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Abstract 

The quality of software products in safety critical applications, extensively found within the space domain, is a 

key success factor but also a major cost driver. To ensure high quality of the software product, quality assurance 

processes with quality models and metrics are applied. With these tools and processes, product assurance managers 

and software developers are able to quantify the quality of the software under development. Within the ESA-funded 

study PaTaS (Product Assurance with TASTE Study), a product quality model with software and model metrics was 

developed and implemented in an end-to-end model-driven software development (MDSD) life cycle demonstrator. 

The goal of this study was to identify applicable concepts to maintain quality and dependability levels when 

MDSD is applied. This requires the definition of connected model and software quality indicators. These indicators 

were integrated into ESA’s reference software product quality model (ECSS-Q-HB-80-04A). The resulting adapted 

quality model got incorporated in a model-driven software development life cycle demonstrator. To evaluate this 

demonstrator and the integrated quality indicators in a realistic development scenario, mission-critical parts of the 

command and data handling subsystem of a satellite mission were modelled and subsequently coded. The aim of the 

activity was to demonstrate the effect of the end-to-end life cycle in combination with the developed quality model 

on the final onboard software product. In this paper we present the result of the study. The focus is on the quality 

model for MDSD and new quality metrics for models, which can be embedded in an end-to-end model-driven 

product development life cycle. 
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1. Introduction 

Model-Driven Software Development (MDSD) is a 

commonly used software development paradigm, 

applied in many technical domains. One of its purposes 

is to raise consistency within the product, by generating 

source code and other artefacts from various model-

views. In safety critical applications, extensively found 

in the aerospace and automotive domains, the quality of 

the software product is a key success factor but also a 

major cost driver. To maintain a high quality software 

product, quality assurance processes with quality 

models and metrics are used to determine the quality 

state of the software under development. With MDSD, 

the quality evaluation of the product can be conducted 

automatically in an early phase of the development life 

cycle. Nevertheless, in our view the existing processes, 

quality models and model metrics are insufficient and 

not generally applicable, due to a high adaption to 

specific modelling technologies (Matlab Simulink, 

Capella, SysML, UML etc.).   

Within PaTaS (Product Assurance with TASTE 

Study), a product quality model with software and 

model metrics was developed, together with an end-to-

end Model-Driven Software Development Life Cycle 

(MDSDLC), to improve software product assurance in 

model-driven software product development. The goal 

of this study was to find applicable concepts to maintain 

the quality and the dependability levels, when MDSD is 

applied. This required the definition of interconnected 

model and software quality indicators. These indicators 

are identified and integrated with an enhanced version 

of European Space Agency’s reference software product 

quality model of ECSS-Q-HB-80-04A [1] and 

implemented in a MDSDLC demonstrator, which is 

based on TASTE [2]. To evaluate this demonstrator and 

the integrated quality indicators, mission-critical parts 

of the command and data handling subsystem of a 

satellite mission were modelled and subsequently 

coded, simulating a realistic development scenario as 

use-case.  

The rest of the paper is structured as follows. 

Section 2, discusses applied concepts, standards and 

related studies in the domain. Section 3 targets quality 

assurance in model-driven software development, 

elaborating the quality model, the model metrics and 

their integration in the development life cycle. In 

Section 4, the demonstrator design is elaborated whilst 

Section 5 discusses the use-case results, followed by the 
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conclusion in Section 6. The study was funded by the 

European Space Agency. 

 

2. Background and Related Work  

Model-driven development is an idea that presents 

both risks and opportunities for software development 

processes. Commercial solutions for MDSD are 

prevalent in safety- and mission-critical software 

development in the space domain (i.e. AADL, 

Simulink). Emerging technologies in software 

engineering, (i.e. Eclipse Modelling Framework) and in 

systems engineering (i.e. Capella, SysML2) are 

accelerating this trend. 

MDSD changes the development approach and 

requires users to rethink tools and processes. Collecting 

and reporting quality indicators in the form of metrics is 

a well-established task in software development. The 

European Cooperation for Space Standardization 

(ECSS) features it as a requirement in its software 

product assurance standard [3] and exemplifies it in 

detail in the handbook [1]. 

Metrics do not judge quality but inform practitioners 

in their judgement. Collecting and evaluating metrics 

draws attention to software quality, potentially 

improving the outcome of the project (see [4] and [5]). 

