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Abstract
Ever increasing demands on the complexity of onboard software has lead the European Space Agency to define the
On-Board Software Reference Architecture (OSRA) creating a common framework for modeling onboard software
for space applications. OSRA provides tools for the description of onboard software (OSW) in a component-centric
way, but leaves the implementation of the OSW itself or related auto-coding tools to other institutions. As a first
step towards a code-generation framework from high level software models, we present source code mappings from
the OSRA data type model to a C++ type system. The goal of the framework is to take care of type safety and value
consistency issues and to provide an intuitive interface to the application developer for defining and working with
data types, while at the same time having the target of auto-coding in mind. We use language features introduced
with the modern C++ standards to allow for extensive validity checks at compile-time and additional checks at
runtime.
For the integration with OSRA tools, we take an intermediate step transforming the graphically declared types
of OSRA into an ASN.1 representation before generating the corresponding C++ source code. The integration is
bidirectional, i.e. data types, which have been constructed solely in ASN.1 notation, can also be used inside OSRA
models which helps maintaining more complex data structures in a textual format and enables us to use existing
complex data sets from previous projects and from The Assert Set of Tools for Engineering (TASTE) project to
test the feasibility and the limitations of the type system.
In the end, we present a type system which can be auto-generated and automatically avoids common sources of
error like faulty initialization, out-of-bound access and accidental range overflows. Such errors cause compile-time
errors if possible and runtime errors otherwise. In order to provide developers with a practical solution, efforts
were made to facilitate integration with existing code bases or third party libraries which allows an iterative process
of adaption.
We strive to generate complete onboard software projects from the OSRA component model. The data type system
defined here provides therefore the basis for that endeavor as it determines the way components will exchange data
and how developers will need to interact with them.
Keywords: Code Generation, Model-driven Software Development, C++

1. Introduction the onboard processing system will directly carry over
to increased demands on the onboard software. As a re-
sult, increased complexity of the software in terms of
greatly increased number of lines of code and possible
interference between software parts running on the on-
board system can be expected. At the same time the
development cycles for new spacecraft are reduced to
often only few years [3, 4] and the software engineering
is pushed further behind in the project schedule. This
leaves software development with the need to produce
more complex onboard software and consequently more
software tests in a shorter amount of time while achiev-
ing high reliability of the software.

With the next generation of onboard processing sys-
tems soon to arrive [1] and the increased use of commer-
cial off-the-shelf (COTS) parts [2], the amount of pro-
cessing power in spacecraft onboard systems will con-
tinue to rise significantly in the foreseeable future. As
the processing power increases much faster than avail-
able bandwidth, the onboard systems will need to carry
out more post-processing of generated data. The de-
mand for longer autonomous periods of operation re-
sults in more complex behavior of the spacecraft and
finally the more available processing power will also
allow the application of sophisticated algorithms for

spacecraft (attitude and orbit) control and instrument op-
eration.
Obviously, the higher demands on the capabilities of
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New development paradigms and tools can help to
reduce the share of manual coding. Using extensive
compile-time checks and auto-generation of boilerplate
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code can support developers to avoid coding mistakes
which are spotted only late in the project. The final goal
is to allow the software developer to focus on imple-
menting the functional code of his respective module
without the burden to worry about too many details of
cross coupling with other modules out of his expertise.

This paper presents the first steps toward this goal us-
ing OSRA drafted by ESA. In Section 2, we start with
presenting the case for a safe data type system followed
by an introduction to OSRA and the way its data types
are defined in Section 3. In Section 4, we briefly discuss
how to transform instances of data types from an OSRA
model into an ASN.1 textual notation as an intermediate
step before generating the final C++ code. Next, the im-
plementation of the safe data types in C++ are presented
in Section 5. The results are discussed in Section 6 in-
cluding a short comparison with the features of the data
type system of the Ada language as a point of reference.
Finally, we present our conclusions and the way forward
in Section 7.

2. The need for a safe data types system

Spacecraft onboard software or safety critical soft-
ware in general strives to be robust by design, pre-
dictible and provide guarantees related to its behavior
in nominal operation and failure conditions. Data types
and data objects are fundamental building blocks of pro-
cedural programming and therefore share a responsibil-
ity towards those goals. They are used abundantly and
may be shared and exchanged among many different
and only loosely coupled modules. Therefore, ensuring
consistency at all times in a reasonably complex applica-
tion without proper support of the compiler or additional
tools can prove to be cumbersome. In cases of transient
value overruns, which only appear during tests on the
embedded target after an extensive run time, it can be
time consuming to track down the correct module intro-
ducing the error. Even when such a bug is identified
and resolved, there is no guarantee that no further bugs
of similar kind are still present in the source tree.

Moreover, unit-testing the interaction of many mod-
ules completely is extremely difficult, if possible at all,
if the overall system becomes reasonably complex and
especially if specialized hardware is involved. Integra-
tion tests might be able to cover such erroneous behav-
ior but, as they often demand manual work and possibly
a special hardware setup, integrating them into continu-
ous integration systems often proves difficult. The work
overhead to run such tests regularly and thoroughly can
easily render them infeasible given only limited devel-
opment resources.

One solution to reduce the amount of possible error
sources are more rigorous compile-time checks on type
compatibility between different modules complemented
with additional runtime checks on value validity. Ide-
ally, the checks are carried out automatically in order
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to remove the burden from developers to maintain such
checks manually in a growing code base. Compile-time
checks are especially valuable for this purpose. They
are readily available on each development workstation,
spot errors as early as possible, are easily integrated into
a continuous integration environment, force themselves
to be dealt with and do not introduce a runtime penalty.
Rigorous value range checking can, if applied properly,
reduce the amount of written unit tests significantly as
many of them deal with simple range checking of input
data to functions. If the data types can guarantee their
value range, many of such tests are superfluous. Finally,
a common way for data type definition with automatic
value consistency checks creates a single interface for
all developers to follow and increases maintainability.

