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Abstract—The combination of SCan-On-REceive with continu-
ous variation of the pulse repetition interval during transmission
(staggered operation) is a viable option for the acquisition of high-
resolution synthetic aperture radar (SAR) data over wide areas.
Since the acquired data are not uniformly sampled and contain
gaps within the synthetic aperture mainly due to the interruption
of reception during transmission (i.e., due to blockage), proper
reconstruction strategies must be considered in order to minimize
artifacts. Conventionally, large oversampling rates are required to
ensure low ambiguity levels, but this is not always feasible due to
data-rate constrains. This article presents a detailed analysis of
the blockage recovery in the low-oversampling case. Moreover, we
propose a data adaptive strategy to optimally perform this step,
ensuring the best performance for point-like targets and avoid-
ing degradation for distributed scatters. This paper also presents
simulation results that show the impact of staggered data for
interferometric applications.

Index Terms—Blockage, low-oversampling, staggered SAR,
spectral estimation.

I. INTRODUCTION

IN THE past decade, increasing focus has been given to
the development of new synthetic aperture radar (SAR)

concepts capable of delivering both high resolution and wide
coverage [1]–[5]. In order to overcome the fundamental limi-
tation imposed by the direct relation between swath width and
azimuth resolution, the solutions usually consider multiple ele-
vation beams in combination with SCan-On-REceive (SCORE)
or the acquisition by multiple subapertures in the along-track
direction [2], [4], [6]–[11].

The authors in [5] demonstrated the staggered SAR concept,
which together with SCORE allows for the coverage of a con-
tinuous wide swath with high resolution. To achieve that, the
pulse repetition interval (PRI) is continuously varied during
the acquisition causing the blockage—i.e., the instants during
transmission when the radar cannot receive the backscattered
echoes—to move along the swath.
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Several schemes can be used to control the variation of the
PRI, e.g., pseudorandom variation, slow linear variation or fast
linear variation. In [5], it was shown that optimum perfor-
mance in terms of azimuth-ambiguity-to-signal-ratio (AASR)
is achieved by combining a few fast linearly varying PRI se-
quences (e.g., 7). Such scheme is usually able to distribute
the blockage along the swath in a way that no consecutive
samples are missed in azimuth. If enough oversampling is avail-
able, the missing data can be interpolated and a performance
similar to the constant pulse repetition frequency (PRF) case
can be achieved. Moreover, in this case, the staggered opera-
tion has the further advantage of leading to smeared azimuth
ambiguities.

Given the periodicity of the nonuniform pattern, an alternative
for the processing of the staggered data is the use multichannel
reconstruction approaches [1], [12]. However, such methods
are impacted by noise scaling and by the back-folding of the
nonlimited spectrum, especially for long PRI sequences [13].
In order to efficiently perform the SAR focusing, the staggered
data can be interpolated to a uniform grid allowing for the use
of conventional frequency-domain SAR processing techniques.
This resampling can be performed, e.g., with the best linear unbi-
ased estimator (BLU), as suggested in [5], or with a nonuniform
cardinal sine (sinc) kernel, as described in [14]. Alternatively,
the data can be focused directly from the nonuniform grid, e.g.,
considering the nonuniform discrete Fourier transform [15],
or employing time domain back-projection. In all cases, the
presence of the blockage potentially degrades the quality of
the focused data, especially if acquiring with a low average
oversampling ratio.

Staggered SAR is currently the baseline acquisition mode
of the Tandem-L concept [16]. Tandem-L’s goal is to acquire
single/dual-polarimetric data over a 350 km ground-swath and
fully polarimetric data over a 175 km ground-swath, with an
azimuth resolution of around 7.5 m. Optimum oversampling
factors are calculated considering the ambiguity level require-
ments and the designed PRI sequence, and amount to 2.3 and
1.9 for the dual-pol and quad-pol modes. Although an experi-
mental quad-pol mode with 350 km swath is desirable, due to
range ambiguity constraints its mean PRF on transmit has to be
limited to 1200 Hz per channel. This corresponds to an oversam-
pling ratio of only 1.1, in which case the standard processing
solution based on BLU resampling suggested in [5] cannot
be used.

Another mission which can benefit from the staggered op-
eration mode is the NASA-ISRO SAR (NISAR) mission [17].
NISAR aims to acquire data over a 240 km wide swath with 6 m
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TABLE I
PARAMETERS OF TANDEM-L AND NISAR EXPERIMENTAL SCENARIOS

azimuth resolution. As described in [18], if employing a constant
PRF for transmission, the gaps amount to 10% of the dual-pol
swath (ascending-only or descending-only) and can be mitigated
if a coarser range resolution is acceptable. If continuous swath
coverage in each individual pass is required, the staggered mode
can be used [19]. In order to fulfill the ambiguity requirements,
the staggered operation would require a mean PRF on transmit
of around 2400 Hz, which is much higher than the current
maximum value of 1650 Hz imposed by limited downlink capac-
ity. Nevertheless, for some applications the degradation of the
ambiguity level caused by acquiring with a reduced PRF may be
acceptable.

Both aforementioned staggered NISAR and experimental
Tandem-L modes employ low average oversampling ratios
(see parameters summary in Table I). Hence, in both cases
the focused SAR image might contain nonnegligible arti-
facts, specially for areas presenting high contrast and contain-
ing strong point-like targets. A first solution for the imag-
ing of low-oversampled staggered data was proposed in [20].
The method consists in two steps: first, the recovery of
the blockage using an spectral estimator (SE) for nonuni-
formly sampled data [21], [22]; and second, the resampling
of the data to the uniform grid by minimizing the ambi-
guity energy in a multichannel reconstruction scheme [23].
While the approach is able to considerably reduce the arti-
facts of strong targets, it is suboptimal in the sense that it
does not consider the target characteristics during the data
recovery.

In [24], we first suggested a few modifications to the ap-
proach in [20], which intended to improve the reconstruction of
point-like targets while avoiding the degradation of distributed
scatterers (DSs). In this article, the suggested approach for the
processing of low-oversampled staggered data is discussed in
depth, with the aid of an extensive analysis of the blockage
recovery in Section II. Section III includes a detailed description
of the complete approach, including the outline of optional
steps and a discussion of when they should be used. Finally, in
Section IV, we validate the proposed methodology with simu-
lated staggered SAR data and provide first examples of the im-
pact of the staggered operation for interferometric applications.
Conclusion is drawn in Section V.

II. BLOCKAGE RECOVERY

Standard PRI design for staggered SAR acquisitions ensures
that consecutive azimuth samples are not lost in either the raw
or range-compressed data domains, depending on the adopted
processing approach [25]. However, even when employing such
optimum design strategy, if the mean effective PRF on transmit
is close to the Doppler bandwidth, the signal can be locally
under-sampled. In this case, the blockage will introduce large
gaps in the signal (in terms of the signal bandwidth), and the
recovery of this missing data becomes a major challenge to the
handling of the staggered data.