PaTaS implements this sentiment by early and constant 

application as well as evaluation of the designed model 

metrics throughout the entire model-driven software 

development life cycle. Connecting the development of 

metrics directly to the software development process 

supports their validity by bearing the idea that these 

metrics actually represent their associated 

characteristics [4, 6, 7]. 

There have been efforts to develop quality models 

for MDSD in several experiments and industrial case 

studies (see [8] for an overview). Commercial vendors 

offer software solutions to evaluate basic software 

metrics and modelling guideline compliance for 

Simulink (Simulink Check [9]), AADL (AADL 

Inspector [10]), and UML (SDMetrics [11]). An open 

source initiative to evaluate metrics and “model smells” 

in ecore models with the EMF Refractor [12] has not 

made it past preliminary development phases. “Model 

smells” are the result of poor design and implementation 

and reflect missing quality attributes [13].  

Typically, internal product metrics, i.e. metrics that 

target attributes of the source code of the software, are 

concerned with size, complexity, compliance to 

coding/modelling standards, and readability. Efficiency 

of the binaries or reuse rate do not target the source 

code itself and therefore omitted here. 

Classification of these metrics varies: While 

Simulink Check differentiates between size and 

architecture metrics to measure size and complexity 

respectively, whereas the ECSS software product 

assurance handbook [1] lists size and complexity 

metrics under the characteristic complexity. Some 

scholars try to remodel classic complexity metrics to fit 

to models, as Halstead metrics [14] by Olszewska et al 

in [15] and Card and Agresti metrics [16] in [17]. 

MDSD offers the chance to establish metrics for 

modularity, an important characteristic that is mostly 

evaluated by hand (see [1]). Simulink Check lists 

markers for this characteristic under architecture, while 

others have made efforts to research modularity metrics 

for Simulink, differentiating between too much binding 

of modules (high coupling), and too little binding (low 

cohesion) [18]. 

 

3. Quality Assurance in Model-driven Software 

Development 

 

3.1 Quality Model  

Figure 1 displays the extended factor-criteria-metrics 

reference quality model, based on the reference quality 

model of ECSS-Q-HB-80-04A [1]. In order to 

effectively evaluate the quality of a product, developed 

by following the model-driven methodology, it is 

required to split the product metric into a Model Metric 

(MM) and a Software Metric (SWM). These quality 

indicators can be used to evaluate different 

characteristics and their sub characteristics, mapped on 

the product to form a quality requirement. The study 

focuses product quality characteristics, but the concept 

is also applicable for process quality characteristics. 
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Figure 1 Extended reference quality model 
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To derive a verdict on the quality of the product and 

therefore on the fulfilment of the quality requirement, 

the MMs and SWMs need to be mapped against each 

other. This is conducted with the usage of mapping 

formulae. In PaTaS, three mapping formulae have been 

defined but further ones could be established. They are: 

 Nesting of metrics means that a software metric is 

nested in a model metric. The model metric can be 

used to evaluate properties of the product at this 

rather abstract level. The result of this evaluation 

determines special points of interest for a 

subsequent metrication in software. 

 Complementation of software and model metrics 

means that the state of the quality requirement of 

the product is depending on both metrics. Each of 

them have to be fulfilled to reach the desired 

quality. 

 Independence of software and model metrics 

means that they are used only within their level of 

abstraction to determine the state of a quality 

requirement.  

 

3.2 Model Metrics 

Table 1 collects the proposed model metrics and 

presents the individual main and sub characteristic, 

which can be evaluated by them. To elaborate the 

functionality of the metric, its purpose and evaluation 

method is given, together with a threshold value. The 

threshold value denoted here can be used as an 

orientation value, as it is the result of the use-case 

demonstrator implementation. In general, the threshold 

values can vary as they are highly depending on the 

used model-view, modelling language and software 

standard (here, the Packet Utilization Standard [19] is 

used). For further details on how to tailor the threshold 

values, refer to Section 5.  

To facilitate the understanding of the model metrics 

the following terminology shall be applied. A model 

type is a type specified in a modelling language.. This 

type represents a classification of a specific entity, i.e. a 

rule to create a class or a method. A model type instance 

is a well formed concretization of a model type, written 

with a modelling language, i.e. an actual class or 

method instantiation, defined following the semantical 

and syntactical model type rule [20].  

Next to the classification based on their evaluable 

characteristics, MMs can also be grouped regarding 

their analytical capability. This grouping of MMs also 

determines a recommended order for their application 

and therefore the process for the resolution of exceeding 

MM thresholds. The identified and ordered analytic 

capabilities are: 

1. Conformance scanning: Metrics with this 

capability force developers to create overview and 

standard conformance within their models. For 

example, model type instances or files have to be 

split or commented. Additionally, modelling 

standards shall be evaluated regarding 

compliance. 

