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S U M M A R Y
Heat transfer in one-plate planets is governed by mantle convection beneath the stagnant
lid. Newtonian diffusion creep and non-Newtonian dislocation creep are the main mecha-
nisms controlling large-scale mantle deformation. Diffusion creep strongly depends on the
grain size (d), which in turn controls the relative importance of the two mechanisms. How-
ever, dislocation creep is usually neglected in numerical models of convection in planetary
mantles. These mostly assume linear diffusion creep rheologies, often based on reduced ac-
tivation parameters (compared to experimental values) that are thought to mimic the effects
of dislocation creep and, as a side benefit, also ease the convergence of linear solvers. As-
suming Mars-like parameters, we investigated the influence of a non-evolving grain size on
Rayleigh–Bénard convection in the stagnant lid regime. In contrast to previous studies based
on the Frank–Kamentskii approximation, we used Arrhenius laws for diffusion and dislocation
creep—including temperature as well as pressure dependence—based on experimental mea-
surements of olivine deformation. For d � 2.5 mm, convection is dominated by diffusion creep.
We observed an approximately equal partitioning between the two mechanisms for d ≈ 5 mm,
while dislocation creep dominates for d � 8 mm. Independent estimates of an average grain
size of few mm up to 1 cm or more for present-day Mars suggest thus that dislocation creep
plays an important role and possibly dominates the deformation. Mimicking dislocation creep
convection using an effective linear rheology with reduced activation parameters, as often
done in simulations of convection and thermal evolution of Mars, has significant limitations.
Although it is possible to mimic mean temperature, mean lid thickness and Nusselt number,
there are important differences in the flow pattern, root mean square velocity, and lid shape.
The latter in particular affects the amount and distribution of partial melt, suggesting that care
should be taken upon predicting the evolution of crust production when using simplified rhe-
ologies. The heat transport efficiency expressed in terms of the Nusselt number as a function
of the Rayleigh number is thought to depend on the deformation mechanisms at play. We show
that the relative volume in which dislocation creep dominates has nearly no influence on the
Nusselt–Rayleigh scaling relation when a mixed rheology is used. In contrast, the flow pattern
influences the Nusselt number more strongly. We derived a scaling law for the Nusselt number
based on the mean lid thickness (〈L〉) and on the effective Rayleigh number (Raeff) obtained
by suitably averaging the viscosity beneath the stagnant lid. We found that the Nusselt number
follows the scaling Nu = 0.37〈L〉−0.666Ra0.071

eff regardless of the deformation mechanism.
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1 I N T RO D U C T I O N

The rheology of planetary mantles is a function of composition,
temperature, pressure, strain rate and grain size, whose relative
importance strongly depends on the underlying deformation mech-
anism. The two main deformation mechanisms that are thought to

control the large-scale dynamics of the mantle of terrestrial bodies
are diffusion and dislocation creep (e.g. Karato & Wu 1993; Hirth
& Kohlstedt 2003; Karato & Jung 2003). The former dominates
for small grain sizes and at low stresses; the latter dominates in
the presence of large grains and high stresses. The dynamics of
the mantle is locally controlled by the mechanism that delivers the
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highest deformation and hence the lowest viscosity. Diffusion creep
causes a random distribution of grain orientations, which leads to
effectively isotropic media. On the contrary, dislocation creep pro-
motes grain alignment and anisotropy (e.g. Blackman & Kendall
2002; Kaminski et al. 2004). The observation of seismic anisotropy
in the Earth’s upper mantle and the lack thereof in the bulk of the
lower mantle are usually interpreted as an indication that the de-
formation is controlled by dislocation creep in the former and by
diffusion creep in the latter (e.g., Karato et al. 1995; Karato 1998;
McNamara et al. 2001). The fact that the pressure and temperature
range covered by the mantles of Mercury, the Moon and Mars lies
well within that of the Earth’s upper mantle has led some authors
to hypothesize that deformation in the mantle of these bodies—all
of which operate in the stagnant lid mode of convection—could be
largely controlled by dislocation rather than diffusion creep (e.g.
Reese et al. 1999; Redmond & King 2007; Zhang & O’Neill 2016).

Regional-scale models of the dynamics of the Earth’s interior
routinely use complex rheologies that account for the effects of
multiple deformation mechanisms, including diffusion and disloca-
tion creep (e.g. Karato et al. 2001; Billen & Hirth 2007; Čı́žková
et al. 2007; Tosi et al. 2015). However, despite few exceptions (e.g.
Alisic et al. 2010; Foley & Bercovici 2014; Dannberg et al. 2017),
the majority of global-scale models of thermal convection in the
Earth and terrestrial planets are based on the use of a diffusion creep
rheology with constant grain size (e.g., Laneuville et al. 2013; Tosi
et al. 2013; Zhang et al. 2013; Nakagawa & Tackley 2015; Plesa
et al. 2015; Zhang & O’Neill 2016; Scheinberg et al. 2018). Un-
derstanding under which conditions mantle convection operates via
diffusion or dislocation creep along with the role of these rheologies
in controlling heat transfer is thus crucial to reliably simulate the
thermal evolution of terrestrial bodies.

The effects of purely non-linear, power-law rheologies have been
investigated by various authors. Christensen (1984) compared ther-
mal convection models with Newtonian and non-Newtonian rheol-
ogy and found that the global characteristics of the latter could be
reproduced by a Newtonian rheology with properly adjusted temper-
ature and pressure dependence (see Section 2.4). Reese et al. (1998)
and Solomatov & Moresi (2000) showed that the heat transport ef-
ficiency is affected more strongly by the internal Rayleigh number
when a non-Newtonian rheology is used. Thermal convection calcu-
lations in a mobile-lid regime with a weakly temperature-dependent
viscosity combining Newtonian and non-Newtonian creep have
been performed by van den Berg et al. (1993, 1995). They showed
that the rheology becomes more and more dominated by non-
Newtonian creep upon increasing the vigour of convection (i.e. the
Rayleigh number) and that lateral variations of the viscosity tend
to be controlled by the strain-rate dependence rather than by tem-
perature. However, the increase in convection vigour was achieved
simply by increasing the characteristic temperature contrast across
the domain, without accounting for a detailed analysis of the grain
size, which allows for a more direct exploration of the relative im-
portance of diffusion and dislocation creep.

Furthermore, most of the above studies used flow laws based on
the so-called Frank–Kamenetskii approximation, a linearized form
of the Arrhenius law that facilitates the convergence of numerical
algorithms in the presence of large viscosity variations. Yet it is well
known that this approximation tends to smooth the strong viscosity
gradients associated with the more realistic Arrhenius law (e.g.
Noack & Breuer 2013; Stein & Hansen 2013).

The grain size plays a crucial role in determining whether the
deformation is governed by linear diffusion or non-linear disloca-
tion creep. Mineral grains evolve according to thermomechanical

conditions, undergoing normal growth and reduction due to dy-
namic recrystallization (e.g. Karato 2012). Austin & Evans (2007),
Ricard & Bercovici (2009) and Rozel et al. (2011) proposed a the-
oretical framework to determine the evolution of the grain size in a
self-consistent way based on local conditions of temperature, pres-
sure and strain rate. Notably, the dependence of the grain size on
the strain-rate makes diffusion creep also non-Newtonian. Rozel
(2012) applied the model of Rozel et al. (2011) in the context
of numerical simulations of thermal convection with a composite
diffusion-dislocation creep rheology. By computing an equilibrium
grain size based on the local stress field—without accounting for the
actual time-evolution of the grain size—Rozel (2012) investigated
the impact of such a composite and grain size-dependent rheol-
ogy on inducing different convection regimes, from mobile lid to
episodic and stagnant lid. In particular, he found that the additional
non-linearity induced by the grain size can lead to episodes of sur-
face mobilization without the need to invoke mechanisms of plastic
yielding. Dannberg et al. (2017) performed simulations of convec-
tion in the present-day Earth’s mantle, including a model of grain
size evolution. They compared the model outcomes with viscosity
profiles inferred from geophysical inversions and with various seis-
mological observables. They found that the use of such a complex
rheology has a strong impact on mantle convection through its in-
fluence on the viscosity profile, on its lateral variations, and on the
shape of up- and downwellings. Foley & Bercovici (2014) derived
scaling laws for Rayleigh–Bénard convection including grain dam-
age. Despite the use of a diffusion creep rheology, convection with
grain damage is non-Newtonian since the grain size is calculated
in dependence of the deformation work. They showed that the heat
flux scales according to a power-law dependence on the Rayleigh
number which is larger than typically assumed. The derived scaling
law is based on a number of parameters that are incorporated in
the models. For example, the damage-to-healing ratio, the internal
viscosity, the Frank–Kamentskii parameter, and the sensitivity of
the viscosity regarding the grain size. The latter also determines the
power-law dependence on the Rayleigh number.

Despite these efforts, grain size evolution models still require
the choice of (or the inversion for) a number of poorly known
parameters, such as the activation enthalpy of grain growth or the
amount of energy dissipated during deformation in relation to the
work that can be used for grain size reduction, which crucially
affect the behaviour of grains (and hence the dominant deformation
mechanism) but are difficult to measure in the laboratory (e.g. Evans
et al. 2001).

