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Abstract   

 

This article contains examples to demonstrate the use of different design concepts for cylindrical 

shells under axial compression. The examples are based on shells which were manufactured 

according to electroplating, machining, welding (isotropic cylinders) and prepreg hand layup 

on a mandrel (composite cylinders). Three of the four shell series are characterized by pure 

elastic buckling and one shell series buckled in the elastic-plastic region. All relevant data for 

the numerical analysis are described in the article and summarized in the Elsevier repository of 

this article (geometry, material, measured imperfection data and Python-ABAQUS scripts).  

The design concepts are based on the geometric imperfection signatures, probabilistic and 

deterministic lower-bound methods. The design concepts are representative for the development 

of design approaches for imperfection sensitive shells from the early 1980 to the late 2010 and 

are validated with experimental data. Recently developed design lower-bound curves for axially 

loaded cylinders are presented and compared with currently used design criteria like the 

Eurocode EN 1993-1-6 and the NASA SP-8007. The results of this article show that the design 

of imperfection sensitive cylinders has been significantly improved in the last 30 years. 
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Abbreviations and glossary 

Exp. Experiment 

F Axial Force 

FC Fourier Coefficients 

FOSM First-Order Second-Moment Method 

GNA Geometrically nonlinear analysis 

GNIA Geometrically nonlinear analysis with imperfections 

KDF Knockdown factor 

L Free Length of a cylinder 

LBA Linear Bifurcation Analysis 

LRSM Localized Reduced Stiffness Method 

MGI Measured geometric imperfections 

N Buckling load  

Nimp Buckling load of an imperfect shell 

Nper Buckling load of a perfect shell 

R Radius of a cylinder 

RRD Reference Resistance Design 

RSM Reduced Stiffness Method 

SBPA Single Boundary Perturbation Approach 

t Wall thickness of a cylinder 

TH Threshold 

u axial displacement  

Z Batdorf Parameter 

 knockdown factor in general 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

1 Introduction  
 

Thin-walled structures like cylindrical shells tend to buckle under axial compression, which 

means that large deformations in the shell surface perpendicular to the loading direction occur. 

This buckling pattern propagates over a large proportion of the shell surface and occurs without 

prior notice. The buckling phenomenon is accompanied by a significant loss of the load carrying 

capability of the shell. Buckling is therefore one of the primary design drivers in aerospace and 

civil engineering shell structures. 

Within this article, the maximum load carrying capability of thin-walled cylindrical shells under 

axial compression [1] is defined as the buckling load Nper according to equation (1): 

  
𝑁𝑝𝑒𝑟 =

2 ∙ 𝜋 ∙ 𝐸 ∙ 𝑡2

√3(1 − 𝜈2) 
 

(1) 

This equation depends on the elasticity modulus E, the Poisson ratio , the wall thickness t and 

is independent from the cylinder radius R as well as the cylinder length L. 

If plastic buckling is relevant, the buckling load (squash load [1]) depends on the yield strength 

Y and can be determined with equation (2): 

 𝑁𝑠𝑞𝑢𝑎𝑠ℎ = 2 ∙ 𝜋 ∙ 𝐸 ∙ 𝑅 ∙ 𝑡 ∙ 𝑌 
(2) 

A large amount of cylinders was tested at the beginning of the 20th century in order to understand 

shell buckling under axial compression. The buckling results are commonly represented by 

means of so called knockdown factors (KDFs) which are defined as the ratio of the experimental 

buckling load Nexp to the theoretical perfect buckling load Nper, see equation (3).  

 
𝜌𝑒𝑥𝑝 =

𝑁𝑒𝑥𝑝

𝑁𝑝𝑒𝑟

 (3) 

In Fig. 1 knockdown factors derived from a large number of tests are shown versus the radius-

to-thickness ratio (R/t – slenderness). 

 

Fig. 1: Distribution of 517 experimental results for isotropic cylindrical shells under axial compression for different R/t ratios 

after [2], [3], [4], [5], [6] [7], [8], [9], [10], [11], [12] and [13] 
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The empirical data collection shows that there is a significant deviation between buckling theory 

and corresponding experimental data. The KDFs range mainly from about 0.4…1 and are in 

some cases even below 0.2. Some of the illustrated tests are affected by plasticity, weld land 

failure, material failure, poor load introduction and poor boundary support [14]. In addition, most 

of the test data are poorly documented [1]. 

Although manufacturing and testing of shells has been significantly improved, there are still 

significant deviations between predicted and experimental determined buckling load. The results 

illustrated in Fig. 2 are based on shell buckling experiments from 1975 – 2016 for composite 

cylinders and the KDFs are in some cases below 0.5. The corresponding data collection is given 

by Takano [15].  

 

Fig. 2: Distribution of 143 experimental results for composite cylindrical shells under axial compression for different R/t ratios 

after [15], [16], [17] and [18] 

 

A main cause for the large discrepancy between buckling theory and experiment are shape 

deviations from the ideal cylinder geometry, namely geometric imperfections [19], [20]. The 

geometric imperfections have been at first described by expansions in terms of buckling 

eigenmodes and the corresponding amplitudes were regarded as random variables [21].  

A more realistic approach was proposed by Arbocz [22] who used real measured geometric 

imperfection of cylindrical shells. In this case, the geometric imperfections are described by 

means of a double Fourier series and the Fourier coefficients are the random variables of the 

probabilistic analysis. Arbocz and Abramovich [23] showed that double Fourier series are well 

suited to describe realistic geometric imperfections.  

Alternative methods to represent realistic geometric imperfections are the multimode approach 

[24], the spectral representation [25] and the circumferential phase shift representation [26]. 

However, nearly all of the available geometric imperfection signatures are represented by the 

Fourier-series [27] and are mostly available for isotropic cylinders. Geometric imperfection 

measurements for composite cylinders were for example performed by Starnes et al. [28], Hühne 

[29] and Degenhardt et al. [30]. The imperfection pattern of composite shells has the tendency 

of long-wave imperfection as opposed to the short-waved imperfection pattern for metallic 

cylindrical shells which is based on the manufacturing process [31]. Meurer provides detailed 

studies regarding the mode composition of geometric imperfection signatures in [32]. 

The shape and amplitude of geometric imperfection can be treated as being of random nature 

and therefore probabilistic methods were proposed by Bolotin [33] to analyze the shell buckling. 
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The random nature of geometric imperfections is subject to certain probabilistic distributions, 

and by using probabilistic methods the probability of buckling can be characterized [34]. Broggi 

[35], [36] provides a rigorous description for the probabilistic analysis with geometric 

imperfections of composite shells. 

Schillo et al. [37] used Monte Carlo (MC) methods to generate different initial geometric 

imperfections and determine the corresponding buckling loads. However, the Monte Carlo 

method might turn to be very time-consuming and therefore the semi-analytical first-order 

second moment (FOSM) method was used as an alternative approach by Elishakoff [38]. 

The computational cost for a probabilistic analysis of geometric imperfections increases 

significantly as the number of included Fourier coefficients is increased.  Kriegesmann et al. [39] 

proposed using the Mahalanobis transformation in combination with FOSM which significantly 

reduces the computational costs. Another alternative probabilistic design procedure was 

proposed by Arbocz and Hilburger in [40]. The geometric imperfection signatures are 

represented by only two imperfection modes and the corresponding amplitudes are defined as 

the root mean square of the imperfection signatures.  

However, the buckling load is not only reduced by geometric imperfection [41] but also by 

deviation of the ideal positioning of the loading [11], [42] as well as thickness deviations [43]. 

In the particular case of composite shells [44] additional effects become crucial: deviation of the 

resin distribution or the ply-angles [45], [46]. Probabilistic analysis of cylindrical shells with 

multiple different imperfections (boundary conditions, loading, geometric, thickness & material) 

were performed by Kriegesmann [47], Kepple [48], [49] and Meurer et al. [50]. It was 

demonstrated that they could approximate the corresponding stochastic distribution of the 

buckling load very well. 

