedback and unlabeled guidance signals.
In: 25th IEEE International Symposium on Robot and
Human Interactive Communication. IEEE, pp. 261–266.

Neumann, G., 2011. Variational inference for policy search
in changing situations. In: Proceedings of the 28th inter-
national conference on machine learning. pp. 817–824.

O’Donoghue, B., Munos, R., Kavukcuoglu, K., Mnih, V.,
2016. Combining policy gradient and q-learning. arXiv
preprint arXiv:1611.01626.

Pelikan, M., Goldberg, D. E., Cantú-Paz, E., 1999. Boa:
The Bayesian optimization algorithm. In: Proceedings
of the 1st Annual Conference on Genetic and Evolution-
ary Computation-Volume 1. Morgan Kaufmann Publish-
ers Inc., pp. 525–532.

Pere, A., Forestier, S., Sigaud, O., Oudeyer, P.-Y., 2018.

16

http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1805.07917
http://arxiv.org/abs/1604.06057
http://arxiv.org/abs/1807.01521
http://arxiv.org/abs/1712.06568
http://arxiv.org/abs/1802.04181
http://arxiv.org/abs/1805.08180
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1803.07055
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1805.08296
http://arxiv.org/abs/1611.01626

Unsupervised learning of goal spaces for intrinsically
motivated goal exploration. In: International Confer-
ence on Learning Representations (ICLR). ArXiv preprint
arXiv:1803.00781.

Peters, J., Mülling, K., Altun, Y., 2010. Relative entropy
policy search. In: AAAI. Atlanta, pp. 1607–1612.

Peters, J., Schaal, S., 2008a. Natural actor-critic. Neurocom-
puting 71 (7-9), 1180–1190.

Peters, J., Schaal, S., 2008b. Reinforcement learning of mo-
tor skills with policy gradients. Neural networks 21 (4),
682–697.

Petroski Such, F., Madhavan, V., Conti, E., Lehman, J.,
Stanley, K. O., Clune, J., 2017. Deep neuroevolution: Ge-
netic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv
preprint arXiv:1712.06567.

Pierrot, T., Perrin, N., Sigaud, O., 2018. First-order and
second-order variants of the gradient descent: a unified
framework. arXiv preprint arXiv:1810.08102.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,
R. Y., Chen, X., Asfour, T., Abbeel, P., Andrychowicz,
M., 2017. Parameter space noise for exploration. arXiv
preprint arXiv:1706.01905.

Pourchot, A., Perrin, N., Sigaud, O., 2018. Importance mix-
ing: Improving sample reuse in evolutionary policy search
methods. arXiv preprint arXiv:1808.05832.

Pourchot, A., Sigaud, O., 2018. Cem-rl: Combining evo-
lutionary and gradient-based methods for policy search.
arXiv preprint arXiv:1810.01222.

Pugh, J. K., Soros, L., Szerlip, P. A., Stanley, K. O., 2015.
Confronting the challenge of quality diversity. In: Pro-
ceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation. ACM, pp. 967–974.

Raffin, A., Höfer, S., Jonschkowski, R., Brock, O., Stulp, F.,
2016. Unsupervised learning of state representations for
multiple tasks. Tech. rep., University of Berlin.

Rastrigin, L., 1963. The convergence of the random search
method in the extremal control of a many parameter sys-
tem. Automation and Remote Control 24 (10), 1337–1342.

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., De-
grave, J., Van de Wiele, T., Mnih, V., Heess, N., Springen-
berg, J. T., 2018. Learning by playing-solving sparse re-
ward tasks from scratch. arXiv preprint arXiv:1802.10567.

Riedmiller, M., Peters, J., Schaal, S., 2008. Evaluation
of policy gradient methods and variants on the cart-
pole benchmark. In: IEEE International Symposium on
Approximate Dynamic Programming and Reinforcement
Learning (ADPRL).

Rubinstein, R., Kroese, D., 2004. The Cross-Entropy
Method: A Unified Approach to Combinatorial Opti-
mization, Monte-Carlo Simulation, and Machine Learn-
ing. Springer-Verlag.

Salimans, T., Ho, J., Chen, X., Sutskever, I., 2017. Evolu-
tion strategies as a scalable alternative to reinforcement
learning. arXiv preprint arXiv:1703.03864.

Schaul, T., Quan, J., Antonoglou, I., Silver, D., 2015. Prior-
itized experience replay. arXiv preprint arXiv:1511.05952.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I.,
Abbeel, P., 2015. Trust region policy optimization. CoRR,
abs/1502.05477.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov,
O., 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Pe-
ters, J., Schmidhuber, J., 2010. Parameter-exploring pol-

icy gradients. Neural Networks 23 (4), 551–559.
Shelhamer, E., Mahmoudieh, P., Argus, M., Darrell, T.,

2016. Loss is its own reward: Self-supervision for rein-
forcement learning. arXiv preprint arXiv:1612.07307.

Sigaud, O., Buffet, O., 2010. Markov Decision Processes in
Artificial Intelligence. iSTE - Wiley.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
Riedmiller, M., 2014. Deterministic policy gradient algo-
rithms. In: Proceedings of the 30th International Confer-
ence in Machine Learning.

Stanley, K. O., Miikkulainen, R., 2002. Efficient evolution
of neural network topologies. In: Evolutionary Computa-
tion, 2002. CEC’02. Proceedings of the 2002 Congress on.
Vol. 2. IEEE, pp. 1757–1762.

Stulp, F., Sigaud, O., 2012a. Path integral policy improve-
ment with covariance matrix adaptation. In: Proceedings
of the 29th International Conference on Machine Learn-
ing. Edinburgh, Scotland, pp. 1–8.

