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Abstract—1In this paper, we provide an analysis of the perfor-
mance of concatenation of polar codes with outer cyclic redun-
dancy check (CRC) codes, separated by an interleaver, in the
short and moderate block length regimes. The analysis addresses
maximum likelihood decoding as a proxy to the code performance
under successive cancellation list decoding. The analysis is
carried out by introducing the concatenated polar code (CPC)
ensembles, whose distance properties can be analyzed (for suffi-
ciently short block lengths) by means of the uniform interleaver
approach. At moderate block lengths, we resort to the Monte
Carlo simulations. Results show that if the inner polar code
possesses a low minimum distance and the outer CRC code has
a sufficiently large amount of redundancy, then the choice of the
outer code generator polynomial and the interleaver may yield
to a large variability in the performance of the resulting CPC.

Index Terms— Concatenated codes, cyclic codes, interleaving,
polar codes, union bounds.

I. INTRODUCTION

OLAR codes [1], [2] provably achieve the capacity of

binary-input discrete memoryless symmetric (BI-DMS)
channels by means of (low complexity) successive cancella-
tion (SC) decoding algorithm [2], in the limit of an infinite
block length. On the other hand, at moderate-short block
lengths, polar codes under SC decoding tend to exhibit a poor
performance. In [3] it was suggested that such a behavior
might be due, on one hand, to an intrinsic weakness of
polar codes and, on the other hand, to the sub-optimality
of SC decoding w.r.t. maximum likelihood (ML) decoding.
Improved decoding algorithms were proposed in [3]-[5], while
the structural properties of polar codes (e.g., their distance
properties) were studied, among others, in [6]-[11]. As regards
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the minimum distance properties of polar codes, they can be
improved by resorting to concatenated schemes, as done in [3],
where the concatenation of polar codes with an outer cyclic
redundancy check (CRC) code is considered. This solution,
together with the use of the list decoding algorithm, allows
polar codes to become competitive in moderate-short block
length regime [12]-[16].!

For given block length and rate, a concatenated polar
coding scheme can be realized with several combinations of
component codes [19], [20]. For example, after fixing the rate
of the inner polar code, one may choose among various outer
codes. However, as observed in [19], CRC-polar concatenated
codes with list decoding achieve the best performance among
several options. In [21], the optimal choice of CRC codes for
the use as outer codes in polar-CRC concatenated schemes
without interleaving is studied. The impact of the choice of
the outer CRC code generator polynomial is demonstrated and
optimal generator polynomials are investigated. The analysis
of outer CRC codes is extended to the case with interleaving
in [22], considering the presence of a random interleaver. The
impact of the choice of the CRC code generator polynomial
on the performance of the concatenated scheme also for the
case with interleaving is confirmed.

Even when restricting the outer code to be a specific binary
linear block code, various permutations of the outer code bits
may be considered at the input of the polar encoder.> While
the effect of different outer codes has been already studied,
the impact of interleaving has still not been assessed, to the
authors’ best knowledge. The main role of the interleaver
(i.e., of the permutation of the outer code which defines the
mapping of the outer codeword bits onto the non-frozen bit set
of the inner polar code) is to provide a degree of freedom in the
concatenation, aiming at good distance properties. However,
as we will show afterward, this cannot be taken for granted,
since it depends on the interleaver choice.

The availability of the weight enumerator (i.e., distance
spectrum) of a concatenated polar code (CPC) may be par-
ticularly important in order to characterize its performance
under successive cancellation list (SCL) decoding. Concerning
the distance spectrum of polar codes, current approaches only
provide bounds [7] or rely on partial [9] or approximated

IThe 3GPP standardization group has adopted short polar codes with an
outer CRC for uplink and downlink control information of the upcoming 5G
standard [17], [18].

2Strictly speaking, any permutation of the outer code coordinates results in
a different, though equivalent, binary linear block code.
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distance spectra [8], [23]. Unfortunately, exact closed-form
results are still missing, thus hindering the weight enumerator
analysis for the concatenated scheme. In order to gain insights
on the role of the outer code in a concatenated polar coding
scheme, we first consider short codes which allow an exhaus-
tive distance spectrum analysis and then we investigate the
performance in medium block length regime through Monte
Carlo simulations.

