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Abstract

This article contains examples to demonstrate the use of different design concepts for cylindrical
shells under axial compression. The examples are based on shells which were manufactured
according to electroplating, machining, welding (isotropic cylinders) and prepreg hand layup
on a mandrel (composite cylinders). Three of the four shell series are characterized by pure
elastic buckling and one shell series buckled in the elastic-plastic region. All relevant data for
the numerical analysis are described in the article and summarized in the Elsevier repository of
this article (geometry, material, measured imperfection data and Python-ABAQUS scripts).
The design concepts are based on the geometric imperfection signatures, probabilistic and
deterministic lower-bound methods. The design concepts are representative for the development
of design approaches for imperfection sensitive shells from the early 1980 to the late 2010 and
are validated with experimental data. Recently developed design lower-bound curves for axially
loaded cylinders are presented and compared with currently used design criteria like the
Eurocode EN 1993-1-6 and the NASA SP-8007. The results of this article show that the design
of imperfection sensitive cylinders has been significantly improved in the last 30 years.


mailto:ro.wagner@tu-braunschweig.de
mailto:christian.huehne@dlr.de

Abbreviations and glossary

Exp.
F
FC
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GNA
GNIA
KDF

LBA
LRSM
MGI

Nimp
Nper

RRD
RSM

SBPA

TH

Experiment

Axial Force

Fourier Coefficients

First-Order Second-Moment Method
Geometrically nonlinear analysis

Geometrically nonlinear analysis with imperfections

Knockdown factor

Free Length of a cylinder

Linear Bifurcation Analysis
Localized Reduced Stiffness Method
Measured geometric imperfections
Buckling load

Buckling load of an imperfect shell
Buckling load of a perfect shell
Radius of a cylinder

Reference Resistance Design
Reduced Stiffness Method

Single Boundary Perturbation Approach
Wall thickness of a cylinder
Threshold

axial displacement

Batdorf Parameter

knockdown factor in general



1 Introduction

Thin-walled structures like cylindrical shells tend to buckle under axial compression, which
means that large deformations in the shell surface perpendicular to the loading direction occur.
This buckling pattern propagates over a large proportion of the shell surface and occurs without
prior notice. The buckling phenomenon is accompanied by a significant loss of the load carrying
capability of the shell. Buckling is therefore one of the primary design drivers in aerospace and
civil engineering shell structures.

Within this article, the maximum load carrying capability of thin-walled cylindrical shells under
axial compression [1] is defined as the buckling load Nper according to equation (1):

2:m-E-t?

Nper = 7,73(1 ) (1)

This equation depends on the elasticity modulus E, the Poisson ratio v, the wall thickness t and
is independent from the cylinder radius R as well as the cylinder length L.
If plastic buckling is relevant, the buckling load (squash load [1]) depends on the yield strength
Y and can be determined with equation (2):

Nequash =2 T E-R-t-Y @)

A large amount of cylinders was tested at the beginning of the 20" century in order to understand
shell buckling under axial compression. The buckling results are commonly represented by
means of so called knockdown factors (KDFs) which are defined as the ratio of the experimental
buckling load Nexp to the theoretical perfect buckling load Nger, See equation (3).

exp

pexp = Nper (3)

In Fig. 1 knockdown factors derived from a large number of tests are shown versus the radius-

to-thickness ratio (R/t — slenderness).

1 M Robertson [1928]
MW Flugge [1932]

0,9 @ Lundquist [1933]
A Bridget [1934]
5 0,8 ® Donnel [1934]
t; 0,7 @ Ballerstedt [1936]
© B Bruhn [1945]
L 06 O Harris [1957]
c B Babcock [1963]
g 0,5 L 4 © Weingarten [1965]
T 04 4 o A Almroth [1966]
5 b 4 X Arbocz [1968]
8 0,3 © Muggeridge [1969]
# Tennyson [1969]
< 0,2 ] -. B W Hutchinson [1971]
0,1 X @ Esslinger [1972]
B Verduyn [1982]
0 © Yamaki [1984]
0 250 500 750 1000 1250 1500 1750 2000  + Krishnakumar [1991]
. . . W Jiao [2018]
Radius-to-Thickness ratio, R/t  Wang [2018]
A Wang [2019]

Fig. 1: Distribution of 517 experimental results for isotropic cylindrical shells under axial compression for different R/t ratios
after [2], [3], [4], [5], [6] [7], [8], [9], [10], [11], [12] and [13]



The empirical data collection shows that there is a significant deviation between buckling theory
and corresponding experimental data. The KDFs range mainly from about 0.4...1 and are in
some cases even below 0.2. Some of the illustrated tests are affected by plasticity, weld land
failure, material failure, poor load introduction and poor boundary support [14]. In addition, most
of the test data are poorly documented [1].

Although manufacturing and testing of shells has been significantly improved, there are still
significant deviations between predicted and experimental determined buckling load. The results
illustrated in Fig. 2 are based on shell buckling experiments from 1975 — 2016 for composite
cylinders and the KDFs are in some cases below 0.5. The corresponding data collection is given
by Takano [15].
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Fig. 2: Distribution of 143 experimental results for composite cylindrical shells under axial compression for different R/t ratios

after [15], [16], [17] and [18]

A main cause for the large discrepancy between buckling theory and experiment are shape
deviations from the ideal cylinder geometry, namely geometric imperfections [19], [20]. The
geometric imperfections have been at first described by expansions in terms of buckling
eigenmodes and the corresponding amplitudes were regarded as random variables [21].

A more realistic approach was proposed by Arbocz [22] who used real measured geometric
imperfection of cylindrical shells. In this case, the geometric imperfections are described by
means of a double Fourier series and the Fourier coefficients are the random variables of the
probabilistic analysis. Arbocz and Abramovich [23] showed that double Fourier series are well
suited to describe realistic geometric imperfections.

Alternative methods to represent realistic geometric imperfections are the multimode approach
[24], the spectral representation [25] and the circumferential phase shift representation [26].
However, nearly all of the available geometric imperfection signatures are represented by the
Fourier-series [27] and are mostly available for isotropic cylinders. Geometric imperfection
measurements for composite cylinders were for example performed by Starnes et al. [28], Hiihne
[29] and Degenhardt et al. [30]. The imperfection pattern of composite shells has the tendency
of long-wave imperfection as opposed to the short-waved imperfection pattern for metallic
cylindrical shells which is based on the manufacturing process [31]. Meurer provides detailed
studies regarding the mode composition of geometric imperfection signatures in [32].

The shape and amplitude of geometric imperfection can be treated as being of random nature
and therefore probabilistic methods were proposed by Bolotin [33] to analyze the shell buckling.



The random nature of geometric imperfections is subject to certain probabilistic distributions,
and by using probabilistic methods the probability of buckling can be characterized [34]. Broggi
[35], [36] provides a rigorous description for the probabilistic analysis with geometric
imperfections of composite shells.

Schillo et al. [37] used Monte Carlo (MC) methods to generate different initial geometric
imperfections and determine the corresponding buckling loads. However, the Monte Carlo
method might turn to be very time-consuming and therefore the semi-analytical first-order
second moment (FOSM) method was used as an alternative approach by Elishakoff [38].

The computational cost for a probabilistic analysis of geometric imperfections increases
significantly as the number of included Fourier coefficients is increased. Kriegesmann et al. [39]
proposed using the Mahalanobis transformation in combination with FOSM which significantly
reduces the computational costs. Another alternative probabilistic design procedure was
proposed by Arbocz and Hilburger in [40]. The geometric imperfection signatures are
represented by only two imperfection modes and the corresponding amplitudes are defined as
the root mean square of the imperfection signatures.

However, the buckling load is not only reduced by geometric imperfection [41] but also by
deviation of the ideal positioning of the loading [11], [42] as well as thickness deviations [43].
In the particular case of composite shells [44] additional effects become crucial: deviation of the
resin distribution or the ply-angles [45], [46]. Probabilistic analysis of cylindrical shells with
multiple different imperfections (boundary conditions, loading, geometric, thickness & material)
were performed by Kriegesmann [47], Kepple [48], [49] and Meurer et al. [50]. It was
demonstrated that they could approximate the corresponding stochastic distribution of the
buckling load very well.

The influence of real measured geometric imperfections (MGI) on the buckling load of
cylindrical shells can be assessed very well nowadays as shown for example in studies by
Hilburger et al. [51] or Wang at al. [12], [52]. However, in order to study the influence of MG,
shell structures must be built, and the imperfections must be measured using optical
measurement systems [17]. This process is not only time consuming but also expensive. Another
problem is that most studies cover only subscale shells with a simple geometry and the
corresponding results are most of the time not relevant for full scale shell structures which have
complex geometries like reinforcements [53], cutouts [54], welds and stiffeners [55]. Also, the
manufacturing process of small-scale shell structures like electroplating leads to different
imperfections than for example the welding process of full-scale large shell structures [56].

An alternative approach to assess the imperfection sensitivity of complex shell structures is the
application of perturbation or lower-bound methods [57]. Deterministic lower-bound methods
are applied in order to quantify the influence of so called “worst” imperfections and were
extensively studied within the DESICOS project [58] (new robust DESign guideline for
Imperfection sensitive COmposite launcher Structures) in order_to develops and validates new
deterministic [59], [60], [61] probabilistic [30] as well as experimental [62], [63] design
approaches for composite shells [64], [65]. A comprehensive overview regarding this project is
for example given in [66].

Lower-bound methods should deliver a theoretical plateau for the buckling load which is equal
or less to every buckling load caused by multiple or large-amplitude imperfections [67], [68].
Compared to probabilistic methods, the measurement, stochastic analysis and storage of
imperfection data from many tests is not needed if lower-bound methods are applied which saves
time and cost during the design process.

This article provides an overview for recent developments in shell buckling analysis and gives
design examples for isotropic and composite cylindrical shells under axial compression. The test
shells with complete geometry and material description are presented in section 2. The influence
of geometric imperfections on the buckling load of cylindrical shells is studied in section 3. A



detailed design example for the application of probabilistic methods is given in section 4.
Different numerical and analytical lower-bound methods are demonstrated in section 5. The last
section summarizes all main results of the article. It should be noted that all relevant data for this
article: measured geometric imperfections, inp-data for the numerical analysis and results are
given in the Elsevier repository of this article.



2 Test specimens and numerical model

The shells considered in this paper are unstiffened isotropic and composite cylinders as shown.
The isotropic cylinders are classified according to the corresponding manufacturing process and
are defined as N (electroplated nickel shells), B (machined brass shells) and ST (welded
stainless-steel shells) shells. These shells were tested by Arbocz and Abramovich and details
regarding manufacturing, testing and test evaluation are summarized in [23]. The monolithic
composite cylinders were manufactured by prepreg hand layup on a mandrel at the German
aerospace center in Braunschweig and are defined as C (composite) shells. The C shells have
different laminate stacking sequences which results in different perfect buckling loads and
different imperfection sensitivities. A detailed report regarding the corresponding testing
campaign is given by Hiihne in the following reference [57].

The material and geometry parameters are summarized in the Table 1 and Table 2 for the
isotropic and composite cylinders. Note that for the ST-shells, the squash load according to
equation (2) was the reference load which results in a minimum experimental KDF of about 0.67
(for equation (1) the experimental KDF would result to 0.29). The reference load for the
composite shells was the perfect buckling load according to a geometrically nonlinear analysis
(GNA). The shells were analyzed with the commercial finite element software ABAQUS [69]
and a representative numerical model of the unstiffened cylinders is shown in Fig. 3.