The main contribution of [20] to the processing of low-
oversampling SAR data is precisely the dedicated treatment
given to the blockage. Instead of directly interpolating the
available data into a uniform grid as conventionally done in the
high PRF case [25], the authors handle the reconstruction in two
steps: first, the missing data of the blockage is recovered still in
the nonuniform grid; and second, the full vector is resampled to
the uniform grid. Hence, if the recovery of the missing data is
successful, the resampling is performed on a properly sampled
data vector.

If a time domain back-projection approach is employed for
the SAR focusing, the resampling to the uniform grid can be
avoided. However, the prior recovery of the blockage may still
be required depending on the local sampling characteristics
(i.e., its average oversampling and deviation to the uniform
grid [26], [27]). In the remaining of this section, we address the
significance of this recovery for the resulting azimuth side-lobe
level (see Section II-A). Moreover, we show the performance
of the iterative adaptive approach for missing data (MIAA) and
BLU for the blockage recovery considering different simulation
scenarios (in Section II-B).

A. On the Necessity of the Blockage Interpolation

The necessity of the blockage interpolation can be evaluated
by considering a simplified case where samples from a uniformly
sampled signal are periodically missed. If the blockage is neither
recovered nor accounted for, the back-projection integral for a
single scatter can be approximated as

sB[n] =

+LSA/2∑

−LSA/2

(src[m]− src[m]Π[m;TB])haz[m− n]

= sNB[n]− src[n]Π[n;TB] ∗ haz[n] (1)

where LSA is the size of the synthetic aperture, src is the range-
compressed pulse, sB is the focused signal, sNB is the focused
signal considering the complete dataset case (i.e., no blockage),
and haz is the azimuth match filter and Π[·;TB] is an impulse
train which assumes one every TB samples (i.e., at blockage
locations) and zero everywhere else. The range variable has been
omitted for simplicity, and we assume that the signal can be
interpolated with an arbitrary accuracy in range.

Alternatively, the back-projection integral can be performed
over the available samples only, i.e., considering the new
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nonuniformly sampled grid described by the time instants

t[n] = nΔt+ g[n] = nΔt+

⎛

⎜⎝

⌊
N−1
TB

⌋
∑

i=0

iχ[iTB ,(i+1)TB)

⎞

⎟⎠ [n]

(2)
where g gives the deviation of the nonuniform grid from a
uniform one with constant sampling equal to Δt, and has a
staircase shape for the case of missing samples from a uniform
grid. The staircase shape is represented by the summation
on the right-hand side of (2), where i is an integer given by
�n/TB� and χA is the indicator function of the interval A. The
compressed signal is then approximated by

sNU[n] =
1

Δt

+LSA/2∑

−LSA/2

src,avl[m]haz,avl[m− n]δ[m] (3)

where the subscript avl indicates that only the available samples
are considered, and δ[·] accounts for the variability of the time
increments. For example, for the sampling pattern described by
(2), the time increments can be approximated as

δ[n] = t[n+ 1]− t[n] = Δt+Π[n;TB − 1]. (4)

Notice that (1) can be converted to (3) by considering additional
tapering of the samples around the blockage.

If the blockage is interpolated, the focused signal is given by

sI[n] =

+LSA/2∑

−LSA/2

src,i[m]haz[m− n]

= sNB[n] + ψ[n]Π[n;TB] ∗ haz[n] (5)

where src,i is the pulse after blockage interpolation, and ψ is the
interpolation error.

Assuming sNB as reference, the error in the focused signals
above can be described in the discrete-time-Fourier-transform
(DTFT) domain as

σ2
B =

∫ Baz/2

−Baz/2

∣∣SNB

(
ejΩ

) ∗Π (
ejΩ

)∣∣2 ∣∣Haz

(
ejΩ

)∣∣2 dΩ

(6)

σ2
NU =

∫ Baz/2

−Baz/2

∣∣SNB

(
ejΩ

) ∗Δ (
ejΩ

)∣∣2 ∣∣Haz

(
ejΩ

)∣∣2 dΩ

(7)

and

σ2
I =

∫ Baz/2

−Baz/2

∣∣Ψ
(
ejΩ

) ∗Π (
ejΩ

)∣∣2 ∣∣Haz

(
ejΩ

)∣∣2 dΩ (8)

respectively, where Baz is the Doppler bandwidth, the capital
letters indicate the DTFT, and the fact that the DTFT of an
impulse train is a frequency domain impulse train has been used.
Equation (7) can also be used to describe the error in the stag-
gered SAR case, i.e., when the complete input is nonuniform.
The error depends on the characteristics of the blockage (and
nonuniformity of the grid), on the signal and, eventually, on the
interpolator. However, from (6) and (8), we can conclude that

Fig. 1. Mean AASR obtained after back-projecting from the nonuniform grid.
Five cases are shown: considering only the valid samples for the back-projection
(equivalent to (3), in black), recovering the blockage with a nearest-neighbor
interpolator (in red), recovering the blockage with BLU (in green), recovering the
blockage with a SE (in blue), and when no blockage is present (in turquoise). The
curves show the behavior of the AASR for increasing mean PRF on transmitter.

whenever the spectral power of the interpolation error is small
in comparison to the one of the signal, the recovery improves
the performance. Conversely, if the recovery fails and the error
power is of the order of the signal, then recovery step should not
be performed.

Fig. 1 shows simulation results considering an ideal point
target and a staggered SAR acquisition with the parameters
described in the third column of Table I (staggered NISAR ex-
ample). The plot shows the mean azimuth-ambiguity-to-signal-
ratio (AASR) over the swath obtained after back-projecting
from the non-uniform grid. The AASR is computed here as
the difference between the staggered SAR integrated-side-lobe-
ratio (ISLR) and the ISLR of a constant PRI SAR system
with a PRF equal to the mean staggered PRF on transmit,
same values for the other system and processing parameters,
and an azimuth antenna pattern equal to zero outside the in-
terval [−PRFmean,PRFmean] [28]. Five recovery strategies
are shown: considering only the valid samples for the back-
projection (equivalent to (3), solid black), recovering the block-
age with a nearest-neighbor interpolator (solid red), recovering
the blockage with BLU (solid green), recovering the blockage
with a SE (solid blue), and when no blockage is present (i.e., the
reference, solid turquoise). Notice that regardless of the PRF, the
spectral estimator (in this case, MIAA [22]) and BLU provide
better results than when no recovery is applied. Moreover, MIAA
ensures a performance which is very close to the nonblockage
case. On the other hand, nearest-neighbor interpolation brings
almost no improvement when compared to the case when only
the available data are considered, i.e., in this case the spectral
power of the error approaches the one of the signal.

