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Design of a Metalens for Correcting the Phase Distortions
of a Hemispheric Dielectric Radome in the Ka Band

Ezgi Öziş1, *, Andrey V. Osipov1, and Thomas F. Eibert2

Abstract—Metasheets are ultra-thin sheets built from sub-wavelength resonators designed to achieve
certain frequency-dependent transmission behavior. A semianalytical approach based on an equivalent
circuit representation is proposed to calculate the microwave transmission through metasheets consisting
of two-dimensional periodic arrays of planar circular metal rings on a dielectric substrate. In the
semianalytical approach, the impedances of the equivalent circuit are parameterized and fitted to match
the values of transmission coefficients obtained by full-wave simulations at selected frequency points.
As dimensional parameters, the outer radius and width of the ring are considered. A metalens with four
concentric zones is designed by using this semianalytical approach to correct the phase distortions due
to a polypropylene hemispheric radome at frequencies around 28 GHz in the Ka band. It is shown that
the designed metalens works well for 27 GHz, 28 GHz, 29 GHz, and 29.5 GHz, implying the bandwidth
of approximately 2.5 GHz. The field transmitted through the metalens and the radome is calculated
by Physical Optics (PO). The electrically large integration area is divided into small square facets to
calculate the PO integral. The calculated and measured results are shown to agree well.

1. INTRODUCTION

Radomes protect antennas from environmental effects like rain, snow, wind, and ice. On the one hand,
every radome causes distortions in the phase and amplitude of the transmitted fields. For enhancing
the performance of the antenna system, the radome should be properly designed according to the type
of the application. For correcting the phase of a transmitted wave, the thickness of the radome wall can
be changed in different sections [1]. The adjustment of the thickness is not an easy task, particularly
for an electrically large radome. For improving the electromagnetic properties of the radome, different
types of materials and shapes have been studied. For example, an additional hydrophobic covering of a
radome can be used to decrease the losses due to the wet surface of the radome [2].

Metasheets are two-dimensional engineered structures involving a dense array of electrically small
particles in a dielectric substrate. The structures, also called metalenses, permit controlling the
direction, phase and amplitude of the transmitted wave, shaping the beam and improving the gain
of the enclosed antenna [3]. Metalenses are available for increasing the gain, optimizing the return
loss [4], high-quality imaging beyond the diffraction limit [5, 6], improving the communication capacity
in nanophotonic systems [7], regulating the radius of the vortex beam in the microwave region [8],
controlling the phase of transmission and/or reflection in broadband microwave applications [9] and
collimating microwave radiation from an antenna [10]. The electromagnetic properties of microwave
radomes can be enhanced with metasheets when the conventional lenses cannot be used, for example
because of a too large volume and weight. Interesting applications in the Ka band, e.g., [11–13], suggest
the need for further studies of the corresponding radomes.
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In this study, a metalens is designed to correct the phase distortions caused by a hemispheric radome
in the Ka band (between 26.5 and 40 GHz). The metalens consists of concentric circular zones, where
the dimensions of the resonators are different. The design is inspired by the well-known Fresnel lens. As
it is known, a Fresnel lens consists of a set of concentric annular sections of the same curvature as the
standard lens but with reduced thickness and with stepwise discontinuities between them, e.g., [14, 15].

In our design, the thickness of the lens is constant, and only one type of the dielectric substrate is
used. Copper circular rings with varying radii are used as resonant inclusions. Linear polarization and
normally incident waves are considered. In this study, the semianalytical method based on an equivalent
circuit model [16] is generalized to include two geometrical parameters of the resonator in the design of
the metalens. For the calculation of the phase distortion upon the transmission through the radome,
a ray tracing algorithm is used. The Physical Optics (PO) approximation is applied to calculate the
electric field transmitted through the metalens and the radome. The metalens and radome have been
manufactured and measured. The results of the PO calculation and of measurements are compared. The
extended semianalytical approach for two parameters is explained in Section 2. The metalens design is
presented in Section 3. The PO calculation and the approximations in this calculation are described
in Section 4. The measured and calculated results are compared in Section 5. The conclusion is given
in Section 6. Throughout the paper, a time dependence ejωt with angular frequency ω is assumed and
suppressed.