Stacking Sequence

Fig. 3: Numerical model of the cylinder CO7

All cylinders were modeled using linear shells elements with reduced integration (S4R) and
further details regarding the numerical settings in ABAQUS can be found in the Appendix A.
The mechanical boundary conditions on both cylinder edges are defined as clamped by using
rigid-body interactions (Tie) which are coupled with a reference point. The displacement in axial
direction is free at the top cylinder edge for load application. All inp files for the GNA of the
perfect shell are given in the Elsevier repository of this article.

Table 1: Material data for the isotropic cylindrical shells after [23] and for the composite cylinder after [29]

Material parameter N-Shell B-Shell ST-Shell  Material parameter C-Shells
elasticity modulus E - [N/mm?] 172400 106500 180600 elasticity modulus E; ;- [N/mm?] 125774
Poisson’s ratio v 0.3 0.3 0.3 elasticity modulus E,,- [N /mm?] 10030
Yield Strength Y - [N /mm?] - 180 shear modulus G;,- [N /mm?] 5555
Poisson’s ratio v, 0.271

Ply thickness — [mm] 0.125




Table 2: Geometry data for the isotropic cylindrical shells after [23] and for the composite cylinder after [29]

Shell R-[mm] L-[mm] t-[mm] R/t L/R Z Laminate Stacking Nexp -[KN] Pexp
N-6 101.6 196.85 0.0986 1030 1.94 3689 - 2.67 0.408
N-9 101.6 196.85 0.0975 1042 1.94 3731 - 3.05 0.465
N-11 101.6 196.85 0.0978 1038 194 3720 - 3.90 0.595
B-1 101.6 196.85 0.205 495 1.93 1774 - 11.32 0.665
B-2 101.6 144.78 0.1852 548 1.42 1062 - 7.17 0.516
B-4 101.6 140.97 0.2634 385 1.38 708 - 16.66 0.592

ST-1 117.86 148.59 0.4564 258 126 391 - 56.05 0.906

ST-2 118.36 148.59 0.4526 261 1.26 393 - 48.50 0.784

ST-3 117.91 148.59 0.46 256 1.26 388 - 46.80 0.756

ST-4 118.49 148.59 0.4554 260 1.26 390 - 51.35 0.830

ST-5 118.49 148.59 0.4567 259 1.26 389 - 49.90 0.806

ST-6 117.86 148.59 0.4544 259 1.26 393 - 41.70 0.674
Co7 250.0 500.0 0.5 500 2.0 2000 [24,-24,41,-41] 21.8 0.649
C08 250.0 500.0 0.5 500 2.0 2000 [24,-24,41,-41] 21.9 0.652
C09 250.0 500.0 0.5 500 2.0 2000 [41,-41,24,-24] 15.7 0.895
C10 250.0 500.0 0.5 500 2.0 2000 [24,41,-41,-24] 16.7 0.695
C11 250.0 500.0 0.5 500 2.0 2000 [24,41,-41,-24] 15.7 0.654

C12 250.0 500.0 0.5 500 2.0 2000 [45,-45,0,-79] 18.6 0.799




3 Geometric imperfection analysis

In this section results of geometrically nonlinear analysis with measured geometric imperfections
(GNIA) are presented. The GNIA were performed using the commercial finite element software
ABAQUS and the corresponding inp-files as well as imperfection data are all given in the
Elsevier repository of this article. Note, that the only difference between GNA and GNIA is the
additional consideration of any kind of imperfection. The first section of this chapter deals with
imperfection signatures of metallic cylinders manufactured by electroplating, machining and
welding. In the last section similar studies for monolithic composite cylinders are given.

3.1 Metallic cylinders

The input data used for this section are based on an experimental testing campaign of TU Delft
which is summarized in the imperfection data bank [23]. This section will mainly focus on the
description of measured geometric imperfection by means of Fourier series. For further details
regarding the testing [70] and test evaluation of the buckling experiments, the documents by
Dancy [27] are recommended.

The initial measured geometric imperfections (MGI) of the metallic shells (see Fig. 4) were
measured and the corresponding Fourier coefficients A, and By, of the half wave cosine approach
are given in [23]. The authors of this article have extracted the Fourier coefficients of the N, B
and ST shells of the partially hard to read documents and stored them along with corresponding
Python scripts in the Elsevier repository of this article.

The half wave cosine approach [26] is given by the equation (4) and gives an approximation of
the imperfect cylinder surface z of the metallic shells which depends on the cylinder length L,
the cylinder radius R, the wall thickness t, the coordinates x,y and the wave numbers 1,k. The
parameters n1 and nz denote the maximum number of waves included in the series.
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Fig. 4: Geometric imperfection signatures for the shells N6, B1 and ST1 from left to right

The imperfection signatures of the shells N-6, B1, and ST1 are shown in Fig. 4. In order to
analyze the imperfection signatures, the square sum according to equation (5) of the
corresponding Fourier coefficients is plotted versus the number of the axial and circumferential

wave numbers k and 1.
Sk = ,/Aiz + Bf, (5)

The Fourier coefficients of the N-6, B-1 and ST-1 shells are shown in Fig. 5 for different axial
and circumferential wave numbers k and I. These figures show that the initial imperfections of



the electroplated (N-shells) and the machined (B-shells) cylinders are dominated by lower order
modes. That is, the amplitudes of the Fourier coefficients which are based on the experimentally
measured initial imperfections decay with increasing waver numbers I. The highest imperfection
amplitude occurs for | = 2 (out of roundness component). In the case of the ST-shells, the Fourier
coefficients with long wave length in axial direction have distinct maxima at 3 circumferential
waves.
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Fig. 5: Fourier coefficients vs. the circumferential wave numbers | for different axial wave numbers k for the shells N6, B1 and
ST1 from left to right

The numerical results obtained by a geometrically nonlinear analysis with measured geometric
imperfections are shown in Fig. 6 for the N (left) and B (right) shells for the measured
imperfection signatures corresponding to the highest buckling load reduction. The results for the
other imperfection signatures are given in the Elsevier repository of this article. The load-
displacement curves of the perfect shell obtained by a GNA and the minimum experimental
buckling load values are also shown in all following load-displacement curves for the purpose
of comparison.
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Fig. 6: Load displacement curve for the perfect shell and imperfect shell: N-Shells (left) — B-Shells (right)

The results show that the measured geometric imperfections don’t reduce the axial stiffness of
the shell. In the case of the N-shells, the highest buckling load reduction occurs for the MGI
signature of the shell N-6. However, the buckling load reduction compared to the perfect shell is
only about 12 % whereas the experimental buckling load is nearly 60 % lower than the perfect
buckling load.

For the B-shells, the MGI signature of B-4 leads to a buckling load reduction of about 24 %. The
experimental buckling load is about 40 % smaller compared to the perfect buckling load.
Plastic buckling occurred for the ST shells and the corresponding load displacement curves for
perfect-plastic material behavior (only yield strength is used and strain rate is 0) are shown in
Fig. 7 (left). Also, the load-displacement curves for elastic buckling of the ST-shells are given
in Fig. 7 (right) for the purpose of comparison. In the case of plastic buckling, the MGI signature
for ST-6 delivers the lowest plastic buckling load. The influence of geometric imperfection is



not as severe as in the case of pure elastic buckling. The buckling load reduction in the plastic
buckling scenario is less than 5 % whereas in the elastic buckling scenario, the buckling load
reduction is about 20 %. The experimental buckling load is about 30 % smaller compared to the
perfect buckling load in the plastic buckling scenario.

Also, the buckling is characterized by the distinct formation of a single dimple in the cylinder
surface for elastic buckling of the N, B and ST-shells. For plastic buckling, the edges of the
cylinder are more prone to buckling due to the high stresses near the clamping conditions.
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Fig. 7: Load displacement curve for the perfect shell and imperfect shell: ST-Shells & perfect-plastic material behavior (left) —
ST-Shells and pure elastic material behavior (right)

3.2 Composite cylinders

The measured initial geometric imperfections of the composite shells are also given in the
Elsevier repository of this article. For the composite shells, Kriegesmann et al. [47]
recommended a different form of the half wave cosine approach (phase shift approach). This
approach is given by the equation (6) and eliminates redundancies that are cause by the
circumferential positioning of the shell during measurement (for more details see [47]).

The imperfect cylinder surface z of the composite shells depends in this case on the Fourier
coefficients &,; and ¢,;, cylinder length L, the cylinder radius R, the wall thickness t, the
coordinates x,y and the wave numbers |,k. The initial imperfection signatures of the shells C07
and C12 are shown in Fig. 8.
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The Fourier coefficients of the composite shells are shown in Fig. 9 for different axial and
circumferential wave numbers k and I. These figures show that the initial imperfections of the
composite cylinders are dominated by lower order modes. Especially, the imperfection

amplitude for | & k = 0 is dominate.
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The imperfection amplitude for | = 2 (out of roundness component or ovalization) is not as
dominate as in the case of the metallic cylinders in section 3.1 which is probably due to the
manufacturing on a mandrel.

The results of a geometrically nonlinear analysis with measured imperfections of the composite
cylinders CO7 and C12 are shown in Fig. 10. In the case of the composite shell C0O7, the MGl
signature leads to buckling load reduction of 18 % which is still about 20 % above the
experimental buckling load value. The shell C12 is very insensitive to imperfections and the
buckling load reduction is less than 1 % (even for the imperfection signature of CO7, the buckling
load reduction is only about 2 %). However, the experimental buckling load of C12 was
significantly lower (18.6 kN) which was unexpected. It was assumed that the specimen C12 was
damaged (or something went wrong during the testing) and two additional nominal identical
shells to C12 were built and tested. However, the experimental buckling loads of C13 and C14
were even lower (17.3 kKN and 17.5 kN).



4 Probabilistic analysis

In this section a probabilistic design approach is applied to cylinders in order to evaluate the
buckling load as a function of the imperfection in a probabilistic manner [71]. A Python script
which implements the required equations for the calculations of mean and variance data for a
probabilistic analysis with geometric imperfections (section 4.2) is given in the Elsevier
repository of this article.

The first-order second-moment method (FOSM) was originally formulated by Rzhanitsyn [48]
in 1954 and then independently by Cornell in 1969 [49] (interested reader can also consult with
Ref. [50]) and is based on a first-order Taylor approximation of the objective function linearized
at the mean values of the random variables X. It uses only second-moment statistics (mean values
and elements of variances-covariance matrix) of random variables X and ignores information on
the distribution (probability density function - PDF) of random variables X. FOSM can only be
applied if the objective function is linear in the investigated range as shown in Fig. 11. In the
case of the stability analysis of cylindrical shells the buckling load N is the objective function of
the probabilistic analysis.

—

.
/

n=2-m+1

Objective function

Yy

Input

Fig. 11: Illustration of the linearization of the objective function (buckling load) at the mean

4.1 Analysis with scalar-valued imperfections

In this section, the N-shells are used to demonstrate the application of FOSM for a stability
analysis. The scalar-valued imperfection considered in this section is a wall thickness
imperfection which means that the average wall thickness is less than the nominal wall thickness
(0.1 mm) of the cylinder. The mean wall thickness of the N-shells equals to E(t) = 0.0978 mm,
the variance Var(t) = 2.15¢” mm? and the standard deviation of the wall thickness equals to
std.(t) = 4.64e* mm. The mean E of the buckling load N can be approximated with equation (7).