In the short block length regime, the study is carried out
by introducing CPC ensembles and by deriving their average
weight enumerating function (AWEF) by following the classic
approach in [24]. For short block lengths, we restrict our atten-
tion to high-rate polar codes for which the distance spectrum
can be explicitly determined. More precisely, we consider the
dual code of the selected polar code and then we find its input-
output weight enumerating function (IOWEF) by exhaustive
enumeration. We then obtain the IOWEF of the original polar
code via the generalized MacWilliams identity [25]. As outer
codes we consider cyclic codes (and CRC codes, in particular)
and we compute their AWEF by following the method pre-
sented in [26]. The AWEF analysis, when feasible, permits
us to estimate the average behavior of the CPCs composing
the ensemble, that is, considering all possible interleavers.
Additionally, we are interested in investigating the concentra-
tion of the CPCs performance around the ensemble average,
as well as the impact of different generator polynomials for
the outer code. Also on this point, a theoretical formulation
is unfeasible, thus we resort to numerical examples whose
discussion permits us to draw some empirical but significant
conclusions. In particular, our analysis shows that, if the inner
polar code possesses a low minimum distance and the outer
CRC code has a sufficiently large amount of redundancy, then
the choice of the outer code generator polynomial and of the
interleaver may yield to a large variability in the performance
of the resulting CPC. We remark that our target is to study
the impact of interleaving and of the interplay between the
interleaver and the inner/outer codes on the performance of
CPCs, while finding optimal interleavers and/or optimal outer
codes is out of the scope of this paper.

The paper is organized as follows. Section II introduces
the notation and some basic results. CPC ensembles are
presented in Section III, while their analysis in terms of AWEF
is discussed in Section IV. Numerical results are shown in
Section V. Conclusions follow in Section VI.

II. PRELIMINARIES

The main symbols and preliminary concepts that will be
used in the analysis are introduced below.

A. Weight Enumerators

Let wy(-) be the Hamming weight of a vector. Given an
(n, k) binary linear block code C, its weight enumerating
function (WEF) is defined as [25]

S
=0

where A; is the number of codewords ¢ with wy(c) = i.
Assume the encoder of C to be in systematic form.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 9, SEPTEMBER 2019

Hence, without loss of generality, the first &£ bits of ¢ carry
the information word w, i.e., ¢ = (u|p), where p is the vector
containing the parity bits. The IOWEEF of C is then

Yy Ay

=0 w=0

AO(X)Y):

where A{% is the multiplicity of codewords ¢ with wy (u) =i
and wy(¢) = w. The enumeration of the codeword weights
entails a large complexity even for relatively small code
dimensions. If C has a high rate, the MacWilliams identity [25]
may be used to simplify the derivation of the IOWEF. The
simplification stems from the fact that, under this assumption,
the number of codewords of the dual code C* is (much)
smaller than the number of codewords of C. Assume that the
enumeration of the codeword weights is feasible for the dual
code, and denote by AL(X) the dual code WEF. We can

express the WEF of A(X) as [25]
1+x)" | [(1-X
AX) = A .
(X) =k 1+ X

An analysis of the CPC based on the WEF and the
MacWilliams identity has been recently developed in [27] but
with reference to specific codes and then ignoring the (average)
impact of different interleavers, that instead we are able to take
into account through the study of the ensembles. The latter
issue will be discussed in Section IV.

Since code C is assumed to be systematic, it is convenient to
derive its IOWEF from the input redundancy weight enumer-
ating function IRWEF) A™®(x, X, y,Y"), which is defined as

k n—k

ZZAztxk iXiynfkftyt

=0 t=0

AIR(l.? X? y’

where A"} is the multiplicity of codewords ¢ with wy (u) = i
and wy(p) = t. By applying the generalized MacWilliams
identity [25], [28]-[30, Ch. 5, Sec. 6], the IRWEF of C can
be derived by the one of its dual code as

AR (z, Xy, Y)

= on= kAIRL(J?—i—X r—X,y+Y,y-Y).
Then, the IOWEEF is obtained as

AOX,Y) = A®(1, XY, 1,Y).

B. Bounds on the Block Error Probability

For a given (n, k) binary linear block code C, tight upper
bounds on its block error probability (BEP) Pp under ML
decoding can be obtained via the code weight enumerator.
These bounds are not reported here for saving space but, for
a thorough survey on the topic, we point the reader to [31].

