IMPROVED DELINEATION OF INDIVIDUAL OUTLET GLACIER DRAINAGE BASINS
FROM TANDEM-X ELEVATIONS AND SENTINEL-1 VELOCITIES

Lukas Krieger, Dana Floricioiu

German Aerospace Center (DLR), Remote Sensing Technology Institute (IMF)
Oberpfaffenhofen, Germany
Email: lukas.krieger@dlr.de; dana.floricioiu@dlr.de

ABSTRACT
Individual drainage basins of ice sheets specify the glaciated area that is drained by a single outlet glacier. These catchments are needed to partition mass balance measurements to the single glacier level. Until now complete glacier inventories that contain annotated basin information are missing for the Earth's two ice sheets. Here we present delineations of all major outlet glacier catchments in Northeast Greenland that have been produced by a modified watershed algorithm using TanDEM-X elevations and Sentinel-1 velocity measurements. The approach shows the potential to generate a complete basin inventory for entire Greenland and Antarctica.

Index Terms — Ice Sheet, Glacier, Drainage Basin, Catchment, Ice Divide

1. INTRODUCTION
The increasing availability of new remote sensing data facilitates regular mass balance estimates of Greenland and Antarctica [1]. Altimetry, gravimetry and InSAR-based measurements have been reported on a large scale for the whole ice sheet or for major drainage regions [2, 3, 4]. There are also detailed mass balance studies on a single glacier level [5, 6] however a remaining challenge for these is to specify the geometric extent of the observed glacier systems. A standardised drainage basin delineation facilitates to compare such mass balance estimates.

Until now the ice sheets' major drainage sectors are separated along the ice divides that can be clearly identified in available DEMs of the ice sheets. This leads to an aggregation of several individual glacier basins into one large sector. Currently two catchment data sets are widely used, providing delineations based on altimetry measurements from ICESat data [7] and on the ERS/ICESat DEM combined with additional velocity information near the coast. [8]. While these sources provide excellent basin information for mass balance investigations on a large scale, there is also a need to partition mass measurements to the individual glacier level. The GLIMS database contains separate basins only for the periphery of the Greenland Ice Sheet and some additional glaciers in the southeast [9]. Previously, [6] has delineated basins for Nioghalvfjeldsfjorden (79North) and Zachariæ Isstrøm that were generated by combining ice velocity and DEM information and [10] showed that individual glacier basins can be delineated along the minima of a balance velocity field. Other authors report findings based on self assessed drainage basins that were derived from watershed analysis assuming surface parallel ice flow [11, 12]. Still, a complete basin inventory for individual outlet glaciers is not readily available and detailed methodology for deriving these catchments is lacking.

In the following, we propose an approach to delineate individual drainage basins for single outlet glaciers with a modified watershed algorithm combining elevations from the TanDEM-X (TDM) global DEM and Sentinel-1 velocity measurements.

2. DATA
The used DEM is the TDM global DEM which was released in a freely available version at a posting of approx. 90 m. It consists of averaged InSAR elevation measurements in the time between 2011 and 2014 [13] and has a vertical accuracy of 6.37 m (90 % linear error) over ice covered terrain [14]. For the present application in the modified watershed algorithm the DEM was smoothed with an average kernel of a width of 20 times the local ice thickness [15][16, Chapter 8.7.2].

As source of flow directions, ice surface velocity measurements produced within the Greenland Ice Sheet project of ESA's Climate Change Initiative (GrIS-cci) Programme have been selected. The velocities have been derived through offset tracking on Sentinel-1 backscattering amplitude images. The averaged east and north velocity components from the available time-series between 2014-2017 yield one complete velocity map posted on a grid of 250 m [17].

Funded by the Deutsche Forschungsgemeinschaft (DFG, FL 848/1-1); Variations of the ice sheet geometry, ice flow and mass distribution in Northeast Greenland in the context of oceanic and atmospheric interactions.
3. MODIFIED WATERSHED ALGORITHM

While a classical flood filling watershed algorithm uses the slope aspect angle of a DEM only [18], the modified version presented here utilises additional flow directions from ice surface velocity measurements. These are used in regions with fast ice flow where flow directions can be derived with high certainty. Here, flow disturbances can exist at glacier junctions or because of large bed rock features diverting the actual glacier flow from the direction of the steepest surface slope. Complementary, the DEM aspect angle is applied when the ice velocity is too slow for accurate direction estimates from speckle tracking.

Before processing, the DEM and east and north velocity components were resampled to a common grid of 100 m pixel size that inherently specifies the step size at which the modified watershed algorithm operates.

