
70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 1 of 11

IAC-19-D5.1.2

PaTaS: Quality Assurance for Model-driven Software Development

Kilian Hoeflinger
a
*, Arno Feiden

b
, Jan Sommer

a
, Ayush Mani Nepal

a
, Daniel Lüdtke

a

a
 Simulation and Software Technology, German Aerospace Center (DLR), Lilienthalplatz 7,Braunschweig 38108,

Germany, first_name.last_name@dlr.de
b
 Directorate of Technology, Engineering and Quality, European Space Agency, Keplerlaan 1, Noordwijk NL-2200,

The Netherlands, first_name.last_name@esa.int

* Corresponding Author

Abstract

The quality of software products in safety critical applications, extensively found within the space domain, is a

key success factor but also a major cost driver. To ensure high quality of the software product, quality assurance

processes with quality models and metrics are applied. With these tools and processes, product assurance managers

and software developers are able to quantify the quality of the software under development. Within the ESA-funded

study PaTaS (Product Assurance with TASTE Study), a product quality model with software and model metrics was

developed and implemented in an end-to-end model-driven software development (MDSD) life cycle demonstrator.

The goal of this study was to identify applicable concepts to maintain quality and dependability levels when

MDSD is applied. This requires the definition of connected model and software quality indicators. These indicators

were integrated into ESA’s reference software product quality model (ECSS-Q-HB-80-04A). The resulting adapted

quality model got incorporated in a model-driven software development life cycle demonstrator. To evaluate this

demonstrator and the integrated quality indicators in a realistic development scenario, mission-critical parts of the

command and data handling subsystem of a satellite mission were modelled and subsequently coded. The aim of the

activity was to demonstrate the effect of the end-to-end life cycle in combination with the developed quality model

on the final onboard software product. In this paper we present the result of the study. The focus is on the quality

model for MDSD and new quality metrics for models, which can be embedded in an end-to-end model-driven

product development life cycle.

Keywords: quality assurance, model metrics, quality models, model-driven development

1. Introduction

Model-Driven Software Development (MDSD) is a

commonly used software development paradigm,

applied in many technical domains. One of its purposes

is to raise consistency within the product, by generating

source code and other artefacts from various model-

views. In safety critical applications, extensively found

in the aerospace and automotive domains, the quality of

the software product is a key success factor but also a

major cost driver. To maintain a high quality software

product, quality assurance processes with quality

models and metrics are used to determine the quality

state of the software under development. With MDSD,

the quality evaluation of the product can be conducted

automatically in an early phase of the development life

cycle. Nevertheless, in our view the existing processes,

quality models and model metrics are insufficient and

not generally applicable, due to a high adaption to

specific modelling technologies (Matlab Simulink,

Capella, SysML, UML etc.).

Within PaTaS (Product Assurance with TASTE

Study), a product quality model with software and

model metrics was developed, together with an end-to-

end Model-Driven Software Development Life Cycle

(MDSDLC), to improve software product assurance in

model-driven software product development. The goal

of this study was to find applicable concepts to maintain

the quality and the dependability levels, when MDSD is

applied. This required the definition of interconnected

model and software quality indicators. These indicators

are identified and integrated with an enhanced version

of European Space Agency’s reference software product

quality model of ECSS-Q-HB-80-04A [1] and

implemented in a MDSDLC demonstrator, which is

based on TASTE [2]. To evaluate this demonstrator and

the integrated quality indicators, mission-critical parts

of the command and data handling subsystem of a

satellite mission were modelled and subsequently

coded, simulating a realistic development scenario as

use-case.

The rest of the paper is structured as follows.

Section 2, discusses applied concepts, standards and

related studies in the domain. Section 3 targets quality

assurance in model-driven software development,

elaborating the quality model, the model metrics and

their integration in the development life cycle. In

Section 4, the demonstrator design is elaborated whilst

Section 5 discusses the use-case results, followed by the

mailto:first_name.last_name@dlr.de
mailto:first_name.last_name@esa.int

70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 2 of 11

conclusion in Section 6. The study was funded by the

European Space Agency.