In the past, the Ada programming language has
played an important role for onboard processing systems
in space applications. It provides a type system which
allows extensive compile-time checks and requires ex-
plicit type casts for most conversions. Certified compil-
ers have to fulfill many conditions covered in the Ada
language standard [5] and thereby can give guarantees
about the validity of data objects in most situations.

However, although Ada was designed with safety
critical applications in mind, the C programming lan-
guage has become more dominant in recent years due to
the increased use of COTS systems and their respective
development environments as well as an overall signif-
icantly larger development community. Compared to
Ada, the C/C++ type system is comparably loose. It
does not provide an easy way to limit the value range of
numerical types and thus does not automatically check
for validity during compile-time, during initialization or
at runtime. The lack of in-built support for type con-
straints and corresponding checks for basic types also
progresses further into structured and array types.

At the German Aerospace Center (DLR), we already
have experience and successful flight heritage with on-
board processing systems programmed in a safe sub-
set of C++; even for mission critical software parts
as part of the BIRD [6], TET-1 [4], BIROS [7] and
the Eu:CROPIS [3] satellite missions. With nowadays
widespread availability of compiler suites with support
for modern C++ (i.e. C++11 standard and later) even
for embedded targets, it is now possible to look for new
programming patterns which could prove valuable in the
field of spacecraft onboard software.

In the following, we present a use case which lever-
ages the object oriented nature of C++ and newly in-
troduced language features to build a data type system
with a similar feature set as the one of Ada. A short
overview of the used C++ language features is given in
Section 5.1. The data type system should fulfill the fol-
lowing criteria:

* Support for numerical ranges: Restricting the
values of numerical types to certain ranges allows
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the type system to check and ensure the validity of
data.

¢ Clear and intuitive API: Making it easy for devel-
opers to understand the API and express their intent
in source code helps to increase the maintainability
and the motivation to adopt the new type system.

* Compile-time checks: Spotting sources of errors
like type incompatibilities and possible range over-
flows during compile-time prohibits introducing
those errors into the source code right at the be-
ginning. It also relieves developers from manually
checking for such conditions in the source code and
using unit tests.

* Runtime checks: Runtime checks shall ensure
that the value of a data object stays within its
bounds even after modifications. The checks
should be carried out automatically by the type it-
self instead of burdening the developer to trigger it
manually.

* Memory management: Each data type shall have
a known size at compile-time in order to allow for
static memory allocation. Data objects should al-
ways create a deep copy of its values during copy
assignments.

* Compatibility to existing C/C++ code: Source
code using the new data type system will need to
interact with existing libraries. Therefore, the data
types shall have support for conversion to the basic
types of C++.

In case the data types are to be used in a project in the
future, the success of the adoption depends largely on
the acceptance of the interface by developers. If the in-
terface is perceived as too cumbersome, chances are that
more effort is spent circumventing the API than using it
even though there might be objective benefits. There-
fore, the formulation focuses not only on the definition
of a robust data type system, but also on the usability
of the interface. As the goal is to generate ready-to-use
data types from an OSRA model, the design of the data
type system will have auto-generation in mind as well.
A short overview of the relevant parts of OSRA is given
in the next section.

3. The Onboard Software Reference Architecture

This section introduces the Onboard Software Ref-
erence Architecture. It provides a short overview of
OSRA in general before going into more detail about
the OSRA data type system, as that is the most relevant
section for the presented work.
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3.1 Overview

Within the frame of the Space Avionics Open In-
terface Architecture (SAVOIR) initiative, the European
Space Agency formulates and establishes standards for
avionics development and operation [8]. The long term
goal in this process is to increase the reuseability and
competition in the European space industry through
streamlined processes for avionic systems [9]. The
SAVOIR Advisory group and subgroups, which are re-
sponsible for developing standards for specific topics,
are filled with representatives from ESA, national space
agencies of ESA member states (e.g. DLR, CNES) and
representatives of prime- and subcontractors. In these
efforts the SAVOIR-FAIRE subgroup is responsible for
the definition of the Onboard Software Reference Ar-
chitecture (OSRA).

OSRA has been developed over the years within the
COrDeT studies [10]. The first final release of the cor-
responding metamodel has been released in late 2017,
followed by the publication of an associated model ed-
itor in 2019. Its main goal is to describe the onboard
software for a spacecraft project during its complete life
cycle using a model-driven approach. It uses the separa-
tion of concerns principle to separate the high level soft-
ware architectural design, the functional parts, the non-
functional parts (i.e. scheduling policy, synchroniza-
tion and communication between components), hard-
ware abstraction and finally software deployment on the
modeled hardware from one another.

It is published as an eCore metamodel [11] together
with a graphical eclipse-based model editor to generate
compliant software models and to enforce a certain de-
velopment workflow [12]. However, it does not not pro-
vide any means to generate source code from a model.
The implementation of the code generation from the
model and the selection of a corresponding execution
platform is left to the user of the metamodel.

OSRA promotes a component-based software devel-
opment approach, thus the core entities of the model are
software components. Each component represents an
independent functional software unit. Multiple OSRA
components communicate exclusively through defined
common interfaces where values of previously modeled
data types are exchanged.

During the modeling phase, the first step in the
provided editor’s workflow in a new OSRA modeling
project is the definition of data types for the project.
The defined data types are later used to define the data
objects for exchange between the components through
their dedicated interfaces and for the definition of con-
figuration constants. A robust data type system which
fulfills the requirements of OSRA and can be gener-
ated from an OSRA model is therefore also the first step
towards a fully compliant OSRA development frame-
work. In a previous work, we investigated OSRA’s re-
quirements towards an implementing scheduling sys-
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tem, especially with regard to current DLR software
technologies [13]. This paper concentrates on the data
type system of OSRA. Therefore, other parts, i.e. com-
ponents, hardware modeling, deployment, etc. men-
tioned above are not further investigated.

3.2 The OSRA data type system

The data type part of the OSRA metamodel has a
complex class hierarchy with several layers of abstract
classes, which are used in other parts of the metamodel
to refer to generic types.

That means, besides the common numerical meta
types like IntegerType and FloatType it also pro-
vides constrained versions of these meta types which re-
strict the range of allowed values although the actual bit
representation would allow the representation of a larger
value set. Further elementary meta types include repre-
sentations for booleans, enumerations and fixed point
values.