2. SEMIANALYTICAL APPROACH WITH TWO DIMENSIONAL PARAMETERS
FOR AN INFINITE PLANAR ARRAY OF RESONATORS

The semianalytical approach described in [16] can be used for differently shaped planar particles and
according to the shape of the particle, different dimensional parameters can be used. In this study, the
main principle of the semianalytical method is still valid but the number of dimensional parameters is
now equal to two, and these parameters are the outer radius rout and the width of the ring

w = rout − ri, (1)

where rin is the inner radius. The normalized width is defined by

wn =
w

p
, (2)

and the normalized outer radius by
rn =

rout

p
, (3)

where p is the unit-cell length. The transmission coefficient for the metasheet can be expressed as

T =
(q1 + 1)(q2 + 1)e−k�2(α+j(β−1))

1 + q1q2e−2k�2(α+jβ)
, (4)

where α =
√

ε′r tan δ

2 , β =
√

ε′r, l2 is the thickness of the substrate, and k is the free-space propagation
constant (k = 2π

λ ) [16]. The parameters q1 and q2 are the internal reflection coefficients at the interfaces
between the array of rings and the dielectric layer and between the dielectric layer and free space
(vacuum), respectively. The internal reflection coefficients are written in terms of normalized impedances
as it is explained in [16]. Transmission blockage occurs when both the real and imaginary parts of
transmission coefficient become zero, which leads to the condition for the normalized propagation
constant [16]

k2
nor = F3 =

F2

F1
, (5)

where knor = kp. The material of the ring is copper. The thickness of the ring is 0.018 mm. The
frequency range is between 18 GHz and 46 GHz.

The dielectric substrate is Megtron6. The thickness of the substrate is 2 mm. The periodicity p
is 3 mm. The same simulation setup in ANSYS HFSS is used as in [16]. The material of the airbox
is vacuum. The length of the airbox l between the Floquet ports is 50 mm. To extract the phase
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of the transmission coefficient, the simulation data S21 is multiplied by ejkl to eliminate the airbox
effect on the phase. The relative permittivity of the dielectric substrate has been measured with a
free-space method to compute the reflection coefficient of the substrate. The infinite planar dielectric
substrate has been simulated in HFSS to find the relative permittivity by matching the simulated and
the measured reflection coefficients with the result that the relative permittivity of the substrate is
4.33 and the dielectric loss tangent of the substrate is 0.006. The transmission blockage frequency
depends only on the ratio of F2 and F1 [16]. The presence of a dielectric substrate may dramatically
affect the blockage frequency; therefore, the fittings are done on F1 and F3. The expressions for F1

and F3 used in [16] should be rewritten because of the additional dimensional parameter (width). The
transmission coefficient is determined from F1, F2, F3 as explained in [16]. The four different width
values 0.1 mm, 0.13 mm, 0.16 mm, and 0.19 mm are used in the fitting. For each width, five different
outer radii 0.9 mm, 1 mm, 1.1 mm, 1.2 mm, and 1.3 mm are chosen. F1 and F2 are unitless functions of
dimensional parameters [16]. The fitting of the free parameters F1 and F2 is done by the curve fitting
tool in Matlab for the full-wave simulated amplitude of S21 in [16]. Tables 1, 2, 3 and 4 display the
calculated values of F1 and F2 for the selected values of rin and w.

The parameters F1 and F3 can be approximated by exponential functions of the normalized
parameters rn and wn as

F1(rn, wn) = A1e
c1(wn)rn + B1e

d1(wn)rn (6)

F3(rn, wn) = A3e
c3(wn)rn + B3e

d3(wn)rn , (7)

where the coefficients c1, c3, d1, and d3 depend on wn, and the coefficients A1, A3, B1 and B3 are
constant coefficients.