2. Background and Related Work

Model-driven development is an idea that presents

both risks and opportunities for software development

processes. Commercial solutions for MDSD are

prevalent in safety- and mission-critical software

development in the space domain (i.e. AADL,

Simulink). Emerging technologies in software

engineering, (i.e. Eclipse Modelling Framework) and in

systems engineering (i.e. Capella, SysML2) are

accelerating this trend.

MDSD changes the development approach and

requires users to rethink tools and processes. Collecting

and reporting quality indicators in the form of metrics is

a well-established task in software development. The

European Cooperation for Space Standardization

(ECSS) features it as a requirement in its software

product assurance standard [3] and exemplifies it in

detail in the handbook [1].

Metrics do not judge quality but inform practitioners

in their judgement. Collecting and evaluating metrics

draws attention to software quality, potentially

improving the outcome of the project (see [4] and [5]).

PaTaS implements this sentiment by early and constant

application as well as evaluation of the designed model

metrics throughout the entire model-driven software

development life cycle. Connecting the development of

metrics directly to the software development process

supports their validity by bearing the idea that these

metrics actually represent their associated

characteristics [4, 6, 7].

There have been efforts to develop quality models

for MDSD in several experiments and industrial case

studies (see [8] for an overview). Commercial vendors

offer software solutions to evaluate basic software

metrics and modelling guideline compliance for

Simulink (Simulink Check [9]), AADL (AADL

Inspector [10]), and UML (SDMetrics [11]). An open

source initiative to evaluate metrics and “model smells”

in ecore models with the EMF Refractor [12] has not

made it past preliminary development phases. “Model

smells” are the result of poor design and implementation

and reflect missing quality attributes [13].

Typically, internal product metrics, i.e. metrics that

target attributes of the source code of the software, are

concerned with size, complexity, compliance to

coding/modelling standards, and readability. Efficiency

of the binaries or reuse rate do not target the source

code itself and therefore omitted here.

Classification of these metrics varies: While

Simulink Check differentiates between size and

architecture metrics to measure size and complexity

respectively, whereas the ECSS software product

assurance handbook [1] lists size and complexity

metrics under the characteristic complexity. Some

scholars try to remodel classic complexity metrics to fit

to models, as Halstead metrics [14] by Olszewska et al

in [15] and Card and Agresti metrics [16] in [17].

MDSD offers the chance to establish metrics for

modularity, an important characteristic that is mostly

evaluated by hand (see [1]). Simulink Check lists

markers for this characteristic under architecture, while

others have made efforts to research modularity metrics

for Simulink, differentiating between too much binding

of modules (high coupling), and too little binding (low

cohesion) [18].

3. Quality Assurance in Model-driven Software

Development

3.1 Quality Model

Figure 1 displays the extended factor-criteria-metrics

reference quality model, based on the reference quality

model of ECSS-Q-HB-80-04A [1]. In order to

effectively evaluate the quality of a product, developed

by following the model-driven methodology, it is

required to split the product metric into a Model Metric

(MM) and a Software Metric (SWM). These quality

indicators can be used to evaluate different

characteristics and their sub characteristics, mapped on

the product to form a quality requirement. The study

focuses product quality characteristics, but the concept

is also applicable for process quality characteristics.

Product quality sub-

characteristic
Product quality sub-

characteristic

Product quality

characteristic
Process quality

characteristic

Software quality

requirements

Process quality

characteristic

Product quality

characteristic

Model metric

Life cycle

expected

output

Basic

data

Simple

measurement

Code metric

Mapping formula

Product quality sub-

characteristic

Product quality sub-

characteristic

composed of

composed of

calculated by

Life cycle

expected

output

Basic

data

Simple

measurement

composed of

Measurement

formula

calculated by

composed of

Life cycle

expected

output

Basic

data

Simple

measurement

Life cycle

expected

output

Basic

data

Simple

measurement

composed of

Measurement

formula

calculated by

calculated by

used by

Figure 1 Extended reference quality model

70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 3 of 11

To derive a verdict on the quality of the product and

therefore on the fulfilment of the quality requirement,

the MMs and SWMs need to be mapped against each

other. This is conducted with the usage of mapping

formulae. In PaTaS, three mapping formulae have been

defined but further ones could be established. They are:

 Nesting of metrics means that a software metric is

nested in a model metric. The model metric can be

used to evaluate properties of the product at this

rather abstract level. The result of this evaluation

determines special points of interest for a

subsequent metrication in software.