ArrayTypes are always of fixed length, but it is al-
lowed to specify an index range which does not neces-
sarily start at 0, e.g. an ArrayType could be specified
to have an index range [—2, 2].

The UnconstrainedArrayType represents a meta
type where the array size is not known at compile-time,
but rather set during instantiation of an object at run-
time. Although the name might suggest otherwise, the
UnconstrainedArrayType still has a maximum num-
ber of elements which will be allocated for each object.
The size constraint passed to the object constructor only
reduces the number of available elements of the allo-
cated storage [11]. Otherwise, the requirement for a
fixed size for the type at compile-time could not be ful-
filled. In case the number of used elements are much
smaller, using this type could lead to a significant over-
allocation of memory. For indexing, the same rules ap-
ply as for the ArrayType.

For the construction of complex data types, the
StructuredType and the UnionType meta classes can
be used. Their described behavior is consistent with
the behavior known from statically typed languages
like C/C++ or Ada. Additionally, OSRA defines two
string meta types, namely BoundedLengthString and
FixedLenghtString. However, their feature set is es-
sentially the one of a corresponding array type without
the freedom in choosing the index range.

As soon as a type definition is added to an OSRA
model, it is also possible to instantiate a constant of that
type which will then be available for the construction of
further types, e.g. to construct the bounds of a ranged
integer or in other parts of the model.

Finally, there are two special meta types available:
the AliasType that allows to declare a new type with
the same features as a reference type, but with a new
name and the ExternalType that allows to register data
types which have not been defined through the OSRA
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<<Structured>>
MysStruct

<<Float>>
MyFloat

<<unsigned Integer>>
Mylnteger

fieldEnum:Color

<<Constrained MyFloat>>
ConstraintFloat <<signed Integer>>

Signedinteger

<<Array Color>>
ColorArray
nbOfElements := 20

=5.0

<<C

<<Alias
el

Constraintint

minBound := 0
maxBound := 10

MyBoolean

<<Union :>>
MyUnion

Color <<Constant Constraintint>>
constant

value := 6

fieldBool : MyBoolean blue
fieldint : Constraintint red
fielEnum : Color green

Fig. 1: Example of OSRA data types modeled in the
SCM editor with simple numerical types, constrainted
numerical types, a structured type and an array type.

model itself. For the latter, the OSRA model can not de-
termine any properties, but relies on the external model
to check validity. It only knows about the registered
types’ name which is enough to use it like native types
throughout the model (for example for interface defini-
tion).

Looking at the aforementioned OSRA type system,
it essentially provides a basic type system with a feature
set similar to that of the Ada language. The OSRA editor
provides a graphical interface to define concrete types
and constants from the described meta types. Fig. 1
shows an example of such a data type diagram. For ev-
ery type or constant defined in such a way, a correspond-
ing element is added to the underlying eCore model in-
cluding all the range properties and base type references.

4. ASN.1 as intermediate representation

As presented in the previous section OSRA comes
with a graphical editor for the definition of data types
(see Fig. 1), which shares many similarities with the
modeling of datatypes in UML [14]. While such a rep-
resentation is intuitive for modeling use cases where
structured types only contain a limited number of fields,
keeping it clear for large complex structured type, like
state vectors in avionics systems, can be challenging. In
UML often class classifiers are used even for data type
modeling with the convention to only use attributes and
without operations. With classes it is possible to use in-
heritance relations in the diagram to assemble complex
types from multiple simpler types and thereby improve
readability. A similar scheme is not foreseen with the
type system in OSRA.

Therefore, a textual notation for the data type defi-
nitions would be preferred in such situations. Another
case for a textual notation can be made from the main-
tainability point of view. A human readable plain text
format is very well suited for tracking with common ver-
sion control systems and can be edited with simple text
editors.

We decided to have an intermediate textual represen-
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tation for the data types which is integrated bidirection-
ally with the OSRA metamodel. Types defined through
the graphical editor need to be converted into this inter-
mediate format, but also the types written directly with
the textual notation by a user have to appear inside the
graphical editor, so they can be used, for example, for
interface definitions. Such a situation is exactly the fore-
seen use case for the ExternalType introduced in the
previous section. From this intermediate representation,
a single code generator then produces the corresponding
types implemented in C++ as described in Section 5.

Within the frame of the TASTE project [15], ESA
already evaluated different programming language in-
dependent data type notation schemes and decided to
use ASN.1 [15]. The benefits of ASN.1 are that it is
widespread in the telecommunication industry and it is
an officially standardized notation format. TASTE only
selected a subset of ASN.1 which provides a reasonable
feature set for space applications where type sizes and
value sets must be known at compile-time. The ASN.1
C-Code generator of the TASTE project proves the fea-
sibility of that approach [16].

With selecting ASN.1 for our textual data type no-
tation, we can benefit from these experiences and also
have the option to work towards compatibility between
our OSRA generated applications and TASTE generated
applications in terms of data exchange. In order to in-
tegrate ASN.1 into the OSRA workflow, we used the
Xtext framework to model the grammar of ASN.1 which
is then used to generate an eCore metamodel of the
ASN.1 grammar. Code generators can then be easily at-
tached to the grammar using the Xtend framework [17].
As noted earlier, the OSRA metamodel is also imple-
mented using eCore from the Eclipse Modeling Frame-
work. Thanks to that circumstance, it is also possible
to use the same Xtext/Xtend code generator facilities to
generate the ASN.1 text files from an OSRA model.

The OSRA data type system has less features than
the ASN.1 grammar. A direct translation from OSRA
to ASN.1 is therefore possible. Generating correspond-
ing ASN.1 representations for data types defined with
the graphical editor is therefore comparably straight-
forward. For the reverse direction, a generator sim-
ply creates for every manually entered ASN.1 type an
ExternalType element inside the OSRA model.

Fig. 2 depicts these relationships between the differ-
ent type representation and the generators.