2. Structural scanning: Metrics with this capability 

give detailed insight on the structural design and 

data flow within the software product. 

Problematic model type instances can be 

identified based on the amount and kind of 

interconnections they have with other model type 

instances. Combining different metrics and 

targeting distinct model-views allows the 

investigation of various structural properties of 

the system. 

3. Behavioural scanning: Metrics with this 

capability are related to the group of structural 

scanning. Nevertheless they target functional 

requirements and their specification. An 

unbalanced product specification as well as 

failures within the software requirements can be 

identified. 

 

Table 1 PaTaS Model Metrics 

Model Coupling 

Characteristic Modularity, Balance, Complexity 

Purpose 

Determining the coupling of model type instances among each other; A high coupling results 

in a monolithic unbalanced model/software, hindering reuse and effective maintenance, due to 

side effects among components. 

Evaluation 

Counting references/interfaces of/to model type instances of a specific model type, used by a 

single model type instance. Additionally, different properties of interfaces can be used to 

weight them (based on Chidamber and Kemerer [21]). 

Analytical 

Capability 
Structural scanning Threshold 5..9 

Model Comment Frequency 

Characteristic Self-Descriptiveness, Complexity, Balance 
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Purpose 
Determining the legibility and the self-descriptiveness of the models, in order to improve the 

non-functional requirements. 

Evaluation Calculating the ratio between comment lines and code lines in the model. 

Analytical 

Capability 
Conformance scanning Threshold 15..30% 

Interaction Diagram Coverage 

Characteristic Completeness, Balance 

Purpose 

This MM complements the requirements implementation coverage and structural coverage 

SWM. A high value can indicate low functional cohesion of the model type instance, whereas, 

a value of zero raises questions about the general purpose of the model type instance. 

Evaluation Counting the model type instances of a system model, used in a behavioural test model  [22] 

Analytical 

Capability 
Behavioural scanning Threshold >=1 

Model Type Instances per Use-Case 

Characteristic Modularity, Complexity, Balance, Conciseness 

Purpose 

Determines the granularity of requirements and the requirements to specifications fit; A high 

value signifies that a change in the requirement has a great impact on the system design and 

implementation and it indicates a low functional cohesion, as functionality is spread over 

many model type instances. 

Evaluation 
Counting amount of model type instances per use-case; Here, a use-case is the implementation 

of a test case for a software requirement (see [23]). 

Analytical 

Capability 
Behavioural scanning Threshold 5..9 

Use-Cases per Model Type Instance 

Characteristic Modularity, Complexity, Balance, Conciseness 

Purpose 

This metric identifies excessively used model type instances and therefore components of the 

onboard software. A high value indicates that the cohesion of the model type instance might 

be low and that implementation failures have a broad effect on the overall system. 

Evaluation 
Counting the amount of use-cases per model type instance; Here, a use-case is the 

implementation of a test case for a software requirement (see [23]). 

Analytical 

Capability 
Behavioural scanning Threshold 1..16 

Model Type Instance Weight 

Characteristic Complexity, Balance 

Purpose 

Determines the complexity of a model type instance by counting and weighting its containing 

model type instances. The threshold value depends on the used indicator to determine 

complexity of the contained model type instances. 

Evaluation 

Accumulating all model type instances, contained in a model type instance, considering a 

model type specific weight factor, determined by any indicator of complexity. It is the model 

equivalent of Weighted Methods per Class (see [21]) 

Analytical 

Capability 
Structural scanning Threshold 

Depends on weight factor  (in 

PaTaS, threshold is  50..250 ) 

Module Fan-in/out 

Characteristic Modularity, Balance 
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Purpose 

High Fan-in or Fan-out indicates high complexity of the system and monolithic design, 

making it hard to maintain and reuse. The complexity of a procedure depends on the 

complexity of the control flow in the procedure and of the procedure’s connection. 

Evaluation 
Fan-in: Counting interfaces of local flows into a model type instance; 

Fan-out: Counting interfaces of local flows out of a specific model type instance; (see  [24]) 

Analytical 

Capability 
Structural scanning Threshold 4..6 

Adherence to Modelling Conventions 

Characteristic Modularity, Completeness, Self-Descriptiveness, Conciseness, Balance, Correctness 

Purpose 
Increases maintainability as well as re-usability and is especially helpful for graphical 

modelling languages, as it creates overview of the system. 