Stulp, F., Sigaud, O., 2012b. Policy improvement methods:
Between black-box optimization and episodic reinforce-
ment learning. Tech. rep., hal-00738463.

Stulp, F., Sigaud, O., august 2013. Robot skill learning:
From reinforcement learning to evolution strategies. Pal-
adyn Journal of Behavioral Robotics 4 (1), 49–61.

Stulp, F., Sigaud, O., 2015. Many regression algorithms, one
unified model: A review. Neural Networks 69, 60–79.

Sun, Y., Wierstra, D., Schaul, T., Schmidhuber, J., 2009.
Efficient natural evolution strategies. In: Proceedings of
the 11th Annual conference on Genetic and evolutionary
computation. ACM, pp. 539–546.

Sutton, R. S., 1988. Learning to Predict by the Method of
Temporal Differences. Machine Learning 3, 9–44.

Sutton, R. S., Barto, A. G., 1998. Reinforcement Learning:
An Introduction. MIT Press.

Tang, Y., Kucukelbir, A., 2017. Variational deep q network.
arXiv preprint arXiv:1711.11225.

Theodorou, E., Buchli, J., Schaal, S., 2010. A generalized
path integral control approach to reinforcement learning.
Journal of Machine Learning Research 11, 3137–3181.

Thrun, S., Mitchell, T. M., 1995. Lifelong robot learning.
Robotics and autonomous systems 15 (1-2), 25–46.

Togelius, J., Schaul, T., Wierstra, D., Igel, C., Gomez, F.,
Schmidhuber, J., 2009. Ontogenetic and phylogenetic re-
inforcement learning. Künstliche Intelligenz 23 (3), 30–33.

Veeriah, V., Oh, J., Singh, S., 2018. Many-goals reinforce-
ment learning. arXiv preprint arXiv:1806.09605.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N.,
Jaderberg, M., Silver, D., Kavukcuoglu, K., 2017. Feu-
dal networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1703.01161.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D.,
Botvinick, M., 2016a. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., de Freitas, N., 2016b. Sample effi-
cient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224.

Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J., 2008.
Natural evolution strategies. In: IEEE Congress on Evo-
lutionary Computation. IEEE, pp. 3381–3387.

Williams, J. K., Singh, S. P., 1998. Experimental results
on learning stochastic memoryless policies for partially
observable markov decision processes. In: NIPS. pp. 1073–
1080.

17

http://arxiv.org/abs/1803.00781
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1810.08102
http://arxiv.org/abs/1706.01905
http://arxiv.org/abs/1808.05832
http://arxiv.org/abs/1810.01222
http://arxiv.org/abs/1802.10567
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1612.07307
http://arxiv.org/abs/1711.11225
http://arxiv.org/abs/1806.09605
http://arxiv.org/abs/1703.01161
http://arxiv.org/abs/1611.05763
http://arxiv.org/abs/1611.01224

Williams, R. J., May 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning 8 (3-4), 229–256.

Wilson, A., Fern, A., Tadepalli, P., 2014. Using trajec-
tory data to improve bayesian optimization for reinforce-
ment learning. The Journal of Machine Learning Research
15 (1), 253–282.

Wu, Y., Mansimov, E., Liao, S., Grosse, R., Ba, J.,
2017. Scalable trust-region method for deep reinforcement
learning using Kronecker-factored approximation. arXiv
preprint arXiv:1708.05144.

Yang, Y., Hospedales, T. M., 2014. A unified perspective
on multi-domain and multi-task learning. arXiv preprint
arXiv:1412.7489.

Zhang, X., Clune, J., Stanley, K. O., 2017. On the relation-
ship between the openai evolution strategy and stochastic
gradient descent. arXiv preprint arXiv:1712.06564.

Zimmer, M., Doncieux, S., 2017. Bootstrapping Q-learning
for robotics from neuro-evolution results. IEEE Transac-
tions on Cognitive and Developmental Systems.

18

http://arxiv.org/abs/1708.05144
http://arxiv.org/abs/1412.7489
http://arxiv.org/abs/1712.06564

	1 Introduction
	1.1 Scope and Contributions
	1.2 Perspective and structure of the survey

	2 Policy search without a utility model
	2.1 Truly random search
	2.2 Population-based optimization
	2.3 Evolutionary strategies
	2.4 Estimation of Distribution Algorithms
	2.5 Finite difference methods
	2.6 Reference to the main algorithms
	2.7 Sample efficiency analysis

	3 Policy search with a model of utility in the space of policy parameters
	3.1 Bayesian Optimization
	3.2 Reference to the main algorithms
	3.3 Sample efficiency analysis

	4 Directed exploration methods
	4.1 Reference to the main algorithms
	4.2 Sample efficiency analysis

	5 Policy search with a critic
	5.1 Exploration in parameter or state-action space
	5.2 Transient Critic Algorithms
	5.3 Persistent Critic Algorithms
	5.4 Key properties of Persistent Critic Algorithms
	5.4.1 Accuracy and scalability: deep neural networks
	5.4.2 Stability: the target critic
	5.4.3 Sample reuse: the replay buffer
	5.4.4 Adaptive step sizes and return lengths

	5.5 Overview of deep RL algorithms
	5.6 Reference to the main algorithms
	5.7 Sample efficiency analysis

	6 Discussion
	6.1 Building a model or not
	6.2 Building a utility function model in the policy parameter space versus the state-action space.
	6.3 Transient versus persistent critic
	6.3.1 Trading bias against variance
	6.3.2 Off-policy versus on-policy updates

	7 Conclusion
	7.1 Future directions
	7.1.1 More analyses than competitions
	7.1.2 More combinations than competitions
	7.1.3 Beyond single policy improvement

	7.2 Final word