Approximating the arguments of the exponential functions in Eqs. (6) and (7) by the first two

Table 1. Parameters F1 and F2 for several values of inner radius (width 0.1 mm).

ri (mm) F1 F2

1.2 0.3151 0.8407
1.1 0.3340 1.1260
1.0 0.3653 1.5310
0.9 0.4067 2.0990
0.8 0.4668 2.9520

Table 2. Parameters F1 and F2 for several values of the inner radius (width 0.13 mm).

ri (mm) F1 F2

1.17 0.2936 0.8261
1.07 0.3130 1.1090
0.97 0.3415 1.5070
0.87 0.3809 2.0650
0.77 0.4375 2.8920

Table 3. Parameters F1 and F2 for several values of the inner radius (width 0.16 mm).

ri (mm) F1 F2

1.14 0.2749 0.806
1.04 0.2936 1.093
0.94 0.3205 1.484
0.84 0.3587 2.036
0.74 0.4135 2.859
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Table 4. Parameters F1 and F2 for several values of the inner radius (width 0.19 mm).

ri (mm) F1 F2

1.11 0.2588 0.7958
1.01 0.2777 1.0860
0.91 0.3018 1.4660
0.81 0.3397 2.0220
0.71 0.3918 2.8300
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Figure 1. Surface fitting results for the F1 data.
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Figure 2. Surface fitting results for the F3 data.
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terms of their Taylor series gives the formulas

F1(rn, wn) = A1e
c11rn+c12rnwn + B1e

d11rn+d12rnwn , (8)

F3(rn, wn) = A3e
c31rn+c32rnwn + B3e

d31rn+d32rnwn . (9)

For calculating the coefficients in Eqs. (8) and (9), the calculated values of F1 and F3 for each width
value are arranged in matrix form, and the Matlab curve fitting tool is applied to this matrix. For the
fitting algorithm, the Levenberg-Marquardt algorithm is chosen. The coefficients are not unique. When
the fitting algorithm is changed, the values of the coefficients may slightly change. The functions in
Eqs. (8) and (9) are fitted on the exact data for F1 and F3 (Tables 1, 2, 3 and 4) with a good agreement
as seen in Figs. 1 and 2. The calculated coefficients of the exponential functions are presented in Tables 5
and 6.

Table 5. Values of the coefficients in the approximation in Eq. (8).

Coefficients F1

A1 0.1991
B1 4.0640
c11 0.9071
c12 −11.9200
d11 −8.595
d12 −27.69

Table 6. Values of the coefficients in the approximation in Eq. (9).

Coefficients F3

A3 43.190
B3 3.754
c31 −6.789
c32 11.410
d31 −17.060
d32 128.100

3. METALENS DESIGN

By using this extended semianalytical approach, the metalens will be designed. We have studied
a hemispheric radome from polypropylen (PP) with the measured relative permittivity 2.242, and
dielectric tangent loss is 0.001. The thickness of the radome is 5 mm. The inner diameter of the
radome is 190 mm. The metasheet is located at the basis of the radome (Fig. 3). Even for a plane
wave propagating along the symmetry axis, the incidence angle varies across the curved radome surface,
which results in the distortion of the wave upon transmission through the radome. The metalans is
designed to correct the phase of the transmitted wave, i.e., to make the wave front plane again. Since
the refractive index of PP is almost real-vaued and only slightly different from unity, attenuation and
multiple reflections in the radome wall are neglected. Multiple reflections between the radome and the
metalens can also be neglected because of a good transparency of the lens. For an obliquely incident
plane wave, additional reflections in the interior of the radome could occur.

The metasheet is divided into 4 zones (Fig. 4). On the one hand, too many zones will result in too
narrow zones which can not be homogenized. On the other hand, a too small number of the zones will
lead to large phase jumps between the zones. The width of each zone is different. The largest one is the
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Figure 3. A hemispheric dielectric radome, a metalens at its basis and the direction of incidence of a
plane wave.