The influence of real measured geometric imperfections (MGI) on the buckling load of 

cylindrical shells can be assessed very well nowadays as shown for example in studies by 

Hilburger et al. [51] or Wang at al. [12], [52]. However, in order to study the influence of MGI, 

shell structures must be built, and the imperfections must be measured using optical 

measurement systems [17]. This process is not only time consuming but also expensive. Another 

problem is that most studies cover only subscale shells with a simple geometry and the 

corresponding results are most of the time not relevant for full scale shell structures which have 

complex geometries like reinforcements [53], cutouts [54], welds and stiffeners [55]. Also, the 

manufacturing process of small-scale shell structures like electroplating leads to different 

imperfections than for example the welding process of full-scale large shell structures [56]. 

An alternative approach to assess the imperfection sensitivity of complex shell structures is the 

application of perturbation or lower-bound methods [57]. Deterministic lower-bound methods 

are applied in order to quantify the influence of so called “worst” imperfections and were 

extensively studied within the DESICOS project [58] (new robust DESign guideline for 

Imperfection sensitive COmposite launcher Structures) in order to develops and validates new 

deterministic [59], [60], [61] probabilistic [30] as well as experimental [62], [63] design 

approaches for composite shells [64], [65]. A comprehensive overview regarding this project is 

for example given in [66]. 

Lower-bound methods should deliver a theoretical plateau for the buckling load which is equal 

or less to every buckling load caused by multiple or large-amplitude imperfections [67], [68]. 

Compared to probabilistic methods, the measurement, stochastic analysis and storage of 

imperfection data from many tests is not needed if lower-bound methods are applied which saves 

time and cost during the design process.  

This article provides an overview for recent developments in shell buckling analysis and gives 

design examples for isotropic and composite cylindrical shells under axial compression. The test 

shells with complete geometry and material description are presented in section 2. The influence 

of geometric imperfections on the buckling load of cylindrical shells is studied in section 3. A 



 

 

detailed design example for the application of probabilistic methods is given in section 4. 

Different numerical and analytical lower-bound methods are demonstrated in section 5. The last 

section summarizes all main results of the article. It should be noted that all relevant data for this 

article: measured geometric imperfections, inp-data for the numerical analysis and results are 

given in the Elsevier repository of this article. 

 
 

 



 

 

2 Test specimens and numerical model 
The shells considered in this paper are unstiffened isotropic and composite cylinders as shown. 

The isotropic cylinders are classified according to the corresponding manufacturing process and 

are defined as N (electroplated nickel shells), B (machined brass shells) and ST (welded 

stainless-steel shells) shells. These shells were tested by Arbocz and Abramovich and details 

regarding manufacturing, testing and test evaluation are summarized in [23]. The monolithic 

composite cylinders were manufactured by prepreg hand layup on a mandrel at the German 

aerospace center in Braunschweig and are defined as C (composite) shells. The C shells have 

different laminate stacking sequences which results in different perfect buckling loads and 

different imperfection sensitivities. A detailed report regarding the corresponding testing 

campaign is given by Hühne in the following reference [57]. 

The material and geometry parameters are summarized in the Table 1 and Table 2 for the 

isotropic and composite cylinders. Note that for the ST-shells, the squash load according to 

equation (2) was the reference load which results in a minimum experimental KDF of about 0.67 

(for equation (1) the experimental KDF would result to 0.29). The reference load for the 

composite shells was the perfect buckling load according to a geometrically nonlinear analysis 

(GNA). The shells were analyzed with the commercial finite element software ABAQUS [69] 

and a representative numerical model of the unstiffened cylinders is shown in Fig. 3.  

 
Fig. 3: Numerical model of the cylinder C07 

 

All cylinders were modeled using linear shells elements with reduced integration (S4R) and 

further details regarding the numerical settings in ABAQUS can be found in the Appendix A. 

The mechanical boundary conditions on both cylinder edges are defined as clamped by using 

rigid-body interactions (Tie) which are coupled with a reference point. The displacement in axial 

direction is free at the top cylinder edge for load application. All inp files for the GNA of the 

perfect shell are given in the Elsevier repository of this article.  

 
Table 1: Material data for the isotropic cylindrical shells after [23] and for the composite cylinder after [29] 

Material parameter N-Shell B-Shell ST-Shell Material parameter C-Shells 

elasticity modulus 𝐸 - [𝑁/𝑚𝑚2] 172400  106500  180600  elasticity modulus 𝐸11- [𝑁/𝑚𝑚2] 125774 

Poisson’s ratio ν  0.3 0.3 0.3 elasticity modulus 𝐸22- [𝑁/𝑚𝑚2] 10030 

Yield Strength Y - [𝑁/𝑚𝑚2] - - 180 shear modulus 𝐺12- [𝑁/𝑚𝑚2] 5555 

    Poisson’s ratio ν12 0.271 

    Ply thickness – [mm] 0.125  

 
 

Mesh: S4R – 5.6 mm

Stacking Sequence



 

 

Table 2: Geometry data for the isotropic cylindrical shells after [23] and for the composite cylinder after [29] 

Shell R - [mm] L - [mm] t - [mm] R/t L/R Z Laminate Stacking Nexp -[kN] exp 

N-6 101.6 196.85 0.0986 1030 1.94 3689 - 2.67 0.408 

N-9 101.6 196.85 0.0975 1042 1.94 3731 - 3.05 0.465 

N-11 101.6 196.85 0.0978 1038 1.94 3720 - 3.90 0.595 

B-1 101.6 196.85 0.205 495 1.93 1774 - 11.32 0.665 

B-2 101.6 144.78 0.1852 548 1.42 1062 - 7.17 0.516 

B-4 101.6 140.97 0.2634 385 1.38 708 - 16.66 0.592 

ST-1 117.86 148.59 0.4564 258 1.26 391 - 56.05 0.906 

ST-2 118.36 148.59 0.4526 261 1.26 393 - 48.50 0.784 

ST-3 117.91 148.59 0.46 256 1.26 388 - 46.80 0.756 

ST-4 118.49 148.59 0.4554 260 1.26 390 - 51.35 0.830 

ST-5 118.49 148.59 0.4567 259 1.26 389 - 49.90 0.806 

ST-6 117.86 148.59 0.4544 259 1.26 393 - 41.70 0.674 

C07 250.0 500.0 0.5 500 2.0 2000 [24,-24,41,-41] 21.8 0.649 

C08 250.0 500.0 0.5 500 2.0 2000 [24,-24,41,-41] 21.9 0.652 

C09 250.0 500.0 0.5 500 2.0 2000 [41,-41,24,-24] 15.7 0.895 

C10 250.0 500.0 0.5 500 2.0 2000 [24,41,-41,-24] 16.7 0.695 

C11 250.0 500.0 0.5 500 2.0 2000 [24,41,-41,-24] 15.7 0.654 

C12 250.0 500.0 0.5 500 2.0 2000 [45,-45,0,-79] 18.6 0.799 

 
 
 

 

 

 
 



 

 

3 Geometric imperfection analysis 
In this section results of geometrically nonlinear analysis with measured geometric imperfections 

(GNIA) are presented. The GNIA were performed using the commercial finite element software 

ABAQUS and the corresponding inp-files as well as imperfection data are all given in the 

Elsevier repository of this article. Note, that the only difference between GNA and GNIA is the 

additional consideration of any kind of imperfection. The first section of this chapter deals with 

imperfection signatures of metallic cylinders manufactured by electroplating, machining and 

welding. In the last section similar studies for monolithic composite cylinders are given.  

3.1 Metallic cylinders 

The input data used for this section are based on an experimental testing campaign of TU Delft 

which is summarized in the imperfection data bank [23]. This section will mainly focus on the 

description of measured geometric imperfection by means of Fourier series. For further details 

regarding the testing [70] and test evaluation of the buckling experiments, the documents by 

Dancy [27] are recommended. 

 

The initial measured geometric imperfections (MGI) of the metallic shells (see Fig. 4) were 

measured and the corresponding Fourier coefficients 𝐴𝑘𝑙 and 𝐵𝑘𝑙 of the half wave cosine approach 

are given in [23]. The authors of this article have extracted the Fourier coefficients of the N, B 

and ST shells of the partially hard to read documents and stored them along with corresponding 

Python scripts in the Elsevier repository of this article. 