A comprehensive treatment of stagnant-lid convection based on
fixed grain sizes and experimentally derived flow laws for olivine
in the diffusion and dislocation creep regime is presently lacking.
Numerous studies of convection and thermal evolution of terres-
trial planets use an effective diffusion creep rheology with modified
activation enthalpy in place of the non-linear dislocation creep rhe-
ology that is thought to be relevant for Mercury, the Moon and Mars
(e.g. Elkins-Tanton et al. 2005; Šrámek & Zhong 2010; Roberts &
Barnouin 2012; Zhang et al. 2013; Scheinberg et al. 2014, 2018;
Sekhar & King 2014; Rolf et al. 2016; Zhang & O’Neill 2016;
Citron et al. 2018). The activation energy (when only temperature-
dependent viscosity is considered) or activation enthalpy (when both
temperature and pressure dependence are taken into account) of dis-
location creep are typically reduced by a variable amount—usually
a factor of two to three but without explicit justification—based
on the work of Christensen (1984). Yet, the extent to which this
approximation is applicable, especially for stagnant lid convection,
is an open question. Whether or not it can reliably capture the heat
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flux, mantle temperature and characteristics of the flow of an actual
non-linear model remains to be investigated.

In the context of Mars, a few attempts have been made to estimate
a characteristic grain size of the present-day mantle on the base
of dissipation models constrained by the tidal quality factor and
Love number k2 (Nimmo & Faul 2013; Khan et al. 2018; Plesa
et al. 2018). The inferred present-day grain sizes can vary from
few mm up to 1 cm or more. Using numerical convection models
to determine whether diffusion or dislocation creep controls the
deformation over this range of grain sizes can help guiding the
choice of the rheology in future modelling efforts.

In addition, various studies have shown that the scaling rela-
tion between Nusselt and Rayleigh number depends on the stress-
exponent. However, these studies are based on purely dislocation
creep rheology (e.g. Reese et al. 1998; Solomatov & Moresi 2000).
It is unclear whether or not this is also the case in the presence of a
composite rheology, where the relative importance of diffusion and
dislocation creep is controlled by varying the grain size.

In this work, we conduct a systematic investigation of the ef-
fects of different but non-evolving grain sizes on simple models
of Rayleigh–Bénard convection in the stagnant-lid regime. We use
various rheologies, from purely diffusion creep to purely disloca-
tion creep through mixed ones accounting for both mechanisms
simultaneously. In Section 2, we present the governing equations
(2.1) and the rheological formulation (2.2) along with its non-
dimensionalization (2.3). We present a strategy to mimic non-
Newtonian rheology with a Newtonian one with modified activa-
tion parameters (2.4), introduce various definitions of the effective
Rayleigh number that are used in scaling laws for convective heat
transfer (2.5), and provide solidus and liquidus temperatures that we
use to estimate the amount of partial melt produced in the different
models (2.6). Our numerical setup is presented in Section 3 and
the results in Section 4. After a qualitative description of convec-
tion simulations in the diffusion and dislocation creep regime and
a comparison between the two (4.1–4.3), we show to what extent
dislocation creep can be mimicked by a Newtonian rheology (4.4)
and present scaling laws for heat transfer based on various Nusselt–
Rayleigh relationships (4.5). In Section 5, we summarize our re-
sults and discuss their implications for convection in the mantle of
Mars.

2 T H E O RY A N D M O D E L

2.1 Equations of thermal convection

We model convection in a planetary mantle by solving the conserva-
tion equations of mass, momentum and thermal energy. Under the
extended Boussinesq approximation with infinite Prandtl number
(e.g. King et al. 2010), denoting non-dimensional variables with
the prime symbol, the conservation equations read:

∇ · �u′ = 0 (1)

−∇ p′ + ∇ · (
η′ (∇�u′ + (∇�u′)T

)) + RarT
′êz = 0 (2)

∂T ′

∂t ′ + �u′ · ∇T ′ − ∇2T ′ + Di(T ′ + T ′
0)u′

z − Di

Rar
� = 0, (3)

where T
′
is the temperature, p

′
the dynamic pressure, �u′ the velocity,

u′
z the vertical component of the velocity, êz the vertical unit vector,

η
′

the viscosity and � = σ ′ : ε̇ ′ the viscous heating, with σ ′ and ε̇ ′

being the stress and strain rate tensors, respectively. The (reference)

Rayleigh number and dissipation number are defined as follows:

Rar = gρα	T D3

ηrκ
, (4)

Di = αgD

cp
, (5)

where g is the gravitational acceleration, α the thermal expansivity,
	T the temperature contrast between core–mantle boundary (CMB)
and surface, D the mantle thickness, κ the thermal diffusivity, cp the
specific heat capacity, ρ the density and ηr the reference viscosity.
Eqs (1)–(3), are obtained as usual by scaling lengths z with the
mantle thickness D:

z = Dz′, (6)

the temperature with the contrast 	T between CMB and surface,
that is,

T = T0 + 	T T ′, (7)

where T0 is the surface temperature, the viscosity with a character-
istic value ηr which will be discussed in Section 2.3:

η = ηrη
′, (8)

the pressure with the scale

p = κηr

D2
p′, (9)

and the time according to the timescale of thermal diffusion, that
is,

t =
(

D2

κ

)
t ′. (10)

By solving the extendend Boussinesq eqs (1)–(3), our models
differ from previous ones that are mostly based on the standard
Boussinesq approximation. Due to the lack of consideration of a
variable density, the extended Boussinesq approximation is consid-
ered thermodynamically not consistent, although for a small planet
like Mars, characterized by a low dissipation number (Di = 0.131),
this issue is of secondary importance. Nevertheless, we checked in
all simulations whether or not, in steady state, the viscous heating
balances the adiabatic heating (fourth and fifth term in eq. 3). We
found a maximum deviation between these two global values of less
than one percent. We also found nearly the same difference when
comparing the top and bottom Nusselt numbers.

2.2 Composite rheology

For mantle rocks, the general relation between strain rate (ε̇) and
differential stress (σ ) can be expressed as follows:

ε̇i = Aiσ
ni d−mi exp

(
− Ei + PVi

RT

)
, (11)

where T is the temperature, P the hydrostatic pressure, R the gas
constant, and d the grain size (all with their dimensional units).
Eq. (11) has general validity for a variety of deformation mecha-
nisms such as diffusion creep, dislocation creep, or grain boundary
sliding (Karato & Wu 1993; Hirth & Kohlstedt 2003). A given de-
formation mechanism i is characterized by its own stress exponent
ni, grain size exponent mi, activation energy Ei, activation volume
Vi, and pre-factor Ai (see Table 1). The dependence on additional
factors such as water fugacity or melt fraction can be lumped to-
gether in the pre-factor Ai. As long as all deformation processes are
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Table 1. Rheological parameters for diffusion and dislocation creep of dry
olivine after Hirth & Kohlstedt (2003) and constant parameters used in all
simulations.

Parameter Symbol Value

Activation energy (diffusion) E1 375 kJ mol–1

Activation volume (diffusion) V1 8.2 × 10−6 m3 mol–1

Grain size exponent (diffusion) m1 3.0
Stress exponent (diffusion) n1 1.0
Prefactor (diffusion) A1 1.5 × 10−15 mm1 (Pa s)–1

Activation energy (dislocation) E2 530 kJ mol–1

Activation volume (dislocation) V2 17 × 10−6 m3 mol–1

Grain size exponent (dislocation) m2 0
Stress exponent (dislocation) n2 3.5
Prefactor (dislocation) A2 1.1 × 10−16 1/Pan2 s
Mantle thickness D 1700 km
Gravitational acceleration g 3.7 m s–2

Temperature drop across the mantle 	T 2000 K
Surface temperature T0 250 K
Reference density ρ 3.5 × 103 kg m–3

Thermal expansivity α 2.5 × 10−5 1 K–1

Thermal diffusivity κ 1.0 × 10−6 m2 s–1

Specific heat capacity cp 1200 J (kg K)–1

Reference temperature Tr 2250 K
Reference pressure Pr 20.015 GPa

independent of each other, the total strain rate is given by the sum
of the strain rates associated with the various deformation mecha-
nisms, that is,

ε̇tot = ∑
i ε̇i . (12)

Therefore, the mechanism that delivers the highest strain rate tends
to control the deformation.

Assuming isotropy, the (scalar) dynamic viscosity η relates strain
rate and stress via the constitutive relation σ = 2ηε̇. Since the stress
exponent can be different for each deformation process, we cannot
directly determine the effective viscosity from the total strain rate
(12). We thus obtain a viscosity law for each deformation mecha-
nism separately (iso-strain model):

ηi = 1

2A
1

ni
i

ε̇
1−ni

ni d
mi
ni exp

(
Ei + PVi

ni RT

)
, (13)

where ε̇ is the second invariant of the (total) strain rate tensor. We
then calculate the effective viscosity ηeff as the harmonic average of
the viscosities ηi associated with the various mechanisms:

ηeff =
(∑

i

η−1
i

)−1

. (14)

2.3 Non-dimensionalization of the viscosity

The viscosity (14) needs to be cast in non-dimensional form in order
to be used in eq. (2). We present two different formulations of the
non-dimensional viscosity. One is used for parameter studies on
activation energy and activation volume (Section 4.4). The other is
used when the grain size is investigated (Section 4.1, 4.2 and 4.3).

To non-dimensionalize eq. (13), we scale the length, temperature
and time as in Section 2.1 and replace the hydrostatic pressure in
eq. (13) with P = ρgz, where z is the depth. The activation energy
and volume are thus scaled as follows:

E = R	T E ′, (15)

V = R	T

ρgD
V ′. (16)

Introducing the reference viscosity ηr, the non-dimensional form of
eq. (13) reads:

η′
i = 1

2ηr A
1

ni
i

( κ

D2

) 1−ni
ni d

mi
ni ε̇

′ 1−ni
ni exp

(
E ′

i + z′V ′
i

ni (T ′ + T ′
0)

)
. (17)

Since the grain size only enters the rheological law and does
not appear explicitly in the conservation equations, we keep it in
dimensional units. Furthermore, it would not be appropriate to use
the mantle thickness for scaling the grain size, which typically
ranges from millimeters to centimetres.