The use of back-projection directly from the nonuniform grid
(i.e., without resampling) can potentially diminish the propaga-
tion of interpolation errors and noise scaling. However, this is
not necessarily the case for the modes examined in this article,
since the reconstruction of the low-oversampled staggered signal
from its nonuniform samples is not ideal [26], [27]. For the
simulation shown in Fig. 2 the parameters in the third column
of Table I were also considered, and the goal was to compare
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Fig. 2. Plots in the first and second column show zooms of the IRF obtained when recovering with the SE and back-projecting from the nonuniform grid (solid
black), and considering an additional resampling step (solid red). The plots in the third and fourth columns show the variation of the ISLR over the swath when
using MIAA and BLU, respectively. The top row corresponds to a PRF of 1650 Hz, whereas the bottom one corresponds to a relaxed case with mean PRF of
2000 Hz.

the focusing when back-projecting directly from the nonuniform
grid and when performing an additional resampling step before
the integration. The plots on the first and second columns show
zooms of the impulse response function (IRF) obtained when
recovering with the SE and back-projecting from the nonuniform
grid (in black), and considering an additional resampling step
(in red). The plots in the third and fourth columns show the
variation of the AASR over the swath when using MIAA and
BLU, respectively. The top row corresponds to a mean PRF
on transmit of 1650 Hz, whereas the bottom one corresponds
to a relaxed case with a mean PRF of 2000 Hz. Note that in
both PRF scenarios, the resampling to the uniform grid leads to
artifacts related to the propagation of blockage recovery errors.
Those are recognizable as periodic spurious lobes in the second
IRF zooms (second column). Moreover, in the results obtained
after the resampling, the side-lobe energy concentrates near the
main one, while it is spread when back-projecting from the
nonuniform grid. The resulting integrated side lobe energy using
both processing strategies is similar. In fact, for the 1650 Hz and
MIAA recovery case, there is actually a slight degradation of
the ISLR when back-projecting from the nonuniform grid due
to a small increase of the overall side-lobe energy caused by
the nonuniformity (see second column) [26]. The same is not
true when recovering the data with BLU, since in this case the
recovery errors are considerably larger and their propagation
during the resampling dominates.

Finally, we make a note on the discrete implementation of the
back-projection integral. The discrete back-projection integral
for the complete staggered signal can also be described by (3)
and (4). In (4), we considered the left-Riemann approximation
(up to a multiplicative constant). However, the discretization
(or equivalently, the tapering of the staggered signal), can be
done in different ways [29], [30]. The use of a scheme that
averages time increments, e.g., the Trapezoidal rule, will po-
tentially decrease artifacts caused by the strong nonuniformity
of the elaborated staggered sampling pattern used here. This

Fig. 3. Zooms of the obtained IRF response using back-projection from the
nonuniform grid considering the left-Riemann sum and Trapezoidal rule.

can be observed in the IRF responses shown in Fig. 3, also
corresponding to the parameters in third column of Table I.
However, here an ideal case with no-blockage was considered
to avoid propagation of the recovery errors. Both results were
focused by back-projecting the signal from the nonuniform grid.
The curves in black consider the left-Riemann sum, while the
ones in red correspond to the trapezoidal rule.

B. Performance of Super-Resolution SEs

The reconstruction of signals from nonuniform samples has
been extensively studied by the signal processing commu-
nity [26], [31]–[33]. For example, Yao and Thomas showed that
perfect reconstruction of band-limited signals is possible using
Lagrange interpolation functions if the nonuniform sampling
instants do not deviate from the uniform grid by more than a
quarter of the signal bandwidth [32]. In the case of staggered
SAR acquisitions, not only is the spectrum nonlimited, but also
the deviation from the uniform grid can be much larger than the
3 dB observation time. For example, for the experimental 350 km
swath/quad-pol mode of the Tandem-L concept described in
the second column of Table I, the deviation is around 2.6
times larger than the Yao and Thomas condition, whereas for
a staggered NISAR acquisition such as the one described in the
third column of Table I, it is about 2.7 times (for a segment size
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given by the correlation length [5]). Hence, more sophisticated
reconstruction approaches are required.

The use of parametric and nonparametric SE for the recovery
of interrupted SAR data has been demonstrated in [34], [35].
SEs have been also suggested for the recovery of the blockage
in staggered SAR acquisitions in [20]. More specifically, the
authors employed the nonuniform iterative adaptive approach
for missing data (MIAA) for their recovery step [21], [22].

In the aforementioned studies, the SE are applied to all
missing data, i.e., no distinction concerning the characteris-
tics of the imaged target is made. However, such algorithms
are derived for line spectra and, hence, are specially suitable
for the reconstruction of raw data from point targets. In fact,
experiments with TerraSAR-X data in [36] showed that the
performance of different SEs is not satisfactory when recovering
gapped data from distributed scatters. Note that in that case, the
data were missing in a uniform grid due to the synchronization
link between the TerraSAR-X and TanDEM-X satellites [37].
In the context of staggered SAR, the performance of the data
recovery is further impaired by the strong nonuniformity of the
sampling. In fact, the distribution of the nonuniform samples
and the choice of the spectral grid used for the reconstruction are
known to impact the performance of the spectral estimation [21],
[26], [27].

In order to recover the blockage of a staggered SAR dataset in
an optimum way, it is necessary to understand the behavior of the
recovery methods. This is the main goal of the remaining of this
section. For that, we include a brief recap of the super-resolution
SE of choice and provide analysis of the performance of the
blockage recovery with respect to different aspects (e.g., the
type of data being recovered; the available signal-to-clutter
ratio (SCR), the sequence design and the chosen spectral grid).
All the analysis results presented in the following were ob-
tained through one-dimensional (1-D) simulations considering
the experimental quad-pol/ 350 km swath mode of the Tandem-
L concept, unless otherwise specified (see second column of
Table I).

1) MIAA for Data Recovery: Methods for data recovery
based on super resolution spectral estimation generally model
data segments as composed of available (yg) and missing (ym)
contributions [22], [35], [38]. A first estimation of the spectrum
is made from the available samples, and the recovery of the
missing ones is obtained from this estimate and a certain fitting
criteria (e.g., least-squares or maximum-likelihood). An updated
estimation of the spectrum is performed using the now complete
data segment and the data-recovery/spectrum-estimation proce-
dure is possibly repeated until convergence.

Like in [20], MIAA (specifically MIAA-t [22]) is the spectral
estimation of choice in this article. This is motivated by its
simplicity, direct applicability to the nonuniform sampling case,
and its good performance for the recovery of point-like targets,
which are the main source of artifacts in the low-oversampled
staggered SAR case (see remaining of this section for its per-
formance and limitations). In the following, a brief recap of
MIAA is provided to aid in the discussion presented in this
section. Please refer to [22] for a detailed description of the
algorithm.

The complete data segment y is modeled as

yNx1 = Aα =

⎡

⎢⎣
ejω0t0 ejωK−1t0

...
. . .