The half wave cosine approach [26] is given by the equation (4) and gives an approximation of 

the imperfect cylinder surface z of the metallic shells which depends on the cylinder length L, 

the cylinder radius R, the wall thickness t, the coordinates x,y and the wave numbers l,k. The 

parameters n1 and n2 denote the maximum number of waves included in the series. 

 
𝑧(𝑥, 𝑦) = 𝑡∑∑cos (𝑘𝜋

𝑥

𝐿
 )

𝑛2

𝑙=0

∙

𝑛1

𝑘=0

 (𝐴𝑘𝑙 cos (
𝑙𝑦

𝑅
) + 𝐵𝑘𝑙 sin (

𝑙𝑦

𝑅
)) (4) 

 
Fig. 4: Geometric imperfection signatures for the shells N6, B1 and ST1 from left to right 

 
The imperfection signatures of the shells N-6, B1, and ST1 are shown in Fig. 4. In order to 

analyze the imperfection signatures, the square sum according to equation (5) of the 

corresponding Fourier coefficients is plotted versus the number of the axial and circumferential 

wave numbers k and l. 

 

 
𝜉𝑘𝑙 = √𝐴𝑘𝑙

2 +𝐵𝑘𝑙
2  (5) 

The Fourier coefficients of the N-6, B-1 and ST-1 shells are shown in Fig. 5 for different axial 

and circumferential wave numbers k and l. These figures show that the initial imperfections of 



 

 

the electroplated (N-shells) and the machined (B-shells) cylinders are dominated by lower order 

modes. That is, the amplitudes of the Fourier coefficients which are based on the experimentally 

measured initial imperfections decay with increasing waver numbers l. The highest imperfection 

amplitude occurs for l = 2 (out of roundness component). In the case of the ST-shells, the Fourier 

coefficients with long wave length in axial direction have distinct maxima at 3 circumferential 

waves. 
 

 
Fig. 5: Fourier coefficients vs. the circumferential wave numbers l for different axial wave numbers k for the shells N6, B1 and 

ST1 from left to right 

 

The numerical results obtained by a geometrically nonlinear analysis with measured geometric 

imperfections are shown in Fig. 6 for the N (left) and B (right) shells for the measured 

imperfection signatures corresponding to the highest buckling load reduction. The results for the 

other imperfection signatures are given in the Elsevier repository of this article. The load-

displacement curves of the perfect shell obtained by a GNA and the minimum experimental 

buckling load values are also shown in all following load-displacement curves for the purpose 

of comparison. 

 
Fig. 6: Load displacement curve for the perfect shell and imperfect shell:  N-Shells (left) – B-Shells (right) 

 

The results show that the measured geometric imperfections don’t reduce the axial stiffness of 

the shell. In the case of the N-shells, the highest buckling load reduction occurs for the MGI 

signature of the shell N-6. However, the buckling load reduction compared to the perfect shell is 

only about 12 % whereas the experimental buckling load is nearly 60 % lower than the perfect 

buckling load. 

For the B-shells, the MGI signature of B-4 leads to a buckling load reduction of about 24 %. The 

experimental buckling load is about 40 % smaller compared to the perfect buckling load.  
Plastic buckling occurred for the ST shells and the corresponding load displacement curves for 

perfect-plastic material behavior (only yield strength is used and strain rate is 0) are shown in 

Fig. 7 (left). Also, the load-displacement curves for elastic buckling of the ST-shells are given 

in Fig. 7 (right) for the purpose of comparison. In the case of plastic buckling, the MGI signature 

for ST-6 delivers the lowest plastic buckling load. The influence of geometric imperfection is 
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not as severe as in the case of pure elastic buckling. The buckling load reduction in the plastic 

buckling scenario is less than 5 % whereas in the elastic buckling scenario, the buckling load 

reduction is about 20 %. The experimental buckling load is about 30 % smaller compared to the 

perfect buckling load in the plastic buckling scenario. 

Also, the buckling is characterized by the distinct formation of a single dimple in the cylinder 

surface for elastic buckling of the N, B and ST-shells. For plastic buckling, the edges of the 

cylinder are more prone to buckling due to the high stresses near the clamping conditions. 

 

 
Fig. 7: Load displacement curve for the perfect shell and imperfect shell:  ST-Shells & perfect-plastic material behavior (left) – 

ST-Shells and pure elastic material behavior (right) 

3.2 Composite cylinders 

The measured initial geometric imperfections of the composite shells are also given in the 

Elsevier repository of this article. For the composite shells, Kriegesmann et al. [47] 

recommended a different form of the half wave cosine approach (phase shift approach). This 

approach is given by the equation (6) and eliminates redundancies that are cause by the 

circumferential positioning of the shell during measurement (for more details see [47]). 

The imperfect cylinder surface z of the composite shells depends in this case on the Fourier 

coefficients 𝜉𝑘𝑙  and 𝜑𝑘𝑙 , cylinder length L, the cylinder radius R, the wall thickness t, the 

coordinates x,y and the wave numbers l,k. The initial imperfection signatures of the shells C07 

and C12 are shown in Fig. 8. 
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𝑧(𝑥, 𝑦) = 𝑡∑∑𝜉𝑘𝑙 ∙ cos (𝑘𝜋
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𝐴𝑘𝑙
𝐵𝑘𝑙

) − 𝜋,   𝑓𝑜𝑟 𝐴𝑘𝑙 < 0 

𝜑𝑘𝑙 = sgn(𝐵𝑘𝑙) ∙
𝜋

2
,   𝑓𝑜𝑟 𝐴𝑘𝑙 = 0 

(6) 

 
Fig. 8: Geometric imperfection signatures for the shells C07 and C12 from left to right 

 

 
Fig. 9: Fourier coefficients vs. the circumferential wave numbers l for different axial wave numbers k for the shells C07 and 

C12 from left to right 

 
The Fourier coefficients of the composite shells are shown in Fig. 9 for different axial and 

circumferential wave numbers k and l. These figures show that the initial imperfections of the 

composite cylinders are dominated by lower order modes. Especially, the imperfection 

amplitude for l & k = 0 is dominate.  
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Fig. 10: Load displacement curve for the perfect shell and imperfect shell: composite shells C07 and C12 

 
The imperfection amplitude for l = 2 (out of roundness component or ovalization) is not as 

dominate as in the case of the metallic cylinders in section 3.1 which is probably due to the 

manufacturing on a mandrel. 

The results of a geometrically nonlinear analysis with measured imperfections of the composite 

cylinders C07 and C12 are shown in Fig. 10. In the case of the composite shell C07, the MGI 

signature leads to buckling load reduction of 18 % which is still about 20 % above the 

experimental buckling load value. The shell C12 is very insensitive to imperfections and the 

buckling load reduction is less than 1 % (even for the imperfection signature of C07, the buckling 

load reduction is only about 2 %). However, the experimental buckling load of C12 was 

significantly lower (18.6 kN) which was unexpected. It was assumed that the specimen C12 was 

damaged (or something went wrong during the testing) and two additional nominal identical 

shells to C12 were built and tested. However, the experimental buckling loads of C13 and C14 

were even lower (17.3 kN and 17.5 kN). 
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4 Probabilistic analysis 
In this section a probabilistic design approach is applied to cylinders in order to evaluate the 

buckling load as a function of the imperfection in a probabilistic manner [71]. A Python script 

which implements the required equations for the calculations of mean and variance data for a 

probabilistic analysis with geometric imperfections (section 4.2) is given in the Elsevier 

repository of this article.  

The first-order second-moment method (FOSM) was originally formulated by Rzhanitsyn [48] 

in 1954 and then independently by Cornell in 1969 [49] (interested reader can also consult with 

Ref. [50]) and is based on a first-order Taylor approximation of the objective function linearized 

at the mean values of the random variables X. It uses only second-moment statistics (mean values 

and elements of variances-covariance matrix) of random variables X and ignores information on 

the distribution (probability density function - PDF) of random variables X. FOSM can only be 

applied if the objective function is linear in the investigated range as shown in Fig. 11. In the 

case of the stability analysis of cylindrical shells the buckling load N is the objective function of 

the probabilistic analysis. 