Evaluation 

Guidelines for the modelling, like naming conventions, consistency rules etc. Such 

conventions are equivalent to coding guidelines and have to be adapted to the modelling tools 

and domain standards. Difficult to get tool-support for the automatic evaluation. (see  [25]) 

Analytical 

Capability 
Conformance scanning Threshold 100% 

Lines of Model Code 

Characteristic Complexity, Balance, Self-descriptiveness 

Purpose 

Indication of model complexity, balance and self-descriptiveness. Too large model files 

reduce the overview and therefore maintainability and re-usability. Mainly applicable for 

textual models. 

Evaluation Counting the number of model lines per model file (excluding comments and blank lines) 

Analytical 

Capability 
Conformance scanning Threshold 300..500 

 

3.3 Model-driven Software Development Life Cycle 

Within this study, the MDSDLC and its phases 

follow the V-model development methodology. This 

methodology allows a good traceability and separation 

of modelling and coding phases. Additionally, it is 

frequently used at ESA and the European space 

community, being a standard in the development of 

spacecraft software. Figure 2 visualizes the MDSDLC, 

which is mapped to the demonstrator design and the 

used tools in Section 4. During the life cycle phase 

execution, different modelling and QA tools are used: 

PaTaS domain frontend, TASTE toolchain and COTS 

source code analysis tools.  

The PaTaS study enters the development at the 

Software Preliminary Design Review (SW-PDR), with 

 

predefined software system requirements and 

specifications in text format. It ends with the Software 

Critical Design Review (SW-CDR), before system 

verification and validation. High Level Design and 

Detailed Design are modelling phases. Unit/Device 

Testing and Subsystem Verification are coding phases. 

Within the High Level Design phase, the PUS library is 

designed and unit test stubs are generated for 

implementing them later in the Unit/Device Testing 

phase. The subsequent Detailed Design is used to detail 

the data structures and behavioural test models. From 

this stage, executable C++ test cases are generated for 

the Subsystem Verification phase. In all phases, either 

model or source code quality is determined by an 

analysis, which is automated as much as possible. 
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Figure 2 MDSDLC in PaTaS, based on V-model 

 

4. Demonstrator Design and Application  

This section explains the demonstrator design, focusing 

its application in the phases of the MDSDLC (see 

Figure 3). The demonstrator tool-chain is used to 

evaluate the MDSDLC, the quality model and the model 

metrics, in an end-to-end satellite onboard software use-

case, based on the Space Engineering - Telemetry and 

Telecommand Packet Utilization Standard (PUS [19]). 

PUS addresses the communication between ground 

control and the space segment, to command or monitor 

platform and payload units. The standard defines 

  

 

extensible services, which target the base functionality 

of a spacecraft [1]. The demonstrator follows the 

Model-Driven Architecture (MDA™), adopted by the 

Object Management Group. MDA is a framework for 

the model-based development, layering the evolution 

from Computation Independent Models (CIM), via 

Platform Independent Models (PIM) to Platform 

Specific Models (PSM). This standard elaborates rules 

for the model-to-model transformation of these 

viewpoints [20]. 

 

 
Figure 3 PaTaS demonstrator design 
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4.1 High Level Design Phase 

Within this phase, the PUS model, consisting of 

applications, services and sub-types, is modelled. This 

structural model is described by the usage of the PUS 

Architectural Language (PAL) editor, a domain specific 

language, allowing modelling PUS-conform 

architectures. This editor is implemented with the 

Eclipse Modelling Framework (EMF) and the Xtext 

framework [26], as the subsequent elaborated ASN.1 

and DTVL editors. Following the MDA guidelines [20], 

the implemented generator conducts a model-to-model 

transformation of the PUS architecture (CIM) to the 

TASTE Interface View (PIM), used in the subsequent 

development phase. TASTE is a model-centric software 

development environment and set of tools, targeting 

mission-critical and embedded real-time systems, 

developed by the European Space Agency [2, 27]. 

During the transformation, unit test skeletons are 

generated and Conformance as well as Structural 

scanning MMs are automatically collected. Subsequent, 

the MMs are investigated and the current quality model 

state is determined. The derived product quality verdict 

leads to potential action items which need to be resolved 

to enable a transition into the next phase. 