5. Mapping of OSRA data types to C++

There exist already several tools and commercial ap-
plications for generating C++ code from ASN.1 descrip-
tions. What they have in common is that they focus fore-
most on the encoding of the data types to byte streams,
which is the primary purpose of ASN.1. The role of their
generated data types is only to assemble the values to
pass to the encoder. They are not meant to replace the
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[ OSRA Editor ]
Register Generate
‘ Manual ASN.1 Generated ’
Generate

[ o ]

Fig. 2: Flow between the different generation layers

standard type system of C++ and provide only limited
functionality for value validation. Most tools also al-
low for data types of unknown size at compile-time, for
example, array types without a specified maximum of
elements, which would violate common restrictions in
space applications as they would require dynamic mem-
ory allocation.

ESA developed an ASN1-to-C compiler within the
TASTE project for space applications. It supports a sub-
set of the ASN.1 feature set, so that it does not use dy-
namic memory allocation and the size of all generated
types is known at compile-time. However, the C-API
requires developers to manually check the validity of
variables through a function call at runtime, which is
also used by the TASTE framework to check values be-
fore exchanging data between different functional mod-
ules. Compile-time checks are only possible in a very
limited manner constraint by the feature set of the C lan-
guage.

In our approach we focus first on a C++ type system
which automatically ensures value correctness at run-
time without needing developers initiating a validation.
The logic for encoding of types to a byte stream will
be added in another step. The remainder of this sec-
tion presents the mapping of the different type classes
to concrete implementations in C++ and gives brief ex-
amples of the types instantiation, initialization, compile-
time and runtime behavior. OSRA’s terminology for
type definitions differs compared to the one in ASN.1.
For example, a StructuredType in OSRA is repre-
sented by a SEQUENCE in ASN.1 [18]. We decided to
use the ASN.1 terminology for the implementation of
the different types in C++ as it is the terminology of the
intermediate representation. A user who does not work
with the graphical editor for type definitions does not
need to know about those relationships and can directly
relate the terms that she is used to in her textual notation.
A user who is only familiar with the graphical editor for
type definition can still identify the types in the gener-
ated C++ code as it has the same type name.
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5.1 Relevant features of modern C++

”Modern C++” refers to the new language features
introduced with the C++11 and later standards. While
still being backwards compatible to previous C++ stan-
dards, they allow the use of new programming patterns.
A comprehensive discussion of the new C++11 features
would be out of scope of this paper. This section will
focus on the most relevant features used for the design
of the data type system.

Already in classic C++, it was possible to use tem-
plates in order to define classes and their capabilities for
use with different data types and numerical values. The
advantage of templates is that template expressions have
to be evaluated at compile-time, thus if a template is
used wrongly the compiler will abort compilation which
prevents broken code to be introduced into the final bi-
nary. However, with the introduction of C++11 many
new features were introduced to the templating system
which massively increased the flexibility and capabili-
ties of template meta programming [19].

For example, static assertions provide a powerful tool
to check for custom conditions at compile-time. If the
condition is not met, a compile-time error is thrown.
The very extensive set of type traits, which is part of
the standard library, allows to check properties of given
template parameter types at compile-time, alter them
and use the results to define types or as conditions for
static assertions. The introduction of the constexpr
keyword is not only a replacement for constant vari-
ables, but also allows to define expressions which act
like functions but can be evaluated at compile-time if
called with compile-time constants and at runtime other-
wise. The C++14 and C++17 standard further increased
the capabilities of constexpr now allowing if expres-
sions making complex compile-time evaluations possi-
ble. A possibly small but very effective new feature,
which is used extensively, is the extension of the using
keyword for the use of type declarations.

One of the most relevant new features, however, are
variadic templates. Their introduction opens the pos-
sibility to define template classes which have an un-
specified number of template parameters. This allows
to create lists of types or non-type parameters and use
recursive techniques to, e.g., sort or modify the list by
certain criteria at compile-time [19]. Together with the
constexpr and static assertions, this already allows us
to create a powerful compile-time framework which can
check ranges, type compatibility or detect other conver-
sion errors and throw a compile-time error if a rule is
violated.

It also allows to hide much of the functionality of
types in templated base classes and let the concrete type
simply inherit the functionality. Essentially, the com-
piler then generates all the specialized code for a con-
crete type. This has two main benefits: First, the ASN.1
to C++ code generator can be kept comparably simple
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which increases its maintainability. Second, as the com-
piler generates most parts of the functional code, it also
has the required context information for compile-time
optimization. In fact, many of the helper classes which
provide for a convenient user interface are not instan-
tiated in the final machine code, but are optimized out.
The machine code is therefore still very compact while
the programming interface remains expressive.

5.2 Type mapping to C++

This subsection presents the mapping of the ba-
sic type classes of ASN.l, namely the INTEGER,
REAL, SEQUENCE OF, SEQUENCE and CHOICE type
classes [18], to a corresponding implementation in C++.
One key property for all presented types is the guaran-
tee of a default constructor which always initializes a
variable to a valid state. If a value is passed for initial-
ization it is tested at compile-time, if possible, or latest
at runtime. Once a type is properly initialized, subse-
quent assignments of values are checked at runtime in
order to ensure validity of the held value for the whole
life time of an object.

One of the main goals of the developed meta types
is code-generation friendliness. After all, the final type
declarations are to be generated from their respective
model representation in ASN.1.

5.2.1 Integer Types

The Integer types of OSRA allow for the definition
of a single range. The INTEGER type class of ASN.1 al-
lows more complex type constraints like multiple ranges
and single value constraints and combinations of both.
For example, the following type definition allows only
values in the range 1 to 9 (as it is an open interval), 20
to 30 and the value 42.