 
Fig. 11: Illustration of the linearization of the objective function (buckling load) at the mean  

4.1 Analysis with scalar-valued imperfections 

 
In this section, the N-shells are used to demonstrate the application of FOSM for a stability 

analysis. The scalar-valued imperfection considered in this section is a wall thickness 

imperfection which means that the average wall thickness is less than the nominal wall thickness 

(0.1 mm) of the cylinder. The mean wall thickness of the N-shells equals to E(t) = 0.0978 mm, 

the variance Var(t) = 2.15e-7 mm2 and the standard deviation of the wall thickness equals to 

std.(t) = 4.64e-4 mm. The mean E of the buckling load N can be approximated with equation (7). 
 𝐸(𝑁(𝑋)) ≈ 𝑁(𝐸(𝑋)) (7) 

This equation implies that the mean value E of the buckling load N is calculated using the mean 

values E of the random variables X. In this case the buckling load is determined, and the input 

variable is the mean wall thickness E(t) = 0.0978 mm. The perfect buckling load equals to 6.55 

kN (with nominal wall thickness 0.1 mm) and the buckling load with the mean wall thickness 

equals to 6.27 kN. 

The variance of the buckling load N can be determined with equation (8) if the random variables 

are uncorrelated. 
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𝑉𝑎𝑟(𝑁(𝑋)) ≈∑𝑁,𝑋𝑖

2 ∙ 𝑉𝑎𝑟(𝑋𝑖  )

𝑛

𝑖=1,

 (8) 

In order to determine the variance of the buckling load N the partial derivatives 𝑁,𝑋𝑖 =
𝜕𝑁(𝐸(𝑿))

𝜕𝑋𝑖
 of 

𝑁(𝑿) and the individual variances Var(X) of the random variable X are required. The standard 

deviation std.(X) of the buckling load N is defined according to equation (9). 

 
 

𝑠𝑡𝑑. (𝑁(𝑋)) = √𝑉𝑎𝑟(𝑁(𝑋)) (9) 

The partial derivative 𝑁,𝑋𝑖 has to be approximated because the buckling load N of the cylinder is 

determined numerically. The numerical derivative of a function can for example be determined 

with the central difference method [47] as shown by equation (10). 

 
 

𝑁,𝑋𝑖 =
𝑁(𝐸(𝑋) + ∆𝑧𝑋𝑖) − 𝑁(𝐸(𝑋) − ∆𝑧𝑋𝑖)

2 ∙ ∆𝑧𝑋𝑖
≈
𝑁(𝐸(𝑋) + 1.5 ∙ 𝑠𝑡𝑑. (𝑋𝑖)) − 𝑁(𝐸(𝑋) − 1.5 ∙ 𝑠𝑡𝑑. (𝑋𝑖))

2 ∙ 1.5 ∙ 𝑠𝑡𝑑. (𝑋𝑖)
 (10) 

The term ∆𝑧𝑋𝑖 is the increment of the central difference methods and can be defined as ∆𝑧𝑋𝑖 ≈

1.5 ∙ 𝑠𝑡𝑑. (𝑋𝑖)  [47].  

In this case the buckling load is determined with ABAQUS and the input variables (wall 

thickness t) for the numerical derivative are defined according to equation (11). 
 𝐸(𝑡) + 1.5 ∙ 𝑠𝑡𝑑. (𝑡) = 0.0978 mm +  1.5 ∙ 4.64e−4 mm = 0.0984 mm 

𝑁(𝐸(𝑡) + 1.5 ∙ 𝑠𝑡𝑑. (𝑡)) = 𝑁(0.0984 mm) = 6.32 𝑘𝑁 

𝐸(𝑡) − 1.5 ∙ 𝑠𝑡𝑑. (𝑡) =  0.0978 mm −  1.5 ∙ 4.64e−4 mm = 0.0971 mm 

𝑁(𝐸(𝑡) − 1.5 ∙ 𝑠𝑡𝑑. (𝑡)) = 𝑁(0.0971 mm) = 6.18 𝑘𝑁 

(11) 

The resulting buckling loads are used to determine the numerical derivative which is required 

for the variance and the standard deviation of the buckling load with the scalar-valued wall 

thickness imperfection. The corresponding equations are defined by equation (12). 
 

𝑁,𝑡=
6.32 𝑘𝑁 − 6.18 𝑘𝑁

2 ∙ 1.5 ∙ 4.64e−4 mm
=
100.51𝑘𝑁

𝑚𝑚
 

𝑉𝑎𝑟(𝑁(𝑡)) ≈ 𝑁,𝑡∙ 𝑡𝑣𝑎𝑟 ≈ (
100.51𝑘𝑁

𝑚𝑚
)
2

∙ (2.15e−7 mm)2 = 0.0021 𝑘𝑁2 

𝑠𝑡𝑑. (𝑁(𝑡)) = √𝑉𝑎𝑟(𝑁(𝑡)) = √0.0021 𝑘𝑁2 = 0.046 𝑘𝑁 

(12) 

 

 

 

 

 

 

 



 

 

4.2 Analysis with vector-valued imperfections  

 
The random variables X are correlated for the probabilistic analysis of geometric imperfections 

(Fourier coefficients). In this case the random vector X has to be defined (bold and cursive letter) 

for the Fourier coefficients and the variance Var of the buckling load N has to be determined with 

equation (13). 
 

𝑉𝑎𝑟(𝑁(𝑿)) ≈∑∑
𝜕𝑁

𝜕𝑋𝑖

𝜕𝑁

𝜕𝑋𝑗
𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)

𝑛𝑥

𝑗=1

𝑛𝑥

𝑖=1

 (13) 

 

For this equation the covariance matrix 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)  and several derivatives have to be 

determined which can be very costly in terms of computation time and effort. Kriegesmann et 

al. [47] proposed the Mahalanobis transformation to bypass this problem. The Mahalanobis 

transformation transforms random variables in a way that they are uncorrelated, have a median 

of zero and a variance Var of one.  

This means, for the probabilistic analysis of the N shells, that the number of random variables n 

for the configuration n1= 15 and n2= 15 reduces from  = 2 ∙ (15 + 1) ∙ (15 + 1) = 512 to  =
(𝑚 − 1) = 3 − 1 = 2. That means the number of random variables reduces by about 99 %.  The 

buckling load has to be evaluated (2 ∙  ) + 1 = (2 ∙ 2) + 1 = 5  times for the probabilistic 

analysis of geometric imperfections. The Mahalanobis transformation is implemented with the 

following equation (14). 
 𝑿 = 𝑪𝒐𝒗

𝟏

𝟐 ∙ 𝐳 + μ   and   𝒛 = 𝑪𝒐𝒗−
𝟏

𝟐(𝑿 − 𝝁) (14) 

The random vector X contains in this case the Fourier coefficients 𝐴𝑘𝑙 and 𝐵𝑘𝑙, see equation (15). 
 𝑿 = (A1 1, A1 2, … , A1 n2 , … , An1 n2 ,B1 1, B1 2, … , B1 n2 , … , Bn1 n2 )

𝑇
 (15) 

The mean vector μ of the Fourier coefficients is determined as a function of all random vectors 

X with equation (16). 
 

𝝁 =
1

𝑚
∑𝑥𝑖

𝑘

𝑛

𝑘=1

 (16) 

The application of equation (16) in order to determine the mean imperfection signature of the N-

shells is illustrated in Fig. 12. The mean imperfection signature of the N-shells has characteristics 

of all imperfection signatures but also significantly decreased imperfection amplitudes. The 

buckling load as a function of the mean geometric imperfection vector equals to 6.04 kN. 



 

 

 
Fig. 12: Geometric imperfection signatures of the shells N-6, N-9 and N-11 (left) mean geometric imperfection signature of the 

N-Shells (right) 

 

 The covariance matrix 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) can be calculated with equation (17). 
 

𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗) =
1

𝑚 − 1
∑(𝑥𝑖

𝑘 − 𝜇𝑖)

𝑚

𝑘=1

(𝑥𝑗
𝑘 − 𝜇𝑗)

𝑇
 (17) 

The number of data sets m of the random vectors X is in this case smaller than the number of 

vectors elements n; the covariance matrix is therefore singular. The special Mahalanobis 

transformation has to be used instead which is given by equation (18). 
 𝑿 = 𝑩

𝟏

𝟐𝐳 + μ   and   𝒛 = 𝑩−
𝟏

𝟐(𝑿 − 𝝁) (18) 

The matrix B is defined by equation (19). 
 𝑩 = 𝑸𝑫 (19) 

The columns of Q are the eigenvectors of 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) and the diagonal matrix D contains the 

eigenvalues of 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) as main diagonal elements. 

The special Mahalanobis transformation for the probabilistic analysis of the N-shells (𝑚 = 3) 
is given as an example with equation (20). 

Shell N-6

Shell N-9

Shell N-11

Shell N-mean



 

 

 

𝑿±𝟏 = [

𝐵(𝑋𝑖 , 𝑋𝑗) ⋯ 𝐵(𝑋𝑖 , 𝑋𝑛)

⋮ ⋱ ⋮
𝐵(𝑋𝑛, 𝑋𝑗) ⋯ 𝐵(𝑋𝑛 , 𝑋𝑛)

]

1
2

(

 
 

±1.5
0
⋮
0
0 )

 
 
+ 𝝁 

⋮ 

𝑿±𝒏 = [

𝐵(𝑋𝑖 , 𝑋𝑗) ⋯ 𝐵(𝑋𝑖 , 𝑋𝑛)

⋮ ⋱ ⋮
𝐵(𝑋𝑛 , 𝑋𝑗) ⋯ 𝐵(𝑋𝑛, 𝑋𝑛)

]

1
2

(

 
 

0
0
⋮
0

±1.5)

 
 
+ 𝝁 

(20) 

The vector z has the dimension n; X is equivalent to the median vector μ if z is equivalent to the 

zero vector. The elements of z are equivalent to 1.5 (∆𝑧𝑋𝑖 ≈ 1.5 ∙ 𝑠𝑡𝑑. (𝑋𝑖) ) because of the 

Mahalanobis transformation the variance and standard deviation are equal to one. The “scatter” 

imperfection signatures of the N-shells according to equation (20) are shown in Fig. 13.  

 
Fig. 13: Mean geometric imperfection signatures of the N-Shells (left) and geometric imperfection signatures generated using 

the Mahalanobis transformation (right) 

 

The mean imperfection signature of the N-shells is “modified” by using the vector z which leads 

to 4 different imperfection signatures which are used to determine the numerical derivatives that 

are required to determine the variance of the buckling load with measured geometric 

Shell N-mean

1. Shell N-variance (+) 

2. Shell N-variance (+) 

1. Shell N-variance (-)

2. Shell N-variance (-)



 

 

imperfections. This means the buckling load has to be calculated 4 times in the case of the N-

shell as shown in equation (21) 
 

 𝑁,𝑋_1   =  𝑁,𝑀𝐺𝐼 1  =   
𝑁(𝑋+1) −𝑁(𝑋−1) 

2∙1.5
=

5.60 𝑘𝑁 −5.91 𝑘𝑁 

2∙1.5
= −0.113 𝑘𝑁  

⋮ 

𝑁,𝑋_𝑛   = 𝑁,𝑀𝐺𝐼 2  =   
𝑁(𝑋+2) −𝑁(𝑋−2) 

2∙1.5
=

5.59 𝑘𝑁 −5.64 𝑘𝑁 

2∙1.5
= −0.016 𝑘𝑁 

(21) 

The variance of the buckling load N for geometric imperfections can then be determined with 

equation (22). 

 
𝑉𝑎𝑟(𝑁(𝑿)) ≈∑𝑁,𝑋𝑖

2 ∙ 𝑉𝑎𝑟(𝑋𝑖) =

𝑛

𝑖=1

𝑁,𝑋𝑖_1
2 ∙ 12 +⋯+𝑁,𝑋𝑖_𝑛

2 ∙ 12 

𝑉𝑎𝑟(𝑁(𝑴𝑮𝑰)) = 𝑁,𝑀𝐺𝐼 1
2 ∙ 12 + 𝑁,𝑀𝐺𝐼 2

2 ∙ 12 = (−0.113 𝑘𝑁)2 + (−0.016 𝑘𝑁)2 = 0.013 𝑘𝑁2 

(22) 

4.3 Results  

 
The design load 𝑁𝐹𝑂𝑆𝑀 of the probabilistic analysis with FOSM is given by equation (23). 
 

 𝑁𝐹𝑂𝑆𝑀 =  𝐸(𝑁(𝑋)) − 𝑏 ∙ 𝑠𝑡𝑑. (𝑁(𝑋)) =  𝑁𝑚𝑒𝑎  − 𝑏 ∙ 𝑁𝑠𝑡𝑑. (23) 
 

The factor b defines the chosen reliability limit as well as the assumed type of distribution and 

is listed in Table 3 for the standard normal distribution. 

 
Table 3: Factor b for different reliability levels of the standard normal distribution 

Reliability [%] 50 90  99  99.9 99.99 99.999 

b 0 1.2815 2.3263 3.0902 3.7190 4.2648 

       

In order to calculate b the cumulative density function of the standard normal distribution was 

inverted and evaluated with a mean of zero and a variance of one for the desired probability 

level. The mean and the standard deviation of the buckling load for the individual shells are 

given in Table 4. 

 
Table 4: Mean and standard variation of buckling loads according to FOSM  

Shells (random variables) Nmean - [kN] Nstd. - [kN] 

N-Shells (MGI & t) 5.947 0.118 

ST-Shells (MGI & t & R) 58.506 0.381 

ST-Shells (MGI & t) 127.180 4.056 

[24,-24,41,-41] - C-Shells (MGI) 27.28 1.200 

[41,-41,24,-24] - C-Shells (MGI) 17.38 0.128 

[24,41,-41,-24] - C-Shells (MGI) 19.55 0.687 

[45,-45,0,-79] - C-Shells (MGI) 23.02 0.368 

 
The reliability functions of FOSM are compared to the experimental results of the corresponding 

cylindrical shells in Fig. 14 (left) for the N and ST shells and in Fig. 14 (right) for the C07 and 

C12 shells. The results show unfortunately, that FOSM delivers unsatisfying approximations of 

the experimental reliability functions if only geometric imperfections and deviations of the 

nominal wall thickness and radius are considered. The mean buckling loads are 30 – 100 % 

higher when compared to the experimental results and even for very high reliability levels (1 in 

100 000), FOSM doesn’t deliver conservative design load estimations. 



 

 

Results reported in [38], [30] indicate that either imperfect loading conditions or uneven cylinder 

edges [44] lead to a significantly reduced buckling loads. However, as there are no measurements 

for “loading” imperfections, they could not be considered in the probabilistic analysis. 

 

 
Fig. 14: Reliability functions according to FOSM compared with experimental data: N and ST-shells (left) C12 and C07 shells 

(right) 
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5 Deterministic lower-bound analysis 
This section presents numerical and analytical lower-bound design examples for the N-Shells 

(elastic buckling) and the ST-Shells (elastic-plastic buckling). In the first part a numerical 

analysis of N-Shells with the reduced stiffness method is presented. The corresponding Python 

scripts for ABAQUS are given in the Elsevier repository. In the second section, analytical lower-

bounds which are suitable for elastic buckling are presented. The last section covers analytical 

design of the ST-Shells which fail due to elastic-plastic buckling. 

5.1 Reduced Stiffness Analysis 

In this section a reduced stiffness analysis for isotropic cylindrical shells under axial compression 

is performed. The reduced stiffness method (RSM) was developed by Croll et al. [72] and its 

main purpose is to determine a lower-bound for the buckling load of thin-walled shells [73]. The 

physical background of the reduced stiffness analysis can be summarized according to Croll et 

al. [72] as follows:  

 

1. The membrane energy of a shell may be eroded due to the presence of imperfections. 

2. The loss of the initially stabilizing membrane energy in a prospective buckling mode is 

responsible for the buckling load reduction.   