Note that ηr represents just a viscosity that is thought to be
characteristic for the system under consideration and that we use
to determine the (reference) Rayleigh number Rar (eq. 4). This
reference viscosity can also be calculated self-consistently for a
given set of reference values of temperature, pressure (or depth),
strain rate and grain size:

ηr = 1

2A
1

ni
i

( κ

D2

) 1−ni
ni d

mi
ni

r ε̇
′ 1−ni

ni
r exp

(
E ′

i + z′
rV

′
i

ni (T ′
r + T ′

0)

)
. (18)

However, this reference viscosity corresponds exclusively to a spe-
cific deformation mechanism i. While this is not suited to determine
the effective viscosity in the presence of a composite rheology, it
is advantageous in studies where only a single deformation mech-
anism is considered. In such a case, the non-dimensional viscosity
reads:

η′
i =

(
d

dr

) mi
ni

(
ε̇

ε̇r

) 1−ni
ni

exp

(
E ′

i + z′V ′
i

T ′ + T ′
0

− E ′
i + z′

rV
′

i

T ′
r + T ′

0

)
. (19)

If the grain size is constant in time, the first term on the right-
hand side of eq. (19) can be eliminated. We will use this formula
only when a Newtonian rheology is investigated. In such a case, we
write:

η′
i = exp

(
E ′

i + z′V ′
i

T ′ + T ′
0

− E ′
i + z′

rV
′

i

T ′
r + T ′

0

)
. (20)

eq. (20) is often used in mantle convection models with viscosity
based on diffusion creep (e.g. Tosi et al. 2013; Plesa et al. 2015).
The advantage is that the pre-factor Ai (including water fugacity
and melt fraction among other material parameters) and the grain
size d no longer appear in the equation and can be simply controlled
through the Rayleigh number. This simplifies parametric studies
based on variations of the activation energy and activation volume
because no co-variation to the pre-factor Ai is necessary. In fact, if
Ai were kept in the equation, it would have to be adjusted to ensure
that the viscosity at reference conditions remains the same upon
varying the activation parameters.

Upon treating composite rheologies or rheologies with ex-
plicit grain size dependence, we will calculate the effective non-
dimensional viscosity as the harmonic average of the viscosities
(17) associated with each of the deformation mechanisms consid-
ered, that is,

η′
eff =

(∑
i

Bi d
− mi

ni ε̇
′ ni −1

ni exp

(
− E ′

i + z′V ′
i

ni (T ′ + T ′
0)

))−1

(21)

with

Bi = 2ηr A
1

ni
i

( κ

D2

) ni −1
ni

. (22)
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22 F. Schulz et al.

Using eq. (21) facilitates parametric studies based on the variation
of the grain size (see Sections 4.1 and 4.3). After choosing an
arbitrary reference viscosity, the reference Rayleigh number (4) can
be computed and kept fixed in all simulations, while only the grain
size is systematically varied. Therefore such reference Rayleigh
number is not necessarily representative of the convecting system
that is being considered.

2.4 Mimicking the viscosity of dislocation creep

Christensen (1984) found that considering non-linear rheologies
dependent on strain rate causes the viscosity to exhibit a weaker
dependence on temperature and pressure with respect to a linear
rheological model with the same activation parameters. Specifically,
he showed that the effects of a dislocation creep rheology charac-
terized by a certain activation energy Edis and activation volume
Vdis (briefly, activation enthalpy H) can be mimicked by an effective
diffusion creep rheology with reduced activation enthalpy

η∗ = 1

2A∗ exp

(
ζ

Edis + PVdis

RT

)
, (23)

where A∗ is an effective pre-factor and ζ is the factor by which
the activation enthalpy is reduced. Yet Christensen (1984) also con-
cluded that the reduction factor (ζ ) must be carefully chosen. For
example, he found ζ ≈ 1/2 when the viscosity is dominated by
pressure and ζ ≈ 1/3 when it is dominated by temperature. From a
computational point of view, using an effective diffusion creep rhe-
ology to mimic dislocation creep is particularly convenient. It avoids
the need to run complex and time-consuming non-linear models and
facilitates the convergence of linear solvers because of the reduced
viscosity contrasts due to the low activation enthalpy. Indeed this
simplification has been adopted by several authors, particularly in
the context of simulations and thermal evolution of Mars’ mantle
(e.g. Elkins-Tanton et al. 2005; Šrámek & Zhong 2010; Scheinberg
et al. 2014; Sekhar & King 2014; Zhang & O’Neill 2016; Citron
et al. 2018).

The numerical experiments presented by Christensen (1984),
however, were based on suitably chosen activation parameters and
not on their experimental values, which at present are fairly well
known, at least for olivine (e.g. Karato & Wu 1993; Hirth & Kohlst-
edt 2003). Furthermore, the activation parameters used by Chris-
tensen (1984) led to mobile lid or sluggish lid convection and it is
not clear whether these would need to be scaled in the same way
when dealing with a purely stagnant lid regime.

In order to understand whether and to what extent stagnant lid
convection in a purely dislocation creep regime can be mimicked
using an effective diffusion creep model with modified activation
enthalpy, we follow here a similar strategy as Christensen (1984).
We base our analysis on experimental values of the activation energy
and volume of olivine deforming in the dislocation creep regime ac-
cording to Hirth & Kohlstedt (2003). As we will show in Section 4.2,
at the strain rates encountered in our simulations, these parameters
always lead to the formation of a stagnant lid.

For dislocation creep described by eq. (13) with n = 3.5, m
= 0, activation energy Edis and activation volume Vdis, we seek an
effective Newtonian rheology (eq. 23) with n = 1 and m = 0 (because
dislocation creep is independent of the grain size) that is able to
reproduce a few key features of the non-Newtonian model. Since
both A∗ and ζ are unknown, we non-dimensionalize such viscosity
law in a standard way as in eq. (20). We varied the reduction factor
ζ between 0.1 and 0.5. For each value of ζ , we varied the reference
Rayleigh number between 3 × 104 and 3 × 106. According to

the definition (4) of the Rayleigh number, the pre-factor can be
recalculated as

A∗ =
Rarκ exp

(
ζ

Edis + PrVdis

RTr

)
2αρg	T D3

. (24)

We infer best-fitting parameters for the effective diffusion creep
model by comparing the mean mantle temperature, Nusselt num-
ber, and thickness of the stagnant lid with those derived from the
dislocation creep model. The difference between actual dislocation
creep and mimicked dislocation creep is then investigated in more
detail by comparing the lid shape and flow pattern (see Section 4.4).

Note that for simplicity, in the following sections we will omit the
prime symbol when referring to non-dimensional variables unless
explicitly stated.

2.5 Nusselt–Rayleigh scaling

We quantify the heat transfer efficiency of convection in the presence
of different rheologies (pure diffusion creep, pure dislocation creep,
or a mixture of the two) by running simulations into steady or
statistically steady state and fitting the Nusselt (Nu) and Rayleigh
number (Ra) to the classical scaling relationship:

Nu = αRaβ . (25)

With no internal heating and in a Cartesian geometry such as the one
we used (Section 3), the Nusselt number measured at a given depth
z0, coincides with the vertical gradient of the laterally averaged
temperature profile (〈T〉), that is,

Nu = ∂〈T 〉
∂z

∣∣∣∣
z0

, (26)

where z0 is typically either one or zero, corresponding to the bottom
and top of the domain. Eq. (25) is derived from boundary layer the-
ory (Turcotte & Oxburgh (1967)). For isoviscous Rayleigh–Bénard
convection, the theory predicts β = 1/3, while the pre-factor α

depends on the aspect ratio of the convective cells (e.g. Roberts
1979).

For convection with variable viscosity, the Rayleigh number is
no longer constant for the whole system. In eq. (25) it is thus nec-
essary to adopt a value of Ra based on a characteristic viscosity
of the system. The latter depends on the non-dimensionalization
adopted. It must be chosen consistently with the reference temper-
ature and pressure when using eq. (20), or with the pre-factors Bi

when using eq. (21). Without performing the simulations, however,
it is difficult to establish whether the chosen characteristic viscosity
is actually representative or not of the system under consideration.
For Rayleigh–Bénard convection in a fluid (with variable viscosity)
heated from below and cooled from above, this requirement can be
fulfilled by choosing as a reference the temperature and pressure
at the top or at the bottom of the domain since these are known
from the boundary conditions. In a system controlled by dislocation
creep or mixed rheologies, the situation is further complicated by
the fact that also the strain rates are not known a priori. This renders
the choice of the reference strain rate ε̇r (and hence of the reference
viscosity) also somewhat arbitrary, with the inverse of the diffusion
time representing a possible option that is still consistent with the
characteristics of the system, that is, ε̇r = κ/D2.