...
ejω0tN−1 ejωK−1tN−1

⎤

⎥⎦ (9)

where ANxK is the steering matrix, α is the spectrum, and ωk

are the frequency instants, usually assumed uniformly sampled
(i.e., ωk = kΔω), and {tn}N−1

0 are the time instants.
In each iteration i, the MIAA spectrum is estimated as

α̂ [ωk]i =
aHg [ωk] R̂g

−1

i−1yg

aHg [ωk] R̂g
−1

i−1ag [ωk]
(10)

where

ag [ωk] =
[
ejωktg,0 · · · ejωktg,G−1

]
(11)

with {tg}G−1
0 being the subset of the time vector segment

containing only the available instants. The computation of the
spectrum in (10) requires the covariance matrix estimated from
the data in the previous iteration, with

R̂gi =

{∑K−1
k=0 |α̂ [ωk]|2 agaHg , i �= 0

IG, i = 0
(12)

where I is the identity matrix. Once the estimation of the
spectrum has converged (e.g., once

∑
(|α̂[ωk]i − α̂[ωk]i−1|2) <

1e− 5), the missing samples are inverted as

ŷm =
K−1∑

k=0

|α̂ [ωk]|2 aHg [ωk] R̂g
−1

i−1ygam [ωk] (13)

where

am [ωk] =
[
ejωktm,0 · · · ejωktm,M−1

]
(14)

with {tm}M−1
0 being the subset of the time vector segment

containing missing data instants.
2) Impact of the Type of Target: Fig. 4 shows the performance

of the blockage reconstruction in terms of the mean oversam-
pling factor for two different type of targets. At the top right, the
normalized root mean square error (NRMSE) for an ideal point
target after data recovery, resampling and azimuth compression
is shown. The NRMSE for simulated distributed scatters appears
at the bottom left, and the corresponding coherence degradation
is shown at the bottom right.

Different oversampling cases were simulated by varying the
mean PRF on transmitter and considering a fixed set of pa-
rameters, namely, chirp duration, azimuth bandwidth, swath,
and range position. In all cases, we adopted the optimum PRI
sequence design described in [5], ensuring that no consecutive
azimuth samples are missing in the raw-data domain. For the
parameters considered (see second column of Table I), the
maximum oversampling ratio that allows for this condition to
be met was around 2.1. Two missing samples patterns were
considered: one corresponding to the actual blockage in the raw
data domain, and the other corresponding to the extended block-
age in the range-compressed domain (i.e., imposing full range
resolution [25]). The obtained data loss percentage for both cases
is shown in Fig. 4, at the top left. The adopted reconstruction
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Fig. 4. Performance of the blockage recovery as a function of the oversam-
pling for different recovery methods and processing approaches. (Top left)
The percentage of missing samples in the echo. Top right: the NRMSE after
reconstruction, resampling and compression for an ideal point target. Bottom
left): the NRMSE for distributed scatters. Bottom right: the corresponding
coherence between reconstructed data and data with no blockage.

strategy follows the one in [36], where small segments around
each missing event (one or more missing samples) are treated
separately.

Note that even for oversampling factors of 1.1, the SE yields
good results for point targets, regardless of the blockage per-
centage. On the other hand, the increased amount of missing
data in the range compressed case considerably decreases the
quality of the BLU reconstruction for the oversampling ratios
considered. As the oversampling increases, the reconstruction
error with BLU approaches the one with the SE. In fact, for
oversampling ratios larger than 1.9 (e.g., as is the case of the
standard Tandem-L modes), the use of MIAA does not improve
the overall performance in comparison to applying BLU in the
raw data domain.

In the case of pure distributed scatters, the reconstruction
considering the raw domain blockage is better than the one con-
sidering the range-compressed blockage, regardless the recovery
method. This is because the auto-correlation of the distributed
scatters decays faster in comparison to the one of point-targets,
and the recovery is more impacted by the overall increased
amount of missing samples (and possibly adjacent blockage)
in the range-compressed domain. The coherence degradation
caused by applying MIAA to raw data is small in compar-
ison with the one using BLU, specially for larger oversam-
pling ratios. On the other hand, the performance degradation
caused by applying MIAA to range-compressed data in com-
parison to the one of applying BLU in the raw data is signif-
icant. For example, for an oversampling ratio of around 1.09
(i.e., experimental Tandem-L case), the coherence goes from
around 0.97 using BLU in the raw data domain to 0.9 us-
ing MIAA in the range-compressed domain. The performance
of all strategies improves with increasing oversampling rates,
but at a lower rate for distributed scatters when compared to
point-targets.

Fig. 5. Left: Decorrelation factor due to staggered operation for varying along-
track baseline. Right: estimated coherence from simulated distributed scatters
for varying SNR and an along-track baseline of 10 m.

A lower bound for the coherence degradation over distributed
scatters can be obtained considering the case where the blockage
samples are set to zero. In this case, the azimuth-dependent
coherence modulation can be approximated as

γstag [n] =

∑+LSA/2
−LSA/2 (ΠmGm

) (ΠsGs
)

√∑+LSA/2
−LSA/2 (ΠmGm

)2
∑+LSA/2

−LSA/2 (ΠsGs
)2

(15)

where the terms G∗ include the antenna pattern and the nonuni-
form (and processing) tapering, and the azimuth dependencies
in the right-hand side were omitted for the sake of compactness.
This approximation is only meaningful if the signal power is
larger than the noise one, and is derived for circular Gaussian
processes, i.e., it does not include artifacts (and consequent
degradation of the estimated coherence) induced by point tar-
gets. In the Tandem-L case, the slave is assumed to be con-
tinuously acquired, i.e., it has no blockage and the coherence
degradation is independent of the along-track baseline. In the
staggered NISAR case, the degradation depends on the relative
distribution of the missing samples in master and slave datasets.
If the missing samples are perfectly overlapped, no coherence
degradation over distributed targets is observed, although a
nonnegligible phase bias might be present depending on the
amount of blockage within the synthetic aperture [36]. On the
other hand, along-track baselines in the order of a few meters
are enough to cause the blockage patterns of master and slave
to be entirely nonoverlapping, resulting in maximum coherence
loss.

The expected coherence modulation as a function of the
along-track baseline for the staggered NISAR case is shown
in the left of Fig. 5. On the right, the obtained coherence values
for different levels of signal-to-noise ratio (SNR) and different
interpolation methods are shown for an along track baseline of
10 m. When using MIAA, the obtained coherences are very close
to the bounds, i.e., the recovery does not improve the data quality.
Note that the actual decorrelation depends on the spectral power
of the interpolation error, and is itself a function of the SNR,
since a lower SNR results in larger errors.