Figure 4. Metalens with four zones; the dashed line shows the position of the radome.

middle zone because the zones, which are close to the rim of the radome, should be small to compensate
the faster phase variation. The design frequency is 28 GHz. The phase distribution along the diameter
of the radome is calculated in Matlab by a ray tracing algorithm from [17]. The small imaginary part
of the dielectric constant is neglected in the calculation because it does not influence the phase of the
transmission coefficient.

The propagation of the ray in free space and through the radome is shown in Fig. 5. In the ray
optical approximation, the transmission coefficient can be written as

Tradome =
ejk|AB|T12e

jkd|BC|T21e
jk|CD|

ejk|AE| , (10)

where T12 is the transmission coefficient from medium 1 to medium 2 in Fig. 5; T21 is the transmission
coefficient from medium 2 to medium 1; and kd is the propagation constant in the radome medium. The
distances |AB|, |BC|, |CD|, and |AE| are shown in Fig. 5. |AE| is the distance between the source and
the ground without radome. These transmission coefficients are found by using the Fresnel equations.
The deviation of Tradome from a constant value is the distortion of the phase of the transmitted wave.
In the absence of the radome, the ray from A would propagate parallel to the axis AE. In the presence
of the radome, the ray is refracted to point D.

To correct the distortion of the transmitted wave, the zones are realized as metasheets filled with
differently sized metal rings. For determining the values of the outer radius and the width of the metal
rings, the semianalytical method described in Section 2 is used. The unit-cell is 3mm at each zone.
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Figure 5. The transmitted rays are no longer parallel because of the curvature of the radome surface.

Figure 6. Comparison of calculated and measured phase values at 28 GHz and the expected constant
phase value upon the phase compensation by the metalens.

The measured and calculated phase values along the basis of the radome are shown in Fig. 6, and they
match with each other. The distance between the basis of the radome and the receiving antenna is
10 cm in this measurement. For the metalens design, the phase distribution is discretized as a step
function. The phase values rapidly change when the observation point moves closer to the rim of the
radome. The calculated phase distribution is divided as given in Table 7.

The arithmetic average of the phase variation within each zone is calculated and used in the

Table 7. Division of the calculated phase distribution in four zones.

Position along the radius (mm) Phase range for each zone (degree)
95–56 from −83.55 to −88.44
55–31 from −88.72 to −99.38
30–12 from −100.05 to −119.00
11–0 from −120.70 to −146.40
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Table 8. The averaged phase values at the basis of the radome and the phase values upon transmission
through the metalens by the semianalytical method to correct the phase distortion.

Position along the
radius (mm)

Phase at the basis
of radome (degree)

Calculated phase
of metalens (degree)

95–56 −85.15 ≈ −85 −136.5998
55–31 −93.35 ≈ −93 −127.3648
30–12 −108.25 ≈ −108 −113.3710
11–0 −131.48 ≈ −132 −88.9739

Table 9. Dimensions of rings to correct the phase distortion.

Position along the radius (mm) Outer radius (mm) Inner radius (mm)
95–56 1.1 0.94
55–31 1.07 0.91
30–12 1.03 0.84
11–0 0.9 0.71

Table 10. Calculated transmission coefficient by semianalytical approach.

Position along the radius (mm) Calculated transmission coefficient at 28 GHz
95–56 −0.4905 − j0.4638
55–31 −0.4727 − j0.6190
30–12 −0.3558 − j0.8233
11–0 0.0174 − j0.9728

design of the metalens (see the middle column of Table 8). The discretized phase distribution and the
expected constant phase upon the combination of the metasheet with the radome are shown in Fig. 6.
Table 8 presents the phase distribution from the center (95 mm) to the wall of the radome (0 mm).
The outer and inner radius values of rings for each zone of the metalens are calculated by the extended
semianalytical method and presented in Table 9. The values of the transmission coefficients calculated by
the semianalytical method are shown in Table 10. These values of the complex transmission coefficients
are used in the PO integration, which is explained in Section 4.