 Complementation of software and model metrics

means that the state of the quality requirement of

the product is depending on both metrics. Each of

them have to be fulfilled to reach the desired

quality.

 Independence of software and model metrics

means that they are used only within their level of

abstraction to determine the state of a quality

requirement.

3.2 Model Metrics

Table 1 collects the proposed model metrics and

presents the individual main and sub characteristic,

which can be evaluated by them. To elaborate the

functionality of the metric, its purpose and evaluation

method is given, together with a threshold value. The

threshold value denoted here can be used as an

orientation value, as it is the result of the use-case

demonstrator implementation. In general, the threshold

values can vary as they are highly depending on the

used model-view, modelling language and software

standard (here, the Packet Utilization Standard [19] is

used). For further details on how to tailor the threshold

values, refer to Section 5.

To facilitate the understanding of the model metrics

the following terminology shall be applied. A model

type is a type specified in a modelling language.. This

type represents a classification of a specific entity, i.e. a

rule to create a class or a method. A model type instance

is a well formed concretization of a model type, written

with a modelling language, i.e. an actual class or

method instantiation, defined following the semantical

and syntactical model type rule [20].

Next to the classification based on their evaluable

characteristics, MMs can also be grouped regarding

their analytical capability. This grouping of MMs also

determines a recommended order for their application

and therefore the process for the resolution of exceeding

MM thresholds. The identified and ordered analytic

capabilities are:

1. Conformance scanning: Metrics with this

capability force developers to create overview and

standard conformance within their models. For

example, model type instances or files have to be

split or commented. Additionally, modelling

standards shall be evaluated regarding

compliance.

2. Structural scanning: Metrics with this capability

give detailed insight on the structural design and

data flow within the software product.

Problematic model type instances can be

identified based on the amount and kind of

interconnections they have with other model type

instances. Combining different metrics and

targeting distinct model-views allows the

investigation of various structural properties of

the system.

3. Behavioural scanning: Metrics with this

capability are related to the group of structural

scanning. Nevertheless they target functional

requirements and their specification. An

unbalanced product specification as well as

failures within the software requirements can be

identified.

Table 1 PaTaS Model Metrics

Model Coupling

Characteristic Modularity, Balance, Complexity

Purpose

Determining the coupling of model type instances among each other; A high coupling results

in a monolithic unbalanced model/software, hindering reuse and effective maintenance, due to

side effects among components.

Evaluation

Counting references/interfaces of/to model type instances of a specific model type, used by a

single model type instance. Additionally, different properties of interfaces can be used to

weight them (based on Chidamber and Kemerer [21]).

Analytical

Capability
Structural scanning Threshold 5..9

Model Comment Frequency

Characteristic Self-Descriptiveness, Complexity, Balance

70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 4 of 11

Purpose
Determining the legibility and the self-descriptiveness of the models, in order to improve the

non-functional requirements.

Evaluation Calculating the ratio between comment lines and code lines in the model.

Analytical

Capability
Conformance scanning Threshold 15..30%

Interaction Diagram Coverage

Characteristic Completeness, Balance

Purpose

This MM complements the requirements implementation coverage and structural coverage

SWM. A high value can indicate low functional cohesion of the model type instance, whereas,

a value of zero raises questions about the general purpose of the model type instance.

Evaluation Counting the model type instances of a system model, used in a behavioural test model [22]

Analytical

Capability
Behavioural scanning Threshold >=1

Model Type Instances per Use-Case

Characteristic Modularity, Complexity, Balance, Conciseness

Purpose

Determines the granularity of requirements and the requirements to specifications fit; A high

value signifies that a change in the requirement has a great impact on the system design and

implementation and it indicates a low functional cohesion, as functionality is spread over

many model type instances.

Evaluation
Counting amount of model type instances per use-case; Here, a use-case is the implementation

of a test case for a software requirement (see [23]).

Analytical

Capability
Behavioural scanning Threshold 5..9

Use-Cases per Model Type Instance

Characteristic Modularity, Complexity, Balance, Conciseness

Purpose

This metric identifies excessively used model type instances and therefore components of the

onboard software. A high value indicates that the cohesion of the model type instance might

be low and that implementation failures have a broad effect on the overall system.