E(N(X)) = N(E(X)) (7)

This equation implies that the mean value E of the buckling load N is calculated using the mean
values E of the random variables X. In this case the buckling load is determined, and the input
variable is the mean wall thickness E(t) = 0.0978 mm. The perfect buckling load equals to 6.55
kN (with nominal wall thickness 0.1 mm) and the buckling load with the mean wall thickness
equals to 6.27 kN.

The variance of the buckling load N can be determined with equation (8) if the random variables
are uncorrelated.



Var(N(X)) = ZN,;ZQ'VGT”(X;') (8)

i=1,

In order to determine the variance of the buckling load N the partial derivatives Ny, = a”ff(")) of

N(X) and the individual variances Var(X) of the random variable X are required. The standard
deviation std.(X) of the buckling load N is defined according to equation (9).

std.(N(X)) = |Var(N(X)) (9)

The partial derivative Ny, has to be approximated because the buckling load N of the cylinder is
determined numerically. The numerical derivative of a function can for example be determined
with the central difference method [47] as shown by equation (10).

_ N(E(X) +Azy,) = N(E(X) — Azy) _N(E(X) + 1.5 std- (X)) = N(E(X) = L5 - std. (X))
X 2 Azy, - 2-15-std. (X;)

(10)

The term Azy, is the increment of the central difference methods and can be defined as Azy, =
1.5 - std. (X)) [47].
In this case the buckling load is determined with ABAQUS and the input variables (wall

thickness t) for the numerical derivative are defined according to equation (11).
E(t) + 1.5 std.(t) = 0.0978 mm + 1.5-4.64e™* mm = 0.0984 mm

N(E(t) + 1.5 - std. (£)) = N(0.0984 mm) = 6.32 kN
E(t) — 1.5 std.(t) = 0.0978 mm — 1.5 - 4.64e™* mm = 0.0971 mm

N(E(t) — 1.5 - std. (t)) = N(0.0971 mm) = 6.18 kN

The resulting buckling loads are used to determine the numerical derivative which is required
for the variance and the standard deviation of the buckling load with the scalar-valued wall

thickness imperfection. The corresponding equations are defined by equation (12).
6.32 kN — 6.18 kN _100. 51kN

tT 215 464e4mm  mm

Var(N(®)) = N, tyer =

100.51kN\* Yy )
(7) -(2.15¢77 mm)? = 0.0021 kN (12)

std. (N(t)) = |Var(N(t)) = 1/0.0021 kN2 = 0.046 kN



4.2 Analysis with vector-valued imperfections

The random variables X are correlated for the probabilistic analysis of geometric imperfections
(Fourier coefficients). In this case the random vector X has to be defined (bold and cursive letter)
for the Fourier coefficients and the variance Var of the buckling load N has to be determined with
equation (13).

S IN ON
Var(N(X)) ~ Zzﬁﬁ Cov(X;, X;) (13)
i 04;

i=1 j=1

For this equation the covariance matrix Cov(X;, X;) and several derivatives have to be
determined which can be very costly in terms of computation time and effort. Kriegesmann et
al. [47] proposed the Mahalanobis transformation to bypass this problem. The Mahalanobis
transformation transforms random variables in a way that they are uncorrelated, have a median
of zero and a variance Var of one.

This means, for the probabilistic analysis of the N shells, that the number of random variables n
for the configuration n1= 15 and n,= 15 reduces fromn =2-(15+1)- (15+ 1) =512ton =
(m — 1) = 3 — 1 = 2. That means the number of random variables reduces by about 99 %. The
buckling load has to be evaluated (2-n)+1=(2-2)+ 1 =5 times for the probabilistic
analysis of geometric imperfections. The Mahalanobis transformation is implemented with the
following equation (14).

1 1
X=Covi-z+pu and z=Cov (X —p) (14)
The random vector X contains in this case the Fourier coefficients Ay; and By, see equation (15).
T
X=(A11A12 -, A1ny ) An ny Bi1,B12 o Bings s Boyn, ) (15)
The mean vector u of the Fourier coefficients is determined as a function of all random vectors
X with equation (16).
— 1 N k
p=—>x (16)
k=1

The application of equation (16) in order to determine the mean imperfection signature of the N-
shells is illustrated in Fig. 12. The mean imperfection signature of the N-shells has characteristics
of all imperfection signatures but also significantly decreased imperfection amplitudes. The
buckling load as a function of the mean geometric imperfection vector equals to 6.04 kN.
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Fig. 12: Geometric imperfection signatures of the shells N-6, N-9 and N-11 (left) mean geometric imperfection signature of the
N-Shells (right)

The covariance matrix Cov(X;, X;) can be calculated with equation (17).
1 = T
Con(it ) = 5= 0 oF = ) (o =) )

The number of data sets m of the random vectors X is in this case smaller than the number of
vectors elements n; the covariance matrix is therefore singular. The special Mahalanobis
transformation has to be used instead which is given by equation (18).

X= B%z +u and z= B_%(X ) (18)
The matrix B is defined by equation (19).

B =QD (19)

The columns of Q are the eigenvectors of Cov(Xi,Xj) and the diagonal matrix D contains the
eigenvalues of Cov(Xl-,X]-) as main diagonal elements.

The special Mahalanobis transformation for the probabilistic analysis of the N-shells (m = 3)
is given as an example with equation (20).



B(X; X;)
Xil =
B(Xa, X))
B(X., X;)
Xin = :
B(Xn. X;)

1 /41,
B(Xian) 2 0

B (X, Xn) 0
0

(20)

B(X,,Xn) / \
B Xy %) \ 15/

The vector z has the dimension n; X is equivalent to the median vector u if z is equivalent to the
zero vector. The elements of z are equivalent to 1.5 (Az, ~ 1.5-std.(x,)) because of the
Mahalanobis transformation the variance and standard deviation are equal to one. The “scatter”
imperfection signatures of the N-shells according to equation (20) are shown in Fig. 13.
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Fig. 13: Mean geometric imperfection signatures of the N-Shells (left) and geometric imperfection signatures generated using

the Mahalanobis transformation (right)

The mean imperfection signature of the N-shells is “modified” by using the vector z which leads
to 4 different imperfection signatures which are used to determine the numerical derivatives that
are required to determine the variance of the buckling load with measured geometric



imperfections. This means the buckling load has to be calculated 4 times in the case of the N-

shell as shown in equation (21)

N(41) -N(X-1) _ S60KN-591KN _ 493 N

2:1.5 2:1.5

N'X_l = Nyt

(21)

N(X42) -N(X—3) _ 559KkN -5.64kN _ —0.016 kN

2:1.5 2:1.5

The variance of the buckling load N for geometric imperfections can then be determined with
equation (22).

N,x_n = N,y 2

n
Var(N(X)) = ZN'Zz' Var(X;) =N%, - 1>+ +N%, - 1°
i=1 (22)

Var(N(MGI)) = N6, 1 - 1% + Njg; 5 - 12 = (=0.113 kN)? + (=0.016 kN)? = 0.013 kN2

4.3 Results

The design load Ngqs), of the probabilistic analysis with FOSM is given by equation (23).
NFOSM = E(N(X)) —b - std. (N(X)) = Nmean —b- Nstd. (23)

The factor b defines the chosen reliability limit as well as the assumed type of distribution and
is listed in Table 3 for the standard normal distribution.

Table 3: Factor b for different reliability levels of the standard normal distribution
Reliability [%] 50 90 99 99.9 99.99 99.999
b 0 1.2815 2.3263 3.0902 3.7190 4.2648

In order to calculate b the cumulative density function of the standard normal distribution was
inverted and evaluated with a mean of zero and a variance of one for the desired probability
level. The mean and the standard deviation of the buckling load for the individual shells are
given in Table 4.

Table 4: Mean and standard variation of buckling loads according to FOSM

Shells (random variables) Nmean- [KN]  Nstd. - [KN]
N-Shells (MGI & t) 5.947 0.118
ST-Shells (MGl &t & R) 58.506 0.381
ST-Shells (MGI & t) 127.180 4.056
[24,-24,41,-41] - C-Shells (MGI) 27.28 1.200
[41,-41,24,-24] - C-Shells (MGI) 17.38 0.128
[24,41,-41,-24] - C-Shells (MGI) 19.55 0.687
[45,-45,0,-79] - C-Shells (MGI) 23.02 0.368

The reliability functions of FOSM are compared to the experimental results of the corresponding
cylindrical shells in Fig. 14 (left) for the N and ST shells and in Fig. 14 (right) for the C07 and
C12 shells. The results show unfortunately, that FOSM delivers unsatisfying approximations of
the experimental reliability functions if only geometric imperfections and deviations of the
nominal wall thickness and radius are considered. The mean buckling loads are 30 — 100 %
higher when compared to the experimental results and even for very high reliability levels (1 in
100 000), FOSM doesn’t deliver conservative design load estimations.



Results reported in [38], [30] indicate that either imperfect loading conditions or uneven cylinder
edges [44] lead to a significantly reduced buckling loads. However, as there are no measurements
for “loading” imperfections, they could not be considered in the probabilistic analysis.
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5 Deterministic lower-bound analysis

This section presents numerical and analytical lower-bound design examples for the N-Shells
(elastic buckling) and the ST-Shells (elastic-plastic buckling). In the first part a numerical
analysis of N-Shells with the reduced stiffness method is presented. The corresponding Python
scripts for ABAQUS are given in the Elsevier repository. In the second section, analytical lower-
bounds which are suitable for elastic buckling are presented. The last section covers analytical
design of the ST-Shells which fail due to elastic-plastic buckling.

5.1 Reduced Stiffness Analysis

In this section a reduced stiffness analysis for isotropic cylindrical shells under axial compression
is performed. The reduced stiffness method (RSM) was developed by Croll et al. [72] and its
main purpose is to determine a lower-bound for the buckling load of thin-walled shells [73]. The
physical background of the reduced stiffness analysis can be summarized according to Croll et
al. [72] as follows:

1. The membrane energy of a shell may be eroded due to the presence of imperfections.

2. The loss of the initially stabilizing membrane energy in a prospective buckling mode is
responsible for the buckling load reduction.

3. A lower-bound to the buckling load into a particular buckling mode will be provided by
an analysis which excludes the membrane energy.

An improved variant of the RSM was developed by Wagner et al. [74], the localized reduced
stiffness method (LRSM). The corresponding results and scripts for ABAQUS-Python are given
in the Elsevier Repository for this article.

The LRSM is based on a special membrane stress state in cylinders under compression. For large
localized imperfections local buckling of the shells surface and subsequent global buckling
occurs (also known as snap-through buckling) as shown in Fig. 15 (left). Snap-through buckling
causes a reduction of the membrane stresses at the position of the snap-through to approximately
zero (from bottom to top shell edge, see Fig. 15 - right). This behavior is associated with the
lower-bound plateau behavior of the critical load for thin-walled shells. The buckling load of a
shell is independent from further increasing imperfections (in this specific area) because the
membrane stresses are already zero. Further detailed studies regarding the LRSM can be found

in [74].
@
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Fig. 15: Load-displacement curve for snap-through buckling (left) membrane stress state of a cylinder (right) from [75]

Within the framework of the LRSM, the membrane stiffness of a shell is reduced in a localized
manner in order to approximate the lower-bound membrane stress state. A schematic



representation of the region considered for reducing the membrane stiffness in a cylindrical shell
is shown in Fig. 16.

