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ABSTRACT
The presence of large surface irregularities such as humps, where the height is similar to the local boundary-layer (BL) displacement thickness,
introduces regions of localized strong streamwise gradients in the base flow quantities. These large gradients can significantly modify the spa-
tial development of incoming disturbances that lead to laminar–turbulent transition in wall-bounded flows [e.g., Tollmien–Schlichting (TS)
waves]. Techniques such as Parabolized Stability Equations (PSE) are not suited for BL instability analysis in such regions: their formulation
assumes that streamwise variations of base flow and disturbance quantities are small, allowing a marching procedure for their resolution. On
the other hand, the Adaptive Harmonic Linearized Navier–Stokes (AHLNS) equations can handle these large streamwise gradients by using a
fully elliptic system of equations, similar to Linearized Navier–Stokes (LNS), Harmonic LNS (HLNS), or Direct Numerical Simulation (DNS).
Moreover, in AHLNS (as in PSE), a wave-like character of the instabilities is assumed, leading to a significant reduction in the number of
streamwise grid points required compared with LNS, HLNS, or DNS computations. In the present study, an efficient combination of PSE and
AHLNS is used to investigate the effect of height, length, and shape of a single hump placed on a flat plate in a two-dimensional flow field at
Ma∞ = 0.5 without pressure gradient. The effect of this hump on the spatial evolution of TS waves, in terms of N-factors, is presented. An
expected laminar–turbulent transition onset, via the eN methodology, is also described. It is shown that the shape of the surface irregularity,
together with the height and length, plays an important role for the location of laminar–turbulent transition onset in convectively unstable
flows.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5131577., s

I. INTRODUCTION

Laminar wings are one of the most promising research areas
for reducing the overall drag of future aircraft. The design of such
wings tries to extend the laminar properties of the incoming flow
along the wing surface and therefore to delay the onset of laminar–
turbulent transition as much as possible. In such circumstances,
the presence of surface irregularities such as steps, gaps, humps,
and waviness becomes a critical aspect in the design process. In
some cases, the presence of such irregularities may become unavoid-
able and, therefore, it is necessary to establish tolerance criteria for
manufacturing.

Convective instabilities such as Tollmien–Schlichting (TS)
waves may lead to the onset of laminar–turbulent transition, and
therefore, it becomes crucial to correctly model their interaction
with the above-mentioned surface irregularities. In the particular

case of humps, a detailed analysis of how an incoming TS wave
was affected by the presence of a two-dimensional hump on a flat
plate was done experimentally by Boiko et al.1 Later, Dovgal and
Kozlov2 extended those studies by changing the shape of the hump
and the frequency of the incoming waves. They were able to reduce
by a factor of four the maximum amplitude reached by a single TS
wave by placing a ramp downstream next to the originally rectan-
gular hump. Some years later, Danabasoglu et al.3 reproduced the
initial findings of Boiko et al.1 by using Direct Numerical Simu-
lation (DNS). They also considered rectangular humps of different
heights. They suggested that disturbances growing in the separation
zone have an inviscid character and are controlled by the instability
of the shear layer at the edge of the separation zone. Similarly, Liu
and Liu4 also used DNS in order to reproduce the findings of Dovgal
and Kozlov.2 However, in the work of Liu and Liu,4 the shape of the
roughness was defined by a hyperbolic cosine function rather than a

Phys. Fluids 32, 034102 (2020); doi: 10.1063/1.5131577 32, 034102-1

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1063/1.5131577
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5131577
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5131577&domain=pdf&date_stamp=2020-March-2
https://doi.org/10.1063/1.5131577
https://orcid.org/0000-0002-8391-8356
mailto:Juan.Franco@dlr.de
https://doi.org/10.1063/1.5131577