Here we determine the characteristic viscosity ηr a posteriori
based on the average viscosity 〈η〉 obtained after reaching steady
state. To compute 〈η〉, we test different averaging schemes, namely
arithmetic, geometric and harmonic mean, as well as an average
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Stagnant-lid convection with mixed rheology 23

based on the local strain rate that is used to weight the viscosity.
The arithmetic and harmonic mean tend to give more importance to
regions of high and low viscosity, respectively, while the geometric
mean yields a viscosity that is representative of the nearly isothermal
convecting domain. For the last case of viscosity weighted by the
strain rate, we follow Parmentier et al. (1976) and compute the
average viscosity as

〈η〉l =

∫
V

ε̇lη dV∫
V

ε̇l dV
, (27)

where l = 2 and V is the volume of the convecting mantle. With
eq. (27), regions of high deformation are weighted more strongly
than regions of high viscosity. Eq. (27) has also been used by Chris-
tensen (1984), who found l = 1 also to be a suitable choice, as we
well as by Kawada & Honda (1999).

Independent of the method used, we always exclude the stagnant
lid upon averaging the viscosity. To calculate its thickness we use
the method proposed by Wong & Solomatov (2015). This method
consists in finding the depth of the highest vertical gradient of the
root mean square velocity. Such gradient is then extrapolated to the
depth of zero velocity, which is defined as the depth of the stagnant
lid.

Based on the averaging method used (arithmetic, geometric,
weighted with the strain rate and harmonic), we label the effec-
tive Rayleigh number with Raari, Rageo, Raε̇ , Raε̇2 and Rahar. If, on
the other hand, it is based on the reference values at the CMB and
the reference strain rate ε̇r = κ/D2, we write Rar.

Since the effective Rayleigh number depends on a suitably av-
eraged viscosity, it can be the same for two models with different
activation enthalpy. The temperature and pressure dependence of
the viscosity, however, affect the thickness of the stagnant lid. The
thicker the lid is, the more the interior is insulated and the smaller
is the Nusselt number. Hence, in convection studies with variable
viscosity based on the Frank–Kamenetskii approach (e.g. Morris &
Canright 1984; Fowler 1985), a power-law dependence on a rheo-
logical parameter θ (the so-called Frank–Kamenetskii parameter) is
introduced in the Nu–Ra scaling relation, which takes the following
form:

Nu = αθγ Raβ
i . (28)

The exponent γ depends on the shape of the stagnant lid. The studies
of Reese et al. (1998, 1999) and Solomatov & Moresi (2000) follow
this idea noting additionally that β is also a function of the stress
exponent n, with β that increases with n. In this way, both the
dependence of the viscosity on temperature (through θ ) and on the
stress exponent (through β) are included in the scaling relation.

We can convert our activation energy and volume into the Frank–
Kamenetskii parameter. This can be expressed as (e.g. Reese et al.
1999)

θ =
∣∣∣∣	T

d(ln η)

dT

∣∣∣∣
= 	T (E + Pi V )

RT 2
i

− Pi V

RTi
, (29)

where Pi is the pressure at the base of the top thermal boundary
layer and Ti the internal mantle temperature.

These values define the minimum viscosity of the system which
in turn is typically used to define the internal Rayleigh number (Rai)
in eq. (28). In order to use this relation, we first determine the base
of the upper thermal boundary layer. As the temperature is subject to

strong fluctuation near the boundary—especially if this has a steep
slope—we determine Ti and Pi in the middle of the convecting cell.
Both values can than be used to calculate Rai and θ . Since the
laterally averaged temperature and viscosity profiles are strongly
influenced by the cold part of the stagnant lid, we emphasize that
their use is not effective to determine Ti and Pi.

2.6 Partial melting

As we shall see below, different values of the grain size—hence dif-
ferent rheologies—lead to important modifications of the thickness
and shape of the stagnant lid. These in turn can affect the amount
and distribution of partial melt generated in the sublithospheric
mantle. In view of the potential development of our models to treat
the long-term thermal evolution of Mars and other stagnant lid bod-
ies, including the history of crust production (e.g. Laneuville et al.
2013; Plesa & Breuer 2014; Rolf et al. 2016; Padovan et al. 2017),
after each simulation reached statistical steady-state (Section 3), we
also computed melt fractions (ϕ) assuming a simple linear increase
between solidus (Tsol) and liquidus (Tliq), that is,

ϕ = T − Tsol

Tliq − Tsol
. (30)

To compute ϕ, we used the peridotite solidus introduced by Ruedas
& Breuer (2017), which is appropriate for the Martian mantle:

Tsol = 0.118912P3 − 6.37695P2 + 130.33P + 1340.38, (31)

and the dry liquidus of Katz et al. (2003):

Tliq = −2P2 + 45P + 2053.15, (32)

where the temperature is expressed in K and P is the hydrostatic
pressure in GPa.

After computing the melt fraction ϕi in every cell i of the domain,
we compute the total melt volume fraction (Vϕ) simply as:

Vϕ = 1

V

∑
i

ϕiδVi (33)

where δVi is the volume of the ith cell and V the total volume of the
domain. Since we work with a square 2-D grid (see Section 3), δVi

should be regarded as areas and V = 1.

3 N U M E R I C A L S E T U P

We used our finite volume code Gaia (Hüttig et al. 2013) to solve the
governing eqs (1)–(3) in a 2-D box with aspect-ratio one, free-slip
boundary conditions, isothermal top and bottom boundaries, and
reflective side-walls. The domain was meshed with a uniform grid
of 200 × 200 nodes. We ran all simulations assuming Mars-like
parameters with a temperature contrast across the domain (	T) of
2000 K and a mantle thickness (D) of 1700 km. To compute the
viscosity, we assumed rheological parameters characteristic of dry
olivine according to Hirth & Kohlstedt (2003). These are reported
in Table 1 along with the remaining constants.

When the classical implementation of the non-dimensional vis-
cosity was used (eq. 20), we set the reference temperature (Tref) to
2250 K and the reference pressure (Pref) to 22.015 GPa, correspond-
ing to the CMB condition. Otherwise we chose a reference viscosity
of 1021 Pa s in (22), corresponding to a reference Rayleigh number
of 3.18 × 106.

We started all simulations setting a constant internal temperature
of 1650 K supplemented by two thermal boundary layers with a
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24 F. Schulz et al.

thickness of 300 km. A sinusoidal perturbation with an amplitude
of 0.03 was superimposed to initiate convection. We tracked all
simulations until they reached a steady or statistically steady state.

With the given rheological parameters (Table 1), the viscosity can
increase by more than 50 orders of magnitude across the mantle.
Since most of the viscosity increase is due to the temperature drop
within the stagnant lid, we cut the viscosity when it increases by
more then 10 orders of magnitude compared to the lowest viscosity
of the system.

4 R E S U LT S

4.1 Diffusion creep

We first ran a set of 37 simulations assuming a diffusion creep rhe-
ology where we varied the grain size between 1.0 and 10.0 mm.
Due to the power-law dependence of the grain size (m = 3), this
can lead to viscosity variations of up to three orders of magnitude,
depending on the temperature profile. We found that no convection
takes place for grain sizes larger than ∼9.2 mm. For grain sizes
smaller than this value, we observed a convection planform charac-
terized by either one or two stable cells with the exception of runs
with a grain size between 6.25 and 7.25 mm, which never reached
a stable steady state and exhibited an oscillatory behaviour. This is
characterized by the fact that a hot plume rises alternately at the
left or right cell wall with large effects on global properties such
as mean temperature and Nusselt number. Thus, we will omit these
models in the following analysis.

Fig. 1 shows the steady-state distribution of temperature, vis-
cosity and second invariant of the strain rate tensor, as well as the
shape of the stagnant lid for three representative values of the grain
size. Increasing the grain size, the viscosity becomes larger and the
lid thickness increases. For 7.5 mm ≤ d < 9.2 mm, the stagnant
lid covers a significant part of the domain. As a consequence, we
observe two stable convection cells (Figs 1a and d) in line with the
idea that at, low Rayleigh numbers, cells with unitary aspect ratio
tend to be more stable than elongated ones (e.g., Grigné et al. 2007).
For intermediate grain sizes (2.75 mm ≤ d ≤ 6.0 mm) we observed
a single cell (Figs 1b and e), while for the smallest grain sizes that
we tested (1.0 mm ≤ d < 2.5 mm) we observed a time-dependent
flow characterized by two (unstable) cells (Figs 1c and f).

As expected, the decrease of the lid thickness upon reduc-
ing the grain size—which corresponds to increasing the Rayleigh
number—leads to a clear increase of the area where the temperature
exceeds the solidus. While for the largest grain size of 9 mm, no
melt can be generated (Fig. 1a), the partial melt regions become
larger for grain sizes of 5 (Fig. 1b) and 2.25 mm (Fig. 1c).

4.2 Dislocation creep

When the grain size is sufficiently large, diffusion creep becomes
unimportant and the deformation is controlled by dislocation creep.
Therefore, in the presence of a composite rheology (see Section 4.3),
the lowest heat flux that can be achieved by varying the grain size
corresponds to that of a pure dislocation creep model. This implies
that models with a composite rheology, in contrast to the pure dif-
fusion creep models discussed above, cannot become conductive
upon varying the grain size unless the pure dislocation creep model
does.

Fig. 2 shows snapshots of temperature, viscosity and strain rate
of this end-member case. Only one convection cell forms. Although

dislocation creep is characterized by larger activation energy and
activation volume than diffusion creep, the viscosity field is less
sensitive to temperature and pressure variations due to the stress
exponent n in the Arrhenius term (eq. 13).

A comparison of the distribution of the viscosity (Fig. 2b) and
strain rate (Fig. 2c) clearly shows that the regions where the viscosity
is lowest correspond to the highest strain rates attained at the left
upwelling plume and in the area of horizontal shearing flow beneath
the stagnant lid.

In contrast to the diffusion creep models of Fig. 1, here the
stagnant lid is flat and thick enough to completely prevent the tem-
perature from exceeding the solidus.