On the other hand, a tight upper bound over a binary erasure
channel (BEC) with erasure probability € is given by [32], [33]

PB (C,E)

n
n € n—e
< E ((3)6 (I1—¢)
e=k+1

+Z() (1 e emin{l,:l(Z)(z—g}- ()
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A tight upper bound on the BEP over the additive white
Gaussian noise (AWGN) channel is Poltyrev’s tangential
sphere packing bound (TSB) [34]. The latter is less explicit
than (1) and is not discussed here for the sake of brevity.
Both bounds will be used in Section V to estimate the BEP of
CPCs by analyzing the corresponding CPC ensembles, to be
discussed next.

III. CONCATENATED POLAR CODES AND CONCATENATED
POLAR CODE ENSEMBLES

We consider the serial concatenation of an (n, k) polar code
C' with an (no, ko) binary linear block code C°, with & = n.
The inner and the outer code rates are denoted by R, and R,,
respectively. As outer codes, we consider cyclic binary linear
block codes (CRC codes, in particular). The generator matrix
of the outer code is denoted by G, whereas the generator
matrix of the inner polar code is G,. The polar code generator
matrix is obtained by selecting k, rows of the n, X n, matrix

G, = G

with

where the selected rows are associated to the k, most reliable
synthesized channels [2]. The synthesized channel reliability is
determined under the assumption of SC decoding via density
evolution (DE) [2], [35], [36] for both the BEC and the AWGN
channel, with the Gaussian approximation (GA) used in the
latter case [5], [37]. The resulting k, X n, matrix is then put
into systematic form following [38]. The choice of inner polar
codes with generator matrix in systematic form simplifies the
distance spectrum analysis of the concatenated polar coding
scheme, as will be illustrated in Section IV.

The outer codeword bits may be permuted prior to encoding
with the inner polar encoder. We denote the block length
and dimension of the overall concatenated code as n and k,
respectively. We have that n = n, and k = ko, whereas the
rate of the concatenated code is R = R,R,. The generator
matrix of the concatenated code is

G = GLIIG, 2)

with IT being a k, x k, permutation matrix (with IT being
an identity matrix in case of no interleaving). From now on,
the terms “permutation matrix” and “interleaver” will be used
as synonyms. We refer next to the code with generator matrix
given by (2) as to CPC.

We are interested in the performance of the CPC under ML
decoding. This is important also in view of practical imple-
mentation. In fact, it was shown in [3] that SCL decoding with
a moderately large list size tightly approaches the performance
of ML for concatenated polar codes of small and medium
block lengths.> Since the performance of a code under ML
is mainly driven by its distance spectrum (see Section II-B),

3Because of its low complexity, SCL is commonly used for polar codes
decoding.
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a weight distribution analysis of CPCs will be presented in
Section IV.

As discussed in Section II-A, the enumeration of the
codeword weights for a given code is feasible if either the
code or its dual has a small dimension. While for a given
(n,k) CPC this might not be the case, for the inner and
the outer codes the derivation of the weight enumerator
might be still feasible. The knowledge of inner/outer code
WEFs allows deriving estimates of the CPC distance spectrum
by introducing the concept of concatenated code ensem-
bles [24], [39], [40], where one of the constituent codes is
here a polar code. For this reason we speak of CPC ensembles.
For a given pair of inner and outer codes (C',C°), we define
the CPC ensemble € (C',C°) as the set of codes with generator
matrix in the form (2), by considering all possible permutation
matrices IT.

IV. AVERAGE WEIGHT ENUMERATORS OF
CONCATENATED POLAR
CODES ENSEMBLES

Given a € (C',C°) CPC ensemble, the expected multiplicity
A, of codewords with Hamming weight w of a code picked
uniformly at random from the ensemble has the meaning of
AWEEF of the concatenation. It can be obtained from the inner
and outer code weight enumerators as [24]