3) Impact of SCR: The point-target simulation results in
Fig. 4 consider the reconstruction of a pure point-target, i.e.,
no noise nor clutter are present. In this case, the reconstruc-
tion in the raw-data domain has better performance than in
the range-compressed domain, where the amount of missing
data due to blockage is larger. However, in real images, strong



PINHEIRO et al.: ANALYSIS OF LOW-OVERSAMPLED STAGGERED SAR DATA 247

Fig. 6. NRMSE after reconstruction, resampling, and compression for a point
target under noise. (Left) Performance for increasing amount of randomly missed
samples and SCR. (Right) Performance for the Tandem-L experimental scenario
(see Table I) for varying mean PRF on transmitter and a reference SNR value of
15 dB.

targets appear superimposed to noise and clutter. In this case, the
signal-to-clutter gain obtained through range compression can
benefit the reconstruction of point-targets. This can be observed
in the simulation results presented in Fig. 6, where the NRMSE
after reconstruction, resampling and compression for a point
target under noise is shown. The figure on the left shows the
performance as a function of the SNR and amount of missing
samples. For this particular simulation, the data were randomly
missed, i.e., the optimum PRI sequence design of [5] was not
employed, since the goal was to evaluate the effect of different
amount of missing data for a given acquisition scenario. An
oversampling ratio of 1.09 was considered. Note that a combi-
nation of higher SNR and higher amount of missing samples
can yield better performance than lower missing samples rate
and lower SCR (e.g., see the two red crosses on the left plot
of Fig. 6). The plot on the right shows a simulation consider-
ing the Tandem-L experimental quad-pol/350 km swath mode,
allowing for a variable mean PRF on transmit and considering
the expected compression gain in the range-compressed domain.
The performance as a function of the oversampling factor con-
sidering the reconstruction in the raw-data domain is given by
the solid black curve, whereas the one in the range-compressed
domain appears in solid red. Regardless of the oversampling rate,
the recovery in the range-compressed domain provides better
results. For DSs no gain is obtained with the range-compression,
and the increasing amount of missing data will degrade the
reconstruction in this domain (see Figs. 4 and 5)

4) Range-Compressed Versus Raw Data Design: The results
in the previous section show that the recovery of point targets
using high-resolution SEs profits from increased SCR, even
if consecutive missing samples occur. In principle, the PRI
sequence design could also be constrained to ensure that no
consecutive azimuth samples are missed at range-compressed
level [5]. However, such design leads to a faster variation of
the PRI subsequences and a larger maximum PRI, which might
cause performance degradation despite the thinner gaps. In fact,
the simulation results in Fig. 7 show that the range-compressed
design does not generally improve the reconstruction. The sim-
ulation considered the experimental Tandem-L case, allowing
for a varying mean PRF on transmit. The presented curves
correspond to two PRI sequence designs: in black, ensuring no
consecutive azimuth loss in the raw data domain, and in red

Fig. 7. (Top left) PRI sequences for 10 % oversampling factor. (Top right)
The percentage of missing samples. (Bottom left) NRMSE for an ideal point
reconstructed in the range-compressed domain with MIAA. (Bottom right)
NRMSE for a distributed scatter reconstructed in the raw data domain with
BLU. In all plots, the curve in black corresponds to design for no consecutive
loss in the raw data domain, while the curve in red corresponds to the design for
no consecutive loss in the range-compressed domain.

ensuring no consecutive azimuth loss in the range-compressed
domain. The plot on the top left shows the designed PRI se-
quence (for an oversampling of around 10%); the plot on the top
right shows the percentage of missing samples; the plot on the
bottom left shows the NRMSE for an ideal point reconstructed
in the range-compressed domain with MIAA, and the plot on
the bottom right shows the NRMSE for a distributed scatter
reconstructed in the raw data domain with BLU. Not only there
is no considerable performance gain for point-targets, but also
there is a decrease in quality over distributed scatters for several
of the considered oversampling factors.

5) Spectral Grid Characterization: In the case of nonuni-
form sampling, the time vector in (9) is given by

tn = (n+ rn)Δt (16)

where Δt is an approximated constant sampling (e.g., the av-
erage sampling of the segment, Tm) and rn gives the deviation
of the sampling instants from the uniform grid. Note that the
estimation described in II-B1 makes no assumption regarding
time or frequency grids, i.e., it can be directly applied for the
recovery of staggered missing data. However, due to the strong
nonuniformity of the sampling, the choice of the frequency grid
can have a nonnegligible impact on the data recovery.

In [20], the authors define the spectral frequencies as

ωk = 2πk
Ωmax

K
, k = 0,K − 1 (17)

where K is the total number of spectral samples and the maxi-
mum nonambiguous frequency, Ωmax, is approximated as the
inverse of the mean sampling of the segment, i.e., Ωmax =
PRFmean. This definition characterizes a spectral support of
S+
mean ⊆= [0,PRFmean). No discussion on the segment size

and spectral sampling (or, conversely K) is provided in that
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study, except that K is larger than the number of samples in the
segment.

The focusing of complex SAR data acquired at equidis-
tant time intervals considers a spectral support of S± ⊆
[−PRF/2,PRF/2), where the PRF is greater than the 3 dB
Doppler bandwidth, Baz (we assume here a zero Doppler cen-
troid). In the case of a complete data-set with uniform sampling,
the data is usually transformed to the spectral domain using a
fast Fourier transform (FFT) with a grid defined by (17) and
Ωmax = PRF. In this case, due to the periodicity of the FFT,
the obtained spectrum is equivalent to the desired one up to
a linear phase term, which is easily accounted for by shifting
the azimuth frequency vector during compression. On the other
hand, in order to properly model the staggered SAR signal with
(9), the negative frequencies have to be explicitly considered.
This can be seen by evaluating the elements of the steering matrix
A assuming Δt = 1/Ωmax in (16), i.e.,

A
[
ωk±K/2, tn

]
= ej

2π
K k(n+rn)e±jπ(n+rn). (18)

For the uniform sampling case there are no residuals (rn = 0),
and A(ωk+K/2, tn) = A(ωk−K/2, tn), i.e., (9) can be used to
describe the desired positive and negative Doppler frequencies
(up to a shift). However, this statement is not true for 0 < |rn| <
1. Hence, in order to properly invert the missing samples, the
spectral grid should be defined by

ωk = 2π

(
k − K

2

)
Ωmax

K
, k = 0,K − 1 (19)

which with Ωmax = PRFmean, yields the desired support
S±
mean ⊆ [−PRFmean/2,PRFmean/2).
As suggested in [21], the spectral sampling can be chosen as

a fraction of the resolution of the periodogram, i.e.,

Δω =
1

(tn − t1) p
(20)

with p typically between 5 and 10, and the total number of
spectral samples selected as [21]

K = �PRFmean/Δω� (21)

where �� is the floor operator.
Note that the spectral support does not have to be limited to

PRFmean. In fact, it is known that in the case of nonuniform
sampling, the maximum nonambiguous frequency which can
be recovered can be even larger than PRFmax [39]. In [21],
the authors suggest the use of the spectral window in order
to compute the maximum allowed frequency. In the case of
staggered SAR, the window can be calculated considering the
valid samples as

W [ωk] =

∣∣∣∣∣∣

Ng−1∑

n=0

ejωktg,n

∣∣∣∣∣∣
(22)

and chosen according to the first frequency larger than zero for
which W (2πΩwin) ≈ 1, i.e., S±

win ⊆ [−Ωwin/2,Ωwin/2).
Fig. 8 shows the obtained of the NRMSE for a point target

after recovery and focusing using different spectral supports for
MIAA. The curve in black corresponds to the result obtained