This model only reaches a statistical steady state. Nusselt num-
ber, mean temperature, root mean square velocity, and mean lid
thickness are subject to small temporal variations. Averaged over a
sufficiently long time span we find 〈T〉 = 0.814, vrms = 235.1, Nu
= 2.51 and 〈L〉 = 0.276. Mean temperature and rms-velocity are
computed below the stagnant lid.

4.3 Composite rheology

As for the diffusion creep simulations, we varied the grain size
between 1.0 and 10.0 mm also in the framework of simulations
with composite rheology. We found that this variation is sufficient
for convection to be controlled either completely by diffusion (as
d approaches 1 mm) or almost completely by dislocation creep
(as d approaches 10 mm). For grain sizes between 1 and 10 mm,
Fig. 3(a) displays the fraction of the convective part of the do-
main (i.e. beneath the stagnant lid) where deformation is controlled
by dislocation creep. Up to d ≈ 2.5 mm diffusion creep domi-
nates. For d between 4.0 and 6.25 mm, the volume fraction of
dislocation creep increases rapidly from 20 to 80 per cent. Above
6.25 mm, the increase in volume fraction of dislocation creep is
less rapid. Even for grain sizes larger than 9.25 mm (when pure
diffusion creep models became conductive), a small fraction of the
domain where strain rates are low is still controlled by diffusion
creep.

Like in the diffusion creep simulations, we observed either one
or two convection cells corresponding to filled and empty circles
in Fig. 3, respectively. For grain sizes between 3.25 and 8.0 mm
we systematically observed a single cell. Outside of this range, we
mostly obtained two convection cells with the exception of two
cases, namely d = 1.5 and 9.75 mm. For grain sizes larger than
8 mm, the simulations never reached a stable steady state.

In Fig. 3(b) we compare the melt volume fraction Vϕ (eq. 33)
after reaching steady state for all simulations with diffusion creep
(blue circles) and composite rheology (red circles). In both cases,
increasing the grain size causes a reduction of the convective vigor
due to the increase in viscosity. As a result, the stagnant lid becomes
thicker and the melt volume fraction decreases. Apart for d = 1 mm,
for all the other values of the grain size, Vϕ is systematically smaller
for the composite rheology than for pure diffusion creep. The in-
crease of the lid thickness associated with the increase of the grain
size (see Fig. 5c) causes partial melt to be suppressed for d � 6 mm.

Fig. 4 shows the steady-state distribution of the temperature (a–
c), viscosity (d–f), ratio of dislocation to diffusion creep viscosity
(f = ηdis/ηdif in panels g–i) and strain rate (j–l) for three character-
istic values of the grain size. The deformation is controlled by the
mechanism that delivers the lowest viscosity. Therefore, dislocation
creep prevails for f < 1 while diffusion creep for f > 1. Upon in-
creasing the grain size above 2 mm, dislocation creep becomes first
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Stagnant-lid convection with mixed rheology 25

Figure 1. Steady state distribution of temperature (a–c), viscosity (d–f) and strain rate (g–h) for diffusion creep models with different grain sizes. The black
dashed line corresponds to the stagnant lid. Hatched areas in panels (a–c) are regions of partial melt where the solidus is exceeded. Thin black lines represent
streamlines. White areas in the viscosity and strain rate plots indicate an upper cut-off of the viscosity at 1024 Pa s, and a lower cut-off of the strain rate at
10−18 s−1.

important in a thin region close to the stagnant lid because of rela-
tively high strain rates associated with sublithospheric instabilities,
while the bulk of the domain largely deforms via diffusion creep
(Fig. 4i). For intermediate values of d, the effect of dislocation
creep becomes evident in highly strained up- and downwellings,
while the bottom and central part of the domain still deform via
diffusion creep (Fig. 4h). Only when the grain size exceeds 8 mm
the CMB region and most of the domain (>90 per cent) are con-
trolled by dislocation creep (Fig. 4g). As anticipated in Fig. 3(b),
the increase of d is accompanied by a reduction of the extent of
the melt zone (Figs 4c and b), which for d = 9 mm has completely
vanished.

For a given grain size, the composite rheology is systematically
characterized by a higher Nusselt number and thinner lid than the
diffusion creep rheology (Figs 5a and c). Only when the grain size is
set to 1 mm, we observe a slightly higher Nusselt number and thinner
lid in the pure diffusion creep case. This discrepancy is explained

by the fact that the Nusselt number is affected by the convective
planform and number of convection cells. Small differences in the
viscosity field of the model with d = 1 mm cause a slightly different
flow pattern. In the diffusion creep case, small convective rolls form
below the stagnant lid reducing its thickness, while this is not the
case when using a composite rheology. Upon decreasing further the
grain size, we thus expect that the models will exhibit the same heat
flux.

The mean velocity vrms (Fig. 5d), determined below the stagnant
lid, however, is very similar for grain sizes lower than ∼3.5 mm.
Otherwise, the composite rheology leads to higher velocities.

The mean temperature, also determined below the stagnant lid,
is higher in the diffusion creep case. This can be traced back to
the thinner lid of the composite models. A thinner lid provides
better heat transfer, which in turn results in a lower temperature
of the convecting mantle. Although neither the lid thickness nor
the Nusselt number change greatly for grain sizes between 8 and
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26 F. Schulz et al.

Figure 2. Distribution of temperature (a), viscosity (b) and strain rate (c) for convection with a pure dislocation creep viscosity. The black dashed line
corresponds to the stagnant lid and thin black lines represent streamlines. White areas in panel b and c indicate an upper cut-off of the viscosity at 1024 Pa s
and a lower cut-off of the strain rate at 10−18 s−1. No partial melt occurs in this model.

Figure 3. (a) Fraction of the domain where deformation is controlled by
dislocation creep for grain sizes between 1 and 10 mm. Filled and empty
circles refer to cases characterized by one or two convective cells, respec-
tively. For d ≤ 8 mm, the simulations reached a stable steady state. For larger
values, the circles refer to time-averaged values and the error bars to the cor-
responding variance. (b) Melt volume fraction (eq. 33) as a function of the
grain size for the pure diffusion creep runs discussed in Section 4.1 (blue
circles) and for the runs with composite rheology of panel a (red circles).

9 mm in the composite models, the mean temperature increases
dramatically with the change in the number of convection cells. By
contrast, it remains nearly constant for d between 4 and 8 mm.

With composite rheology, Nu and vrms are systematically larger
and the mean lid thickness smaller with resepect to the pure dis-
location creep simulation (dashed line in Fig. 5), which is reached
asymptotically in the limit of large grains. For grain sizes above
5.5 mm, the diffusion creep models exhibit lower Nusselt num-
bers than the end-member case of pure dislocation creep. Overall,
the more efficient heat transfer observed in the case of composite
rheology is mainly due to the thickness and shape of the stagnant
lid, which increases more slowly than in the pure diffusion creep
models. Finallly, regardless of the rheological model, we observe
discontinuous changes with the grain size in the values of all four
diagnostic quantities when the flow pattern changes from one to two
convection cells and vice versa.

4.4 Mimicking dislocation creep

In Fig. 5 we show how the Nusselt number can be controlled by
the reference viscosity, which in turn can be changed through the
prefactor and hence through the grain size. Based on Fig. 5, by con-
sidering only the Nusselt number, we could mimic the heat transfer
via dislocation creep with a pure diffusion creep rheology with a
grain size of approximately 5.5 mm. However, the temperature and
viscosity distributions of this diffusion creep model barely resemble
those of dislocation creep (compare Figs 6a and d with Figs 6b and
e). In contrast to the dislocation creep model where the stagnant
lid is nearly flat, the diffusion creep model is characterized by a lid
with a steep slope, much thinner over the upwelling than over the
downwelling plume. Because of the different temperature structure,
while no melt occurs in the dislocation creep case (Fig. 6a), a par-
tial melt region corresponding to the head of the upwelling plume
is present in the two models that mimic dislocation creep (Figs 6b
and c).

As discussed in Section 2.4, in order to find an effective diffusion
creep model that better matches the dislocation creep one in terms
of global quantities such as Nusselt number, lid thickness, mean
temperature and velocity, we followed the approach of Christensen
(1984) and ran a series of simulations based on pure diffusion creep
using an activation enthalpy corresponding to a fraction ζ of the
activation enthalpy of dislocation creep (eq. 23). A lower activa-
tion enthalpy reduces the temperature and pressure dependence of
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Stagnant-lid convection with mixed rheology 27

Figure 4. Steady state distribution of temperature (a–c), viscosity (d–f) and ratio of dislocation creep viscosity (ηdis) to diffusion creep viscosity (ηdif) (g–i)
for models with mixed rheology and various grain sizes d. The black dashed line corresponds to the stagnant lid and thin black lines represent streamlines.
Hatched areas in panels a–c are regions of partial melt where the solidus is exceeded. When the fraction ηdis/ηdif is smaller one, dislocation creep dominates.
Otherwise diffusion creep is the dominant deformation mechanism.
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28 F. Schulz et al.