Index ::= INTEGER ((0<..<10)](20..30) 142)

Mapping OSRA Integer types to ASN.1 is fairly
straightforward. They only allow one range constraint
per type which can easily be satisfied through the ASN.1
notation as shown above. On the C++ side a simple tem-
plate for the definition of ranges has been defined.

template<typename BT,
bool rminOpen=false,
struct Range

{

BT rmin, BT rmax,
bool rmaxOpen=false>

Through template meta programming techniques
several compile-time checks are implemented for the
Ranges. This includes basic sanity checks, e.g., that the
lower bound is smaller than the upper bound and com-
patibility checks, e.g., if one Range is a true subset of
another and if a set of Ranges is a subset of another
set of Ranges. A single value constraint can simply be
expressed as a range where the upper and lower bound
have the same number.
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The general integer type class is then declared for a
given base type and zero or more ranges through vari-
adic template parameters

template <typename BT,

class Integer

{

typename... Ranges>

Using the compile-time checks for the Ranges it is
now possible to check at compile-time if any two integer
types are compatible, i.e. before conversion of one inte-
ger to another it is checked if the target type can hold all
values of the source type. If it is possible, the types are
converted implicitly. constexpr-methods are used to
check variable values during compile-time where pos-
sible and runtime otherwise. However, initializing an
integer variable with a constant integer literal, which
is not explicitly declared as constexpr, does not trig-
ger the compile-time checks (see initialization of k1
in Listing 1). Therefore, in order to enforce compile-
time checks of the initial value, a small helper macro
make_value is used which forces the compiler to con-
duct compile-time evaluation of the passed initial value.
If the passed initial value is not a compile-time constant
it will result in a compile-time error. An example of the
usage and behavior of the integer types is presented in
Listing 1.

using Intl = Integer<int, Range<-10, -5>,
Range<0,10> >;
using Int2 = Integer<int, Range<1,5> >;

void integerFunc(Int2 v);
void legacyFunc(int v);

Intl i1l =

make_value(Intl, 5); // 0Ok
// compile-time error:
Intl j1 = make_value(Intl, 11);
Intl k1 = 20; // Runtime error
Int2 i2 = make_value(Int2, 5);
il = i2; // 0Ok
i2 = il; // compile-time error
il = 3%i2; // Runtime error
integerFunc(il); // compile-time error
integerFunc(i2); // 0k
legacyFunc(il); // Ok

legacyFunc(i2); // Ok
Listing 1: Example use of integer type implementation

Concrete types are created with the using statement
as shown in the first two lines. As the templated meta
class stays the same for all integer types, this also makes
the code generator from ASN.1 very straightforward. It
simply needs to generate the declarative line. The fol-
lowing lines show some common usage scenarios of the
types. Possible range violations during conversions are
directly recognized by the compiler and produce an er-
ror. This includes the conversion during assignment and
conversions during function calls. The types automati-
cally convert into their base types, if necessary, which
allows a convenient interaction with legacy code.
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In these cases, of course, after the conversion to a
C++ standard type, no further checks are possible for
this part of the program, but once the result of, for ex-
ample, a function call is assigned to an integer class, run-
time checks are enabled again. This behavior accounts
for the fact that any move to a new type system will be
an iterative process, thus interoperability with existing
code bases or third party libraries is important.

5.2.2 Real Types

For REAL types, which represent floating point vari-
ables, essentially the same approach as for INTEGER
types is used. The C++ language does allow non-type
template arguments only to be integer literals. As a re-
sult, the bounds of the Range type can not be defined
using floating point constants similar to the bound def-
inition of Integer types in the previous sub-section. A
work-around is a non-template declaration of the Range
class with bounds directly as constant expressions. An
example is given in Listing 2. After that, the usage of
REAL types behaves in the same manner as for INTEGER
types with float or double as possible base types.

// Not possible:

using F1 = Real<float, Range<0.5f, 1.0f>;

// Define ranges

struct Rangel {
static constexpr float min = 0.5f;
static constexpr float max = 1000.5f;
static constexpr bool minOpen = false;
static constexpr bool maxOpen = false;

}s

struct Range2 {
static constexpr float min = 5.5f;
static constexpr float max = 400.0f;
static const bool minOpen = false;
static const bool maxOpen = false;

};

// Define ranged float
using RFloat = Real<float,Rangel,Range2>;
RFloat f1 = make_value(RFloat, 42.0);

Listing 2: Definition of real types

Nevertheless, generating the non-templated ranges
for real types is an easy task as all necessary informa-
tion is available in the description of the corresponding
ASN.1 type.

5.2.3 Sequence Of Types

A SEQUENCE OF type is a list of consecutive vari-
ables of the same type, in other words an array. For array
types several things have to be considered. First, the in-
ternal storage of the array data needs to be decided. The
straightforward way of storing an array of integer types
as a block of consecutive integer type objects has sev-
eral drawbacks. The memory footprint would be signif-
icantly larger, as every object of an integer type holds its
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own this-pointer. For example, for integer types with 8-
bit integers as underlying representation the actual size
of the type might be several times larger to a standard
array due to alignment constraints of the class types.
Moreover, the resulting array types could not easily con-
vert into standard C++ arrays for use in legacy code.
Therefore, the functionality of the array types is split

up in two parts: storage and presentation. The base class
SequenceOf is the main interaction point for the user. It
owns the data, but internally creates an array of the base
type of the passed integer or real type (see Listing 3).

template<typename T,

class SequenceOf;

{

typename T::BaseType mArray[N];
public:

typename Range>

Listing 3: SequenceOf template with storage definition

The memory footprint is then again the same as for
a standard C++ array of equal size plus the this-pointer
of the Sequence0f object. Conversion to standard C++
arrays for legacy functions is then trivial again.

Restricting mutable access to elements of the array to
be always carried out with the appropriate range checks
enabled is another use case to be fulfilled by the imple-
mented class. This proves difficult as no object is avail-
able to pass by reference to the caller.

The C++ class template FixedSpan bridges this gap.
It has a similar function as the span class of the Guide-
lines Support Library for C++. It holds internally a
pointer to an element of a corresponding Sequence0f
object and allows access only through a safe interface.
The FixedSpan is also available to grant access to only
a sub-range of the original Sequence0f, for example,
in order to pass to a function.