, 10,
2 A?Ai%/l

Ao =2 =i

i=0
where AY is the weight enumerator of the outer code and
Aﬁ}%" is the input-output weight enumerator of the inner code.
The upper bounds on the BEP discussed in Section II-B apply
also to code ensembles by replacing a code weight enumerator
with the (corresponding) ensemble average weight enumerator
provided by (3). The obtained upper bound applies then to the
average BEP of a code randomly picked from the ensemble.
Note that a € (C',C°) ensemble contains the codes gener-
ated by all possible permutation matrices. Thus, also bad codes
(i.e., codes characterized by a low minimum distance) may
belong to the ensemble. It is clear that the bad codes adversely
affect the average weight enumerator obtained through (3)
causing raise of the average BEP. A tighter estimate of the
BEP for the best codes in the ensemble can be obtained by
expurgating the ensemble from the bad codes. Following [39],
we observe that the cumulative distribution of the minimum
distance for the codes in € (C',C°) satisfies

3)

d
Pr {dwin(C) < d} <> A, —1=: f(d).
w=0

For an arbitrary 6 € (0, 1), define
* — <
d* = max{d|f(d) < 0}

with Ng = {0, 1,2,...}. Then
a*
Pr {dmin(c) S d*} S Z Aw -1 S 9
w=0
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i.e., the probability of picking a code with minimum distance
lower than or equal to d* is upper bounded by 6. It follows
that a fraction of at least (1 — #) codes belonging to the
ensemble has d,,i, > d*. We refer to the subset of codes with
dmin > d* as the expurgated ensemble. The average weight
enumerator of the expurgated ensemble can be upper bounded
as [39, Sec. 2.2]
1 -

Azxp < mAw

for w > d*, whereas flz"p =0forl<w<d".

V. ANALYSIS OF THE BLOCK ERROR PROBABILITY

The object of this section is to apply the analysis methods
described in the previous sections to some practical cases, and
to discuss the impact on the error rate performance of the
outer code as well as of the interleaver between the inner
and the outer code. In particular, we analyze the BEP of
(expurgated, where applicable) CPC ensembles over the binary
input AWGN channel and the BEC.

For the AWGN channel case, we will provide estimates of
the BEP as a function of the channel signal-to-noise ratio
(SNR) expressed as Ej,/Ny, where Ej, is the energy per
information bit and N is the single-sided noise power spectral
density. When providing the design SNR for the inner polar
code, by using the DE algorithm, we will refer instead to the
ratio Es/Ny, where Ey = RE) is the energy per codeword
symbol. This choice allows avoiding confusion about the rate
used in the conversion (rate of the overall scheme vs. rate of
the inner code only). Different values of E /Ny are considered
in the design. This is because of the “non-universality” of
polar codes, that holds if the standard construction is used
and according to which different polar codes are generated
depending on the specified value of the SNR. Consequently,
in this way we are able to investigate the impact of the design
SNR whose optimization is not easy [41]. When the results
over the BEC are of interest, following a classic approach,
we design the inner polar code by fixing e.

In the short block length regime, we estimate the expected
BEP by means of the upper bounds discussed in Section II-B.
When complexity allows, we make use of the (generalized)
MacWilliams identity. In particular, for the codes with rate
larger than 1/2 and n — k small enough, we resort to the
analysis of the dual code, as this reduces the computational
burden (a further reduction of complexity in the derivation of
the ensemble average weight enumerator is presented in the
Appendix). The analysis of the expected BEP is complemented
by Monte Carlo simulations aiming at analyzing the concen-
tration of the BEP to the average. In the moderate block length
regime, only Monte Carlo simulations are employed due to the
increase in complexity for the weight enumeration.

A. Performance of Short Codes

A first implication of the non-universality of polar codes
is that polar codes designed at different F;/Ny may have
different values of dp,. As an example, we have designed
two (64, 40) polar codes over the AWGN channel, the first at
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Fig. 1. TSBs on the ML performance of CPC (ensembles) with and without

random interleavers composed by a (64, 40) polar code with CRC-8; over
the AWGN channel. TSB on the (64,40) polar code alone is also reported.
The polar code is designed at Es/No = 0 dB.
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Fig. 2. TSBs on the ML performance of CPC (ensembles) and without

random interleavers composed by a (64, 40) polar code with CRC-8; over
the AWGN channel. TSB on the (64, 40) polar code alone is also reported.
The polar code is designed at Es/No = 3 dB.