Fig. 8. NRMSE for a point target after reconstruction and focusing considering
different spectral grid choices, with and without regularization: The curve in
black corresponds to the result obtained with S+

mean, the curve in red shows the
result obtained with S±

mean and the curve in green shows the result with S±
win.

with S+
mean, the curve in red shows the result obtained with

S±
mean and the curve in green shows the result with S±

win. The
plots were separated in two for visualization purposes. In all
cases, the number of spectral samples was given by (21) and
(20) with p = 5. The blockage for the reconstruction in the
range-compressed domain was considered, i.e., double gaps
might occur. The quality degradation when using the positive
support is evident for all oversampling ratios. It is possible
to see that the positive/negative spectral support gives better
results. Moreover, as the oversampling increases, the result
using (17) degrades. This is due to an increase of the span
between maximum and minimum PRIs within the sequence and
the consequent worse modeling of the data using (17) and (9).
The use of the spectral window, and consequent slightly wider
support is only marginally beneficial and only for the case with
very low oversampling, where the average PRF is very close to
processed Doppler bandwidth.

6) Model Regularization: Depending on the nonuniformity
pattern and missing data location, the covariance matrix es-
timated from the available samples can become rank defi-
cient [40], [41]. In fact, this is often the case in the staggered
SAR scenario due to the strong variation of the sampling in the
segment.

As a regularization alternative, we suggest to directly use
the scheme proposed in [41] for IAA, but now considering the
missing samples scenario, i.e.,

R̂ =
∑

m∈ξ
|α̂|2 agaHg +

∑

m∈[1,K]\ξ
|α̂|2 I (23)

where I is the identity matrix and ξ represents the subset of
[1,K] containing the Ng largest values of the spectral power.
As discussed in [41], the justification for (23) is that from a
segment with Ng valid samples we can reliably estimate Ng

spectral components.
The blue curve in Fig. 8 shows the obtained NRMSE when

considering the regularization. For the very low oversampling
scenario, the regularization brings a small improvement and
mitigates sampling-related asymmetry in the recovered IRF.

7) Choice of Segment Size: Large kernels can be helpful for
the data recovery with conventional algorithms due to noise
suppression. However, in the recovery or staggered data with
super-resolution SEs, this is not necessarily the case. This is due
to the fact that large residuals in (16) often result in pathological
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Fig. 9. NRMSE for a point target after reconstruction and focusing considering
different segment sizes. The plot on the left corresponds to the raw-data blockage
pattern, while the one on the right corresponds to the range-compressed one. The
vertical line in red indicates the size obtained with the heuristic described in this
section.

samplings, leading to ill-condition covariance matrices. As dis-
cussed in the previous section, regularization approaches can be
used to prevent quality degradation due to this effect. However,
the use of smaller segments can also aid in the inversion. Small
segments are also preferred from a computational cost perspec-
tive, since algorithms such as MIAA are very demanding due to
the operations with large matrices.

Neglecting noise, an heuristic to select the segment size for
the data recovery is to evaluate the maximum deviation of the
actual sampling to its best uniform sampling approximation.
For example, a good segment size would be the largest size for
which the maximum deviation to this uniform grid is smaller
than half of the uniform sampling step. Fig. 9 shows NRMSE
for a point target after reconstruction and focusing considering
different segment sizes. The recovery was performed consid-
ering the regularization described in the previous section. The
plot on the left corresponds to the raw-data blockage pattern,
while the one on the right corresponds to the range-compressed
one. The vertical lines in red indicate the sizes obtained with
the heuristic described above. In both cases, there is a good
agreement between the obtained sizes and minimum NRMSE.

III. MODIFIED TWO-STEP RECONSTRUCTION FOR

LOW-OVERSAMPLED STAGGERED SAR DATA

From the performance analysis presented in the previous
section, it is clear that the reconstruction of point-targets and
DSs have conflicting characteristics: while the former gener-
ally benefits from the range-compression, the latter has better
performance if carried out in the raw-data domain. Moreover,
super-resolution SEs have a positive impact for point-like tar-
gets only, although its performance degradation over distributed
scatters can be acceptable considering the recovery at raw data
domain, depending on performance requirements and system
characteristics (e.g., oversampling rate and chirp duration).

In order to accommodate these somewhat conflicting require-
ments, we propose a modified strategy for the handling of
low-oversampled staggered data. As in [20], blockage recov-
ery and resampling to the uniform grid (when necessary) are
performed in independent steps. However, our strategy contains
the following particularities.

1) The recovery of the blockage is performed twice: first, at
raw data level and then at range-compressed level. While
the second recovery step employs a high-resolution SE

Fig. 10. Block diagram preprocessing strategy for low-oversampled staggered
SAR data.

and focus on the recovery of point-like targets, the first
one is performed with BLU.

2) A validity test is performed in order to accept or not
the result of the SE in order to avoid degradation over
distributed scatters.

3) The spectral-estimation based recovery is applied over
small segments rather than over the complete synthetic
aperture.

Our proposed approach for the handling of low-oversampled
staggered data is summarized in the block diagram shown in
Fig. 10. In the following, the processing steps are discussed.

8) Blockage Recovery at Raw-Data Level: As discussed in
II-A, even if considering a back-projection kernel for the focus-
ing, the recovery of the missing data from the blocked instants
is required for the low-oversampling staggered SAR scenario.
Accordingly, the first step of the proposed approach is the
recovery of all the blockage at raw-data level. As indicated in
Fig. 10, the result of this first recovery is later used to aid in the
validation of the high-resolution spectral-estimation. We suggest
the use of the BLU interpolator for this step, since it has optimum
performance for distributed scatters and can be implemented
efficiently considering the periodicity of the PRI variation [5].
Moreover, it is known to have a better performance in terms of
noise scaling when compared to multichannel strategies, as the
one used in [20].

9) Extension of Blockage Matrix: Since the reconstruction of
strong targets is performed in the rage-compressed domain, the
missing data matrix (binary matrix indicating the positions of
the blockage) has to be dilated in range in order to account for
partially available echoes, which are treated here as invalid, i.e.,

MblockRC
=Mblockraw

⊕ S (24)

where Mblockraw
and MblockRC

are the missing data matrices
in the raw-data and range-compressed domains, respectively,
and assume 1 for missing data and 0 otherwise. S is the 1-D
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Fig. 11. (Top) Spectrum estimated with MIAA at its first iteration (in black), and upon convergence (in red). (Bottom) The BIC criteria as a function of spectral
components. From left to right: Pure point-target, Point target plus noise (SNR=12 dB), Point target plus noise (SNR=3 dB) and clutter.

structuring element given by

S =
[
1 · · · 1 ]

1×Nchirp
(25)

where Nchirp is the chirp length in samples. As discussed in
Section II-B, although the recovery step is performed on
the range-compressed data, the PRI sequence is still de-
signed considering the reconstruction in the raw-data domain,
i.e., MblockRC

might indicate consecutive missing samples in
azimuth.