Listing 4 provides a set of exemplary usage scenarios
for the usage of the Sequence0f class and its interaction
with the FixedSpan class.

using I1 = Integer<int, Range<0,100>>;

// Define 3 element array

using Arrayl = Sequence0f<I1, Range
<-1,1>>;

// 0Ok:

Arrayl al = make_value(Arrayl, {0,1,2});

constexpr int raw[3] = {0,1,2};

Arrayl a2 = make_value(Arrayl, raw); // 0k

// compile-time error:

Arrayl a3 = make_value(Arrayl, {0,-1,2});

// Runtime error:

Arrayl a4 = {0,-1,2};

// Set value via FixedSpan:
al[1] 42;
a1[o] -1;

// Runtime error

// Pass mutable span to function
foo(al.toSpan<Range<0,1>>());

// Initialize array via span
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using Array2 = Sequence0f<I1, Range<0,1>>;
Array2 bl = al.toSpan<Range<0,1>>();

Listing 4: Examplary usage of SequenceOf

Although the addition of the FixedSpan class looks
like an additional level of indirection at first, in most
cases the class is optimized out by the compiler which
could be confirmed through the examination of the gen-
erated assembly code generated with the default opti-
mization level 2. The code to translate a user index to
the actual element in the internal data storage is done
by the compiler itself based on the templated array sub-
script operator of the Sequence0f base class.

5.2.4 Sequence types

The types discussed until now were uniform and mul-
tiple instantiations of a template only differed in the
passed template parameters. Hence, a concrete type
could often be defined in a single line. On the con-
trary, structured types need to handle collections of dif-
ferent type classes. In ASN.1 the SEQUENCE types are
collections which map their fields by name to a cer-
tain type. The concept is very similar to structs in C.
In fact, the SEQUENCE types could be modeled compa-
rably easy with structs, but this approach would intro-
duce a couple of drawbacks. For example, all defined
struct types would be independent without a common
base class. That means, there is no common way to tra-
verse through all fields which would make it necessary
to generate the validation infrastructure individually for
each struct type. This puts a significant burden on the
code generator and would increase with any additional
feature which would be introduced, e.g., serialization.
Additionally, the resulting type declaration would be
comparably large and complex.

Instead, we propose a tuple-based implementation.
This yields several advantages. As tuples allow to tra-
verse all of their fields and their respective types at
compile-time it is possible to move the validation infras-
tructure into the tuple base class. A concrete SEQUENCE
type simply inherits from the base class and the com-
piler will generate the concrete validation functions on
the fly. Serialization extensions could then be added in
a similar fashion in the base class and without the need
to change the C++ code generator.

However, tuples identify their fields not via a name,
like structs, but through its respective position in the
tuple. Hence, the C++ code generator needs to gener-
ate this mapping between field and field name. This is
nonetheless a straightforward task.

In Listing 5 an exemplary implementation generated
for a SEQUENCE type with the name TSeq is shown.
There are several key elements to note: The type itself
inherits from a tuple-based class Sequence and passes
the types of all contained fields to it. This already allo-
cates the memory for the fields and sets up the valida-
tion infrastructure of the type. In order to avoid reim-
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plementing all constructors for tuple initialization, the
constructors are also imported from the Sequence base
class.

Next, one specialized constructor with the base type
as parameter needs to be implemented. This allows to
initialize variables of TSeq with the make_value macro
in the same manner as for all previous types. Finally, the
mapping of the field names is provided for each field in
order to grant access to the stored values. The type of
each field is known by the generator and can be used
for the declaration to increase readability. However, it
would have been also possible to use the more generic
alternative declaration.

using TInt = Integer<int, Range<O,

using TFloat = Float<Rangel>;
using TArr = Sequence0f<TInt,

10>>;
Range<0,1>>;

class TSeq
: public

{

public:

// Inherit constructors

using Base = Sequence<TInt,

using Base::Sequence;

Sequence<TInt, TFloat, TArr>

TFloat, TArr>;

// Define for validation constructor
TSeq(const Sequence& other)
Sequence (other) {}

// Field to field name mapping
TInt& fieldInt ()
{ return Base::get<0>(xthis); }

// Alternative declaration
Base::element_t<1>& fieldFloat ()
{ return Base::get<1>(*this); }

// USAGE:
// compile-time check:

TSeq seq = make_value(TSeq,
{1, 1.0, {1, 1}});

// Runtime check:

TSeq s1 = {1, 1.0, {1, 1}};

// Runtime check:
s1.fieldInt() = 9;

Listing 5: Implementation of a sequences type

In the lower part of Listing 5 usage examples for
variable initialization and assignment are given. As
with previously mentioned types, if possible, a compile-
time check of the initialization value is done using the
make_value macro otherwise runtime checks are used.
Access to the fields of the sequence is very close to the
usage of plain structs. Only an additional pair of braces
is necessary as the accessors are member functions.
However, the same style is used for the CHOICE type
implementation which provides for a consistent user in-
terface. Sequence types do not implicitly convert into a
corresponding legacy type. Although, it might be possi-
ble to ensure that the internal data layout of the underly-
ing tuple is equal to that of a standard C-struct, this use
case is seen as quite rarely applicable and therefore not
seen as worth the effort.
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5.2.5 Choice types

The CHOICE types have a similar structure as the
SEQUENCE types from the user perspective. Their main
difference is that only one of their typed fields is valid at
a time. Therefore, one of the main error sources to pre-
vent is accidentally accessing the internal data through
the wrong field type.