Main Shell Surface

Reduced Membrane Stiffness Surface

Fig. 16: LRSM surface pattern for the N-shells from [74]

The cylindrical shell has two sections, the main shell surface (green in Fig. 16), and a reduced
membrane stiffness surface (white in Fig. 16). On one side, the main shell stiffness is modeled in
ABAQUS by using the general shell stiffness definition (homogenous shell thickness or
composite stacking). On the other side, the reduced membrane stiffness surface is modeled using
the ABD — general shell stiffness matrix and all 9 components of the A — membrane matrix are
divided by the membrane stiffness reduction factor o = 1000 [74]. All the components of the B
— coupling matrix are for isotropic shells equal to 0. If a composite shell is analyzed with the
LRSM, all the components of the B matrix should be set to 0 for the reduced membrane stiffness
surface in order to prevent a singular stiffness matrix. Also, the area of the reduced membrane
stiffness surface in incrementally increased by increasing the ratio of LRSM radius Rs to cylinder
radius R so its influence on the buckling load can be studied.

The LRSM results are summarized in Fig. 17 (left) for the N-shells, this figure shows the
knockdown factor for local and global buckling load values of the N-shells for different Rs/R
ratios. Even small reduced membrane stiffness surfaces (2 mm — LRSM radius Rs - to 101.6 mm
— cylinder radius R ~ Rs/R = 0.02) lead already to a 20 % reduction of the buckling load.
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Fig. 17: Lower-bound curves for local and global buckling of the N-Shells for o = 1000 (left) corresponding load displacement
curve (right)

If the Rs/R ratio is increased further, snap-through buckling occurs which leads to local (black
diamond in Fig. 17 — right) and subsequent global buckling (red cross in Fig. 17 — right). The
local snap-through buckling may already lead to premature collapse of a cylinder which was



shown by Ludwig et al. [76] by applying dynamic analysis, see Fig. 15 (left). Therefore the local
buckling load is used as a design load within the framework of the LRSM. There is a plateau for
the local and global buckling load for Rs/R = 0.15 to approximately 0.35. The minimum KDF
for the local buckling load equals to about 0.42 for the N-shells.

The lower-bound curves of the C-shells are shown in Fig. 18 (left), the minimum KDFs for local
buckling vary between 0.45 and 0.8 (although they have the same geometry configuration) which
means that the LRSM considers the different imperfection sensitivities of the different laminate
stacking sequences [77]. Also, the LRSM delivers for every shell (of section 2) conservative
buckling load estimations when compared with the experimental results as shown in Fig. 18

(right).
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Fig. 18: Lower-bound curves according to LRSM for C-Shells (left) comparison of LRSM results with corresponding exp.
Results (right)

5.2 Analytical design for elastic buckling

In this section analytical and empirical lower-bounds for the design of cylindrical shells are
presented. Weingarten et al. [10] developed a lower-bound curve in 1964 which is recommended
in the NASA SP-8007 (see Fig. 19) Space vehicle design criteria [78], see equation (24). This
equation is based on a statistical evaluation of early buckling experiments and depends on the
shell slenderness (radius-to-thickness ratio, R/t). A collection of other similar empirical design
criteria is given by Elishakoff in [34].

p=1-0.902- (1 - e‘<1_16 %)> (24)

The Threshold design curve was developed by Wagner et al. [79], [80], [81] and is based on a
combined boundary perturbation [82], [83] and probabilistic analysis of cylindrical shells under
axial compression. The corresponding equation (25) depends on the R/t ratio as well as the L/R
ratio [84].

p = Qry - (R/6)™H (25)

L\2 L
Qry =~ —0.0196 - (E) —0.0635- (ﬁ) +1.3212

0.013 (L)z +0.061 (L) + 0.08
Nty = —U. R . R .

All experimental KDFs of the N, B, ST and C-shells are shown in Fig. 19 (left) along with the
NASA SP-8007 and the Threshold design curve. The Threshold design curve is conservative for
all presented shells and delivers especially for short and thin shells significantly improved KDF



for the buckling load. In the case of N-Shells the TH curve delivers about 100 % higher KDF for
the buckling load compared to the NASA SP-8007.

Evkin [85] showed that the Batdorf parameter Z according to equation (26) is sufficient to
describe cylindrical shells under axial compression (reduction from a 2 variable problemto a 1
variable problem) and derived lower-bounds for cylindrical shells with different boundary
conditions [86].

- 12/ -v?) (26)
B R-t
The corresponding KDFs are also given by equation (27) and are shown in Fig. 19 (right).
p=123-(2)"0138 (27)

Also, Groh et al. [87], [88] derived recently a design lower-bound for cylindrical shells which
depends only on the Batdorf parameter Z, see equation (28).
p =148 (2)7016 (28)

Furthermore, Wagner et al. [74] presented another lower-bound which is based on the LRSM
and is given by equation (29).
p= 1.58- (Z)_0'17 (29)

The lower-bounds in Fig. 19 (right) are very similar, the LRSM curve by Wagner is basically
equal to the design curve by Groh. The threshold curve and the design curve by Evkin have
slightly lower KDF than the lower-bound by Groh et al. especially for Z< 1000.
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Fig. 19: Empirical knockdown factors for the design of cylindrical shells

5.3 Analytical design for elastic-plastic buckling

In this section the framework of the Reference Resistance Design (RRD) by Rotter et al. [89] as
a method to design thin-walled cylindrical shells under axial load is presented (Eurocode EN
1993-1-6). The RRD is based on the capacity curve which relates a shell’s dimensionless
characteristic resistances to its dimensionless slenderness as shown in Fig. 20 (left). The
governing equations are set out in terms of the shell buckling Eurocode requirements, which are
described in [90], [91], [92], [93], [94] and are also summarized in the Elsevier repository of this
article.

The ST-Shells (from section 2) are used to demonstrate the RRD for cylindrical shells which
buckle in the elastic-plastic region. In the first step the shell segment length parameter
o according to equation (30) is determined in order to define the shell length type of the ST-
Shells.



L 148.59 mm

= =20.30
VRt +117.86 mm - 0.4544 mm

w =

w < 1.7 for short shells
(30)

1.7<w<05 -% for medium length shells

1.7 < w < 0.5-259.37 = 129.68

The ST-shells are classified as medium length shells because o = 20.3 > 1.7 & < 129.68. The
elastic critical buckling stress should be determined by using equation (31) which depends on
the parameter c,.

t
Oxror = 0605 E =+ C;

Cy=136 -2 4 2—027 for short shells
w w

Cx = 1 for medium length shells (31)
= 0.605- 180600 N_ 04544 mm 1 =421.25 N
OxRer = T mm? 117.86mm =~ mm?

In the next step the relative slenderness A (ratio of yield stress £, , to buckling stress oyg.,) is
determined with equation (32).

- \/ fyk _ \/180.6N/mm2 — 0.654 (32)

OxRer 421.25 N/mm?2

In the subsequent step the elastic imperfection factor o after equation (33) is required which
depends on the characteristic imperfection amplitude wy for different manufacturing qualities
(excellent quality Q = 40, high quality Q = 25, normal quality Q = 16). The elastic imperfection
factor awcurrent is based on studies by Rotter et al. and is currently used in the RRD. A new
improved version of the elastic imperfection factor onew Was developed by Wagner in [75]. The
difference between the new and current version of the elastic imperfection factor is shown in Fig.
20 (right). The elastic imperfection factor anew delivers on average 15-20 % higher values when
compared to the currently used version.

It should be noted that the RRD neglects the influence of the L/R ratio on the lower-bound
buckling load and only depends on the R/t ratio. The new elastic imperfection factor by Wagner
is based on the SBPA (Q = 40) and the post-buckling load (Q = 16) for shells with L/R =2 which
should cover a wide range of civil engineering applications.
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Fig. 20: Capacity curve of the RRD after [89] (left) Current and new Elastic imperfection factors for the design of cylindrical
shells according to the RRD (right)

Next the shell class has to be determined, which is defined by comparing the relative slenderness
A with the squash limit Lo and plastic limit relative slenderness Ap. For cylindrical shells under
axial compression the squash limit relative slenderness Ao is defined as o= 0.2 and the plastic
limit relative slenderness A, is given by the following equation (34):

_ ’acurrent — ’0-409 _
Ap_current = 1-B, “\1-06 =1.01
Opnew 0.443
= = = 1
}\p—new " 1-Br \/ 1-0.6 05

The term B in equation (34) is the plastic range factor and is defined as r = 0.6 and the shell
class equals to elastic-plastic buckling because A < A, and the interaction component n is set to
1. The stability reduction factor y can be determined with equation (35).

(34)

1 e T oo [ossa—02]t _

Xcurrent = 1 Br [}‘Pcurrent_)‘o] =1 0.6 [1.01_0.2] = 0.663

(35)
A2 |” 0.654-0.2]1
Xnew = 1 — B+ [7\19—0—7\0] =1-06" [m] =0.680
Finally, the design buckling resistance o, gq Can be determined with equation (36).
N
Ox,Rd_current = Xcurrent * Ox,rer = 0.663 - 421.25 W = 119.86 mm?

(36)

Ox Rd new = Xnew ° OxRrer = 0.68 - 421.25 ) =122.81 —

The corresponding design load can be determined according to equation (37)



N
NyRdcurrent = 2" 70 R £ Oxra_current = 27 117.86 mm + 04544 mm - 119.86 —— = 40.33 kN

(37)

N
NxRanew = 27 R £" Oxpayg, = 277 117.86 mm - 04544 mm - 12281 —— = 4132 kN

In the case of Q =40, Q =25 and Q = 16, the new elastic imperfection factor leads to increased
design loads which are 2.4 %, 5.7 % and 17.6 % higher than the design loads according to the
currently used RRD.



6 Conclusion and Outlook

In this articles covers design examples for isotropic and composite cylindrical shells under axial
compression. The application of measured geometric imperfection (MGI) signatures is for the
analyzed shells not reliable because the corresponding test buckling loads are most of the time
underestimated as shown in Fig. 21.

A probabilistic analysis with geometric and wall thickness imperfections was demonstrated and
the corresponding stochastic moments (mean and variance) of the buckling load were
determined. However, even for very high reliability levels, the probabilistic analysis delivers
non-conservative buckling load estimations.

N-Shells (elastic buckling) ST-Shells (elastic-plastic buckling)
Groh [2019] RRD (Q = 16) - new 0,56 |
Evkin [2019] RRD (Q = 16) - current 0,47 |
RRD (Q = 40) - new 0,67 |
Wagner [2017] RRD (Q = 40) - current 0,65 |
NASA SP-8007 LRSM 0,65 |
LRSM FOSM (99.999 %) 0,91 |
FOSM (99.999 %) 0,82 Test6 067 |
Test5 0,81 |
Test3 062 | Test4 0,83 |
Test 2 049 | Test3 0,76 |
Test 1 0,41 | Test2 0,78 |
MGI (min.) 036 | Test 1 091 |
MGI & p-p (min) 0,94 |
GNA 0,96 | GNA 0,95 |
Analytical Solution 1,00 Analytical Solution 1,00
o0 o1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Knockdown Factor Knockdown Factor

Fig. 21: Comparison of KDF for the N-Shells (left) and ST-Shells (right)

A reduced stiffness analysis (RSA) for cylindrical shells under axial compression was presented
in section 5 in order to study the lower-bound behavior. The localized reduced stiffness method
(LRSM) delivers always higher KDFs than the NASA SP-8007 and yet conservative buckling
load estimations (when compared with experimental results).