Physics of Fluids ARTICLE scitation.org/journal/phf

rectangular hump. They stated that the differences in the shape
of the hump were the reason for the disagreement in instability
growth rate found when comparing their DNS results with the
experimental results of Dovgal and Kozlov.2 Instead, Masad and
Iyer5 used Linear Stability Theory (LST) for reproducing the results
of Dovgal and Kozlov.2 Masad and Iyer5 extended their studies
by also considering compressibility effects. They investigated the
effects of height, length, location, and shape of the hump. How-
ever, they examined humps with rounded corners only. The tran-
sition location was defined by applying the eN transition criterion:
the predicted transition location takes places at the point where the
N-factor reaches the threshold value of 9. Some years later, Wörner
et al.6 applied DNS to study the effect of height and length on rect-
angular humps on a single TS wave in an incompressible flow. They
included results for a smooth hump in their paper, but a detailed
description of the shape of the smooth hump was not provided.
Among the geometrical parameters considered (height, length, and
shape), they identified the height of the hump as the geometri-
cal parameter that has the strongest influence on the amplification
of the incoming TS wave. However, because of the computational
requirements of the DNS, their studies were limited to a very few
geometries (six in total). More recently, Perraud et al.7 developed
a model for predicting the increment in N-factor due to the pres-
ence of a small bump based on numerical and experimental results.
Their model considered smooth bumps of different shapes. How-
ever, they noticed that their model is restricted to cases where the
height of the bumps is small enough that laminar separation does not
occur. Similarly, Costantini et al.8 performed experimental inves-
tigations for smooth bumps, but also considering cases in which
the height of the bump promotes laminar separation. Recently,
Zhao et al.9 applied the HLNS equations to study the effect of
two-dimensional rounded roughness on hypersonic boundary-layer
transition.

Alternative to LST and DNS, Parabolized Stability Equations
(PSE) have been successfully applied to study the growth of ampli-
tude for convective instabilities in boundary-layer flows and, based
on the eN methodology, to provide a reasonable estimate of the tran-
sition location. In the PSE approach, it is assumed that the stream-
wise variation of the laminar base flow is small over the characteristic
wavelength of the instability mode. In the work of Thomas et al.,10

they successfully applied PSE for studying the effect of small inden-
tations, where the depth of the indentations was limited to 0.2 times
the boundary-layer thickness. Similarly, Park and Park11 studied the
effect of humps on incompressible flows using PSE. They were able
to reproduce the DNS results of Wörner et al.,6 but only for the
smooth hump case. To the best of the authors’ knowledge, there
is no published comparison between PSE and DNS computations
for the spatial evolution of convective instabilities in the presence of
surface irregularities when the height of the irregularity is similar to
the local boundary-layer displacement thickness or the shape of the
surface irregularity contains sharp corners. To our understanding,
in such cases, the streamwise gradients introduced by the surface
irregularities violate the weakly nonparallel assumption of the PSE
approach and, therefore, the PSE method is not suited for those
cases.

The Local Scattering Approach (LSA), developed by Wu and
Dong,12 is an asymptotic model based on the triple-deck theory that
overcomes some of the limitations of the PSE method. However,

an important constraint in this model is that LSA assumes that the
surface irregularities remain in the lower-deck region12 of the
boundary layer. In other words, the maximum allowable height of
the irregularity is h∗/δ∗ = O(Re−1/8), where δ∗ is the displacement
thickness of the smooth boundary layer and Re is the Reynolds num-
ber Re = U∗∞x∗c /ν∗∞, with U∗∞ and ν∗∞ denoting the velocity and
kinetic viscosity of the oncoming stream, respectively. Dong and
Zhang13 applied LSA to study the effect of steps and humps on flat
plates. However, their findings were limited to cases with rounded
corners.

The AHLNS methodology was introduced by Guo et al.14 for
studies on the generation of convective instabilities and their sub-
sequent downstream development in laminar boundary layers by
slowly varying streamwise properties. Franco and Hein15 devel-
oped it further and extended its range of applications to cases with
localized large streamwise gradients, making use of its full poten-
tial. According to our understanding, when combined with PSE, it
represents the most efficient tool for a detailed study of the linear
interaction of convective instabilities with two-dimensional surface
irregularities when the height of the surface irregularity is similar
to the boundary-layer displacement thickness. It has been shown15

that AHLNS, combined with PSE, reproduces results found in the
literature for the linear growth of convective instabilities in the pres-
ence of two-dimensional surface irregularities. This approach over-
comes some of the inherent limitations present in techniques such
as LST, PSE, and LSA. Moreover, it requires much less computa-
tional resources than DNS. This technique has been successfully
applied already to study the effect of smooth humps and gaps on the
spatial development of TS waves in a compressible regime.16 How-
ever, Ref. 16 was limited to variations in shape only, keeping the
height and length fixed. Moreover, no rectangular-shaped humps
were considered.