Figure 5. Nusselt number (a), mean temperature (b), mean lid thickness (c) and root mean square velocity (d) as a function of grain size for simulations based
on pure diffusion creep (blue circles) and a composite rheology (red circles). Filled and empty circles refer to one or two convection cells in steady state. The
horizontal dashed lines refer to the values obtained with the pure dislocation creep model. The root mean square velocity (vrms) and the mean temperature are
computed below the stagnant lid.

the viscosity and in turn the slope of the stagnant lid. We reduced
the activation enthalpy between 90 per cent and 50 per cent, corre-
sponding to 0.1 ≤ ζ ≤ 0.5, and varied simultaneously the reference
Rayleigh number between Rar = 3× 104 and Rar = 3 × 106 for
each value of ζ . Fig. 7(a) shows the Nusselt number (Nu) and mean
lid thickness (〈L〉) of these effective diffusion creep models over
the Nusselt number (Nudis) and mean lid thickness (〈Ldis〉) of the
dislocation creep model for different values of ζ (as indicated by
different symbols) and Rar (colour coded). In this representation,
the point (1,1) corresponds to a perfect agreement in the lid thick-
ness and Nusselt number. Symbols with a black contour indicate
simulations characterized by two convection cells in steady state
instead of a single one, which are not suitable to mimic the dis-
location creep simulation. Within the blue shaded box, the ratio
of the analysed diagnostic quantities obtained with the effective
diffusion creep models to the corresponding quantities obtained
with the dislocation creep models is below 10 per cent. The best
fit to the Nusselt number and mean lid thickness is obtained using
ζ = 0.4 and Rar ≈ 1 × 106. However, using the above parame-
ters, the agreement with the temperature and viscosity distributions
is still not optimal (compare Figs 6a and d with Figs 6c and f).
Furthermore, as in the diffusion creep model with d = 5.5 mm,
the stagnant lid still exhibits a relatively steep slope. In the one
convection cell regime, this slope can only be reduced either by
increasing the reference Rayleigh number or decreasing the reduc-
tion factor of the activation enthalpy ζ . In both cases the Nusselt
number becomes larger and the mean lid thickness smaller com-
pared to the dislocation model (see Fig. 7a). Therefore we conclude
that we can mimic dislocation creep in terms of Nusselt number

and mean lid thickness, but without accurately reproducing the flow
pattern.

In Fig. 7(b) we show the accuracy of the mean temperature and
root mean square velocity (vrms) of the various models compared to
the dislocation creep model. Both values refer to the region below
the stagnant lid. Besides the Nusselt number and mean lid thick-
ness, the best fitting models introduced above are within 5 per cent
accuracy in mean temperature but largely fail to reproduce vrms of
dislocation creep (compare the positions of the squares in Figs 7a
and b).

In synthesis, using an effective diffusion creep model with re-
duced activation enthalpy to mimic convection in the dislocation
creep regime is only possible to some extent. The mimicking pro-
cedure yields a good match in terms of mean temperature, mean
lid thickness and Nusselt number. However, neither the shape of
the lid—and in turn the convective planform—nor the root mean
square velocity can be reproduced at the same time. The former has
a significant influence on the distribution of partial melt in the sub-
lithospheric mantle (Figs 6a–c), while the latter would likely affect
mantle mixing (e.g. Samuel et al. 2011; Samuel & Tosi 2012).

4.5 Nusselt–Rayleigh scaling

4.5.1 Diffusion creep

In Fig. 8 we show a log–log diagram of the Nusselt number over
the effective Rayleigh number for the diffusion creep models (Sec-
tion 4.1). The effective Rayleigh number was calculated with the
different definitions of the characteristic viscosity introduced in
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Stagnant-lid convection with mixed rheology 29

Figure 6. Steady state distribution of temperature and viscosity for the pure dislocation creep model as in panels 2(a, d) and for two diffusion creep models
reproducing some of the features of dislocation creep convection (b, e and c, f). The black dashed line corresponds to the stagnant lid, hatched areas mark the
melt zone and grey lines represent streamlines.

Section 2.5. As discussed, we fitted the obtained set of Nusselt and
Rayleigh numbers to the relation Nu = αRaβ . Fitting parameters
are listed in Table 2.

We observe a strong correlation between the change in the slope
(β) and the change in the number of convection cells. However, the
same number of convection cells does not necessarily correspond to
the same slope. We thus subdivide the Nusselt–Rayleigh scaling into
three regimes (colour-coded in Fig. 8). Regime 1 for low Rayleigh
numbers and two convection cells, regime 2 for models with one
convection cell and regime 3 when the Rayleigh number is large
and two convection cells form. This behaviour is similar to the
one we observed in Fig. 5. The simulation using a grain size of
1 mm (grey circles in Fig. 5), corresponding to the largest Rayleigh
number, is not part of regime 3 but most likely marks the beginning
of a fourth regime. We thus excluded this value from the scaling
relation. The three series of snapshots shown in Fig. 1 reflect these
three regimes, with regime 1 obtained with a grain size d = 9 mm,
regime 2 with d = 5 mm and regime 3 with d = 2.25 mm. We also
note a slight change in the slope within regime 2 for some choice
of the average viscosity (Figs 8a–c). However, we will neglect this
change due to the uncertainty of the transition and the low number
of simulations within this regime. The fitted curves match well our
measured Nusselt number. The coefficient of determination (R2)
of the logarithmic fitting function is generally higher than 99 per
cent. The only exception is for regime 2 and the arithmetic mean
for which R2 is only 94 per cent.

The slope is in general steepest (i.e. β is higher) for small
Rayleigh numbers. In the case of Rahar and Rar, the value decreases
with each change of the characteristic flow pattern. When the arith-
metic mean is used, the relation between Nusselt and Rayleigh

number is not bijective, which suggests that the Rayleigh number
alone is not sufficient to determine the heat flux. As already men-
tioned in Section 2.5, the arithmetic mean tends to give values closer
to the maximum viscosity. Therefore, the reduction in Raari can be
explained by the decrease of the internal temperature when the flow
pattern changes from two to one convection cell (see Fig. 5b for the
change from large to small grains).

The issue with this scaling is that it is only valid for the specific
parameters given in Table 1. The diffusion creep runs presented in
Section 4.4 with ζ = 0.1, for example, yield α = 0.203 and β =
0.218 in the presence of one convection cell (regime 2) when the
harmonic average is used to compute the effective Rayleigh number.
These values are different from those obtained for regime 2 in the
pure diffusion creep case, namely α = 0.041 and β = 0.251. The
reason for this has been explained in Section 2.5 and is due to the
different sensitivities to temperature and pressure. The results of
Section 4.1 and Section 4.4 can be reconciled by fitting our data to
the scaling relation Nu = αθγ Raβ

i (eq. 28). The Frank–Kamenetskii
parameter, in the steep slope and one-convection-cell regime, varies
only slightly between θ = 24.2 and θ = 27.6 for the diffusion creep
simulations (Section 4.1) and between θ = 6.89 and θ = 11.07
for the models with reduced activation enthalpy (Section 4.4). We
found:

Nu = 0.278θ−0.4Ra0.203
i . (34)

The maximal deviation of the calculated Nusselt numbers compared
to the measured ones is 6.7 per cent where the standard deviation is
0.093. Using the Rayleigh number based on the harmonic average
(Rahar) instead of Rai, we obtain:

Nu = 0.219θ−0.581Ra0.262
har , (35)
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30 F. Schulz et al.

Figure 7. (a) Nusselt number (Nu) and mean stagnant lid thickness (〈L〉)
for effective diffusion creep models over Nusselt number and lid thickness
for the dislocation creep model (Nudis, and 〈Ldis〉, respectively). Symbols
refer to different fractions ζ of the activation enthalpy of dislocation creep
(eq. 23). Symbols with black contour denote simulations characterized by
two convective cells. The blue shaded area corresponds to the region where
the analyzed ratios are below 10 per cent. The colour scale indicates the
reference Rayleigh number (Rar). (b) As in panel a but for the mean mantle
temperature and root mean square velocity. Both values are determined
below the stagnant lid.

with a maximal deviation of 4.2 per cent and a standard deviation
of 0.06. In agreement with the studies of Fowler (1985) and Reese
et al. (1998), the scaling worsens if no consideration is given to the
shape of the stagnant lid, which varies here according to the number
of convection cells. In addition both the above studies predicted
β to be 1/5. This matches well with our result using the internal
Rayleigh number (Rai) and has already been confirmed by numerical
studies (e.g. Moresi & Solomatov 1995). Both theory and numerical
models have so far predicted a value for γ of -1, while we found
a considerably smaller γ = −0.4, which is likely due to the fact
that, in contrast to previous studies, we also took into account the
pressure dependence of the viscosity.

The scaling relations (34)–(35) well reproduce the Nusselt num-
ber of the dislocation simulation. For this, the effective Rayleigh
is Rahar, dis = 2.89 × 106 and the generalized Frank–Kamenetskii
parameter is θ dis = 12.73. Using the above values for example into
eq. (35) yields Nudis, predicted = 2.499, which compares well with
the value of 2.507 obtained from the numerical dislocation creep
simulation. However, since the scaling parameters are predicted as
functions of the lid shape (flat versus steep) and dislocation creep is
different in this respect from the simulations used to derive eqs (34)–
(35), care should be taken upon using these relations for dislocation
creep.