3. A lower-bound to the buckling load into a particular buckling mode will be provided by 

an analysis which excludes the membrane energy. 

   

An improved variant of the RSM was developed by Wagner et al. [74], the localized reduced 

stiffness method (LRSM). The corresponding results and scripts for ABAQUS-Python are given 

in the Elsevier Repository for this article. 

The LRSM is based on a special membrane stress state in cylinders under compression. For large 

localized imperfections local buckling of the shells surface and subsequent global buckling 

occurs (also known as snap-through buckling) as shown in Fig. 15 (left). Snap-through buckling 

causes a reduction of the membrane stresses at the position of the snap-through to approximately 

zero (from bottom to top shell edge, see Fig. 15 - right). This behavior is associated with the 

lower-bound plateau behavior of the critical load for thin-walled shells. The buckling load of a 

shell is independent from further increasing imperfections (in this specific area) because the 

membrane stresses are already zero. Further detailed studies regarding the LRSM can be found 

in [74]. 

 
Fig. 15: Load-displacement curve for snap-through buckling (left) membrane stress state of a cylinder (right) from [75] 

 
Within the framework of the LRSM, the membrane stiffness of a shell is reduced in a localized 

manner in order to approximate the lower-bound membrane stress state. A schematic 
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representation of the region considered for reducing the membrane stiffness in a cylindrical shell 

is shown in Fig. 16.  

 
Fig. 16: LRSM surface pattern for the N-shells from [74] 

 

The cylindrical shell has two sections, the main shell surface (green in Fig. 16), and a reduced 

membrane stiffness surface (white in Fig. 16). On one side, the main shell stiffness is modeled in 

ABAQUS by using the general shell stiffness definition (homogenous shell thickness or 

composite stacking).  On the other side, the reduced membrane stiffness surface is modeled using 

the ABD – general shell stiffness matrix and all 9 components of the A – membrane matrix are 

divided by the membrane stiffness reduction factor  [74] All the components of the B 

– coupling matrix are for isotropic shells equal to 0. If a composite shell is analyzed with the 

LRSM, all the components of the B matrix should be set to 0 for the reduced membrane stiffness 

surface in order to prevent a singular stiffness matrix. Also, the area of the reduced membrane 

stiffness surface in incrementally increased by increasing the ratio of LRSM radius Rs to cylinder 

radius R so its influence on the buckling load can be studied. 

The LRSM results are summarized in Fig. 17 (left) for the N-shells, this figure shows the 

knockdown factor for local and global buckling load values of the N-shells for different Rs/R 

ratios. Even small reduced membrane stiffness surfaces (2 mm – LRSM radius Rs - to 101.6 mm 

– cylinder radius R ~ Rs/R = 0.02) lead already to a 20 % reduction of the buckling load.  

 
Fig. 17: Lower-bound curves for local and global buckling of the N-Shells for  = 1000 (left) corresponding load displacement 

curve (right) 

 

If the Rs/R ratio is increased further, snap-through buckling occurs which leads to local (black 

diamond in Fig. 17 – right) and subsequent global buckling (red cross in Fig. 17 – right). The 

local snap-through buckling may already lead to premature collapse of a cylinder which was 
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shown by Ludwig et al. [76] by applying dynamic analysis, see Fig. 15 (left). Therefore the local 

buckling load is used as a design load within the framework of the LRSM. There is a plateau for 

the local and global buckling load for Rs/R = 0.15 to approximately 0.35. The minimum KDF 

for the local buckling load equals to about 0.42 for the N-shells. 

The lower-bound curves of the C-shells are shown in Fig. 18 (left), the minimum KDFs for local 

buckling vary between 0.45 and 0.8 (although they have the same geometry configuration) which 

means that the LRSM considers the different imperfection sensitivities of the different laminate 

stacking sequences [77]. Also, the LRSM delivers for every shell (of section 2) conservative 

buckling load estimations when compared with the experimental results as shown in Fig. 18 

(right). 

 
Fig. 18: Lower-bound curves according to LRSM for C-Shells (left) comparison of LRSM results with corresponding exp. 

Results (right) 

5.2 Analytical design for elastic buckling 

In this section analytical and empirical lower-bounds for the design of cylindrical shells are 

presented. Weingarten et al. [10] developed a lower-bound curve in 1964 which is recommended 

in the NASA SP-8007 (see Fig. 19) Space vehicle design criteria [78], see equation (24). This 

equation is based on a statistical evaluation of early buckling experiments and depends on the 

shell slenderness (radius-to-thickness ratio, R/t). A collection of other similar empirical design 

criteria is given by Elishakoff in [34]. 

 
ρ = 1 − 0.902 ∙ (1 − 𝑒

−(
1
16

√𝑅
𝑡
)
) 

(24) 

The Threshold design curve was developed by Wagner et al. [79], [80], [81] and is based on a 

combined boundary perturbation [82], [83] and probabilistic analysis of cylindrical shells under 

axial compression. The corresponding equation (25) depends on the R/t ratio as well as the L/R 

ratio [84]. 

 ρ = ΩTH ∙ (𝑅/𝑡)
−𝜂𝑇𝐻 

ΩTH ≈ −0.0196 ∙ (
L

R
)
2

− 0.0635 ∙ (
L

R
) + 1.3212 

ηTH ≈ −0.013 ∙ (
L

R
)
2

+ 0.061 ∙ (
L

R
) + 0.08 

(25) 

All experimental KDFs of the N, B, ST and C-shells are shown in Fig. 19 (left) along with the 

NASA SP-8007 and the Threshold design curve. The Threshold design curve is conservative for 

all presented shells and delivers especially for short and thin shells significantly improved KDF 
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for the buckling load. In the case of N-Shells the TH curve delivers about 100 % higher KDF for 

the buckling load compared to the NASA SP-8007. 

Evkin [85] showed that the Batdorf parameter Z according to equation (26) is sufficient to 

describe cylindrical shells under axial compression (reduction from a 2 variable problem to a 1 

variable problem) and derived lower-bounds for cylindrical shells with different boundary 

conditions [86]. 

 
Z =

L2 ∙ √(1 − 𝑣2)

𝑅 ∙ 𝑡
 

(26) 

The corresponding KDFs are also given by equation (27) and are shown in Fig. 19 (right).  

 ρ = 1.23 ∙ (𝑍)−0.138 (27) 

Also, Groh et al. [87], [88] derived recently a design lower-bound for cylindrical shells which 

depends only on the Batdorf parameter Z, see equation (28). 

 ρ = 1.48 ∙ (𝑍)−0.16 (28) 

Furthermore, Wagner et al. [74] presented another lower-bound which is based on the LRSM 

and is given by equation (29). 

 ρ = 1.58 ∙ (𝑍)−0.17 (29) 

The lower-bounds in Fig. 19 (right) are very similar, the LRSM curve by Wagner is basically 

equal to the design curve by Groh. The threshold curve and the design curve by Evkin have 

slightly lower KDF than the lower-bound by Groh et al. especially for Z< 1000. 

 

 
Fig. 19: Empirical knockdown factors for the design of cylindrical shells 

5.3 Analytical design for elastic-plastic buckling  

 
In this section the framework of the Reference Resistance Design (RRD) by Rotter et al. [89] as 

a method to design thin-walled cylindrical shells under axial load is presented (Eurocode EN 

1993-1-6). The RRD is based on the capacity curve which relates a shell’s dimensionless 

characteristic resistances to its dimensionless slenderness as shown in Fig. 20 (left). The 

governing equations are set out in terms of the shell buckling Eurocode requirements, which are 

described in [90], [91], [92], [93], [94] and are also summarized in the Elsevier repository of this 

article.  