The CHOICE implementation therefore keeps track of
its current state and creates a runtime error if a field is ac-
cessed which has not been set previously. The type im-
plementation uses the concepts of Discriminated Unions
for internal storage of data as presented in [19], but has
a positional-based access mechanism in order to allow
multiple fields of the same type in a CHOICE. Internally,
it manages an allocated buffer with the size of the largest
field type. The variable value of the active field is cre-
ated in or copied to this buffer and an internal discrim-
inator set to keep track of the active field. Listing 6
provides a short overview of the main features of the
CHOICE type implementation in C++.

using TInt = Integer<int, Range<O, 10>>;/
using TFloat = Float<Rangel>;
using TArr = Sequence0f<TInt, Range<0,1>>;

class TChoice

: public Choice<TInt, TFloat, TArray>
{
public:
using BaseType = Choice<TInt, TFloat,

TArray>;
using BaseType::ReturnT;

ReturnT<0>& fieldInt ()
{ return this->getChoice<0>(); }

ReturnT<1>& fieldFloat ()
{ return this->getChoice<1>(); }

// USAGE:
// Create choice variable
TChoice c1;

// Set choice variable
cl.fieldInt() = make_value(TInt, 1);
// Read correct field:

TInt i1 = cl.fieldInt();

// Runtime error as fieldInt is active
TFloat f1 = cl.fieldFloat();

// Reassign cl
cl.fieldFloat() =
TFloat f1 =

make_value (TFloat, 1.1);

cl.fieldFloat();

Listing 6: Implementation of a choice type

Similarly to the SEQUENCE type implementation, it
can be generated automatically with little effort. How-
ever, here the return type for the field access methods is
not the actual type of the field, but a wrapper for it. The
wrapper is in charge of deciding at runtime if the access
is valid, i.e. if the current state of the choice variable is
the one of the field. If yes, the wrapper is implicitly cast
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to the result type. If not, it will create a runtime error.

The second function of the wrapper is to allow reas-
signing the choice variable to a potentially new field. If
a new value is assigned to a previously inactive field,
the wrappers assigment operator will destroy the value
of the old field, update the variables internal state and
copy the new value to its internal buffer.

5.2.6 Enumerations

The generation of ENUMERATION types is a straight-
forward task. C++11 introduced enum classes. Com-
pared to the classic C and C++ enums they avoid nam-
ing conflicts between fields of different enumerations
through their own dedicated namespace. Also, they al-
ready provide strong type safety and will only allow
their own fields as values, i.e. reject simple integer
values. The code generator simply creates an enum
class for each ENUMERATION type with the correspond-
ing mapping between field name and integer value.

5.2.7 Constants

All of the previously introduced type templates
already have mechanisms to check valid values at
compile-time. Therefore, constants can simply be de-
fined through declaring a constexpr variable of a given
type and assigning an initial value to it. Listing 7 shows
several exemplary constants defined in that way using
the types of the previous sections.

TInt intConst =5
TFloat floatConst = 1.
TArr arrayConst = {
TSeq seqConst

1.5, {5,6}};

constexpr
constexpr
constexpr
constexpr

= {1,

TChoice c;

c.fieldInt() = intConst;

Listing 7: Examplary definition of constants values for
numerical, array and sequence types.

As can be seen, the use of the make_value macro is
not necessary as the compiler already knows to evaluate
the expressions at compile-time due to the constexpr
keyword. For CHOICE types creating constants is cur-
rently not possible. It could be realised easily, if the
active field would be uniquely identifiable through the
type of the assigned value. However, since we allow
a CHOICE to have multiple distinct fields of the same
type other solutions would be to either pass the index
of the active field to the constructor, or provide static
class functions which create a new object with the de-
sired field set as active. Both solutions would either
require the user to remember the index of the desired
active field or require more effort for the C++ code gen-
erator for a use case with only little benefit. Instead we
propose to create a constant of the desired initial value
and assign that to the correct field in a second step as
shown in the last line of Listing 7.
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For a different design concept for CHOICE types
which solves this issues using C++20 patterns see our
comments in Section 7.

6. Discussion

In this paper, we presented a data type system for
space applications with compatibility to the feature de-
mands of OSRA in mind. In the following, we discuss
the achieved results based on the criteria developed in
Section 2. Afterward we shortly compare the features of
our type system to the feature set of the Ada language.

6.1 Results

The data types do support numerical ranges. In fact,
for primitive types like Integer and Real types it even
supports the use of multiple disjoint ranges for a single
type. For Array types the support is currently limited
to a single range. It would be possible to implement
support for multiple ranges for Array types as well, but
at the moment we do not see any real use case where this
would be a relevant need.

Evaluating the user-friendliness of the API is to a
degree a matter of personal preference, but there are
evident indicators for it being clear and intuitive: The
types behave very similar to their standard C counter-
parts. The normal arithmetic operators can be used with
the numerical type classes and the array subscript oper-
ator behaves naturally for Array types. SEQUENCE and
CHOICE types use the same interface and behave very
similar to standard C++ structs. The make_value
macro is necessary in order to enforce compile-time
checks of initial values, but it was made sure that the
same macro can be used for all types in the same man-
ner.

Type safety is ensured largely through compile-time
checks during initialization of variables and conversions
between types. The compile-time checks are realized
through extensive use of modern C++ features like vari-
adic templates, const expressions and static assertions.
A benefit of this approach is that most of the functional-
ity could be collected in templated base classes. The
compile-time checks are complemented with runtime
checks for the remaining situations in which the values
are not known at compile-time. The runtime checks are
carried out automatically without the need for a user to
initiate them manually and thereby ensure that the value
of a variable is within its defined bounds for its entire
life time.

Data types have a known size at compile-time, that
includes structured types and even array types since
OSRA requires them to have a maximum number of el-
ements. Also, dynamic memory allocation is not used at
any time. It provides compatibility to standard C++, i.e.
numerical types and array types of numerical types can
be used directly with existing libraries as they convert
directly to their underlying base types.
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Furthermore, we decided to use a subset of ASN.1 as
an intermediate textual notation for data type descrip-
tion. It gives the user the freedom to either define data
types in the graphical scheme of OSRA and then gen-
erate the corresponding ASN.1 notation of the data type
or define the data types in ASN.1 directly. The writ-
ten ASN.1 types are automatically registered as external
types in the OSRA model. This way they are available
for further use, for example, in the interface definition
part of the general OSRA work flow and can be refer-
enced in the same way as any other type. The ASN.1 no-
tation is more feature rich e.g. in expressing constraints
on types than the OSRA model, but the use of external
types makes it possible to make use of all of these fea-
tures without the need to change anything on the OSRA
metamodel.

The ASN.1 grammar has been written using the
Xtext/Xtend framework which automatically provides a
text editor with syntax support for the language and the
necessary infrastructure for code generation. In theory,
the generation of ASN.1 types from an OSRA model
could also be used as input for the data model for TASTE
projects, but this has not been tested in the scope of this
work.