Recently developed lower-bound curves for the design of axially loaded cylinders were also
presented and compared with the NASA SP-8007 and experimental results. Although, the lower-
bounds by Evkin, Wagner and Groh were all derived independently, they are based on the idea
of localized buckling and deliver similar KDF for the lower-bound buckling load.

The reference resistance design according to the EN 1993-1-6 was presented for shells which
buckle in the elastic-plastic region. New elastic imperfection factors are presented which deliver
improved KDFs in comparison to the currently used design factors as shown in Fig. 21 (right).
The results of this article were mainly obtained by using the commercial FEA software
ABAQUS and all inp-data, imperfection files, Python scripts and results are summarized in the
Elsevier repository of this article.
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Appendix A — Abaqus-Python script manual

In this section, a brief overview over the ABAQUS-Python script used in this article is given.
The scripts were tested on ABAQUS 6.14 to ABAQUS 2019 and Spyder (Python 3.7). It is
proposed to use the Anaconda Distribution as Python Science Platform from the website:

https://www.anaconda.com/distribution/

The ABAQUS-Python script can be used to study the lower-bound buckling load of cylindrical
and conical shells (see line 655 and variable mySemi_Vertex_Angle) under axial compression
(or pure bending by slightly modifying the Python script, see line 832-850).

The name of the ABAQUS-Python script is:
Cone_LRSM_clamped FC_007.py

The ABAQUS-Python script has 4 different sections:
1. Section for functions
2. Section for data input:
a. Name of the Finite Element Analysis Modell

Table 5: Section 2 — part a of the ABAQUS-Python script
# name of the numerical model

myName = ['N-Shells]
# Limit for the outer loop (number of shells investigated)

Limit=1
b. Material

Table 6: Section 2 — part b of the ABAQUS-Python script
# Layup and number of plies

myLaminatel = [45, -45,0,90,90,0, -45,45]
myLayerNumber_v = [len(myLaminatel)]
myShell = [myLaminatel]

# Material parameter

myE1_v = [172400]

myE2_v = [172400]

myG12_v = [172400/(2*(1+0.3))]
myNul2_v =[0.3]

myG23_v = [172400/(2*(1+0.3))]

# ply thickness in case of isotropic shell
# use shell thickness and divide by "myLayerNumber_v"

myLaminateThickness_v = [0.1/8]
myCore_v =[12.7]


https://www.anaconda.com/distribution/

c. Geometry
Table 7: Section 2 — part ¢ of the ABAQUS-Python script
# Cylinder length and radius
myHeight_v = [196.85]

myRadius_v =[101.6]
mySemi_Vertex_Angle = 0.0

d. Finite Element Analysis
Table 8: Section 2 — part d of the ABAQUS-Python script
# element length

# can be estimated with = 0.5*np.sgrt(myRadius*myLayerNumber*myLaminate Thickness)

#myMesh_Size_v = [0.5*np.sgrt(myRadius_v[0]*myLayerNumber_v[0]*myLaminateThickness_v[0])]
myMesh_Size_v = [2]

# axial shortening / rotation of the cylinder (simulation is displacement controlled)
my_disp_v = [1]
# number of cores for the simulation

myCpu =8

e. LRSM analysis — start & end iteration, LRSM factor, ABD stiffness

Table 9: Section 2 — part e of the ABAQUS-Python script
# components of ABD Stiffness matrix

All1,A12,A13,A22,A23,A33,B11,B12,B13,B22,B23,B33,D11,D12,D13,D022,D23,D33 =
CLT(myE1_v[0],myE2_v[0],myG12_v[0],myNul2_v[0],myLaminatel,myLaminateThickness_v[0],len(myLaminatel))

# membrane stiffness reduction factor
LRSM_Factor = 1000
# start and end of iterations for LRSM (20 increments)

my_START =[1]
my_END = [41]

3. Main Section
4. Result extraction

The name of the numerical model is defined in the first part (a) of the input section as shown in
Table 5.

The material parameter (elasticity modulus, Poisson’s ratio, etc.) are defined in the second part
(b) of the input section, see Table 6. The isotropic conical shells is represented in this script as a



composite shells with quasi-isotropic laminate stacking [45,-45,0,90]s. However, this script can
also be used to analyze laminated composite shells. The isotropic cylinder has a shell thickness
t = 0.1 mm which is divided by 8 (number of layers) for the laminate representation. Also, a
sandwich core thickness can be defined by using the myCore variable and an angle of 1° in the
variable myLaminatel.

The geometry parameters of the shell are defined in the third part (c) of the input section, see
Table 7. This section requires the cylinder radius R, the cylinder height H and the semi-vertex
angle B. If the semi-vertex angle B = 0, the script will generate a cylinder and for a
negative/positive angle a cone will be generated.

The main parameter of the FEA are defined in the fourth part (d) of the input section, see Table
8. The FE mesh can be estimated using 0.5vR - t [95] and the axial displacement (Displacement
controlled simulation) can be defined by the user. Another variable is the number of CPUs which
depends on the number of available licenses.

The LRSM input data are defined in the fifth part (e) of the input section (see Table 9). In this
section a function (CLT) is called which calculates the ABD stiffness matrix components. Also,
the membrane stiffness reduction factor is defined as LRSM_Factor (preset to 1000). The final
variables are the start and end of the iteration (preset to 40 iterations). Note, that artificial
damping can be used by uncommenting line 327 of the function createStaticStep)

The procedure of a numerical analysis using the ABAQUS-Python script consists of the
following steps:

1. Start ABAQUS CAE, see Fig. 22 (left)

2. Open the Python script: - Cone LRSM_clamped FC_007.py using a text editor
(Spyder), see Fig. 22 (right)

3. Define the input section of the Python script, see Table 5 - Table 9

4. Copy whole Python script (CRTL + A), see Fig. 23 (right)

5. Paste the Python script into ABAQUS CAE console (CRTL + V & Enter to start script),
see Fig. 23 (left)

6. Wait for end of calculation, see Fig. 24 (check that line 924 to 928 are uncommented)
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Fig. 22: Procedure of a numerical analysis using ABAQUS-Python: step 1 (left) step 2 (right) -
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For the numerical analysis, the Newton-Raphson solution technique was used (Static, General)
and the corresponding configurations of the Python script are summarized in Table 10.



Table 10: Solver settings for ABAQUS

Step

Static,General

Basic

Incrementation

Other

Nlgeom: ON
Automatic stabilization: None

Type: Automatic
Increment size:
Initial: 0.01
Minimum: 1E-5
Maximum: 0.01

Standard settings




Appendix B — Python-Excel script manual

In this section, a brief overview over the Python-Excel script used in this article is given. This
script requires the application of the ABAQUS-Python script from Appendix A and the
ABAQUS calculations are finished.

This Python-Excel script writes the data from the ABAQUS calculations in an Excel sheet and
determines the lower-bound curve.

The name of the Python-Excel script is:
myPerturbation_Cylinder READ_005.py

The ABAQUS-Python script has 3 different sections (see Table 11):
1. Section for functions
2. Section for data input:

Table 11: Section 2 — part a of the Python-Excel script
myName = ['N-Shells_Z 3638 (8 07

# define axis title

x_axis = ['Axial Displacement [mm]’, 'Relative Stiffness S [KN/mm]’, 'Relative Strain Energy E [kKNmm/kN]']
y_axis = ['Axial Force F [kN]','Axial Force F [kN]','Axial Force F [kN]', 'Buckling Load N [kN]]
max_load = ['Numerical Collapse Load [kN]]

# method which is evaluated

method = ['LRSM]

# axis of perturbation approach

pert_axis = ['LRSM radius-to-shell radius ratio, Rs/R']
# limits for the perturbation iteration

Pert START =1
Pert END = 41

3. Main section

The procedure of the result evaluation using the Python-Excel script consists of the following
steps:

1. Open the Python script: - myPerturbation_Cylinder_READ_005.py using a text editor
(Spyder), see Fig. 25 (left)

2. Save the Python script: - myPerturbation_Cylinder READ_005.py in the same folder as
the ABAQUS results, see Fig. 25 (right)

3. Run the Python script: - myPerturbation_Cylinder READ_005.py in Spyder, see Fig. 26
(left)

4. Open Excel result file: - Design_N_Z 3638 [3_0_003.xlsx, see Fig. 26 (right)

5. Open Excl sheet: LRSM, see Fig. 27



| = | ABAQUS temp.

o x

Fig. 26: Procedure of a result evaluation using Python-Excel: step 3 (left) step 4 (right)