The ST-Shells (from section 2) are used to demonstrate the RRD for cylindrical shells which 

buckle in the elastic-plastic region. In the first step the shell segment length parameter 

according to equation is determined in order to define the shell length type of the ST-

Shells. 
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 ω =
𝐿

√𝑅 ∙ 𝑡
=

148.59 𝑚𝑚

√117.86 𝑚𝑚 ∙ 0.4544 𝑚𝑚
= 20.30  

ω < 1.7  for short shells 

1.7 < ω < 0.5 ∙
𝑅

𝑡
  for medium length shells 

1.7 < ω < 0.5 ∙ 259.37 = 129.68 

(30) 

The ST-shells are classified as medium length shells because  = 20.3 > 1.7 & < 129.68. The 

elastic critical buckling stress should be determined by using equation (31) which depends on 

the parameter Cx. 

 σx,Rcr = 0.605 ∙ 𝐸 ∙
𝑡

𝑅
∙ 𝐶𝑥 

Cx = 1.36 −
1.83

𝜔
+

2.07

𝜔2   for short shells 

Cx = 1  for medium length shells 

σx,Rcr = 0.605 ∙ 180600
𝑁

𝑚𝑚2
∙
0.4544 𝑚𝑚

117.86 𝑚𝑚
∙ 1 = 421.25

𝑁

𝑚𝑚2
 

 

(31) 

In the next step the relative slenderness  (ratio of yield stress 𝑓𝑦,𝑘 to buckling stress  σx,Rcr) is 

determined with equation (32). 

 
λ = √

𝑓𝑦,𝑘

σx,Rcr
= √

180.6 𝑁/𝑚𝑚2

421.25 N/mm2 = 0.654 (32) 

In the subsequent step the elastic imperfection factor after equation is required which 

depends on the characteristic imperfection amplitude wk for different manufacturing qualities 

(excellent quality Q = 40, high quality Q = 25, normal quality Q = 16). The elastic imperfection 

factor current is based on studies by Rotter et al. and is currently used in the RRD. A new 

improved version of the elastic imperfection factor new was developed by Wagner in [75]. The 

difference between the new and current version of the elastic imperfection factor is shown in Fig. 

20 (right). The elastic imperfection factor new delivers on average 15-20 % higher values when 

compared to the currently used version. 

It should be noted that the RRD neglects the influence of the L/R ratio on the lower-bound 

buckling load and only depends on the R/t ratio. The new elastic imperfection factor by Wagner 

is based on the SBPA (Q = 40) and the post-buckling load (Q = 16) for shells with L/R = 2 which 

should cover a wide range of civil engineering applications. 



 

 

 
∆wk =

1

𝑄
∙ √

𝑅

𝑡
=

1

40
∙ √

117.86 𝑚𝑚

0.4544 𝑚𝑚
= 0.402 

αcurrent =
0.62

1 + 1.91 ∙ (∆wk)
1.44

=
0.62

1 + 1.91 ∙ (0.402)1.44
= 0.409 

αnew =
1

1 + 2.6 ∙ (∆wk)
0.8

=
1

1 + 2.6 ∙ (0.402)0.8
= 0.443 

(33) 

 
Fig. 20: Capacity curve of the RRD after [89] (left) Current and new Elastic imperfection factors for the design of cylindrical 

shells according to the RRD (right) 

 

Next the shell class has to be determined, which is defined by comparing the relative slenderness 

 with the squash limit  and plastic limit relative slenderness p. For cylindrical shells under 

axial compression the squash limit relative slenderness  is defined as = 0.2 and the plastic 

limit relative slenderness p is given by the following equation (34):

 

 
λp_current = √

αcurrent

1−βr
 =√

0.409

1−0.6
=1.01 

λp_new = √
αnew

1−βr
 =√

0.443

1−0.6
= 1.05 

(34) 

The term r in equation (34) is the plastic range factor and is defined as r = 0.6 and the shell 

class equals to elastic-plastic buckling because pand the interaction component  is set to 

. The stability reduction factor  can be determined with equation (35). 

 χcurrent = 1 − βr ∙ [
λ−λ0

λPcurrent−λ0
]
𝜂

= 1 − 0.6 ∙ [
0.654−0.2

1.01−0.2
]
1

= 0.663 

 

χnew = 1 − βr ∙ [
λ−λ0

λPnew−λ0
]
𝜂

= 1 − 0.6 ∙ [
0.654−0.2

1.05−0.2
]
1

= 0.680 

(35) 

Finally, the design buckling resistance σx,Rd can be determined with equation (36). 

 σx,Rd_current = χcurrent ∙ σx,Rcr = 0.663 ∙ 421.25
𝑁

𝑚𝑚2
= 119.86

𝑁

𝑚𝑚2
 

σx,Rd_new = χnew ∙ σx,Rcr = 0.68 ∙ 421.25
𝑁

𝑚𝑚2
= 122.81

𝑁

𝑚𝑚2
 

(36) 

The corresponding design load can be determined according to equation (37) 
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 Nx,Rd_current = 2 ∙ 𝜋 ∙ 𝑅 ∙ 𝑡 ∙ σx,Rd_current = 2 ∙ 𝜋 ∙ 117.86 𝑚𝑚 ∙ 0.4544 𝑚𝑚 ∙ 119.86
𝑁

𝑚𝑚2
= 40.33 𝑘𝑁 

Nx,Rd_new = 2 ∙ 𝜋 ∙ 𝑅 ∙ 𝑡 ∙ σx,Rdnew = 2 ∙ 𝜋 ∙ 117.86 𝑚𝑚 ∙ 0.4544 𝑚𝑚 ∙ 122.81
𝑁

𝑚𝑚2 = 41.32 𝑘𝑁 
(37) 

In the case of Q = 40, Q = 25 and Q = 16, the new elastic imperfection factor leads to increased 

design loads which are 2.4 %, 5.7 % and 17.6 % higher than the design loads according to the 

currently used RRD. 

 



 

 

6 Conclusion and Outlook 

 
In this articles covers design examples for isotropic and composite cylindrical shells under axial 

compression. The application of measured geometric imperfection (MGI) signatures is for the 

analyzed shells not reliable because the corresponding test buckling loads are most of the time 

underestimated as shown in Fig. 21.  

A probabilistic analysis with geometric and wall thickness imperfections was demonstrated and 

the corresponding stochastic moments (mean and variance) of the buckling load were 

determined. However, even for very high reliability levels, the probabilistic analysis delivers 

non-conservative buckling load estimations.  

 
Fig. 21: Comparison of KDF for the N-Shells (left) and ST-Shells (right) 

 

A reduced stiffness analysis (RSA) for cylindrical shells under axial compression was presented 

in section 5 in order to study the lower-bound behavior. The localized reduced stiffness method 

(LRSM) delivers always higher KDFs than the NASA SP-8007 and yet conservative buckling 

load estimations (when compared with experimental results). 

Recently developed lower-bound curves for the design of axially loaded cylinders were also 

presented and compared with the NASA SP-8007 and experimental results. Although, the lower-

bounds by Evkin, Wagner and Groh were all derived independently, they are based on the idea 

of localized buckling and deliver similar KDF for the lower-bound buckling load.  

The reference resistance design according to the EN 1993-1-6 was presented for shells which 

buckle in the elastic-plastic region. New elastic imperfection factors are presented which deliver 

improved KDFs in comparison to the currently used design factors as shown in Fig. 21 (right). 

The results of this article were mainly obtained by using the commercial FEA software 

ABAQUS and all inp-data, imperfection files, Python scripts and results are summarized in the 

Elsevier repository of this article. 
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Appendix A – Abaqus-Python script manual 

 
In this section, a brief overview over the ABAQUS-Python script used in this article is given. 

The scripts were tested on ABAQUS 6.14 to ABAQUS 2019 and Spyder (Python 3.7). It is 

proposed to use the Anaconda Distribution as Python Science Platform from the website: 

 
https://www.anaconda.com/distribution/ 

 

The ABAQUS-Python script can be used to study the lower-bound buckling load of cylindrical 

and conical shells (see line 655 and variable mySemi_Vertex_Angle) under axial compression 

(or pure bending by slightly modifying the Python script, see line 832-850). 

