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Motivation

A Large elastic deflections are inherent in particular types of A/Cs: HALEs, UAVs, Sailplanes
A Large deformations as the result of aerodynamic optimization
A e.g. Open Class sailplanes with very high aspect ratios

A HALEs and UAVs

A extreme lightweight and span-loaded design

A low overall wing deflection at design point but prone to
atmospheric disturbances
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Concordia Open Class sailplane

Wing span: 28 m
Aspect ratio: 57
L/D max: >70
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Motivation

A Jet transport aircraft are entering the regime of large deformations
A Bringing more flexibility into jet transport wings is a future design goal of aircraft industry
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A Absorption of energy from external

disturbances

A Reduction of structural loads and
increase of comfort

<

Markus Zimmer, Design of a Highly Flexible Wing 2.5 g loadcase
Structure, ATLAS? Hybrid Project

-1g loadcase



Problem Statement

A Future aeroelastic analysis and design programs must account for nonlinearities
U geometrically nonlinear aerodynamics (rotation of forces) \/
U geometrically nonlinear structural dynamics (changes in mass and stiffness) ?
U large rigid-body motions coupled with elastic deflections (stability, disturbances) ?

A Standard analysis and design approaches are not suitable for highly flexible A/C

A Aerodynamic methods are already advanced, but what about structural dynamics?
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State of the Art 7 Industrial Practice

A Lagrangian methods make the state of the art in nonlinear FE analysis

U total and updated Lagrangian (TL, UL, e.g. in Nastran SOL400)
U loads are applied stepwise, kinematics and stiffness matrices are updated each step
A High computational costs due to iterative solution

A Commercial FE codes with these methods do not allow for rigid-body motions

Updating sequence of Lagrangian formulation
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State of the Art T Research

A For flight dynamics of highly flexible free-flying aircraft, mostly beam type models are applied
A geometrically exact beam theories (intrinsic, strain-based) are well-established
A condensation of complex 3D FEM into "equivalent” beam model requires assumptions
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A ROMs for nonlinear structural dynamics account for nonlinear load-displacement behavior by
quadratic and cubic stiffness terms and linear and dual modes for displacements*

A Modal expansions in terms of quadratic modes are used for rotating and aerospace
applications to improve kinematic relations’

* M. P. Mignolet et al., A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures, JSV, 2013

Y L. H. van Zyl, E. H. Mathews, Quadratic Mode Shape Components From Linear Finite Element Analysis, ASME, 2011



Research Objective

A An improved structural method for geometrically nonlinear aeroelastic analyses is desired
A Main ideas of the new method:

A Consider moderately large deflections,* o 1P
A Assume nonlinear nodal displacement field is still composed of "modes"
A Identify differences to linear modal approach and find extensions

( Linear modal approach1 ( Nonlinear extensions ]
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A Subject to:

U low computational costs (few DOFs: modal space, no iterative solution)
U applicable to complex/arbitrary FE models
U easy extension for rigid-body motions

1. Higher-order modal components yield geometrical nonlinearities
2. Nonlinear stiffness terms for nonlinear force-displacement relations



Theoretical Derivation: Static Structural Equations

A Geometrically nonlinear displacements are represented by higher-order mode components
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mode components: linear  quadratic cubic guartic/fourth order

The mode itself becomes a function of the amplitude ( A):
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S S tensors enable a "geometric coupling” of several modes



Theoretical Derivation: Static Structural Equations

A For illustration: Mode components of the first bending mode of a cantilever beam
A Displacements from linear mode component ("normal mode")
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Theoretical Derivation: Static Structural Equations

A For illustration: Mode components of the first bending mode of a cantilever beam
A Displacements from linear and quadratic mode component
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