pen Quelle Aufahven  Deb vicht  Hie sut Fregeben  Ansint -0
=0 P B‘a’ G Pﬂ ‘: h nﬁ » HEBEX Ff* ¢ ')L—v__]- + <1 [ DieserPC 5 Volume (E) » ABAQUS.temp v & | *ABAQUS temp durchsuchen
' Neme Anderungsdstum  Typ Groge A
# Schnelizugs
= |] myPerturbation_Cylinder READ_004.py 31.05.2019 13:41 PY-Datei 8K
n n“""’IM" 3050191315 Tedokument W
Down .
N0S0191315  PM-Dstei sk
2 Dokumente  # NBANIS  Tetdokument 1w
irei = Bilder #  []] N.Z_3638 8.0 LRSM_FC_Loop-20sim 31052019 1315 SIM-Dates 121K
Sie Hilfe 2017 Probjsotrop. | RSN Z 3633 8.0 LRSM FC_Loop-20xt 31052019 1315 Testdokument 2
ABAQUS temp 3 uNz 36388 000 31052019 13115 Textdokument 16
7 Objekt Bilder 7] ©.N.2.3638.8_0_LRSM_FC_Locp-20xt 0520191315 Tertdokument 2
52 myName = ['N_2_3638.8,
23638 8.1 erhaiten, [ v.NZ3638 00 0915 Testdokument "
60 N-Shells o
81+ detine ax: dem [7] N2.3638_6_0_LRSM_FC_Loop-20.0db 30520191315 ODB-Datel 120441 K1
&« axis = ['Axial 4,5,,1“,,,_,“ oml*] entweder 1 Dieser PC [7] N_2_3638.6.0 LRSM_FC_Loop-20iprt 3050191315 PRI-Dater 21920
64y_axis = ['Reaction Load 5 T 9 30-Objeite. [7) N_2.3638.6.0 LRSM_FC_Loop-20dat 310520081315 DAT-Dates 13K
65 wax_Toad = ['Mumerical Collapss Losd [kNI*] ke dor = tider 1 N_2_3638.8.0 LRSM_FC_Loop-20msg 3050191315 Outiook-Element K
8} ¢ n w Konsale 1 N23638.8.0.LRSM_FC_Loop-20sta 00191315 STADwe 5K
68 i L 7 N_2_3638.8.0 LRSM_FC_Loog-20.com FOWIHR  MS-D0S-Anwend. 3
69 #; 0 8PA drucken. Dokumente gand -0t ! e 2
76 method = ‘LRSM_FC* - 0 N_2_3638_8_0_LRSM_FC_Loop-20inp 31052019 1312 INP-Dates 1457 K1
£ e Py o ¥ Dounloads 2] R.N_2_3632 8.0 (RSM_FC_Loop-19t NG50101312  Tetdokument 2w
” b M 9 u.N2_3638_8_0_LRSM_FC_Loop- 19 NBWBR  Tetdokument %
= [ us-to-s adius ra s /R" Veiienms Detema. LI.2 LFCL
[ e Eaiis = LR, PLUS I T 1M, Lo ey e 1 Videos ] N2.3638_8.0 LRSM_FC_Loop-19ipm OWIKL  PMDstei s0Ki
o Linits for the Pythonsarsoe BX| | erDtentsger ] NZ.363.8.0.LRSM_FC_Loop-1930g 31052019 12 Totdokument I
;g Pere_sTaRT =1 0 B mral oo [ N.2.3628.8.0_LRSM_FC_Loop-185im No9IIL  SMDme 12mK
= Python 3.7.3 (default, [ N2.3638_5.0 LASM FC Loop-19.st 10520 DAT-Datei nK
79 for je in range(0,1,1): War 27 2019,:17:18:21) = " 1 N.Z,3638 6.0, LRSM . Loop-19msg 110520 Outlook-Bement mr
= 'Désign_'estr(myName[ycl)+’_003.xlsx® {wsc v.1915 63 bit (&) OVD-RW-Laufwerk et & 2
workbook = xU4xwiiter Workook(1lenass) i {arosa) ] [ N.2.3638,8.0,LRSM.FC Loop-19.0db e 08 Outel ik
B2 orkb xlsxwriter.workbook (f1lename, {'nan_inf to_errors‘: True}) Ywed':oo 1 & Blements (K) 1) N_Z_3638.8_0_LRSM_FC_Loop-19prt 3105201 PRI-Dstes 2188k
8 worksheet = “credits® or "license® - st %
a1 for 1c in range(Pert_START,Pert_END,1): for more information. - Elements (K) ) N2 00 LRSI FCLoop-Ti e SIRNWINZ v ot
8 - - 19 N_Z_3638_8_0_LRSM_FC_Loop-19.com 31052019 13:10 MS-DOS-Anwend. 3K
4 5 detise st rinns For ek Gie thon 7.4.0 -- An @ Netawerk e 1.05.2018 1310 Datei
- w.d Tnteaitine T N_Z_3638_8_0 LRSM_FC_Loop-19inp. i.u\s:u.sviw INP-Dats Hssv K
88 mystring « strlmtamelicl)s sstc(anthod)s'_Loop- sstric) hon. B M0 2363, 0.LRSMFC Loop-1a HOAOING  Tedohimedt Ly
89 nyString2 = stri, je) ) fiisties 7] uN_Z_3638_8_0_LRSM_FC_Loop-18 31052019 1310 Testdokument 2K
= n runfile("
g? worksheet = workbook . add -vrhh"ﬂ-ﬁtrmqﬂ ABAQUS. tomp; (7] N_2.3638._8_0 LRSM_FC_Loop-18ipm 310520191309 1PM-Dater ari
b myomumuun Cylinder ] N2.3638.6.0 LRSM_FC_Loop-18log NOSHNDIH0  Tentdokument "
] READ 093 N_Z_3638.8.0 LRSM_FC_Loop-18sim A998 SIM-Dat 11K
94 values N = croateloput (R 4ste(mystring)e’ ) dir=7e: /ABAQUS_tomp") H TP °“" ey oo e
95 values w = createInput(u_“+str(myString)+ NZ ) LRSM_FC_Loop-18.dat 201913 DAT-Datel 3
96 Velues iy < Cremtetnputivy. -sateiayhsmslicile. e In L2l: runfile e/ 1 N2.3638.8.0.LRSM_FC_Loop-18mig 3NB09139  Oulook-Element K
2 ,,,p,,m,;ﬁ(,,, Cylinder ) N2.3638 8.0 LRSM _FC_Loog-18.0db 0520191309 ODB-Datel 253mK
99 | Py 1] N.2.3638.8.0 LRSM_FC_Loop-18prt 0191309 PRT-Dates 2108k
100 bold = workbook.add_format({'bold': 1}) /"*WS tesp')  N.Z.3638 8.0 LRSM_FC_Locp-12sta STA-Dates sk
e T R 1 131 [ N_2_3638_8_0 LRSM_FC_ Loop-12.com MS-DOS-Anwend. w
103 5 3 N_Z_3638_8_0 LRSM_FC_Locp-18inp INP-Dates 1464 K1
104 worksheet.set_column(0, 0, 20) 9] 1052019 1307 e 2
105 worksheet set_column(1, 1, 20) L M2 33 0.0 LRSI FC Locp 72 SNBSS Taesee 2
108 worksheet.set column(2, 2, 20) 9 4. 2 3638.8.0 LRSM FC Loop-170¢ 1 Tertdokumert 2w
<! = > TPythonocscle  Chronkorotokol < >
7 Berechtigungen: RW  Zeilenender: CRLF _ Kodierung: UTF-8-80M Zele 76 Spahe 2 Speichen 7% | 7250Bemente =
@ Spyder (Python 3.7) ABAQUS termg - ]
Oate Bearbeiten  Suchen hien Debug Konsolen Projekte Werkaeuge  Ansicht  Hilfe Fregeben  ansient °
Desa“E0 rpEBEDRG HeEEpE BX £ » DieserPC » Volume (E) » ABAQUS temp » ve 15 temp” durchsuchen P
Edtor - E:WBAQUS temoimyPersbation,Crindes READ_ (049 ; Neme Anderingzdstum  Typ Grsge
ESC_ALRSM _oftset daroed 0047 £ Cone ARSM_danped FC 007, mypertrbaton Cyinder RE20 004y B € . -
= R = i 5 L 87 Design_N_2_3638_8_0_003.4dsx 31.05.2019 1344 Microsoft Excel-Ar 127K
50 # |) myPesturbation_Cylinder READ_004.py 31052019 13:41 PV-Dates 2K
v * ANNzIeEeon NO5W915  Tetdokument 1
) : e il oo atl
5. kannen 31.05.2019 13115 Textdokument AL
5 191 7.
Sie Hilfe NGNS SMDates 12K
3 n G915 Testdokument 2
s8 % £ u.NZ3638.8.08¢ IL5001315 Tetdokument "
53 myName = ['N_Z_3638_8_0'] Cred Q. A Tty
- erhaiten, 5 u.N.2.3638.8.0 LRSM_FC_Loop-201t JNGTS Testdokument 2
B1# define axis tit e 3 v.Nz3638 8,00t 30520191315 Tetdokument I
X = 2019131 -Datei "
63 x axis = ['Axial displacement [m]'] D N_Z_3638.8_0_LRSM_FC_Loop-20.0db atm.wu 5 ODB-Datei A:uv X
64y_axis = ['Reaction Load (kN [7] N_2.3638.8.0 LRSM FC_Loop-20prt 30520191315 PRI-Dates PRt
L _load = [*Numerical ~°“’P“’ Load [kn'} 1] N2_3638_8 0 LRSM_FC_Loop-20.dat 30520191315 DAT-Datel 1K
87 ¢ mothod 1 N_2_3638.8.0 LRSM_FC_Loop-20umsg IU20191115 Oulook-Blement aK
68 A1 N2_3630.8_0.LRSM_FC_Loop-20sta IO291X5  STA-Date K
69 #motho 864 > [& Dokumente o et Sl
- pordigial 7 N_2_3638.8.0.LRSM_FC_Loop-20.com NOWGIH MS-005-Anwend. i
2 ax Py > ¥ Downloads T N.2.3638.8.0 LRSM_FC_Locp-20inp NO0IH2 INP-Datei 147K
” > b M 5] #.N_2.3632 8.0 LRSMLFC_Loop- 19t 10520191212 Testdokument 2K
=0 -to-shell ra /R [r——— LTA IR
b i oy gy s S 1 > [l Videos 5] u.N_2_3638_8_0 LRSM_FC_Loop- 195t B2 Testdokument T
p for the Pybanarsce i LokalerDstetriger | NZ.3630.8_0 LRSM_FC_Loop-1ipm o520 Dl P
76 Pert_START = 1 B 1.05.2¢ 2
”P"(_m) = [ wersole 1A > Volume (D) {du,z,)m,s ) LRSM_FC_Locp-19Jog 31052019 1242 Testdokument 1K
N_Z_3638_8_0_LRSM _FC Loop-19.5im 31052019 13:12 SIM-Dates 12K
79 for je in range(o, {u0s)] . = ” [] N.2.3638.5.0 LRSM FC_Loog-13.dst DAT-Dutei nK
ig totmptamelycl) e go3.slsx Type "copyright®, > (&) DVD-RW-Laufwerk = i G S
sx ‘lsm,“e, Workbook ( £1lename) ‘(redns <3 lacense’ =1 N_2_3638 8.0 LRSM_FC_Locp-19.msg 310520191312 Outlock-Element 476K
82 A}snnter _Workbook (f1lename, {'nan_inf to_errors’: True}) or more information: ? s Elements () [ 7] N.2.3638_8_0.LRSM FC_Loop-19.0db 00520101312 ODB-Datel 130437K1
83 1.05.2019 13:12 RT- 2
84 for 1c n range(Pert_START,Pert END,1): 1Python 7.4.0 5w Elements (K) [] 1.2.365.8.0.LRSM FC Loop- 1801t iz Rt ol
88 enl "‘“‘ interactive 1N.2.3638.5.0 LRSM_FC_Locp-195ts 300320191312 STA-Dates 6K
-] # e strings for ex heet t Pyt | > @ Netwwerk 5 N_Z.3638_8.0 LRSM_FC_Loop-T9.com J050191310 MS-DOS-Anwend. 3
88 myString = strimyNamel[ <|)o osm-mwd)o _Loop-#strlic) n Il;: runfile('E:/ i 3 N_2.3636.8.0 LRSM_FC_Loop-1inp 30520191310 INP-Dates 1ASS Kt
89 mystring? = stri{mane iPerti botLon. Cylinder 5] RNZ_3633.8.0 LRSMFC_Loop-16.t HOA01H0  Tentdokument 2K
g? rksheet = k. -dd -vrhh"!(-vsmngz) READ_003.py’ | 2] u.N_2.3638.8.0 LRSM_FC_Loop-180t NBD9130  Tetdokument b
5 wdir="E: /ABAQUS_temp') 7] N2.3638.6.0 LRSM_FC_Loop- 18ipm NOXN9IN0  IPMDatel a7
= 7] N_2.3638_6_0 LRSM_FC_Loop-18iog HBA91309 Testdokument T
Q xt! In [2]: rmhlv(‘i:/ LX 1_FC_Loop-
94 values N = um.muu_u +str(myStrin ? txt') ABAQUS _t 1] N2_3638_8_0_LRSM _£C_Loop-18sim 310520191309 SIM-Dater 1274
95 values_w ut( ntrluystrmu +*.txt') " atsoh, Cylind
96 uluu_n;y createlnput(’ n(-y«-cl):llo txt) '",V‘EZ;‘E; o “”‘ Feineee 0 LRSM_FC_Loop-18.dat 31052019 13:09 DAT-Datei 13K
g; . wir=": ,.mqu; tenp') 4 N_Z_3638_8_0_LRSM_FC_Loop-18msg 310520191309 Outlook-Blement oy
o  LRSM_FC_Loop-18.0db NO2091108  ODB-Dater 5K
bold = workbook.add_format({'bald': 1}) B S ] N2.3638_8.0 LRSM_FC_Loop-12prt N00191309  PRI-Dates 2158k
ok - _— myPetlurbanun Cylinder ) LRSM_FC_Loop-18.sts 31.05.2019 1308 STA-Dates sk
READ_004.p: %

{5 N_Z_3638_B_0_LRSM_FC_Locp-18.com 31.05.2019 13:07 MS-DOS-Anwend. EL
worksheet.set_column(0, 0, 20) = okl sesp') ) LRSM_FC_Loop-18inp 105201 INP-Datei 145K
worksheet.set_column(1, 1. 20
worksheet .set column( v|l1n (4] X 7] R N_Z 3638 8.0 LRSWLFC Loop- 172t 31.05.20 Testdokument 2w

I > | Pytonkorade  Gronkeromiat < >
AW Zelenenden CRLF Kodiening. UTF-8-80M Spate 2 Speicher 7% 7251 Glemente E=




IR - Design_N_Z_3638_8_0_00.dkx - Excel T m - B x
SART | ONFOGEN  SETENUYOUT  FORMEN  DATEN  UGERORIFEN  ANSCHT semetden [0

A

3 n ks ==Ee B 5_‘2”"" ﬂﬂwwle‘b-w'e'v"q' F;'?”Emlugen—
- - om0 Al Tbelleformatieren~ B Laschen -

Gnfigen -|mE- - =5 ; &
g o FKu- Q- &-p “ P Zellerformatvoriagen = (53 Format =

nEM

Zwischanabinge senratart 5 Ausrintung nown n Fomatvoragen zeen Besbenen ~

¥19 - 5 -

3

2

Reaction Load [kN]

1’ e

: I
© ops 01 o015 02 035 03 038
e LRSM radius-to-shell radius ratio, Rs/R

‘ o | NZ3638.6.0-18 | NZ36386.0-19 | NZ36385.020 ® 0 [r

Fig. 27: Procedure of a result evaluation using Python-Excel: step 5



7 References

[1] Rotter, J.M. and H. Schmidt, "Buckling of Steel Shells - European Design Recommendations,
5th Edition, Revised Second Impression," 2013.