4. PO METHOD FOR TRANSMISSION THROUGH PLANAR METALENSES

Physical Optics is a well-known high-frequency method for the calculation of scattered and radiated
fields by integrating equivalent current densities. The exact current densities on the scattering surface
or on the radiating aperture are not known in advance, and the Geometrical Optics approximation
is used to determine them. The PO approximation works well for electrically large structures. The
main difficulty is that the standard methods of numerical integration may give inaccurate results, and
special integration techniques have to be developed, e.g., [18] and [19]. A well-known approach is that
the integration area is divided into small planar facets, and a first-order polynomial approximation is
applied to the argument of the exponential function [20–22].

In the following PO calculation, the same assumptions as in [23] are made. The difference is that the
surface integral is calculated by summation of contributions from subdomains. An incident plane wave
with a unit amplitude propagates along the symmetry axis of the radom (Fig. 5). The field transmitted
through an aperture Ω, which is in our case the basis of the radome closed with the metalens, can be
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expressed in the PO approximation as [24]

E(r)tr =
jk

4π

∫∫
Ω

g(r, r1)c(r, r1)dΩ, (11)

where c(r, r1) = ŝ1 × JM (r1) + Z0ŝ1 × ŝ1 × JE(r1), JM and JE are equivalent magnetic and electric
surface current densities, which are calculated from the incident field and the transmission coefficient.
Z0 =

√
μ0

ε0
is the free space impedance, and the unit vector ŝ1 pointing from the integration point r1 to

the observation point r is given by

ŝ1 =
r− r1

|r− r1| . (12)

The Green’s function is

g(r, r1) =
e−jk|r−r1|

|r− r1| (13)

and |r − r1| is the distance between the integration point r1 and observation point r (Fig. 7). The
thickness of the metasheet is neglected, therefore z1 = 0. The integration region Ω is subdivided into
sufficiently small square facets. With this calculation approach, the function c(r,r1)

|r−r1| can be assumed
constant at each facet, and only the exponential factor is to be integrated in Eq. (11). The transmission
coefficient, which is required for the calculation of the equivalent currents in the Geometrical Optics
approximation, is a product of Tradome and the homogenized transmission coefficients of the metasheet
zones, calculated by the semianalytical approach described in Section 2.

The argument of the exponential function is expanded in a Taylor series, and since the facets are
small, only the first terms are included [25, 26]

E(r)tr =
jk

4π

∫∫
Ω

e−jk|r−r1|

|r− r1| c(r, r1)dΩ =
jk

4π

∑
n

c(r, rcn)
|r− rcn|

∫∫
Ωn

e−jk|r−r1|dΩ. (14)

The surface integral over the flat facet Ωn can be analytically calculated as∫∫
Ωn

e−jk|r−r1|dΩ ∼= anbnsinc
(

k

2
(ŝcn, r2n − r1n)

)
sinc

(
k

2
(ŝcn, r3n − r2n)

)
e−jk|r−rcn|, (15)

Figure 7. A rectangular facet Ωn, the origin of a
coordinate system and the observation point r.

Figure 8. Manufactured metalens is positioned
at the basis of the radome.
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where ŝcn = r−rcn
|r−rcn| is the unit vector; rcn = 1

4(r1n + r2n + r3n + r4n) is the center of the facet; and r1n,
r2n, r3n, r4n are the tip points of the facet (Fig. 7). If the facet is square, then an = bn, where an and
bn are the lengths of the sides.