Evaluation
Counting the amount of use-cases per model type instance; Here, a use-case is the

implementation of a test case for a software requirement (see [23]).

Analytical

Capability
Behavioural scanning Threshold 1..16

Model Type Instance Weight

Characteristic Complexity, Balance

Purpose

Determines the complexity of a model type instance by counting and weighting its containing

model type instances. The threshold value depends on the used indicator to determine

complexity of the contained model type instances.

Evaluation

Accumulating all model type instances, contained in a model type instance, considering a

model type specific weight factor, determined by any indicator of complexity. It is the model

equivalent of Weighted Methods per Class (see [21])

Analytical

Capability
Structural scanning Threshold

Depends on weight factor (in

PaTaS, threshold is 50..250)

Module Fan-in/out

Characteristic Modularity, Balance

70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 5 of 11

Purpose

High Fan-in or Fan-out indicates high complexity of the system and monolithic design,

making it hard to maintain and reuse. The complexity of a procedure depends on the

complexity of the control flow in the procedure and of the procedure’s connection.

Evaluation
Fan-in: Counting interfaces of local flows into a model type instance;

Fan-out: Counting interfaces of local flows out of a specific model type instance; (see [24])

Analytical

Capability
Structural scanning Threshold 4..6

Adherence to Modelling Conventions

Characteristic Modularity, Completeness, Self-Descriptiveness, Conciseness, Balance, Correctness

Purpose
Increases maintainability as well as re-usability and is especially helpful for graphical

modelling languages, as it creates overview of the system.

Evaluation

Guidelines for the modelling, like naming conventions, consistency rules etc. Such

conventions are equivalent to coding guidelines and have to be adapted to the modelling tools

and domain standards. Difficult to get tool-support for the automatic evaluation. (see [25])

Analytical

Capability
Conformance scanning Threshold 100%

Lines of Model Code

Characteristic Complexity, Balance, Self-descriptiveness

Purpose

Indication of model complexity, balance and self-descriptiveness. Too large model files

reduce the overview and therefore maintainability and re-usability. Mainly applicable for

textual models.

Evaluation Counting the number of model lines per model file (excluding comments and blank lines)

Analytical

Capability
Conformance scanning Threshold 300..500

3.3 Model-driven Software Development Life Cycle

Within this study, the MDSDLC and its phases

follow the V-model development methodology. This

methodology allows a good traceability and separation

of modelling and coding phases. Additionally, it is

frequently used at ESA and the European space

community, being a standard in the development of

spacecraft software. Figure 2 visualizes the MDSDLC,

which is mapped to the demonstrator design and the

used tools in Section 4. During the life cycle phase

execution, different modelling and QA tools are used:

PaTaS domain frontend, TASTE toolchain and COTS

source code analysis tools.

The PaTaS study enters the development at the

Software Preliminary Design Review (SW-PDR), with

predefined software system requirements and

specifications in text format. It ends with the Software

Critical Design Review (SW-CDR), before system

verification and validation. High Level Design and

Detailed Design are modelling phases. Unit/Device

Testing and Subsystem Verification are coding phases.

Within the High Level Design phase, the PUS library is

designed and unit test stubs are generated for

implementing them later in the Unit/Device Testing

phase. The subsequent Detailed Design is used to detail

the data structures and behavioural test models. From

this stage, executable C++ test cases are generated for

the Subsystem Verification phase. In all phases, either

model or source code quality is determined by an

analysis, which is automated as much as possible.

70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 6 of 11

External analysis tools

PATAS Frontend

TASTE

High Level Design

Used languages:

PAL+ASN.1, DTVL

Detailed Design

Used languages:

AADL+ASN.1

Static code analysis

and metricators

Subsystem Verification

Used tool:

TEEP

Unit/Device Testing

Used Tool:

GTEST

System requirements
System verification

and validation
Excluded

for the study

Covered

by the study

SW-

PDR

SW-

CDR

Time

Generated unit

test skeletons

Generated

executable

integration test

Figure 2 MDSDLC in PaTaS, based on V-model

4. Demonstrator Design and Application

This section explains the demonstrator design, focusing

its application in the phases of the MDSDLC (see

Figure 3). The demonstrator tool-chain is used to

evaluate the MDSDLC, the quality model and the model

metrics, in an end-to-end satellite onboard software use-

case, based on the Space Engineering - Telemetry and

Telecommand Packet Utilization Standard (PUS [19]).