E;/Ny = 0 dB and the second at E; /Ny = 3 dB; for the first
code we have d;, = 4, while for the second code dy;, = 8.
In both cases, the polar code has been concatenated with
the CRC—8; code whose generator polynomial is reported
in Table I, yielding a (64, 32) CPC, that is, with rate 1/2. Their
ML BEP performance estimates obtained by applying the TSB
to the code distance spectrum is shown in Fig. 1 (design for
Es/Ny = 0 dB) and Fig. 2 (design for Es/Ny = 3 dB).
By comparing the two plots, we see that (as expected) the
performance of the polar code with smaller minimum distance
is worse than that of the code with greater minimum distance
at large SNRs.

The impact of the concatenation is evident in the figures,
which report the results obtained with 1000 random inter-
leavers, including the case without permutation. In both cases,
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TABLE I
CRC CODES CONSIDERED IN THE ANALYSIS

Code Generator polynomial, g(z)

CRC-8; 28 +a22+ax+1

CRC-82 4T+t 42241

CRC-83 B4t +ad 2241

CRC-161 2'04+2'2 425 +1

CRC-162 20 + 215 + 2 422 4+ 28 42" 4+ 2% + 2t + 22+ 2+ 1
CRC-163 !0+ 210+ 28 427+ 23 +1

the concatenation introduces significant improvements* and,
most important for our analysis, the scheme using the polar
code with dpy, = 4 can reach the same performance as
the scheme using the polar code with dn;, = 8, when
certain interleavers are used. On the other hand, as reported
in Table II, 32 out of 1000 randomly-generated interleavers
do not yield an improved minimum distance, limiting the gain
attained over the inner polar code at large SNRs.

The figures also include the BEP over the CPC ensemble
obtained by applying the TSB to the AWEF. Figure 2 shows
that, for the case where the polar code has been designed
for high SNR (yielding a dynin = 8), the performance of
the codes sampled in the ensemble is concentrated on the
ensemble average. The situation is different in Fig. 1. Here,
the codes sampled from the ensemble can be clustered in two
groups: A first group with good codes clearly outperforming
the ensemble average, and a second group of bad codes which
exhibit a high error probability. The set of sampled bad codes
consists of the 32 codes with d;, = 4 (see Table II). Despite
being a small fraction of the overall sample population, their
performance dominates the ensemble average at high SNR.

Following [22], an investigation of the impact of the choice
of the outer code has been carried out. In particular, we have
considered two additional outer codes, noted as CRC-85
and CRC-83, whose generator polynomials are also reported
in Table I. The codes have been concatenated with the inner
polar code with dnin = 8. The average ensemble performances
(upper bounded via the TSB) are shown in Fig. 3. The
ensemble averages turn to be insensitive, in this particular
case, on the choice of the outer CRC-8 code. This behavior,
however, does not hold in general. As a counter-example we
can study a scheme using a (64,48) polar code designed for
Es/Ny = 3.25 dB. By applying a CRC-16 code as outer
code, we obtain a rate-1/2 CPC. As before, three different
CRC codes have been considered, with generator polynomials
reported in Table I. The average ensemble performances (upper
bounded via the TSB) are shown in Fig. 4. In this case
the choice of the CRC code has a relevant impact. In fact,
the performance of the scheme using CRC-16; is significantly
worse than those obtained with the other outer codes. The
average expurgated ensemble performances (upper bounded
via the TSB) are also provided. We observe that expurgation

4Clearly, the comparison between the performance of the polar code and
those of the corresponding CPCs is not fair due to the difference in rate.
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a (64, 48) polar code with different CRC—16 outer codes over the AWGN
channel. TSB on the (64, 48) polar code alone is also reported. The polar
code is designed at Fs/Ny = 3.25 dB.

has no effect on the error probability of the schemes with
the CRC-165 code and the CRC-163 code, while for the case
of the CRC-16; code the effect is visible. Still, the average
performance of the expurgated CPC ensemble based on the
CRC-161 outer code is inferior to the other two ensembles’
average performance.

As for the shorter CPC ensemble of Fig. 1, the poor average
performance of the CPC ensemble employing the CRC-16,
code can be attributed to the presence, in the ensemble, of a
fraction of bad codes, i.e., of codes characterized by a small
minimum distance. As documented in Table II, 2 codes out of
the 1000 composing the sample population have d,;,, = 4 and
45 codes have d,;, = 6 (for the case of the CRC-165 and the
CRC-163 codes we observed instead a strong concentration
around d i, = 8).