Regarding the performance of the system, the run-
time checks mentioned beforehand add some runtime
penalty to the overall performance. In space applica-
tions, it is common that validity checks have to be per-
formed abundantly at function entries, return values and
during processing in order to ensure correct operation
at all times and spot effects due to cosmic radiation.
With types being automatically checked at runtime in
our type system, this often means that the runtime check
simply moves from the manual code into the type it-
self. Additionally, the extensive compile-time checks
make runtime checks in many common situations un-
necessary as they can give guarantees over a variable’s
value. The runtime penalty of the type validation is quite
small since the compiler can inline most of the common
checks and in our opinion the benefits of a consistent
and safe type system outweigh the possible performance
cost in most applications. For performance critical parts
of the software it is still possible to use standard C++
types and convert the results of the performance criti-
cal part back to our type system. Then, only in these
performance critical parts a developer has to manually
deal with erroneous variable values, but other parts of
the program are unaffected by it.

In conclusion, the presented data type system ful-
fills the general requirements on data types of OSRA,
is automatically generated and uses many modern C++
features to provide strong type safety and type valid-
ity through compile-time and runtime checking. Us-
ing ASN.1 we complemented the OSRA editor with the
possibility to use a textual notation to define data types.
This gives us a good starting point for further exploring
ESA’s Onboard Software Reference Architecture and its
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applicability in a modern model-based software devel-
opment workflow.

6.2 Comparsion to Ada

The feature set presented in Section 5 is in large parts
similar to that of the basic type system of the Ada lan-
guage [5]. Type compatibility is checked at compile-
time as well as the correct initialization, albeit a macro is
needed in order to enforce it. In Ada, however, type con-
versions need always an explicit cast unless the source
type is derived from the target type. In the presented
C++ framework this is not the case. For example, if
the ranges of two integer types are compatible, an im-
plicit conversion is allowed and carried out by the com-
piler. Listing 1 provides an example for that situation.
This behavior is a deliberate design decision as it fol-
lows common behavior of C++. If the goal would be
to model the Ada behavior more closely, this could also
be achieved easily by marking the respective conversion
operators of the types as explicit.

At runtime, similar to Ada, assignments are checked
and if they are not valid a runtime error is generated
and the program terminated. That includes the assign-
ments to basic integer or floating point variables, out-
of-bounds checks for array objects and access to fields
of SEQUENCE or CHOICE types.

In Ada the discussed features are part of the lan-
guage standard. Hence, the error messages given by
the compiler or at runtime in case a failure condition
is met are usually easy to understand and point directly
to the origin of the rule violation. As our C++ type
system has been implemented using template metapro-
gramming techniques error message tend to be compara-
bly long and often obfuscated. Using static_assert,
it is possible to create custom compile-time error mes-
sages in C++, but the capabilities are rather limited and
often do not allow to fully explain the context of a rule
violation. Nevertheless, the line responsible for the
compile-time error is highlighted which helps finding
the reason for the failure. Some possible ways to reduce
the amount of clutter in order to produce more clear er-
ror messages are given in Section 7.

Finally, for Ada development usually Ada runtime
libraries are needed for a certain target platform if the
type system is to be used with higher level operating
system functions like a scheduling system. The benefit
ofthe presented C++ type framework here lies in the fact
that it essentially only relies on direct language features.
The few places where it uses parts of the standard li-
brary, namely the usage of std: : tuple and some utilty
traits can be easily replaced with custom implementa-
tions [19]. The type system can therefore be used inde-
pendently of the operating system or even on bare metal
target platforms if a modern C++ compiler is available.
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7. Conclusions and future work

The presented data type system can serve as the base
for further development regarding the implementation
of the OSRA metamodel entities using modern C++
programming techniques and automatic code genera-
tion. For the template meta programming features of
the C++11 to the newest C++17 standard have been
used. Whereas the C++14 and C++17 standards fo-
cused mostly on extending existing features introduced
in C++11, C++20 will be a new milestone regarding
the C++ language evolution and is due to be released
in 2020. The current working draft for C++20 includes
several new language feature which could prove valu-
able for further development of the presented frame-
work [20]. Most notably the introduction of concepts
will introduce a way to formulate requirements onto
template type parameters. This allows early checking
of their properties and the production of more read-
able error messages for the user if several conditions are
not met. Furthermore, the using keyword will finally
be available for scoped enumerations [21]. With this
feature the interfaces for SEQUENCE and CHOICE types
could be simplified in a way that it is not necessary any-
more to generate the mapping between every field name
and its corresponding internal storage. An implemen-
tation for a CHOICE constant initializer would also be
straightforward with this approach. Theoretically, this
approach could have been implemented already with
scoped enumerations as defined in C++11, but in order
to access fields, long namespace expressions would be
needed, reducing the readability of the source code sig-
nificantly. A similar implementation with standard enu-
merations on the other hand would lack the type safety
needed in order to catch erroneous field accesses due to
similar field names in different types.

Furthermore, the data type system as it is now has
no integrated means to serialize data. The interface was
designed with future extensions in mind in order to al-
low exactly such kind of additions. These features only
need to be implemented in the templated base classes
in a generic way to be available to all concrete types de-
rived from them. The TASTE project already developed
a comparably easy to understand grammar for declar-
ing the serialization rules for the data types defined in
ASN.1 [16]. It has to be evaluated if this would be a
feasible approach for us as well.

With a solid implementation for the data type sys-
tem, further parts of the OSRA metamodel can be im-
plemented. The next step would be to develop a sound
design for the component interfaces using the data types
as presented in this paper. Then, the components them-
selves have to be designed in C++. This includes the
mapping of the non-functional properties of the com-
ponents to a chosen execution platform where an initial
evaluation has already been conducted [13]. This would
then yield an implemented minimal capability set which

IAC-19-D5.1.10

supports the generation of a complete compilable ap-
plication skeleton from an OSRA model after the data
types, the interfaces, component types and component
instances have been assembled in the model editor.
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