PUS addresses the communication between ground

control and the space segment, to command or monitor

platform and payload units. The standard defines

extensible services, which target the base functionality

of a spacecraft [1]. The demonstrator follows the

Model-Driven Architecture (MDA™), adopted by the

Object Management Group. MDA is a framework for

the model-based development, layering the evolution

from Computation Independent Models (CIM), via

Platform Independent Models (PIM) to Platform

Specific Models (PSM). This standard elaborates rules

for the model-to-model transformation of these

viewpoints [20].

Figure 3 PaTaS demonstrator design

70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 7 of 11

4.1 High Level Design Phase

Within this phase, the PUS model, consisting of

applications, services and sub-types, is modelled. This

structural model is described by the usage of the PUS

Architectural Language (PAL) editor, a domain specific

language, allowing modelling PUS-conform

architectures. This editor is implemented with the

Eclipse Modelling Framework (EMF) and the Xtext

framework [26], as the subsequent elaborated ASN.1

and DTVL editors. Following the MDA guidelines [20],

the implemented generator conducts a model-to-model

transformation of the PUS architecture (CIM) to the

TASTE Interface View (PIM), used in the subsequent

development phase. TASTE is a model-centric software

development environment and set of tools, targeting

mission-critical and embedded real-time systems,

developed by the European Space Agency [2, 27].

During the transformation, unit test skeletons are

generated and Conformance as well as Structural

scanning MMs are automatically collected. Subsequent,

the MMs are investigated and the current quality model

state is determined. The derived product quality verdict

leads to potential action items which need to be resolved

to enable a transition into the next phase.

4.2 Detailed Design Phase

In this phase, the ASN.1 editor is used to model the

subtype messages, which are the parameters used in the

TASTE Interface View (IV). The ASN.1 data model

and the PIM of the PUS architecture are transformed

into a PSM for the TASTE Deployment View. Among

others, at this stage the user can configure the model for

specific hardware targets, generate platform specific

code skeletons and link to device drivers.

Additionally, the Data Testing and Verification

Language (DTVL) editor is used to define a behavioural

test model, by referencing the PUS model type instances

of the PAL editor and the instantiated ASN.1 messages.

The DTVL is an in-house developed editor, which is

based on Linear Temporal Logic [28] and is able to

describe the expected behaviour of a system over time

via the TM/TC interface. It generates executable black-

box test cases, which later can be executed against the

onboard software. The quality is evaluated by collecting

and evaluating Conformance, Structural and

Behavioural Scanning MMs.

4.3 Unit/Device Testing Phase

In this phase, the transition from modelling to

coding is conducted by implementing the generated

source code skeletons of the PUS OBSW. The

implementation of the software is conducted in a test-

driven fashion with the generated unit tests. The quality

of the software under development is evaluated with the

help of SWM and by mapping them against MM in a

product quality requirement.

4.4 Subsystem Verification Phase

This is the final phase of the PaTaS study. Here, the

OBSW implementation is further tested against the

executable test cases, which are described in the

Detailed Design phase. These integration tests are

conducted with the Test Execution and Evaluation

Platform (TEEP), which is a compilable C++ test-case

runtime engine, generated by the DTVL editor. This

engine triggers stimuli TC messages against the OBSW

and expects specific TM message(s), so called oracle

messages, over time in return. Also expected periodic

messages or messages that should never arrive can be

defined for testing. The outputs are reported in XML

and HTML5 formats as well as on the console, and

indicate whether the Linear Temporal Logic property of

the system holds.

5. Results and Discussion

5.1 Use-case Implementation

The implemented use-case is based on the

specifications and software requirements of parts of the

command and data handling of the OBSW of a SmallSat

mission. The satellite has a size of about 1 cubic meter

and a mass of approximately 200 kg. Within PaTaS only

a small part of the OBSW was re-implemented in lab

quality. Excluded were complex satellite control

algorithms of subsystems, as well as driver interfaces to

sensors or actuators. Table 2 denotes the use-case in

figures, displaying (semi-)manually implemented

components. Automatically generated source code and

reports are excluded. In addition, Figure 4 shows the

model in the TASTE Interface View, with the three

modelled applications and their PUS onboard message

dispatcher system, interfacing the EGSE. The size of the

model is too large to display it in all details, due to the

90 modelled PUS subtypes interfacing the applications.