5958

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 9, SEPTEMBER 2019

TABLE 11
NUMBER OF CPCS SAMPLED WITHIN EACH ENSEMBLE, FOR A GIVEN MINIMUM DISTANCE

(ru,k;) polar code Design channel CRC dmin =4 dnin =6 dmin =8  dmin = 10
(64, 40) AWGN E;/No =0 dB CRC-81 32 - 968 -
(64, 40) AWGN E; /Ny = 3 dB CRC-81 - - 1000 -
(64, 40) BEC € = 0.3 CRC-81 48 - 952 -
(64, 48) AWGN Es/Np = 3.25 dB CRC-16, 2 45 902 51
(64, 48) BEC € =0.3 CRC-161 939 6882 12177 2
(128,112) AWGN E,/Ng = 3.72dB  CRC-164 167 833 - -
(128,112) BEC € = 0.3 CRC-161 266 734 - -

Based on the above examples, we can draw the following 109 et
conclusion. The choice of the outer code and of a proper 1071i i
permutation is particularly critical when (i) the inner polar
code has a small minimum distance and (ii) the outer code 1072 £ E
introduces enough redundancy to prune the inner code from R F g
low-weight codewords. Conversely, when the inner polar code 5 10
has a large minimum distance and the outer code adds too S j0-4k i
. . A = S|
little redundancy, the performance of the codes in the CPC 5 F 1
ensemble concentrates around the ensemble average. g 107° E E

The considerations above find empirical confirmations on B 10-6 ]
the BEC, too. An example is reported in Fig. 5, by assuming = —+— (64, 40) polar code
codes with the same parameters in the example of Fig. I. 1077 ¢ —4— (64,32) CPC ensemble average
Here, the polar code has been designed for a BEC with erasure Wf —®— (64,32) CPC exp. ensemble average |

. . 107° —6— No permutation matrix H
probability e = 0.3. The union bound (UB) (1) has been used E Random permutation matrices |
to estimate the BEP under ML decoding. As for the case of 1070 o1 03 03 oI
Fig. 1, the codes sampled from the CPC ensemble can be .
clustered in two sub-ensembles: a first group of (few) bad Fig. 5. Upper bounds (1) on the ML performance of CPC (ensembles) with

codes, and a larger group of good codes. The few bad codes
dominate the error probability at low erasure probabilities. The
bad codes are characterized by d,i, = 4, while the good codes
have dnin = 8 (see Table II). The average performance (upper
bounded via (1)) of the expurgated CPC ensemble is provided,
too: as expected, the expurgated ensemble performance well
captures the performance of the good codes in the ensemble.

As one may expect, the omission of an interleaving block
(which, in fact, just represents a specific instance of how the
outer code constrains are applied to the input of the polar
code encoder) does not yield a consisted behavior in the CPC
performance.

In the examples of Figs. 1, 2 and 5 the CPC without
interleaver provides an excellent performance. This is however
not true in general, and in [42], [43] examples are given
where the interleaver optimization allows achieving significant
gains. One of these examples is shown in Fig. 6. These codes
have the same parameters of the scheme of Fig. 4 and the
polar code has been designed again fixing ¢ = 0.3. In this
case, the scheme without interleaver does not achieve the
best performance. A similar behavior can occur even when
practical decoders are considered instead of ML decoding. An
example is shown in Fig. 7, where the block error rate (BLER)
estimated through Monte Carlo simulations of transmission
over the AWGN channel with SCL decoding is assumed as a
performance metric. The considered code is the CPC obtained

and without random interleavers composed by a (64, 40) polar code and the
CRC-81 code over the BEC. The upper bound (1) on the ML performance
of the (64, 40) polar code alone is also reported.

by concatenating a (64,48) polar code with the CRC-16,
code. The list length used for SCL decoding is L = 4096.
We observe that the “no permutation matrix” curve is not the
best one in this case, as in Fig. 6. Generally, there are cases in
which the scheme without interleaver provides good (or even
the best) error rate performance and others in which this is
not true and the choice of a proper outer code coordinates
permutation can provide significant gains.