10) Blockage Recovery at Range-Compressed-Data Level:
After the range compression and the retrieval of the extended
blockage mask, the second recovery step is performed by means
of a high resolution SE (in this study, MIAA). As mentioned in
II-B, we perform the estimation for each range bin separately,
and the 1-D signal is dived into small segments whose size
are determined using the heuristic described in Section II-B7
(typically between 12-20 samples). The computation of the spec-
trum follows on the grid defined by (19)–(21), with p = 5. The
estimation of the covariance matrix within MIAA is performed
with (23) in order to minimize the reconstruction error over
point-like targets and avoid asymmetries in recovered IRFs.

Note that the block-diagram includes the optional use of a
“Bright scatterers mask” (dashed box). The main purpose of
this mask is to diminish the overall computational burden by
avoiding the second recovery step over segments with very
low back-scatter. Note that, for these kind of targets, the result
based on spectral estimation techniques is likely to be invalid.
Assuming that bright targets do not dominate the scene content,
this mask can be created by applying a simple outlier detector
in the amplitude after range-compression. The mask is then
dilated in both range and azimuth directions in order to diminish
miss-detection and to “close” dark areas corresponding to the
data poorly interpolated with BLU.

11) Validity Test: From the characteristics of the spectrum
estimated in the previous step, we can attempt to distinguish
valid from invalid recoveries. This can be accomplished, e.g.,

by using the Bayesian information criterion (BIC). The BIC
rule is defined as [21]

BIC[M ] =

N ln

⎛

⎝
N∑

n=1

∣∣∣∣∣y [tn]−
M∑

k=1

α̂ordered [ωk] e
jωk,orderedtn

∣∣∣∣∣

2
⎞

⎠+ 4M lnN

(26)

where the first term is a least-square data fitting term, which
gives the error of the data if reconstructed by the M largest
estimated spectral components, and the second term penalizes
the complexity of the estimated spectrum. If BIC(0) is the
minimum BIC, the data consist of white noise and the estimation
using MIAA is considered invalid. Fig. 11 shows an example of
the estimated spectrum of a certain segment containing missing
data. The plots correspond to simulated data considering the
Tandem-L experimental quad-pol mode. The plots on the top
row show the spectrum estimated with MIAA in its first iteration
(in black), and upon convergence (in red). The plots at the bottom
show the BIC criteria as a function of valid spectral components.
Four cases are considered, from left to right: Pure point-target,
Point target plus noise (SNR=12 dB), Point target plus noise
(SNR=3 dB) and clutter. Note that for the last two cases, the
BIC criteria deems the estimation with MIAA invalid. In fact,
although BIC is able to correctly detect valid recoveries from
strong point targets, the criteria suffers with misdetection of
segments containing weaker point targets specially toward the
end of the synthetic aperture. Hence, we propose a validation
cross-check step employing the initial recovery at raw data level.

Specifically, we consider the recovery based on spectral es-
timation techniques of a segment to be invalid if the following
conditions are met

argmin
M

BIC[M] = 0 (27)
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Fig. 12. (Top) Amplitude, (middle) difference in dB between recovered data and non-blocked reference, and (bottom) coherence with respect to reference. The
following blockage interpolation methods were used, from left to right: BLU, MIAA in the raw-data domain (equivalent to the blockage recovery in [20]), MIAA
in the range-compressed domain, and the proposed approach.

and

1

N − 1

N∑

n=1

|yRAWest [tn]− ȳRAWest|2

≥ 1

N − 1

N∑

n=1

|yRCest [tn]− ȳRCest|2 (28)

i.e., if the estimated spectrum is considered too complex and the
resulting segment is less smooth than the one filled with data
originating from the raw-data domain recovery.

As a final remark, note that, as is the case in [20], the quality of
the recovered data using the strategy proposed here is bounded
to that of staggered data acquired with no blockage, i.e., artifacts
related to the nonlimitation of the azimuth spectrum and to the
nonuniformity or eventual under-sampling of the nonblocked
sampling pattern will still be present.

IV. RESULTS WITH SIMULATED STAGGERED SAR DATA

In this section, we present results obtained with synthetic
data from the DLR-HR end-to-end simulator [42], [43]. The
simulator used an input L-band reflectivity map retrieved from
an ALOS-2 acquisition over Mexico City, and was used to
generate data emulating both the Tandem-L experimental mode

(parameters in the second column of Table I) and the NISAR
staggered scenario (parameters in the third column of Table I).

A. NISAR Staggered Scenario

Fig. 12 shows the results obtained for the NISAR staggered
scenario using different blockage recovery strategies. The re-
covery methods were, from left to right: BLU, MIAA in the
raw-data domain (equivalent to the blockage recovery proposed
in [20]), MIAA in the range-compressed domain, and the pro-
posed hybrid approach. The plots on the top row show the
normalized amplitude images, the plots in the middle show
the difference in dB between the recovered images and the
reference (i.e., the staggered SAR image with no blockage),
and the images in the bottom row show the coherence between
the recovered images and the nonblocked reference. In this
simulation, three additional point-targets with a SCR above
50 dB were introduced at near-, middle-, and far-range, and they
are clearly visible in the images, where the reconstruction occurs
at raw-data level (see red lines along azimuth in the difference
plots in the first and second columns). When recovering with
MIAA in the range-compressed domain (third column), the
artefacts of strong targets are suppressed at the expense of overall
coherence reduction. Finally, the proposed two-steps recovery
is able to suppress the strongest artefacts, while maintaining
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TABLE II
COMPUTATION TIME OF THE RECOVERY METHODS USED FOR THE

RESULTS SHOWN IN FIG. 12

the decorrelation to the same level obtained with BLU. The
computation times of the four methods used for the data recovery
of the results shown in Fig. 12 are given in Table II. The
computations were performed on an Intel(R) Xeon(R) CPU
X7560 @ 2.27 GHz machine with 32 CPUs and 398 GB of
RAM. Each method was limited to 12 parallel threads, and the
complete data matrix had 11 k × 11 k samples. In this particular
example, although the amount of missing samples is larger in
the rage-compressed domain (around 15% of the data amount,
against 8% in the raw-data domain), the computation time of
the third and fourth approaches are smaller than the one of the
second approach. This is because MIAA tends to converge faster
for targets with increased SCR, i.e., it is potentially faster in the
range-compressed domain. Finally, note that the implementation
of MIAA was not optimized and the computation time of the
hybrid approach can be reduced by using a mask to detect strong
targets, as mentioned in Section III-10.