Table 2 Manually implemented part of use-case

Number of implemented

TM/TC messages

90

Applications ACS, ONS, CDH

Lines of model code 13,559

Lines of Application OBSW

code

3,334

Lines of unit test code 5,845

70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 8 of 11

Figure 4 TAST IV model of PUS-based data handling for three onboard applications

5.2. Quality Model Application Results

Throughout the development, the instantiated quality

model provides a clear overview on the current quality

state as well as its progress. The use-case revealed that

quality is added already in the modelling phases, and

mainly has to be maintained in the coding phase. The

splitting of product metrics in model and software

metrics reduces the risk of a flawed design, because it

allows mitigating design errors early in the development

life cycle.

The mapping formulae are an important feature of

the adapted quality model as it allows the introduction

of custom relationships between model and software

metrics as product quality requirements. This is similar

to the formulae used within the metrics to determine

their value from the basic measurements and could also

be used for the combination of model with model or

software with software metrics. Further, it is important

to combine software with model metrics which are not

using similar mechanism to determine a quality

characteristic. The model represents the specification of

the system, and is an abstraction of the source code.

Measuring, for example coupling in model and source

code will not reveal many new insights in the source

code evaluation.

The order of evaluation and resolution of threshold

exceeding metrics is important for raising the product

quality. Next to the classification, based on their

evaluable characteristics, MMs can be grouped

regarding their analytical capability. The analytical

capability determines a recommended order for the

application of the MMs, and therefore the resolution of

exceeding thresholds. Table 1 also denotes the Analytic

Capability for each model metric. The identified and

ordered analytic capabilities are:

o Conformance scanning: This group of metrics

forces developers to create overview and standard

conformance within their models. Model type

instances or files have to be split or commented.

Additionally, modelling standards shall be

evaluated regarding compliance.

o Structural scanning: These metrics give detailed

insight on the structural design and data flow

within. Problematic model type instances can be

identified based on the amount and kind of

interconnections they have with other model type

instances. Combining different metrics and

targeting distinct model-views allows the

investigation of various structural properties of the

system.

o Behavioural scanning: This group of metrics is

strongly related to structural scanning, but targets

mainly on the functional requirement and the

specification. An unbalanced system specification

as well as failures within the software requirements

can be identified.

Figure 5 displays the resolution of exceeding model

metrics, following the aforementioned order,

determined by their analytic capability.

70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 9 of 11

Figure 5 Application of model metrics in the

MDSDLC

5.3 Model Metric Results

To reveal the expressiveness of the model metrics,

two diagrams of the use-case are displayed as examples:

one with the model metric Model Coupling and the

other with the model metric Model Type Instances per

Use-Case; For a detailed explanation of the different

model metrics, please refer to

Table 1.

Figure 6 shows the progress of the model metric

Model Coupling. The x-axis displays time, represented

as versions of the models. It measures the coupling of

applications with their PUS service implementations.

Here, the Onboard Navigation Subsystem (ONS)

application has a very high coupling value with the PUS

Function Management Service (8) in v1.0 and v1.1. As

a reaction, at v1.4 this value is decreased by the

introduction of a custom PUS service (here 152)

removing tele-command messages from the service 8

interface. An over usage of PUS Function Management

Service (8) is common in the development of onboard

data handling, because the applications and their

functionality grow over time. PUS Function

Management Service (8) is then often used as interface

from ground, instead of defining a custom service as it

happened here in v1.4.

Figure 7 shows the result of the model metric Model

Type Instances per Use-Case. Here, each software

requirement, targeting the interface of the onboard data

handling, is covered by a use-case. High values for

messages per use-case indicate potential issues with the

software requirement or the specification.

Figure 6 MM: Model Coupling

High metric values indicate that either the

requirement is too coarse grained defined, meaning that

there is too much functionality covered by a single

requirement, or the functionality is scattered over the

system by the specification. The diagram displays that

over the development time, more and more use-cases

are implemented (green line) and large use-cases drift

towards the average use-case value. In the background,

based on the value of this model metric, requirements

get refined and the specification revisited to improve

both.