In the latter cases, one may ask which is the interleaver pro-
viding optimal performance. Unfortunately, designing optimal
interleavers for CPCs is generally a very hard task, and it is
out of the scope of this paper. We refer the interested reader
to [43], where a procedure has been introduced that allows
accelerating the search of an optimal interleaver for CPCs.
Following such a procedure, two interleavers able to achieve
dmin = 10 were found (out of 20000 randomly generated
interleavers® for the code parameters considered in Fig. 6),
as shown in Table II. Although such an approach accelerates
the search of optimal interleavers with respect to a naive
search, it is feasible only for rather short codes.

SFor the sake of readability, in Fig. 6 only 1000 of them have been plotted,
including the best and the worst found.
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Fig. 6. Upper bounds (1) on the ML performance of CPC (ensembles) with
and without random interleavers composed by a (64, 48) polar code and the
CRC-1671 code over the BEC. The upper bound (1) on the ML performance
of the (64, 48) polar code alone is also reported.
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Fig. 7. BLER performance of CPC codes with random interleavers. CPCs

obtained by concatenating a (64, 48) polar code with the CRC-161 code. SCL
decoding with list size L = 4096. The performance of the (64, 48) polar code

alone is also reported. The polar code is designed at f,; = 3.25 dB.

B. Moderate Block Length Regime

The AWEEF analysis of the CPC ensembles becomes quickly
intractable when, for a given rate, the CPC block length
increases. Hence, in order to study the performance of
longer CPCs, we have designed codes with rates R > 1/2.
The analysis of higher rate codes is simplified by the use of
the MacWilliams identity, jointly with an optimized search
process presented in the Appendix. Two examples are shown
in Figs. 8 and 9, relative to the AWGN channel and the BEC,
respectively. Two inner (128,112) polar codes have been
designed by assuming Es/Ny = 3.72 dB over the AWGN
channel and ¢ = 0.3 over the BEC. The outer code is
the CRC—16; code yielding a CPC rate R = 3/4. The
behavior follows the ones already discussed for shorter CPCs
(ensembles). So, similar comments hold and are not repeated,
for the sake of brevity. The d,,;, distributions for these codes,
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without random interleavers composed by a (128,112) polar code with the
CRC-1671 outer code over the AWGN channel. TSB on the performance of
the (128,112) polar code alone is also reported. The polar code is designed
at Fs/No = 3.72 dB.
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Fig. 9. Upper bounds (1) on the ML performance of CPC (ensembles) with
and without random interleavers composed by a (128, 112) polar code and the
CRC-161 code over the BEC. The upper bound (1) on the ML performance
of the (128, 112) polar code alone is also reported.

computed over 1000 randomly generated interleavers, are
reported in Table II.

For longer block lengths and intermediate rates (i.e., rates
that do not allow deriving the inner polar code IOWEFs
by either direct enumeration or by enumeration in the dual
code domain) we resort to Monte Carlo simulations with SCL
decoding.

In Fig. 10 and Fig. 11 we show the BLER performance for
(256, 128) CPCs obtained by using as outer codes the CRC-8;
and the CRC-16, codes, respectively, over the AWGN channel.
For each of the 1000 generated interleavers, at least 25 block
errors are collected. In both cases, we have restricted the list
size of the SCL decoder to L = 1024. In the case of the
CRC-8; code, the inner (256, 136) polar code was designed for
E,/Ny = 3.25 dB while in the case of the CRC-16; the inner
(256, 144) polar code was designed for Es/Ny = 5.25 dB.
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code. SCL decoding with list size L = 1024. The performance of the
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SCL decoding with list size L. = 1024. The performance of the
(256, 144) polar code alone is also reported. The polar code is designed
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In both cases, the dispersion of the code performance for the
sampled codes within the ensembles is rather limited. This is
in accordance with the empirical observation that being the
minimum distance of the polar codes rather large (dyin = 16
in both cases) the choice of the outer code (interleaver) plays
a limited role.