 

4.2 Detailed Design Phase 

In this phase, the ASN.1 editor is used to model the 

subtype messages, which are the parameters used in the 

TASTE Interface View (IV). The ASN.1 data model 

and the PIM of the PUS architecture are transformed 

into a PSM for the TASTE Deployment View. Among 

others, at this stage the user can configure the model for 

specific hardware targets, generate platform specific 

code skeletons and link to device drivers. 

Additionally, the Data Testing and Verification 

Language (DTVL) editor is used to define a behavioural 

test model, by referencing the PUS model type instances 

of the PAL editor and the instantiated ASN.1 messages. 

The DTVL is an in-house developed editor, which is 

based on Linear Temporal Logic [28] and is able to 

describe the expected behaviour of a system over time 

via the TM/TC interface. It generates executable black-

box test cases, which later can be executed against the 

onboard software. The quality is evaluated by collecting 

and evaluating Conformance, Structural and 

Behavioural Scanning MMs. 

 

4.3 Unit/Device Testing Phase 

In this phase, the transition from modelling to 

coding is conducted by implementing the generated 

source code skeletons of the PUS OBSW. The 

implementation of the software is conducted in a test-

driven fashion with the generated unit tests. The quality 

of the software under development is evaluated with the 

help of SWM and by mapping them against MM in a 

product quality requirement. 

 

4.4 Subsystem Verification Phase 

This is the final phase of the PaTaS study. Here, the 

OBSW implementation is further tested against the 

executable test cases, which are described in the 

Detailed Design phase. These integration tests are 

conducted with the Test Execution and Evaluation 

Platform (TEEP), which is a compilable C++ test-case 

runtime engine, generated by the DTVL editor. This 

engine triggers stimuli TC messages against the OBSW 

and expects specific TM message(s), so called oracle 

messages, over time in return. Also expected periodic 

messages or messages that should never arrive can be 

defined for testing. The outputs are reported in XML 

and HTML5 formats as well as on the console, and 

indicate whether the Linear Temporal Logic property of 

the system holds. 

 

5. Results and Discussion  

5.1 Use-case Implementation 

The implemented use-case is based on the 

specifications and software requirements of parts of the 

command and data handling of the OBSW of a SmallSat 

mission. The satellite has a size of about 1 cubic meter 

and a mass of approximately 200 kg. Within PaTaS only 

a small part of the OBSW was re-implemented in lab 

quality. Excluded were complex satellite control 

algorithms of subsystems, as well as driver interfaces to 

sensors or actuators. Table 2 denotes the use-case in 

figures, displaying (semi-)manually implemented 

components. Automatically generated source code and 

reports are excluded. In addition, Figure 4 shows the 

model in the TASTE Interface View, with the three 

modelled applications and their PUS onboard message 

dispatcher system, interfacing the EGSE. The size of the 

model is too large to display it in all details, due to the 

90 modelled PUS subtypes interfacing the applications. 

 

Table 2 Manually implemented part of use-case 

Number of implemented 

TM/TC messages 

90 

Applications ACS, ONS, CDH 

Lines of model code 13,559 

Lines of Application OBSW 

code 

3,334 

Lines of unit test code 5,845 
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Figure 4  TAST IV model of PUS-based data handling for three onboard applications 

 

5.2. Quality Model Application Results 

Throughout the development, the instantiated quality 

model provides a clear overview on the current quality 

state as well as its progress. The use-case revealed that 

quality is added already in the modelling phases, and 

mainly has to be maintained in the coding phase. The 

splitting of product metrics in model and software 

metrics reduces the risk of a flawed design, because it 

allows mitigating design errors early in the development 

life cycle. 

The mapping formulae are an important feature of 

the adapted quality model as it allows the introduction 

of custom relationships between model and software 

metrics as product quality requirements. This is similar 

to the formulae used within the metrics to determine 

their value from the basic measurements and could also 

be used for the combination of model with model or 

software with software metrics. Further, it is important 

to combine software with model metrics which are not 

using similar mechanism to determine a quality 

characteristic. The model represents the specification of 

the system, and is an abstraction of the source code. 

Measuring, for example coupling in model and source 

code will not reveal many new insights in the source 

code evaluation. 

The order of evaluation and resolution of threshold 

exceeding metrics is important for raising the product 

quality. Next to the classification, based on their 

evaluable characteristics, MMs can be grouped 

regarding their analytical capability. The analytical 

capability determines a recommended order for the 

application of the MMs, and therefore the resolution of  

 

exceeding thresholds. Table 1 also denotes the Analytic 

Capability for each model metric. The identified and 

ordered analytic capabilities are: 

o Conformance scanning: This group of metrics 

forces developers to create overview and standard 

conformance within their models. Model type 

instances or files have to be split or commented. 