[2] B. Almroth, "Influence of imperfections and edge restraint on the buckling of axially
compressed cylinders. Technical report, Lockheed Missiles and Space Company, 1966".

[3] C.Babcock and E. E. Sechler, "The effect of initial imperfections on the buckling stress of
cylindrical shells. Technical Report NASA TN D-2005, California Institute of Technology,
1963".

[4] J. Arbocz, "The effect of general imperfections on the buckling of cylindrical shells, PhD
thesis, California Institute of Technology, Pasadena, California, USA, 1968".

[5] M. ERlinger and B. Geier, "Gerechnete Nachbeullasten als untere Grenze der
experimentellen axialen Beullasten von Kreiszylindern, Der Stahlbau 41, 353-360, 1972".

[6] W. Flugge, "Die Stabilitat der Kreiszylinderschale. Ingenieur-Archiv 3, 463-506, 1932".

[7] J.Hutchinson, R. Tennyson and D. Muggeridge, "Effect of a local axisymmetric imperfection
on the buckling behavior of a circular cylindrical shell under axial compression, AIAA J. 9,
48-52.(doi:10.2514/3.6123), 1971".

[8] R.Tennyson, "Buckling modes of circular cylindrical shells under axial compression, AIAA J.
7,1481-1487. (d0i:10.2514/3.5419),1969".

[9] R. Tennyson and D. Muggeridge, "Buckling of axisymmetric imperfect circular cylindrical
shells under axial compression. AIAAJ. 7, 2127-2131. (doi:10.2514/3.5419), 1969".

[10] V. I. Weingarten, E. J. Morgan and P. Seide, "Elastic stability of thin-walled cylindrical and
conical shells under axial compression," AIAA Journal, vol. 3, pp. 500-505, 1965.

[11] W. Verduyn and I. Elishakoff, A testing machine for statiscial analysis of small imperfect
shells: Part 1. Delft, Netherlands: Delft University of Technology, Department of Aerospace
Engineering, 1982.

[12] B. Wang, S. Zhu, P. Hao, X. Bi, K. Du, B. Chen, X. Ma and Y. Chao, "Buckling of Quasi-Perfect
Cylindrical Shell under Axial Compression: A Combined Experimental and Numerical
Investigation," International Journal of Solids and Structures; In Press, Accepted
Manuscript; https://doi.org/10.1016/].ijsolstr.2017.09.029.

[13] P. Jiao, Z. Chen, X. S. W. Tang and J. Wu, "Design of axially loaded isotropic cylindrical shells
using multiple perturbation load approach — Simulation and validation," Thin-Walled
Structures,Volume 133, December 2018, Pages 1-16.

[14] H. Schmidt, "Dickwandige Kreiszylinderschalen aus Stahl unter Axialdruckbelastung,"
Stahlbau, Vol. 58, pp 143-148.

[15] A. Takano, Statistical knockdown factors of buckling anisotropic cylinder under axial
compression, vol. 79, Journal of Applied Mechanics (79);
http://dx.doi.org/10.1115/1.4006450. 051004—051004, 2012.

[16] E. Labans, H. Abramovich and C. Bisagni, "An experimental vibration-buckling investigation
on classical and variable angle tow composite shells under axial compression," Journal of
Sound and Vibration, Volume 449, 9 June 2019, Pages 315-329.



[17] M. Schultz, D. Sleight, N. Gardner, M. Rudd, M. Hilburger, T. Palm and N. Oldfield, "Test
and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder," 2018
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA
SciTech Forum, (AIAA 2018-1693).

[18] F. Franzoni, F. Odermann, E. Lanbans, C. Bisagni, M. Arbelo and R. Degenhardt,
"Experimental validation of the vibration correlation technigue robustness to predict
buckling of unstiffened composite cylindrical shells," Composite Structures, Volume 224, 15
September 2019, 111107.

[19] W. T. Koiter, The Stability of Elastic Equilibrium [PhD thesis] - 1945 [in Dutch], TH Delft, Ed.,
Englisch Translation NASA TTF-10; 1967, p. 1-833.

[20] M. Hilburger, M. Nemeth and J. J. Starnes, "Shell Buckling Design Criteria Based on
Manufacturing Imperfection Signatures," NASA/TM-2004-212659, 2004.

[21] V. Bolotin, "Statistical Aspects in the Theory of Structural Stability".Dynamic Stability of
Structures (G. Herrmann, ed.), Oxford: Pergamon Press, 1967, 67—-81.

[22] ). Arbocz, "The imperfections data bank, a means to obtain realistic buckling loads," In
Ramm E. Buckling of shells, 1982.

[23] J. Arbocz and H. Abramovich, "The initial imperfection data bank at the Delft university of
technology part 1," Department of aerospace engineering, LR-290, Delft University of
technology, 1979.

[24] ). Arbocz and J. J. Starnes, "Future directions and challenges in shell stability," Thin-Walled
Struct, p. 40:729-54, 2002.

[25] J. Kepple, M. Herath, G. Pearce, B. Prusty, R. Thomson and R. Degenhard, "Stochastic
analysis of imperfections sensitive unstiffened composite cylinder using realistic
imperfections models," Composite Structures, vol. 126, pp. 159-173, 2015.

[26] B. Kriegesmann, R. Rolfes, C. Hihne, J. TeRmer and J. Arbocz, "Probabilistic design of axially
compressed composite cylinders with geometric and loading imperfections," International
Journal of Structural Stability and Dynamics,, vol. 10, pp. 623-644, 2010.

[27] R. Dancy and D. Jacobs, "The initial imperfection data bank at the Delft University of
Technology: Part Il.," 1988.

[28] J. H. J. Starnes, M. W. Hilburger and M. P. Nemeth, "The Effects of Initial Imperfections on
the Buckling of," Composite Structures - Theory and Practice, P. Grant and C. Q. Rousseau,
eds., ASTM STP 1383, pp. 529-550, 2000.

[29] C. HUhne, R. Rolfes, E. Breitbach and J. TeRmer, "Robust design of composite cylindrical
shells under axial compression — Simulation and validation," Thin-Walled Structures, vol.
46, p. 947-962, 2008.

[30] R. Degenhardt, A. Bethge, A. Kling, R. Zimmermann and K. Rohwer, "Probabilistic approach
for improved buckling knock-down factors of CFRP cylindrical shells," in Proceeding of 18th
Engineering Mechanics Division Conference, 2007.

[31] M. Biagi and F. Del Medico, "Reliability-Based Knockdown Factors for Composite," Thin-
Walled Structures, 46(12), 1351-1358, 2008.

[32] A. Meurer, "Filtering Geometric Imperfection patterns for analysis and design of composite
shell structures," Dissertation, Gottfried Wilhelm Leibniz Universitdt Hannover, 2017,
Hannover, Germany : ISD, Institut fiir Statik und Dynamik.



[33] V. Bolotin, "Statistical methods in the non-linear theory of elastic shells," Akademii Nauk
SSSR, Otdelenie Tekhnicheskykh Nauk 1958;3:33—41 [in Russian, English Translation: NASA
TTF-85 1962; 1-16].

[34] I. Elishakoff, "Probabilistic resolution of the twentieth century conundrum in elastic
stability," Thin-Walled Structures, vol. 59, pp. 35-57, 2012.

[35] M. S. G. |. Broggi, " Efficient modeling of imperfections for buckling analysis of composite
cylindrical shells," Eng Struct ;33:1796-806, 2011.

[36] M. Broggi, A. Calvi and G. I. Schueller, "Reliability assessment of axially compressed
composite cylindrical shells with random imperfections," Int J Struct Stab Dyn, 11:215—
36,2011.

[37] C. Schillo, B. Kriegesmann and D. Krause, "Reliability based calibration of safety factors for
unstiffened cylindrical composite shells," Composite Structures, Vol.: 168, 798-812, 2017.

[38] I. Elishakoff, S. van Manen and J. Arbocz, "First-order second-moment analysis of the
buckling of shells with random imperfections," AIAA Journal, vol. 25, p. 1113-1117, 1987.

[39] B. Kriegesmann, M. Mohle and R. Rolfes, "Sample size dependent probabilistic design of
axially compressed cylindrical shells," Thin-Walled Structures, vol. 74, pp. 222-231, 2014.

[40] J. Arbocz and M. W. Hilburger, "Toward a Probabilistic Preliminary Design Criterion," AIAA
Journal, 43(8), 1823—-1827, 2005.

[41] C. HUhne, R. Zimmermann, R. Rolfes and B. Geier, "SENSITIVITIES TO GEOMETRICAL AND
LOADING IMPERFECTIONS ON BUCKLING OF COMPOSITE CYLINDRICAL SHELLS," In
Proceedings of European Conference on Spacecraft, 2002.

[42] C. HUhne, R. Zimmermann, R. Rolfes and B. Gier, Loading imperfections — Experiments and
computations, Euromech colloquium 424, 2001.

[43] C. Schillo, D. Roéstermundt and D. Krause, "Experimental and numerical study on the
influence of imperfections on the buckling load of unstiffened CFRP shells," Composite
Structures, vol. 131, pp. 128-138, 1 November 2015.

[44] |. Elishakoff, B. Kriegesmann, R. Rolfes, C. Hihne and A. Kling, "Optimization and
antioptimization of buckling load for composite cylindrical shells under uncertainties,"
AIAA Journal, vol. 50(7), pp. 1513-1524, 2012.

[45] R. Khakimova, D. Wilckens, J. Reichardt and R. Degenhardt, "Buckling of axially compressed
CFRP truncated cones: Experimental and numerical investigation," Composite Structures,
vol. 146, pp. 232-247, 2016.

[46] R. Khakimova, R. Zimmermann, D. Wilckens, K. Rohwer and R. Degenhardt, "Buckling of
axially compressed CFRP truncated cones with additional lateral load: Experimental and
numerical investigation," Composite Structures, vol. 157, pp. 436-447, 2016.