4.5.2 Composite rheology

Fig. 9 shows the Nusselt number over the effective Rayleigh number
for simulations using a composite rheology (Section 4.3). We use
the temperature and pressure at the CMB as well as the specific
grain size and the strain rate ε̇r = κ/D2 to define the reference
Rayleigh number Rar. For such a small strain rate the reference
Rayleigh number is comparable to the one of pure diffusion creep
(see Fig. 8f). The fitting parameters are listed in Table 3. The black
marker in the figure indicates values of the pure dislocation creep
model (Section 4.2). This marker is not visible in the plot based
on Rar as the corresponding reference Rayleigh number of ≈104

is out of the displayed range. As in the case of the diffusion creep
models, we find a change in the exponent β and in the factor α

of the Nu–Ra relationship when the number of convection cells
changes from regime 1, characterized by two convection cells and
low Rayleigh number, to regime 2, characterized by one convection
cell and regime 3, where the effective Rayleigh number is large and
two convection cells are formed. The characteristics of these three
regimes have been shown in Fig. 4 (regime 1: d = 9.0 mm, regime
2: d = 5.0 mm and regime 3: d = 2.25 mm). We calculate again the
coefficient of determination (R2), which is reported in Table 3. Only
the scaling based on the harmonic average provides a very good fit
for all three regimes. In regime 1, all other averages suggest that the
exponential fit to the Rayleigh number is not as good. Compared to
the diffusion creep models, α and β are largely similar for regime
2 and 3. The exponent β changes only in the third digit, whereas
α changes in the second. For these two regimes, the heat flux as
a function of the Rayleigh number can be described by a single
scaling. The flow pattern does not matter here. As a results of the
largely constant scaling parameters in regimes 2 and 3, and the fact
that the dislocation creep fraction decreases from 90 to 0 per cent
(Fig. 3, from 8 to 1 mm) within these regimes, we conclude that
whether or not convection is dominated by diffusion or dislocation
creep is irrelevant for the scaling law.

Although the influence of the dislocation creep fraction is small,
there are significant differences with respect to the pure diffusion
creep case (compare Figs 8 and 9 or Tables 2 and 3, respectively).
The differences in β are likely due to the sensitivity of the lid
thickness to the Rayleigh number rather than to the specific rheology
chosen.

As in the last section, we observe that the relationship between
Nusselt and Rayleigh number is not bijective. The only exception is
when the Rayleigh number is defined at the CMB using the reference
strain rate ε̇r. (Fig. 9f).

We calculated the Frank–Kamentskii parameter based on the
activation parameters of dislocation creep. This is a reasonable
assumption for regimes 1 and 2 since the upper thermal boundary
layer is dominated by dislocation creep. We found θ to be in the
range of 11.4–12.8. However, this range is too small and hardly
sufficient to derive an accurate scaling of the Nusselt number as a
function of Ra and θ .

4.5.3 Extending the Nu–Ra scaling relation

The heat transfer efficiency of convection is routinely parametrized
according to the Rayleigh number. We have shown that this has lim-
itations. On the one hand, the choice of the simplest relation Nu =
αRaβ can provide a good fit to the simulations, but the exponent β

is a function of the specific rheology: β is lower when the activation
enthalpy is small and it also varies for different flow patterns. On
the other hand, we find no clear relation between α and β and the
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Stagnant-lid convection with mixed rheology 31

Figure 8. Nusselt number over effective Rayleigh number for pure diffusion creep simulations. In each panel the effective Rayleigh number is calculated by
averaging the viscosity (beneath the stagnant lid) in a different way as explained in Section 2.5. In panel (f), no averaging of the viscosity is used and the
effective Rayleigh number is simply set equal to the reference Rayleigh number at the bottom of the domain. The three lines are fits to the Nu–Ra scaling
relationship (25) corresponding to the three regimes discussed in the text. The grey circle corresponds to d =1 mm and belongs to none of the three regimes.

dislocation creep fraction. Including the Frank–Kamenetskii param-
eter into the scaling relation makes the exponent β less dependent
on the activation enthalpy, but leaves open the question of how to
determine the parameter θ . The latter is a function of the internal
temperature Ti and pressure Pi (eq. 29), which can be expressed as
the depth of the base of the thermal boundary layer zi. Fig. 10 shows
how Ti and zi depend on θ in the regime of one convection cell with
a lid with steep slope for diffusion creep simulations (red crosses)
and diffusion creep simulations with reduced activation enthalpy
(blue symbols).

The relation of Ti and zi with θ is not easily predictable. In
particular, for the cases with reduced activation enthalpies, only few
simulations are available. Furthermore, Ti and zi exhibit a very weak
dependence on θ : for small activation enthalpies, θ remains almost

constant upon varying the effective Rayleigh number. The larger
is the activation enthalpy, the more is θ affected by the Rayleigh
number.

Instead of eq. (25) or eq. (28), which depend on a large number
of unknown quantities, a general scaling relation of the following
form can be derived:

Nu = α〈L〉γ Raβ

har, (36)

where 〈L〉 is the average lid thickness. A least square fit to the
above relation of all the available data, including diffusion creep
models (Section 4.1), composite rheology models (Section 4.3), the
dislocation creep model (Section 4.2) and Newtonian models with
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Table 2. Coefficients of the Nusselt–Rayleigh relationship Nu = αRaβ for
diffusion creep simulations obtained using different averages of the viscosity
as discussed in Section 2.5. The coefficients are reported for the three regimes
described in the text.

Method α β

Regime 1 Arithmetic 0.009 0.401
Geometric 0.017 0.333

ε̇1 0.012 0.369
ε̇2 0.019 0.331

Harmonic 0.036 0.266
Rar 0.004 0.416

Regime 2 Arithmetic 0.083 0.250
Geometric 0.051 0.258

ε̇1 0.084 0.235
ε̇2 0.081 0.219

Harmonic 0.041 0.251
Rar 0.052 0.246

Regime 3 Arithmetic 0.042 0.300
Geometric 0.049 0.268

ε̇1 0.056 0.264
ε̇2 0.084 0.223

Harmonic 0.054 0.242
Rar 0.076 0.230

various activation enthalpies (Section 4.4) yields

α = 0.370

β = 0.071

γ = −0.666,

using the harmonic average of the viscosity to compute the effective
Rayleigh number.

In Fig. 11 we compare the Nusselt numbers obtained from the
numerical simulations with the predictions of eq. (36). With the
above values of α, β and γ , eq. (36) predicts the Nusselt number
with a maximal deviation of 6 per cent. Only 9 of the 115 simula-
tions that we ran show an error of more than 0.1 (the maximum is
0.25), all others deviate from the calculated value only in the sec-
ond (or higher) decimal place. This scaling is therefore at least as
good as the ones discussed above based on the generalized Frank–
Kamenetskii parameter. The need to determine the mean lid thick-
ness in eq. (36) poses a similar restriction as the determination of the
Frank–Kamentskii parameter (which requires knowing Ti and Pi),
but limits the number of parameters that have to be known. Eq. (36)
shows that for stagnant lid convection the heat flux is independent
of the specific deformation mechanism or the shape of the stagnant
lid. Only the thickness of the stagnant lid and the viscosity below
it matter. Neither the activation energy, nor the activation volume,
nor the stress exponent are required.

In Fig. 12 we show a contour plot of the Nusselt number as
a function of the mean lid thickness and the effective Rayleigh
number (Rahar) calculated with eq. (36). The thicker the lid is, the
less the Nusselt number is affected by the Rayleigh number. This
is a consequence of the insulating nature of the stagnant lid. The
scaling relation is only valid when a stagnant lid is developed and
cannot be adopted for models without a stagnant lid. Each of the
shaded points corresponds to one simulation that we used to find the
scaling parameters. Thus, they represent the valid parameter space
for the scaling.

The above scaling (eq. (36)) requires the thickness of the stagnant
lid to be specified. In order to apply this relation in parametrized
models, an equation for the time evolution of the lid thickness could
be implemented that is based on the heat flux at the base of the lid

(e.g. Spohn 1990). This would additionally require knowledge of
the temperature contrast across the upper thermal boundary layer,
which is again a function of the specific rheology chosen and can-
not be easily determined. For a Newtonian rheology with viscosity
dependent only on temperature, a scaling of the form:

Tlid = Ti − c
RT 2

i

E
, (37)

is usually applied (e.g. Grasset & Parmentier 1998), were the second
term on the right-hand side is the inverse of the Frank–Kamentskii
parameter and c a constant. Our models runs are based on tempera-
ture, pressure and strain rate. Thus eq. (37) is not easily applicable
with our rheology. Whether our scaling (eq. 36) holds also for a
purely temperature-dependent viscosity would have to be investi-
gated further with dedicated simulations.

5 D I S C U S S I O N A N D C O N C LU S I O N S

Despite the relative simplicity of the numerical model, our results
contain a number of findings that can be used as a starting point for
future studies on convection with complex rheologies in stagnant-
lid bodies. A composite rheology generally shows a higher heat
transport efficiency for the same grain size compared to the pure
diffusion creep models (Fig. 5a). Also, when using a composite
rheology, the presence of dislocation creep has a strong influence
on the thickness and shape of the stagnant lid. The lid tends to have a
large slope when the rheology is based on diffusion creep while it is
relatively flat as soon as dislocation creep is accounted for (Fig. 4).
This is particularly important when considering melt production. A
large slope is typically created by upwelling plumes, which easily
induce partial melting near the base of the lid. In contrast, melt
production is strongly reduced in the presence of a flat lid caused
by dislocation creep. For a given grain size, composite rheology
convection systematically leads to a lower melt production than
pure diffusion creep (Fig. 3b).

As expected, diffusion creep dominates over dislocation creep
when the grain size is small. The absolute value, however, strongly
depends on the local temperature, pressure and strain rate. For our
set of parameters relevant for a Mars-like planet, d must be smaller
than ≈2.5 mm to ensure that diffusion creep dominates over dis-
location creep. By contrast, the latter is the dominant deformation
mechanism for d larger than ≈8 mm (Fig. 3a). Combining our find-
ings with those of van den Berg et al. (1993, 1995), who suggested
that dislocation creep becomes more important with increasing con-
vective vigour, a grain size of 2.5 mm can be interpreted as the upper
threshold to ensure that diffusion creep dominates the deformation
over the whole domain. Increasing the temperature contrast across
the mantle or including heat sources—that is increasing the convec-
tive vigour—will most likely lead to the increase of the dislocation
creep fraction for comparable grain sizes.

