A joint approach to Safety, Security and Resilience using the Functional Resonance Analysis Method

Corinna Köpke¹, Jan Schäfer-Frey³, Evelin Engler², Carl Philipp Wrede¹, Jennifer Mielniczek⁴

German Aerospace Center
¹Institute for the Protection of Maritime Infrastructures
²Institute for Communications and Navigation
³FICHTNER GmbH & Co. KG
⁴Jade University
Motivation for this work

Power supply by wind farms is growing in Germany
→ 03/2019: 6,616 MW → 12/2020: 7,700 MW → 2030: 15,000 MW

Electricity generating units with a capacity of 420 MW and above becomes critical infrastructures and their seamless functioning should be protected.
Project

KISS – Key performance Indicator (KPI)-based monitoring of the safety and security level of offshore wind farms (OWF) in real-time
- development of the system theoretical background for the description of safety/security levels in the system OWF
- Elaboration of a practical concept to supervise safety/security in real-time
Safety, security and resilience (SSR)

Resilience

~ is considered as “the intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions.

Safety aspects

~ unintended disturbances and threats 1…N in relation to diversity of safety goals

- random events
- carelessness
- inabilities

Security aspects

~ intended disturbances and threats 1…M in relation to security goals

- vandalism and attacks as purpose
- criminal and terroristic attacks as mean

flanks of vulnerability and brittleness

subject under protection

OWF

barriers, defence and mitigation means, recovery mechanism, incident management…
Diversity of objectives of OWF stakeholders

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Accident prevention</th>
<th>Security</th>
<th>Occupational Safety</th>
<th>Compliance</th>
<th>Environmental Protection</th>
<th>Reputation</th>
<th>Plant Safety</th>
<th>Finance</th>
<th>Supply Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Operator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Maintenance provider</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Logistics company</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Coast Guard</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rescue forces</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Vessel traffic services</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fisheries</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Investors</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Interrelation between objectives

Nine general objectives (SSR goals) are derived and prioritized:

1) Accident prevention
2) Security
3) Compliance
4) Occupational safety
5) Environmental protection
6) Reputation
7) Plant safety
8) Supply reliability
9) Finance
Mapping of objectives on functions

- Five prioritized overall objectives are represented by 64 functions of an arbitrary OWF e.g. fire detection, safe helicopter, or safe information.
- The 64 function may be classified regarding their main responsibility:
 - functions to protect specific components and processes
 - functions to perform/manage the maintenance of safety
 - functions to gather safety-relevant information (status, trends, conditions)
- Resilience analysis matrix (RAM)
FRAM

Basis for the influence matrix.

Heat detection
Monte Carlo simulation

- Every function has three main properties:
 - Failure probability \(p \)
 - Time to restore/repair \(t \)
 - Influencing factor \(f \)

- Simulation over one year:
 - Every day uniform random numbers are generated.
 - Some functions fail and influence the downstream functions.
 - Some functions are restored (countdown \(c = 0 \))

<table>
<thead>
<tr>
<th>Day</th>
<th>Heat detector:</th>
<th>Fire detection:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 1</td>
<td>(p = 0.02)</td>
<td>(p = 0.015)</td>
</tr>
<tr>
<td></td>
<td>(t = 2 \text{ days})</td>
<td>(t = 7 \text{ days})</td>
</tr>
<tr>
<td></td>
<td>(f = 1.2)</td>
<td>(f = 1.35)</td>
</tr>
<tr>
<td></td>
<td>(c = 0)</td>
<td>(c = 0)</td>
</tr>
<tr>
<td>Day 2</td>
<td>(p = 0)</td>
<td>(p = 0.018)</td>
</tr>
<tr>
<td></td>
<td>(t = 2 \text{ days})</td>
<td>(t = 7 \text{ days})</td>
</tr>
<tr>
<td></td>
<td>(f = 1.2)</td>
<td>(f = 1.35)</td>
</tr>
<tr>
<td></td>
<td>(c = 2)</td>
<td>(c = 0)</td>
</tr>
<tr>
<td>Day 3</td>
<td>(p = 0)</td>
<td>(p = 0.018)</td>
</tr>
<tr>
<td></td>
<td>(t = 2 \text{ days})</td>
<td>(t = 7 \text{ days})</td>
</tr>
<tr>
<td></td>
<td>(f = 1.2)</td>
<td>(f = 1.35)</td>
</tr>
<tr>
<td></td>
<td>(c = 1)</td>
<td>(c = 0)</td>
</tr>
<tr>
<td>Day 4</td>
<td>(p = 0.02)</td>
<td>(p = 0.015)</td>
</tr>
<tr>
<td></td>
<td>(t = 2 \text{ days})</td>
<td>(t = 7 \text{ days})</td>
</tr>
<tr>
<td></td>
<td>(f = 1.2)</td>
<td>(f = 1.35)</td>
</tr>
<tr>
<td></td>
<td>(c = 0)</td>
<td>(c = 0)</td>
</tr>
</tbody>
</table>
Failure probabilities over one year

Function # 18
What is wrong with function # 18?
Impact of safety measures

Introducing two new measures reduces the number of work accidents per year.
Summary and outlook

Summary
• Simulation approach to propagate function failures through a FRAM model
• Conceptual identification of critical functions in infrastructures
• Quantitative evaluation method for additional safety measures

Critical review
• Safety II still needs to be implemented, performance can be degraded
• Model and risk assessment need to be validated

Outlook
• Automate re-evaluation after implementing a new measure
• Analysis of the slope of function failure probability to predict failures