[47] B. Kriegesmann, R. Rolfes, C. Hihne and A. Kling, "Fast Probabilistic Design Procedure for
Axially Compressed Composite Cylinders," Composite Structures, vol. 93, pp. 3140-3149,
2011.

[48] J. Kepple, "Influence of imperfections on axial buckling load of composite cylindrical shells,"
In: Hoa SV, Hubert P, editors. The 19th international conference on composite materials;
2013..

[49] J. Kepple, B. Gangadhara Prusty, G. Pearce, D. Kelly and R. Thomson, "Improved methods
for modeling imperfections for buckling analysis of composite cylindrical shells," ICAS —



International Council of Aeronautical Sciences (Ed.), 29th congress of the international
council of the aeronautical sciences (2014), pp. 2108-2120 .

[50] A. Meurer, B. Kriegesmann, M. Dannert and R. Rolfes, "Probabilistic perturbation load
approach for designing axially compressed cylindrical shells," Thin-Walled Structures, vol.
107, pp. 648-656, 2016.

[51] M. W. Hilburger, "On the Development of Shell Buckling Knockdown Factors for Stiffened
Metallic Launch Vehicle Cylinders," 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference.

[52] B. Wang, K. Du, H. Peng, K. Tian, Y. Chai, L. Jiang, S. Xu and X. Zhang, "Experimental
validation of cylindrical shells under axial compression for improved knockdown factors,"
International Journal of Solids and Structures, 2019, accepted manuscript.

[53] H. Wagner, E. Petersen, R. Khakimova and C. Hihne, "Buckling analysis of an imperfection-
insensitive hybrid composite cylinder under axial compression — numerical simulation,
destructive and non-destructive experimental testing," Composite Structures, Volume 225,
1 October 2019, 111152.

[54] H. Wagner, C. Hihne and R. Khakimova, "Towards Robust Knockdown Factors For The
Design Of Conical Shells Under Axial Compression," International Journal of Mechanical
Sciences,Volumes 146—-147, October 2018, Pages 60-80.

[55] M. Hilburger, "Developing the next generation shell buckling design factors and
technologies," 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and
materials conference, Honolulu; 2012.

[56] M. W. Hilburger, W. T. Haynie, A. E. Lovejoy, M. G. Roberts, J. P. Norris, W. A. Waters and
H. M. Herring, "Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell
Structures," AIAA Paper 2012-1688, NF1676L-13284.

[57] C. Hahne, "Robuster Entwurf beulgefahrdeter, unversteifter Kreiszylinderschalen aus
Faserverbund," PhD Thesis at Technische Universitét Carolo-Wilhelmina zu Braunschweig,
2006.

[58] R. Degenhardt, R. Zimmermann, A. Kling and D. Wilckens, "New Robust Design Guideline
for imperfection sensitive composite launcher structures," in 3rd CEAS Congress, Venice,
ltaly, 2011.

[59] R. Khakimova, C. Warren, R. Zimmerman, S. Castro and R. Degenhardt, "The single
perturbation load approach applied to imperfection sensitive conical composite
structures," Thin-Walled Structures, vol. 84, pp. 369-377, 2014.

[60] S. G. Castro, R. Zimmermann, M. A. Arbelo, R. Khakimova, M. W. Hilburger and R.
Degenhardt, "Geometric imperfections and lower-bound methods used to calculate knock-

down factors for axially compressed composite cylindrical shells," Thin-Walled Structures,
vol. 74, p. 118-132, 2014.

[61] S. G. Castro, M. A. Arbelo, R. Zimmermann, R. Khakimova and R. Degenhardt, Exploring the
constancy of the global buckling load after a critical geometric imperfection level in thin-
walled cylindrical shells for less conservative knock-down factors, vol. 72, Int. Journal of
Thin-Walled Structures, 2012, p. 76-87.

[62] E. Skukis, O. Ozolins, K. Kalnins and M. Arbelo, "Experimental Test for Estimation of Buckling
Load on Unstiffened Cylindrical shells by Vibration Correlation Technique," Procedia
Engineering, vol. 172, pp. 1023-1030, 2017.



[63] E. Skukis, K. Kalnins and O. Ozolins, "Application of Vibration Correlation Technique for
Open Hole Cylinders," Nonlinear Dynamics—2016 (ND-KhPI2016) : proceedings of 5th
International Conference, dedicated to the 90th anniversary of Academician V. L. Rvachev,
pp. 377-383, 2016.

[64] R. Degenhardt, A. Kling, R. Zimmermann and F. Oderman, Dealing with imperfection
sensitivity of composite structures prone to buckling, in "Advances in Computational
Stability Analysis" ; book edited by Safa Bozkurt Coskun, ISBN 978-953-51-0673-9, 2012.

[65] R. Khakimova, S. Castro, D. R. K. Wilckens and R. Degenhardt, "Buckling of axially
compressed CFRP cylinders with and without additional lateral load: Experimental and
numerical investigation," Thin-Walled Structures, vol. 119, pp. 178-189, 2017.

[66] H. Abramovich, Stability and Vibrations of Thin Walled Composite Structures, Elsevier
Science & Technology ; Woodhead Publishing, 2017.

[67] H. Wagner, C. Hihne, J. Zhang, W. Tang and R. Khakimova, "Geometric imperfection and
lower-bound analysis of spherical shells under external pressure," Thin-Walled Structures,
Volume 143, October 2019, 106195.

[68] H. Wagner, C. Hihne and S. Niemann, "Robust knockdown factors for the design of
spherical shells under external pressure: Development and validation," International
Journal of Mechanical Sciences, Volume 141, June 2018, Pages 58-77.

[69] Dassault Systems, ABAQUS 6.13—Software Package, 2013.

[70] J. de Vries, Research on the Yoshimura buckling pattern of small cylindrical thin walled
shells, Noordwijk, The Netherlands: Proceedings of the European Conference on
Spacecraft Structures, Materials and Mechanical Testing, 2005.

[71] A. Haldar and S. Mahadevan, "Probability, Reliability and Statistical Methods in Engineering
Design," 2000.

[72] J. Croll, "Towards simple estimates of shell buckling loads," Der Stahlbau, vol. 1 & 2, 1975.

[73] E. Sosa, L. Godoy and J. Croll, "Computation of lower-bound elastic buckling loads using
general-purpose finite element codes".Computers & Structures, Volume 84, Issues 29-30,
November 2006, Pages 1934-1945.

[74] H. Wagner, E. Sosa, C. Hihne, T. Ludwig and J. Croll, "Robust design of imperfection
sensitive thin-walled shells under axial compression, bending or external pressure,"
International Journal of mechanical sciences, 2019, Vol. 156, 205-220.

[75] H. Wagner, Robust Design of Buckling Critical Thin-Walled Shell Structures, PhD Thesis,
Technical University Carolo-Wilhelmina, DLR Forschungsbericht 2019-14, 2018.

[76] T. Ludwig, C. Hihne and L. De Lorenzis, "Rotation-free Bernstein-Bézier elements for thin
plates and shells — development and validation," Computer Methods in Applied Mechanics
and Engineering, 2019, accepted manuscript.

[77] H. Wagner, H. Koeke, S. Ddhne, C. Hihne and R. Khakimova, "Decision tree-based machine
learning to optimize the laminate stacking of composite cylinders for maximum buckling
load and minimum imperfection sensitivity," Composite Structures, Volume 220, 15 July
2019, Pages 45-63.

[78] ). P. Peterson, P. Seide and V. |. Weingarten, "Buckling of thin-walled circular cylinders -
NASA SP-8007," Technical Report, 1 Aug 1968.



[79] H. Wagner, Hihne, S. Niemann and R. Khakimova, "Robust design criterion for axially
loaded cylindrical shells - Simulation and Validation," Thin-Walled Structures;
http://dx.doi.org/10.1016/].tws.2016.12.017, vol. 115, pp. 154-162, 2017.

[80] H. Wagner, C. Hihne and S. Niemann, "Robust knockdown factors for the design of axially
loaded cylindrical and conical composite shells - Development and Validation," Composite
Structures, vol. 173, no. 10.1016/j.compstruct.2017.02.031, pp. 281-303, 2017.

[81] H. Wagner and C. Hihne, "Robust knockdown factors for the design of cylindrical shells
under axial compression: potentials, practical application and reliability analysis,"
International Journal of Mechanical Sciences 135, pp. 410-430, 2018.

[82] H. Wagner, C. Hihne, K. Rohwer, S. Niemann and M. Wiedemann, "Stimulating the realistic
worst case buckling scenario of axially compressed cylindrical composite shells," Composite
Structures, vol. 160, pp. 1095-1104, 2017.

[83] H. Wagner, C. Hihne and S. Niemann, "Constant Single-Buckle Imperfection Principle to
determine a lower bound for the buckling load of unstiffened composite cylinders under
axial compression," Composite Structures, vol. 139, pp. 120-129, 2016.

[84] H. Wagner, C. Hihne, S. Niemann, K. Tian, B. Wang and P. Hao, "Robust knockdown factors
for the design of cylindrical shells under axial compression: Analysis and modeling of
stiffened and unstiffened cylinders," Thin-Walled Struct, 127 (June 2018), pp. 629-645.

[85] A. Evkin, "Local Buckling of Cylindrical Shells. Pogorelov’s Geometrical Method," Andrianov
I., Manevich A., Mikhlin Y., Gendelman O. (eds) Problems of Nonlinear Mechanics and
Physics of Materials. Advanced Structured Materials, vol 94. Springer, Cham.

[86] A. Evkin, V. Krasovsky, O. Lykhachova and V. Marchenko, "Local buckling of axially
compressed cylindrical shells with different boundary conditions," Thin-Walled Structures,
Volume 141, August 2019, Pages 374-388.

[87] R. Groh and A. Pirrera, "On the role of localizations in buckling of axially compressed
cylinders, 475, Proc. R. Soc. A, 2019," https.//doi.org/10.1098/rspa.2019.0006.

[88] R. Groh and A. Pirrera, "Localised post-buckling states of axially compressed cylinders and
their energy barriers," AIAA Scitech 2019 Forum. January .

[89] ECCS, Buckling of steel shells: European design recommendations, 5th ed., 5th Edition:
European Convention for Costructional Steelwork, 2008.

[90] J. Rotter, "Cylindrical shells under axial compression".Chapter 2 of the book Buckling of Thin
Metal Structures, edited by JG Teng and JM Rotter, Spon, London, pp-42-87.

[91] J. Rotter, "Shell buckling design and assessment and the LBA-MNA methodology".Stahlbau,
Vol. 80, No. 11, 2011, pp. 791-803.

[92] J. Rotter, "The elastic-plastic imperfection sensitivity of axially compressed cylinders with
weld depressions".Proc. Eurosteel 2008, 3-5 September, Graz, Austria, pp. 1497-1502.

[93] J. Rotter and A. Hussain, "Length effects in the buckling of imperfect axially compressed
cylinders".Proc. SDSS 2016, International Colloquium on Stabiltioy and Ductility of Steel
Structures, Timisoara, Romania.

[94] J. Rotter, "The new method of reference resistance design of shell structures".Proc. SDSS
2016, International Colloquium on Stabiltiy and Ductility of Steel Structures, Timisoara,
Romania.



[95] L. Wullschleger and H. R. Meyer-Piening, "Buckling of geometrically imperfect cylindrical
shells - definition of a buckling load," International Journal of Non-Linear Mechanics, vol.
37, pp. 645-657, 2002.