By modelling the internal dissipation due to tides raised by Pho-
bos, Nimmo & Faul (2013) concluded that Mars’ tidal quality factor
and Love number k2 can be best reproduced by a model of viscoelas-
tic deformation with a grain size of 1 cm and a present-day mantle
potential temperature of 1625 ± 75 K, in agreement with petro-
logical estimates (Baratoux et al. 2011). Based on our results, the
inferred grain size of 1 cm suggests that convection in the Martian
mantle should be presently controlled entirely by dislocation creep
(Fig. 3a). For the pure dislocation creep model (Fig. 2), we obtain in
steady state a potential temperature of about 1600 K (not shown), in
good agreement with the above estimate. Nevertheless, as discussed
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Stagnant-lid convection with mixed rheology 33

Figure 9. As in Fig. 8 but for simulations with composite rheology.

in Section 4.2, the thick stagnant lid associated with this regime pre-
vents the formation of partial melt, a requirement used by Nimmo
& Faul (2013) to constrain their models. Yet, Nimmo & Faul (2013)
assumed a significantly smaller lid thickness (125 km instead of
about 400 km as obtained from our model), which explains why
partial melt occurs in their case but not in our despite the similar
potential temperatures.

At any rate, our models are too simple to be directly applicable to
Mars. In particular, internal heating—whose neglect is actually ap-
propriate when using a Cartesian geometry (O’Farrell et al. 2013)—
and the enrichment of heat producing elements in the crust (Plesa
et al. 2018) would lead to different temperatures that could affect
the range of grain sizes across which we observe the transition from
diffusion-creep-dominated to dislocation-creep-dominated convec-
tion, as well as the lid thickness and hence the possibility to gen-
erate partial melt. Furthermore, other authors predicted different
grain sizes for present-day Mars. Khan et al. (2018) suggested only

a lower bound on the grain size of about 1 mm. Plesa et al. (2018)
found that the tidal quality factor, k2 Love number and various
other constraints on the thermal evolution of Mars can be satisfied
by models for which the grain size is between 12 mm and 4 cm,
thus indicating that dislocation creep is likely to play an important
role for mantle convection in Mars, despite large uncertainties and
limitations of our models.

Notably, in a recent study of the thermal evolution of Mars—but
based on 1-D models of parametrized convection—Samuel et al.
(2019) showed that a low effective activation energy indicative of
dislocation creep is required to satisfy various observational con-
straints, particularly the stability of the orbit of Phobos. As discussed
in Section 2.4, in studies of mantle dynamics and thermal evolution
of stagnant-lid bodies, a linear diffusion creep rheology is often
used in place of non-linear dislocation creep following the early
suggestion of Christensen (1984) according to which the latter can
be mimicked by an effective linear rheology with reduced activation
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Table 3. Coefficients of the Nusselt–Rayleigh relationship Nu = αRaβ for
composite rheology simulations obtained using different averages of the
viscosity as discussed in Section 2.5. The coefficients are reported for the
three regimes described in the text.

Method α β

R2

(per cent)

Regime 1 Arithmetic 0.048 0.298 93.74
Geometric 0.014 0.357 96.99

ε̇1 0.001 0.553 97.17
ε̇2 0.006 0.388 91.89

Harmonic 0.025 0.299 99.19
Rar 0.345 0.149 95.9

Regime 2 Arithmetic 0.141 0.230 99.31
Geometric 0.155 0.206 99.49

ε̇1 0.114 0.226 98.99
ε̇2 0.115 0.205 99.37

Harmonic 0.150 0.190 99.68
Rar 0.214 0.174 98.05

Regime 3 Arithmetic 0.145 0.230 99.96
Geometric 0.141 0.213 99.97

ε̇1 0.131 0.220 99.94
ε̇2 0.138 0.200 99.95

Harmonic 0.136 0.197 99.98
Rar 0.166 0.191 99.95

Figure 10. (a) Internal temperature Ti and (b) depth of the base of the
upper thermal boundary layer zi as a function of the generalized Frank–
Kamenetskii parameter θ and effective Rayleigh number Rahar based on
the harmonic average. Only simulations with one convection cell and a lid
with steep slope are plotted here. Symbols indicate different fractions of
the activation energy of dislocation creep. Red symbols with high values of
Rahar and θ correspond to standard diffusion creep simulations, while blue
symbols correspond to diffusion creep simulations with activation enthalpy
of dislocation creep Hdis, reduced according to the factors indicated in the
legend.

Figure 11. Measured Nusselt number as a function of the Nusselt number
predicted by eq. (36) for all simulations.

Figure 12. Nusselt number calculated with eq. (36) as a function of the
effective Rayleigh number based on the harmonic average of the viscosity
and the average lid thickness. Each of the shaded points corresponds to one
simulation that we used to find the scaling parameters.

enthalpy. For the first time, we explored in detail this idea and the
extent to which it is applicable. Mimicking dislocation creep by re-
ducing the activation enthalpy as done by Christensen (1984)—but
in the absence of a stagnant lid—has a limited validity. The Nusselt
number, mean lid thickness, mean temperature and rms velocity
can be reproduced but not simultaneously and for the same reduc-
tion factor (Fig. 7). Mimicking the flow pattern and lid shape is
not possible. Since the slope of the lid is mostly influenced by the
temperature dependence of the viscosity, the activation energy and
volume would likely need to be modified independently to obtain
a good match. The pressure dependence can be used to increase
or decrease the lid thickness, while the temperature dependence to
adjust the velocity and flow pattern. If internal heating were also
taken into account, the temperature contrast between up- and down-
wellings would possibly be lower and thus the lid slope less steep.
In this case, a simple reduction of the activation enthalpy could be
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Stagnant-lid convection with mixed rheology 35

sufficient to reproduce the flow pattern obtained by using disloca-
tion creep. This could be investigated in future studies. However,
the large number of special cases to be considered shows that such
an approach is not advisable for realistic thermal evolution models,
as most of these flow properties are time-dependent.

In pure diffusion creep models with constant activation energy
and volume we found that a single combination of pre-factor α and
exponent β can not fulfill the relation Nu = αRaβ for all Rayleigh
numbers. α and β rather depend on the characteristic flow pattern.
Although this behaviour is the same for the composite rheology,
considering Newtonian diffusion creep and non-Newtonian dislo-
cation creep, the scaling parameters are different. Even though the
fraction of dislocation creep increases with decreasing Rayleigh
number, the scaling parameters remain constant in each of the three
regimes. This suggests that the impact of the stress exponent (n) on
β is negligible.

The implementation of a characteristic value for the temperature
and pressure dependence of the viscosity (the Frank–Kamenetskii
parameter θ ) into the scaling relation requires knowledge of the
depth of the base of the upper thermal boundary layer, the shape
of the lid, the internal temperature and the deformation mechanism
acting (e.g. Fowler 1985; Reese et al. 1998). In the framework of
our parameter study on grain size, not all of these parameters could
be systematically investigated. Only for the Newtonian case, with a
steep slope we were able to show that the dependence on θ is weaker
than predicted, which is likely due to the pressure dependence of
our rheological model. However, the characteristic values needed
for the scaling law cannot be known beforehand. We thus scaled
the Nusselt number only with the mean lid thickness and effective
Rayleigh number based on the harmonic average of the viscosity and
found Nu = 0.37〈L〉−0.666Ra0.071

har , which fits well all our model runs.
The consequence of this scaling law is that the power dependence of
the Rayleigh number does not depend on the chosen stress exponent.
However, the lid thickness depends on the chosen rheology. Whether
the lid thickness is determined based on the stress exponent, grain
size or activation enthalpy plays a minor role. The shape of the lid
does not matter either. Regardless of the fitting function used, the
effective Rayleigh number based on the harmonic average of the
viscosity, which corresponds to the viscosity value near the base of
the stagnant lid, provides the most accurate estimate of the Nusselt
number.

Overall, simulations based on pure diffusion creep and composite
rheology differ considerably in terms of heat flux, lid shape, inter-
nal temperature and melt production. Together with the (limited)
evidence for relatively large grain sizes at present-day, they suggest
that models of the thermal evolution of Mars should be revaluated
in light of the effects of a composite rheology combining diffusion
and dislocation creep.
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2017. The importance of grain size to mantle dynamics and seismological
observations, Geochem. Geophys. Geosyst., 18, 3034–3061.

Elkins-Tanton, L.T., Zaranek, S.E., Parmentier, E. & Hess, P., 2005. Early
magnetic field and magmatic activity on Mars from magma ocean cumu-
late overturn, Earth planet. Sci. Lett., 236(1-2), 1–12.

Evans, B., Renner, J. & Hirth, G., 2001. A few remarks on the kinetics of
static grain growth in rocks, Int. J. Earth Sci., 90, 88–103.

Foley, B.J. & Bercovici, D., 2014. Scaling laws for convection with
temperature-dependent viscosity and grain-damage, Geophys. J. Int,
199(1), 580–603.

Fowler, A., 1985. Fast thermoviscous convection, Stud. Appl. Math., 72(3),
189–219.

Grasset, O. & Parmentier, E., 1998. Thermal convection in a volumetrically
heated, infinite Prandtl number fluid with strongly temperature-dependent
viscosity: implications for planetary evolution, J. geophys. Res., 103,
18 171–18 181.
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