Additionally, modelling standards shall be 

evaluated regarding compliance. 

o Structural scanning: These metrics give detailed 

insight on the structural design and data flow 

within. Problematic model type instances can be 

identified based on the amount and kind of 

interconnections they have with other model type 

instances. Combining different metrics and 

targeting distinct model-views allows the 

investigation of various structural properties of the 

system. 

o Behavioural scanning: This group of metrics is 

strongly related to structural scanning, but targets 

mainly on the functional requirement and the 

specification. An unbalanced system specification 

as well as failures within the software requirements 

can be identified. 

 

Figure 5 displays the resolution of exceeding model 

metrics, following the aforementioned order, 

determined by their analytic capability.   
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Figure 5 Application of model metrics in the 

MDSDLC 

 

5.3 Model Metric Results 

To reveal the expressiveness of the model metrics, 

two diagrams of the use-case are displayed as examples: 

one with the model metric Model Coupling and the 

other with the model metric Model Type Instances per 

Use-Case; For a detailed explanation of the different 

model metrics, please refer to  

Table 1. 

Figure 6 shows the progress of the model metric 

Model Coupling. The x-axis displays time, represented 

as versions of the models. It measures the coupling of 

applications with their PUS service implementations. 

Here, the Onboard Navigation Subsystem (ONS) 

application has a very high coupling value with the PUS 

Function Management Service (8) in v1.0 and v1.1. As 

a reaction, at v1.4 this value is decreased by the 

introduction of a custom PUS service (here 152) 

removing tele-command messages from the service 8 

interface. An over usage of PUS Function Management 

Service (8) is common in the development of onboard 

data handling, because the applications and their 

functionality grow over time. PUS Function 

Management Service (8) is then often used as interface 

from ground, instead of defining a custom service as it 

happened here in v1.4. 

Figure 7 shows the result of the model metric Model 

Type Instances per Use-Case. Here, each software 

requirement, targeting the interface of the onboard data 

handling, is covered by a use-case. High values for 

messages per use-case indicate potential issues with the 

software requirement or the specification. 

 

 
Figure 6 MM: Model Coupling 

 

High metric values indicate that either the 

requirement is too coarse grained defined, meaning that 

there is too much functionality covered by a single 

requirement, or the functionality is scattered over the 

system by the specification. The diagram displays that 

over the development time, more and more use-cases 

are implemented (green line) and large use-cases drift 

towards the average use-case value. In the background, 

based on the value of this model metric, requirements 

get refined and the specification revisited to improve 

both. 

 
Figure 7 MM:  Model Type Instances per Use-Case 

 

Determining a threshold value for the model metrics 

is specifically difficult. As most of them were 

developed or re-designed for the evaluation of models, 

no experience backed by large use-cases is available. It 
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is recommended to maintain a small slack, being the 

difference between minimum and maximum measured 

MM value, balancing it out. This can be supported by 

the creation of average values.  

The use-case also revealed that models and metrics 

evaluating them are more context sensitive than source 

code metrics. The models in the use-case were 

implementations following a domain standard (here: 

PUS). These standards might lead to unbalanced models 

with certain high values for specific model type 

instances. Therefore, each exceeding threshold value 

has to be evaluated in context of the domain standards 

to derive a final quality verdict.  

  

6. Conclusions  

The paper elaborates on how to raise software 

product quality when model-driven development is 

conducted, by integrating a new quality model and new 

model metrics into the software development life cycle. 

The concept is implemented in an end-to-end prototype 

demonstrator toolchain, based on TASTE [2, 27]. The 

evaluation of the demonstrator and its integrated quality 

indicators is conducted by the re-implementation of 

mission-critical parts of the command and data handling 

subsystem of a satellite mission, simulating a realistic 

development scenario as use-case. 

The results reveal that the quality model, which is 

extended for the model-driven development 

methodology, and model metrics help to detect design 

flaws early in the development life cycle. The 

developed model metrics can be used to evaluate 

specific software product quality requirements and are 

combinable with software and further model metrics to 

derive more complex verdicts. The resolution of quality 

shortcomings should follow a certain order to maximise 

the efficiency. Additionally, the use-case showed that 

even for domain specific models, the product quality 

assessment process can be automated. A shortcoming is 

the determination of threshold values for the model 

metrics, due to the limited experience with them so far. 

This study can be seen as a precedency case, being a 

baseline for further model metric threshold 

investigations. 
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