Figure 7 MM: Model Type Instances per Use-Case

Determining a threshold value for the model metrics

is specifically difficult. As most of them were

developed or re-designed for the evaluation of models,

no experience backed by large use-cases is available. It

0

10

20

30

40

v1.0 v1.1 v1.4 v2.0 v2.1 v2.2 v3.0 v3.1 v4.2 v4.3

ACS<--->ACS-Service-1 ACS<--->ACS-Service-2

ACS<--->ACS-Service-3 ACS<--->ACS-Service-8

ONS<--->ONS-Service-1 ONS<--->ONS-Service-3

ONS<--->ONS-Service-8 ONS<--->ONS-Service-150

ONS<--->ONS-Service-5 ONS<--->ONS-Service-152

CDH<--->CDH-Service-1 CDH<--->CDH-Service-3

CDH<--->CDH-Service-8 Average Service

0

2

4

6

8

10

12

14

v1.0 v1.1 v1.4 v2.0 v2.1 v2.2 v3.0 v3.1 v4.2 v4.3

MTIpUC average MTIpUC MAX

MTIpUC MIN

70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 10 of 11

is recommended to maintain a small slack, being the

difference between minimum and maximum measured

MM value, balancing it out. This can be supported by

the creation of average values.

The use-case also revealed that models and metrics

evaluating them are more context sensitive than source

code metrics. The models in the use-case were

implementations following a domain standard (here:

PUS). These standards might lead to unbalanced models

with certain high values for specific model type

instances. Therefore, each exceeding threshold value

has to be evaluated in context of the domain standards

to derive a final quality verdict.

6. Conclusions

The paper elaborates on how to raise software

product quality when model-driven development is

conducted, by integrating a new quality model and new

model metrics into the software development life cycle.

The concept is implemented in an end-to-end prototype

demonstrator toolchain, based on TASTE [2, 27]. The

evaluation of the demonstrator and its integrated quality

indicators is conducted by the re-implementation of

mission-critical parts of the command and data handling

subsystem of a satellite mission, simulating a realistic

development scenario as use-case.

The results reveal that the quality model, which is

extended for the model-driven development

methodology, and model metrics help to detect design

flaws early in the development life cycle. The

developed model metrics can be used to evaluate

specific software product quality requirements and are

combinable with software and further model metrics to

derive more complex verdicts. The resolution of quality

shortcomings should follow a certain order to maximise

the efficiency. Additionally, the use-case showed that

even for domain specific models, the product quality

assessment process can be automated. A shortcoming is

the determination of threshold values for the model

metrics, due to the limited experience with them so far.

This study can be seen as a precedency case, being a

baseline for further model metric threshold

investigations.

Acknowledgements

This study was funded by the European Space

Agency.

References

[1] ECSS-Q-HB-80-04A – Software metrication

handbook, 2011. [Online]. Available:

https://ecss.nl/hbstms/ecss-q-hb-80-04a-software-

metrication-handbook/.

[2] M. Perrotin, E. Conquet, J. Delange, T. Tsiodras,

TASTE: An open-source tool-chain for embedded

system and software development, Keplerlaan 1,

2201AG Noordwijk, The Netherlands.

[3] ECSS-Q-ST-80C Rev.1 – Software product

assurance, 2017. [Online]. Available:

https://ecss.nl/standard/ecss-q-st-80c-rev-1-

software-product-assurance-15-february-2017/.

[4] B. W. Boehm, J. R. Brown, M. Lipow,

Quantitative Evaluation of Software Quality, in

Proceedings of the 2Nd International Conference

on Software Engineering, Los Alamitos, CA,

USA, 1976.

[5] J.Voas, D. Kuhn, What Happened to Software

Metrics?, Computer, Bd. 50, pp. 88-98, 05 2017.

[6] C. Kaner und W. Bond, Software Engineering

Metrics : What Do They Measure and How Do

We Know ?, Direct, Bd. 8, pp. 1-12, 2004.

[7] V. Basili, G. Caldiera, H.D. Rombach, The Goal

Question Metric Approach, 1994.

[8] P. Mohagheghi, V. Dehlen, T. Neple, „Definitions

and approaches to model quality in model-based

software development - A review of literature,

Information and Software Technology, Bd. 51, pp.