We initialise the modified watershed algorithm with seed regions placed on the outlet glacier termini of interest (Figure 1) and several other locations where ice drainage takes place [8]. Each seed region is assigned a unique label leading to a partition of the entire glaciated area.

The same way as a classical watershed algorithm [19] a priority queue of pixels is formed and sorted by minimum elevation. The entire glaciated area is processed by increasing elevation from the ice sheet margins to the interior [20]. Whenever a pixel with fast ice flow is encountered (>20 m a\(^{-1}\)) a streamline is calculated for this starting pixel where the upstream flow is followed according to [21] and neighbouring pixels are inserted into the priority queue as usual.

The threshold of 20 m a\(^{-1}\) is found as the point of maximum correlation in an angle analysis of the flow directions and DEM aspect angles over the entire region of interest.

3.1. Monte Carlo experiment with the modified watershed algorithm

To avoid that local errors in the DEM or in the ice velocity data set propagate to errors in the entire basin delineation a Monte Carlo experiment is performed by adding Gaussian noise with zero mean to the DEM (\(\sigma = 100\) m) and east and north velocity components (\(\sigma = 50\) m a\(^{-1}\)). After performing a number of runs (\(N = 500\)) of the modified watershed algorithm with randomised initialisation, each pixel is assigned the label of maximal occurrence in all runs.

4. RESULTS

The Northeast Greenland region has been divided into drainage basins for each seed region that was used for initialising the modified watershed algorithm. Only 33 individual catchments for the largest, named outlet glaciers are shown and catchments for smaller unnamed glaciers are unclassified and left transparent in Figure 1. This reveals that almost the entire sector is drained through the named outlet glaciers and only 6.6\% of the area drain elsewhere. Table 1 details the area, volume and other drainage basin statistics for the largest three glaciers in Northeast Greenland. 79North and Zachariae Isstrøm show the greatest extent with areas of 109 961 km\(^2\) and 99 329 km\(^2\), respectively. Both belong to the Northeast Greenland Ice Stream (NEGIS). They drain a combined area of 12.19\% of the ice sheet and hold a potential sea level rise of 1.2 m. The third largest glacier is Daugaard-Jensen with an area of 51 286 km\(^2\).

5. DISCUSSION & CONCLUSION

For the delineation of individual glacier drainage basins on the ice sheets a combination of ice flow direction from ice velocity measurements and ice flow along the steepest surface slope in the DEM has been shown. [22] and [6] already pro-
Table 1. Drainage basin statistics of the largest 3 drainage basins in Northeast Greenland. The ice volume is calculated with the Bedmachine data set [15]. Percentages are given with respect to the total Greenland Ice Sheet area and volume [20].

<table>
<thead>
<tr>
<th>Glacier name</th>
<th>Drainage area [km²]</th>
<th>Area fraction of GrIS [%]</th>
<th>Cumulative drainage area [%]</th>
<th>Ice volume [km³]</th>
<th>Fraction of ice volume of GrIS [%]</th>
<th>Cumulative ice volume [%]</th>
<th>Sea level equivalent [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nioghalvfjerdsfjorden (79North)</td>
<td>109,961</td>
<td>6.41</td>
<td>6.41</td>
<td>232,842</td>
<td>7.91</td>
<td>7.91</td>
<td>0.59</td>
</tr>
<tr>
<td>Zachariæ Isstrøm</td>
<td>99,329</td>
<td>5.79</td>
<td>12.19</td>
<td>240,690</td>
<td>8.18</td>
<td>16.09</td>
<td>0.61</td>
</tr>
<tr>
<td>Daugaard-Jensen</td>
<td>51,286</td>
<td>2.99</td>
<td>15.18</td>
<td>118,004</td>
<td>4.01</td>
<td>20.10</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Proposed this combination taking into account that errors of the DEM and ice velocity data sets vary across the different areas of the ice sheet and complement each other.

The catchment area results given in Table 1 compare well to the sparse values found in the literature. From the supplementary material of [8] the drainage area of 79North is given with 103 278 km² and that of Zachariæ Isstrøm with 95 103 km². According to our reported findings the glacier catchments show area differences of +6683 km² (6 %) and +4226 km² (4 %) for 79North and Zachariæ Isstrøm, respectively. [6] report a 1.1 m sea level rise potential for 79North and Zachariæ Isstrøm, a value lower than our 1.2 m. These discrepancies can arise for various reasons, including the choice of the DEM, the velocity data set or the used methodology.

Our method allows to generate individual drainage basin characteristics for all outlet glaciers in the entire sector. It shows the potential to delineate basins for entire Greenland and Antarctica where individual drainage basins have not been published previously.

6. REFERENCES