In order to evaluate the impact on interferometry, the DLR-HR
end-to-end simulator was used to generate a stack with 20
images and along-track baselines uniformly distributed in the
interval between ±110 m. A series of 50 almost aligned strong
point-targets were included in the image (signal-to-clutter ratio
larger than 50 dB). The distribution of the targets and their power
in this rare scenario can severely impact the staggered SAR
performance. Two areas of linear deformation were simulated,
as well as atmospheric disturbances. Examples of the residual
interferometric phases (i.e., without the topographic phase, the
deformation and the atmospheric phase screen) are shown in
Fig. 13. The results with BLU are shown on the top row, and the
results with the proposed approach on the bottom row. Strong
artifacts associated with the point-targets are clearly recognized,
and their behavior varies according to the baseline. The artifacts
are mainly reduced using the spectral estimation approach,
although residual noise is still visible. Fig. 14 shows the obtained
residual phase histograms when using BLU (solid black) and the
proposed approach (solid red). The histograms were computed
considering the central third of the image, i.e., only the area most
affect by the artefacts, and show a residual standard deviation of
around 10◦ when using the proposed approach.

Persistent scatterers (PSs) were detected at full resolution
considering an amplitude dispersion threshold of 0.2. The PSs
were then processed and the mean differential deformation
velocity was estimated. Arcs with a model coherence greater
than 0.85 were considered valid and, after integration, a verifi-
cation was performed to detect inconsistencies in the integrated
mean deformation velocity. The estimated mean velocities are
shown in Fig. 15 (BLU on the left, MIAA in the middle). The
difference between the mean velocity maps appears on the right

Fig. 13. Residual interferometric phases for along-track baselines of (left)
10 m, (middle) 50 m and (right) 110 m. Results with (top row) BLU and (bottom
row) with the proposed approach.

(for the common points). It is possible to see that despite the
strong targets, the mean deformation velocity is mainly well
estimated in both cases. This is because most side-lobes do not
overlap in the different slaves and the effects cancel in average.
Nevertheless, the BLU map contains a few residual biases (see
red ovals). The larger the baseline diversity, the less likely such
biases will be. In both estimations, it is possible to see that
(residual) artifacts reduced the number of valid points detected
in the middle stripe where the strong-point targets dominate.
This effect will be reduced if temporal coherence instead of
amplitude dispersion (and DSs instead of PSs) are used. Finally,
note that both maps contain residual noise mainly due to the
staggered operation. To quantify the noise, a stack without
any deformation or atmosphere was simulated. The resulting
standard deviation of the estimated mean deformation velocity
was around 0.045 cm/month for BLU and 0.048 cm/month for
the spectral estimation approach. For the same configuration,
the standard deviation obtained using a reference stack formed
by images with a constant PRF was around 0.02 cm/month.

B. Tandem-L Experimental Quad-Pol Scenario

The bandwidth of the transmitted signal in the Tandem-L
quad-pol experimental scenario is larger than the NISAR one,
which results in the strong artefacts being more smeared after
range-cell migration correction [44]. Nevertheless, SEs can still
improve the recovery of point-like targets as suggested by the
performance analysis in Section II-B.

Unlike NISAR, Tandem-L is envisioned as a single-pass
bistatic interferometer, and the decorrelation caused by the
low-oversampled staggered operation will be more visible in
the single-pass interferograms. A cross-platform approach to
recover the blockage in the Tandem-L quad-pol experimental
scenario—similar to what we proposed in [36] for the retrieval
of the missing caused by the synchronization link in TanDEM-X
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Fig. 14. Phase histograms over a region of interest containing the strongest artefacts at the center of the scene. The plot in the left corresponds to the 10 m baseline
case, in the middle to the 50 m baseline case, and on the right to the 110 m baseline case. The curves in black show the results using BLU, whereas the one in red
show the results with the proposed approach.

Fig. 15. Estimated mean deformation velocity with (left) BLU and (middle)
the proposed approach. The difference map for common PSs appears on the
right over the reflectivity image obtained with BLU.

data—could be an option to maximize the bistatic coherence
while minimizing phase noise and/or artefacts. Since the current
plan for Tandem-L is to have continuous acquisition by the slave
system (i.e., the slave image would have no missing data), the
bistatic data could be always used to interpolate the monostatic
one, regardless of the along-track baseline (naturally, with vary-
ing performance according to the spectral overlap). The cross-
platform interpolation requires the compensation of the response
of one system with respect to the other, e.g., compensation for
different system gains or antenna patterns, among others. How-
ever, the effects of the lack of precise calibration information
and of changes in the back-scatter of semitransparent media due
to the different geometries have to be further investigated.

A suboptimal approach which can decrease the decorrelation
caused by the staggered operation is to match the processing
filters. Specifically, blockage can be forced on the originally
nonblocked coregistered bistatic slave at the same positions
where the blockage of the monostatic master is expected to be.
This will degrade the quality of the bistatic image, but can
reduce coherence loss. An example considering such strategy is

Fig. 16. (Top) Bistatic slave amplitude and (bottom) single-pass interfero-
metric coherence, for an along-track baseline of 100 m and zero accross-track
baseline. For the results on the left column, the proposed approach was employed
to correct the blockage of the master and the slave has no blockage. For the
results on the right column, the master blockage was forced on the slave and the
proposed approach was applied to both images.

shown in Fig. 16. The figures on the top show the bistatic slave
amplitudes, and the ones on the bottom show the single-pass
interferometric coherences. An along-track baseline of 100 m
and zero across-track baseline were considered. For the results
on the left column, the proposed approach was employed to cor-
rect the blockage of the master while the slave has no blockage.
For the results on the right column, the master blockage was
forced on the slave raw data and the proposed approach was ap-
plied to both acquisitions. Although such approach can improve
the performance of coherence based applications, it can also lead
to phase biases depending on the blockage distribution within
the synthetic aperture and on the quality of the interpolation.
Moreover, it is clearly not indicated for amplitude-based appli-
cations, due to the inherent decreased quality loss of the slave
image. As stated earlier, better performance can be potentially
obtained if we interpolate the master blockage using information
from the bistatic slave. This is the topic of a follow-on research
work.
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V. CONCLUSION

In this article, we proposed an alternative strategy for the
handling of low-oversampled staggered SAR data. The approach
relies on the recovery of the blockage data using spectral-
estimation techniques applied to data in the range-compressed
domain, and on the discrimination between valid and invalid
recovery results based on the characteristics of the estimated
spectra. We validated the methodology with simulations con-
sidering the experimental Tandem-L fully polarimetric 350 km
swath mode, and an eventual staggered NISAR scenario with
chirp duration of 47 μs and swath of 240 km. The obtained
results confirm that the proposed approach is a viable solu-
tion for future systems and/or modes which cannot afford the
high oversampling ratio required for standard staggered SAR
operation.

Although the proposed approach relies on the use of BLU and
MIAA as the interpolators in the raw-data domain and range-
compressed domain, those can be replaced by other interpolators
according to availability. For example, the use of SEs, which
consider a certain spectral extent [45] or newly developed SEs
for mixed spectra [46] could be evaluated as an alternative to
MIAA, at the possible expense of computational complexity.
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