1646-1669, 10 2009.

[9] Simulink Check, Mathworks, 2019. [Online].

Available:

https://www.mathworks.com/products/simulink-

check.html. [Zugriff am 2019].

[10] AADL Inspector, Ellidiss Software, 2019.

[Online]. Available:

https://www.ellidiss.com/products/aadl-inspector/.

[Zugriff am 2019].

[11] SDMetrics, SDMetrics, 2019. [Online]. Available:

https://www.sdmetrics.com/. [Zugriff am 2019].

[12] EMF Refractor, Eclipse, 2019. [Online].

Available: https://www.eclipse.org/emf-refactor/.

[Zugriff am 2019].

[13] H. Mumtaz, M. Alshayeb, S. Mahmood, M. Niazi,

A survey on UML model smells detection

techniques for software refactoring, Journal of

Software: Evolution and Process, Bd. 31. e2154.

10.1002/smr.2154, 2019.

[14] M. H. Halstead, Elements of Software Science

(Operating and Programming Systems Series),

New York, NY, USA: Elsevier Science Inc., 1977.

[15] M. Olszewska (Plaska), Simulink-Specific Design

Quality Metrics, Turku Centre for Computer

Science (TUCS), Nr. 978-952-12-2564-2, 09

2011.

[16] D. N. Card,W.W. Agresti, Measuring software

design complexity, Journal of Systems and

Software, Bd. 8, pp. 185-197, 1988.

[17] M. Olszewska, Y. Dajsuren, H. Altinger, A.

70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.

Copyright ©2019 by German Aerospace Center (DLR). Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-19- D5.1.2 Page 11 of 11

Serebrenik, M. Waldén und J. van den Brand and

Mark G., Tailoring Complexity Metrics for

Simulink Models, in Proccedings of the 10th

European Conference on Software Architecture

Workshops, New York, NY, USA, 2016.

[18] Y. Dajsuren, M. Brand, A. Serebrenik und S.

Roubtsov, Simulink models are also software:

Modularity assessment, 2013.

[19] ECSS-E-ST-70-41C – Telemetry and

telecommand packet utilization, 2016. [Online].

Available: https://ecss.nl/standard/ecss-e-st-70-

41c-space-engineering-telemetry-and-

telecommand-packet-utilization-15-april-2016/.

[20] J. Miller, J. Mukerji, MDA Guide Version, 2003.

[Online]. Available:

https://www.omg.org/news/meetings/workshops/

UML_2003_Manual/00-

2_MDA_Guide_v1.0.1.pdf.

[21] S. R. Chidamber und C. F. Kemerer, A Metrics

Suite for Object Oriented Design, IEEE Trans.

Softw. Eng., Bd. 20, pp. 476-493, #jun# 1994.

[22] C. F. J. Lange und M. R. V. Chaudron, Managing

Model Quality in UML-Based Software

Development, in Proceedings of the 13th IEEE

International Workshop on Software Technology

and Engineering Practice, Washington, 2005.

[23] J. Muskens, M. Chaudron und C. Lange,

Investigations in applying metrics to multi-view

architecture models, in Proceedings. 30th

Euromicro Conference, 2004., 2004.

[24] S. Henry und D. Kafura, Software Structure

Metrics Based on Information Flow,IEEE

Transactions on Software Engineering, pp. 510-

518, Sept 1981.

[25] B. Du Bois, C. F. J. Lange, S. Demeyer und M. R.

V. Chaudron, A Qualitative Investigation of UML

Modeling Conventions, in Models in Software

Engineering: Workshops and Symposia at

MoDELS 2006, Genoa, Italy, October 1-6, 2006,

Reports and Revised Selected Papers, T. Kühne,

Hrsg., Berlin, Heidelberg: Springer Berlin

Heidelberg, 2007, pp. 91-100.

[26] S. Efftinge, M. Völter, oAW xText: A framework

for textual DSLs, in Version 1.1, September 22,

2006.

[27] M. Perrotin, T. Tsiodras, J. Delange, J. Hugues,

TASTE Documentation v1.1, 2012.

[28] V. Rybakov, Linear temporal logic with until and

next, logical consecutions, Annals of Pure and

Applied Logic, Bd. 155, pp. 32-45, 2008.