The radome and metasheet are positioned on a circular aperture in an impenetrable screen (holder
covered with an absorber). This means that the transmission coefficient of the screen outside the
aperture is zero, which is accounted for in the PO calculation. The receiving antenna is located 6 cm
behind the aperture and is moved parallel to the basis of the radome. It is sufficient to scan along
one axis because the radome and the metasheet are rotationally symmetric. In the calculation, the
amplitude of the incident plane wave is assumed to be unity. The field transmitted through the radome
is calculated by ray tracing, and this is the field illuminating the metalens. The field transmitted
through the metalens is calculated by multiplication with the homogenized transmission coefficient
of the respective metalens zone. Without the metalens at the basis of the radome, the value of the
transmission coefficient is 1. A Matlab spline interpolation function is used to calculate the transmitted
field on the basis of the radome from a set of values at discrete points along the radius of the radome.
The PO calculation has been curried out in Matlab.

5. COMPARISON WITH MEASUREMENTS

In this section, the measured and calculated results are compared. The measurements have been
conducted at the Microwaves and Radar Institute of the German Aerospace Center in Oberpfaffenhofen.
The measurement setup is described below. This comparison helps to estimate the accuracy of the PO
calculation and validates the design. The metasheet is located at the basis of the radome as shown
in Fig. 8. The distance between the metasheet and the probe is 6 cm, and the probe has been moved
parallel to the radome basis over the distance 200 mm. The holder is used to keep the radome and/or
metasheet in a fixed position. Measurements were performed for four cases. First, the radome is
placed in the holder. Second, the radome and the metasheet are placed in the holder. Third, only the
holder is present. Fourth, the measurement is done in free space, i.e., without radome, metalens and
holder. For keeping the continuity of the phase values, 360◦ is added or subtracted. A dielectric lens
has been placed between a transmitting antenna and the radome to convert the antenna beam into a

Figure 9. Measured phase values of the field
transmitted through the radome with and without
metalens at three different frequencies.

Figure 10. Comparison of the measured and
calculated amplitudes of the fields transmitted
through the radome and the metalens at 28 GHz.
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plane wave. As observed in Fig. 9, the metalens compensates the position-dependent phase distortion
of the wave transmitted through the radome, making the phase almost constant over the radome basis.
The metalens has been shown to work well for 27 GHz, 28 GHz, 29 GHz and 29.5 GHz, implying the
bandwidth of approximately 2.5 GHz. The amplitudes of the calculated and measured fields match well
as seen in Fig. 10. There is also a good agreement between measured and calculated phase values as
shown in Figs. 11 and 12.

Figure 11. Measured and calculated phases for
the radome without metalens at 28 GHz.

Figure 12. Measured and calculated phases for
the radome and metalens at 28 GHz.

6. CONCLUSION

The main result of this work is a simulation method for the design of a metalens to compensate the phase
distortion due to a hemispheric radome. The results of performed calculations and measurements have
shown that a designed metalens works well to correct the phase distortion. The employed semianalytical
approach helps to optimize the metasheet design with very few full-wave numerical simulations. It has
been shown that the PO method can be used to estimate the electromagnetic fields transmitted through
electrically large inhomogeneous metamaterial structures. In the PO calculation, the integration region
is subdivided into smaller regions, at which the linear approximation of the phase factor is applicable,
to calculate the PO integral efficiently over electrically large metamaterial apertures.
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23. Öziş, E., V. A. Osipov, and F. T. Eibert, “Physical optics and full-wave simulations of transmission

of electromagnetic fields through electrically large planar metasheets,” Advances in Radio Science,
Vol. 15, 29–35, 2017.

24. Osipov, A. V. and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications,
Wiley, United Kingdom, 2017.

25. Crabtree, D. G., “A numerical quadrature technique for physical optics scattering analysis,” IEEE
Transactions on Magnetics, Vol. 27, No. 5, 4291–4294, 1991.

26. Carluccio, G. and M. Albani, “Efficient adaptive numerical integration algorithms for the evaluation
of surface radiation integrals in the high-frequency regime,” Radio Science, Vol. 46, No. 5, 1–8,
2011.