 

The name of the ABAQUS-Python script is: 

 

Cone_LRSM_clamped_FC_007.py 

 

The ABAQUS-Python script has 4 different sections: 

1. Section for functions 

2. Section for data input:   

a. Name of the Finite Element Analysis Modell   

Table 5: Section 2 – part a of the ABAQUS-Python script  

# name of the numerical model 

 

myName = ['N-Shells'] 

 

# Limit for the outer loop (number of shells investigated) 

Limit = 1 

b. Material 

Table 6: Section 2 – part b of the ABAQUS-Python script  

# Layup and number of plies 

 

myLaminate1 = [45, -45,0,90,90,0, -45,45] 

myLayerNumber_v = [len(myLaminate1)] 

myShell = [myLaminate1] 

# Material parameter 

myE1_v = [172400] 

myE2_v = [172400] 

myG12_v = [172400/(2*(1+0.3))] 

myNu12_v = [0.3] 

myG23_v = [172400/(2*(1+0.3))] 

# ply thickness in case of isotropic shell 

# use shell thickness and divide by "myLayerNumber_v" 

 

myLaminateThickness_v = [0.1/8] 

myCore_v = [12.7] 

 

 

https://www.anaconda.com/distribution/


 

 

 

c. Geometry 

Table 7: Section 2 – part c of the ABAQUS-Python script  
# Cylinder length and radius 

myHeight_v = [196.85]                   

myRadius_v = [101.6] 

mySemi_Vertex_Angle = 0.0 

 

d. Finite Element Analysis  

Table 8: Section 2 – part d of the ABAQUS-Python script  
# element length 

# can be estimated with = 0.5*np.sqrt(myRadius*myLayerNumber*myLaminateThickness) 

#myMesh_Size_v = [0.5*np.sqrt(myRadius_v[0]*myLayerNumber_v[0]*myLaminateThickness_v[0])] 

myMesh_Size_v = [2] 

 

# axial shortening / rotation of the cylinder (simulation is displacement controlled) 

my_disp_v = [1] 

# number of cores for the simulation 

myCpu = 8 

 

e. LRSM analysis – start & end iteration, LRSM factor, ABD stiffness 

Table 9: Section 2 – part e of the ABAQUS-Python script  
# components of ABD Stiffness matrix 

A11,A12,A13,A22,A23,A33,B11,B12,B13,B22,B23,B33,D11,D12,D13,D22,D23,D33 = 

CLT(myE1_v[0],myE2_v[0],myG12_v[0],myNu12_v[0],myLaminate1,myLaminateThickness_v[0],len(myLaminate1)) 

# membrane stiffness reduction factor 

LRSM_Factor = 1000 

# start and end of iterations for LRSM (20 increments) 

my_START = [1] 

my_END = [41] 

 

3. Main Section 

4. Result extraction 

 

 

The name of the numerical model is defined in the first part (a) of the input section as shown in 

Table 5. 

The material parameter (elasticity modulus, Poisson’s ratio, etc.) are defined in the second part 

(b) of the input section, see Table 6. The isotropic conical shells is represented in this script as a 



 

 

composite shells with quasi-isotropic laminate stacking [45,-45,0,90]s. However, this script can 

also be used to analyze laminated composite shells. The isotropic cylinder has a shell thickness 

t = 0.1 mm which is divided by 8 (number of layers) for the laminate representation. Also, a 

sandwich core thickness can be defined by using the myCore variable and an angle of 1° in the 

variable myLaminate1. 

The geometry parameters of the shell are defined in the third part (c) of the input section, see 

Table 7. This section requires the cylinder radius R, the cylinder height H and the semi-vertex 

angle ß. If the semi-vertex angle ß = 0, the script will generate a cylinder and for a 

negative/positive angle a cone will be generated. 

The main parameter of the FEA are defined in the fourth part (d) of the input section, see Table 

8. The FE mesh can be estimated using 0.5√𝑅 ∙ 𝑡 [95] and the axial displacement (Displacement 

controlled simulation) can be defined by the user. Another variable is the number of CPUs which 

depends on the number of available licenses. 

The LRSM input data are defined in the fifth part (e) of the input section (see Table 9). In this 

section a function (CLT) is called which calculates the ABD stiffness matrix components. Also, 

the membrane stiffness reduction factor is defined as LRSM_Factor (preset to 1000). The final 

variables are the start and end of the iteration (preset to 40 iterations). Note, that artificial 

damping can be used by uncommenting line 327 of the function createStaticStep) 

 

The procedure of a numerical analysis using the ABAQUS-Python script consists of the 

following steps: 

 

1. Start ABAQUS CAE, see Fig. 22 (left) 

2. Open the Python script: - Cone_LRSM_clamped_FC_007.py using a text editor 

(Spyder), see Fig. 22 (right) 

3. Define the input section of the Python script, see Table 5 - Table 9 

4. Copy whole Python script (CRTL + A), see Fig. 23 (right) 

5. Paste the Python script into ABAQUS CAE console (CRTL + V & Enter to start script), 

see Fig. 23 (left) 

6. Wait for end of calculation, see Fig. 24 (check that line 924 to 928 are uncommented) 

 
Fig. 22: Procedure of a numerical analysis using ABAQUS-Python: step 1 (left) step 2 (right) 



 

 

 

 
Fig. 23: Procedure of a numerical analysis using ABAQUS-Python: step 4 (left) step 5 (right) 

 

 
Fig. 24: Procedure of a numerical analysis using ABAQUS-Python: step 6 

 
For the numerical analysis, the Newton-Raphson solution technique was used (Static, General) 
and the corresponding configurations of the Python script are summarized in Table 10. 
 



 

 

Table 10: Solver settings for ABAQUS  

Step    

 Static,General   

 Basic Incrementation Other 

 Nlgeom: ON Type: Automatic Standard settings 

 Automatic stabilization: None Increment size:  

  Initial: 0.01  

  Minimum: 1E-5  

  Maximum: 0.01  

    
 

 



 

 

Appendix B – Python-Excel script manual 

 
In this section, a brief overview over the Python-Excel script used in this article is given. This 

script requires the application of the ABAQUS-Python script from Appendix A and the 

ABAQUS calculations are finished. 

This Python-Excel script writes the data from the ABAQUS calculations in an Excel sheet and 

determines the lower-bound curve. 
 
The name of the Python-Excel script is: 

 

myPerturbation_Cylinder_READ_005.py 

 

The ABAQUS-Python script has 3 different sections (see Table 11): 

1. Section for functions 

2. Section for data input:   

Table 11: Section 2 – part a of the Python-Excel script  
myName = ['N-Shells_Z_3638_ß_0'] 

# define axis title  

x_axis = ['Axial Displacement [mm]', 'Relative Stiffness S [kN/mm]', 'Relative Strain Energy E [kNmm/kN]'] 

y_axis = ['Axial Force F [kN]','Axial Force F [kN]','Axial Force F [kN]', 'Buckling Load N [kN]'] 

max_load = ['Numerical Collapse Load [kN]'] 

# method which is evaluated 

method = ['LRSM'] 

# axis of perturbation approach 

pert_axis = ['LRSM radius-to-shell radius ratio, Rs/R'] 

# limits for the perturbation iteration 

Pert_START = 1 

Pert_END = 41 

3. Main section 

 
The procedure of the result evaluation using the Python-Excel script consists of the following 

steps: 

 

1. Open the Python script: - myPerturbation_Cylinder_READ_005.py using a text editor 

(Spyder), see Fig. 25 (left) 

2. Save the Python script: - myPerturbation_Cylinder_READ_005.py in the same folder as 

the ABAQUS results, see Fig. 25 (right) 

3. Run the Python script: - myPerturbation_Cylinder_READ_005.py in Spyder, see Fig. 26 

(left) 

4. Open Excel result file: - Design_N_Z_3638_ß_0_003.xlsx, see Fig. 26 (right) 

5. Open Excl sheet: LRSM, see Fig. 27 



 

 

 
 

 
Fig. 25: Procedure of a result evaluation using Python-Excel: step 1 (left) step 2 (right) 

 

 
Fig. 26: Procedure of a result evaluation using Python-Excel: step 3 (left) step 4 (right) 

 



 

 

 
Fig. 27: Procedure of a result evaluation using Python-Excel: step 5 
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