VI. CONCLUSION

We have provided an analysis of the performance of con-
catenation of polar codes with outer CRC codes (separated by
an interleaver) in the short and moderate block length regimes.
The analysis, performed by introducing CPC ensembles, shows
that if the inner polar code has a low minimum distance and the
outer CRC code has a sufficiently large amount of redundancy,
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then the choice of the outer code generator polynomial and of
the interleaver may yield to a large variability in the perfor-
mance of the resulting CPC, pointing to the need of a judicious
selection of the outer code and interleaver. The developed
analysis provides useful information in view of optimizing
the performance of the concatenated scheme. In this respect,
another interesting issue, left for future work, concerns the
evaluation of the gain achievable against other approaches that
do not exploit concatenation, like those based on the selection
of parity check frozen symbols.

APPENDIX

In this appendix, we present a method for reducing the
complexity of the exhaustive search of codewords for short
CPCs with R > 1/2, and demonstrate that it can yield a
significant speedup in the computation, thus extending the
range of block lengths that can be analyzed through the AWEF
approach. We first decompose the polars code generator matrix
G, in (2) in two matrices, L and R, having dimensions k, X k;
and k, x 7, respectively, such that G, = [L|R] and L is
non-singular.® Then, the polar code generator matrix can be
rewritten as

G =L [Ij x| LT'R],

where I, «x, is the k, x k, identity matrix. The generator matrix
of the CPC in (2) can therefore be written as

G = G,IIL [I;, x|l 'R] = G'G”
with
G’ = G IIL
and
G" = [Lixn|L'R].
Let H' and H” be two parity-check matrices for the two codes,
that is:

i. H' with size 7o X no such that H'G'" = 0, where 7
denotes matrix transposition and r, = n, — ko is the
number of parity-check equations of the outer code.

ii. H” with size 7, x n, such that H’G"? = 0, where

r, =mn, — k, is the number of parity-check equations of
the inner code.

In particular, we choose
H — {(L—lR)TﬂW} .

Then a valid parity-check matrix for the CPC is

A
H= |:H//:| )
with A = [H'|0,, xr,] Where 0, x, denotes the all-zero ro X7,
matrix.
The dual code of the CPC has generator matrix H. If we aim

at enumerating all its codewords, we can take into account that
only H' is affected by the choice of the permutation matrix IT.

SA permutation of the polar code coordinates may be needed in order to
find a non-singular matrix L.
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Therefore, in order to reduce the computational burden,
we could enumerate codewords by using the following pro-
cedure, that needs to be repeated only partially every time
that IT is changed:

1) Enumerate the weights of all codewords resulting from
linear combinations of the rows of A. The linear space
spanned by the rows of A is denoted by A.

2) Enumerate the weights of all codewords resulting from
linear combinations of the rows of H”. The linear space
spanned by the rows of H” is denoted by B.

3) For all ¢, € A/0 and for all ¢, € B/0, enumerate the
weights of all vectors resulting from c, + cy.

When IT is modified, the set .4 changes accordingly, while the
set B is unchanged. Therefore, any time II is changed, step
1) needs to be repeated, while step 2) does not. Step 3) also
needs to be repeated, although the set of codewords ¢;, € B/0
can be reused. Then, by exploiting the MacWilliams identity,
the weights spectrum of the original code is derived.

Next, we report an estimate of the complexity reduction
introduced by the procedure described above, with respect to
a standard exhaustive enumeration of the codeword weights in
the dual code.

The generation of the codewords of the dual code has
complexity

Cotd = 20 (0, — ko)ny = 27rm, 4)

having set » = n, — ko. The complexity of the proposed
approach can be divided into the following contributions:
1) Generation of A. The generation of all codewords in A
has complexity

Co, = 2mo ko (no — ko)no = 2™ren,

2) Generation of B. The generation of all codewords in B
has complexity

C = 2""M(n, — k)n, =2"rn,

3) Linear combinations. The sum between c, and c; for
all possible pairs has the following cost in terms of
complexity

Cs = 2~ ko, = 2™,

Note that, for the sake of simplicity, we neglect that the
zero vector in A and B should not be considered, as this
approximation has a negligible impact on the computation.

The complexity of both methods is also affected by the
computation of the weight of each codeword. However this
term has the same cost in both solutions, thus it can be omitted
from the comparison. For the considered codes, the dominant
term is due to Cs. Hence, keeping apart the weight computation
and neglecting the other two terms, if we compare Cs with (4),
we can conclude that the speedup introduced by the proposed
method is in the order of r.
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