The present paper provides a systematic study of the effect of a
single hump on the spatial development of TS waves in a compress-
ible subsonic two-dimensional flow with zero pressure gradients.
The height, length, and shape have been systematically varied in
order to provide a clearer understanding of the flow physics involved
and how those parameters influence the base flow and the linear
growth of the oncoming TS waves. For each case, the spatial evolu-
tion of TS waves of 34 different frequencies was computed in order
to calculate a detailed N-factor envelope curve. By applying the eN

methodology, an expected transition location is established for each
case. To the best of the authors’ knowledge, there is no similar work
published neither from experimental results nor from numerical
computations.

II. PROBLEM DESCRIPTION
A. Setup

We numerically study the effect of a single surface roughness
on boundary-layer transition of a two-dimensional laminar flow on
a flat plate. All dimensional quantities are marked with an asterisk ∗.
We place the origin of the Cartesian coordinate system at the lead-
ing edge of the plate, where x∗, y∗, and z∗ are the streamwise,
normal, and spanwise coordinate components of the position vec-
tor x∗, respectively. The freestream Mach number Ma∞ is set to
0.5 for all cases. The shape of the surface roughness is defined
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FIG. 1. Schematic representation of the computational
domain defined for the present study. The labels at the
edges of the domain indicate the types of boundary con-
ditions used for the base flow computations.

by the following expression:

y∗ = H∗ exp
⎛
⎝
−(x∗ − x∗c

L∗/2 )
2m⎞
⎠

, with m = 1, 2, 3, 4, . . . , (1)

where the parameter H∗ indicates the height of the hump and
parameter L∗ its length. The center of the hump is placed at x∗c .
Figure 1 schematically shows the computational domain used in the
present study, including the types of boundary conditions imposed
for computing the laminar base flow. At the inflow, free-stream
conditions are imposed. The sharp leading edge of the flat plate
is represented by a change in boundary conditions at the lower
wall (from free-slip to no-slip boundary conditions). The geometri-
cal parameter m will be varied from 1 to 4, where the case m = 1
corresponds to a Gaussian-shaped roughness. The rectangular shape
can be considered as the limiting case when m → ∞ (also exam-
ined in the present study). Geometrical quantities are nondimen-
sionalized with δ∗ (the compressible boundary-layer displacement
thickness at the x∗c position for a flat plate at zero pressure gra-
dient). The value of δ∗ is given by the following expression (see
Ref. 17):

δ∗ = ∫
∞

0
(1 − ρ∗u∗

ρ∗∞U∗∞
)dy∗, (2)

where ρ∗ and u∗ stand for the density and streamwise velocity
component, while ρ∗∞ and U∗∞ refer to density and velocity at the
boundary-layer edge, respectively. The Reynolds number based on
δ∗ is defined as

Reδ∗ =
ρ∗∞U∗∞δ∗

μ∗∞
, (3)

where μ∗∞ denotes the dynamic viscosity at the boundary-layer edge.
In the present study, the value of Reδ∗ is fixed to 1823. As men-
tioned above, we will consider five values for the geometric param-
eter m: 1, 2, 3, 4, and the rectangular-shaped case r, i.e., m → ∞.
For the nondimensional height H, three values will be examined
here: 0.4, 0.8, and 1.2. In the present paper, the height of the rough-
ness will also be referred to as small (H = 0.4), medium (H = 0.8),
and large (H = 1.2). The nondimensional length L of the surface
irregularity is fixed to 100 for small and medium roughnesses. For
large roughnesses, three different values of L will be considered: 50,

100, and 150. The combination of parameters m, H, and L gives a
total of 25 types of surface irregularities, which are summarized in
Table I.

B. AHLNS equations
The boundary-layer instability analysis of the above-mentioned

configuration will be done using the Adaptive Harmonic Linearized
Navier Stokes (AHLNS)15 equations in combination with linear

TABLE I. Values of non-dimensional parameters H, L, and m considered in the
present study. The case m = r refers to the rectangular-shaped humps. The last
column indicates the maximum slope of the wall.

Case name H L m Maximum slope (○)

H4_m1 0.4 100 1 0.39
H4_m2 0.4 100 2 0.70
H4_m3 0.4 100 3 1.02
H4_m4 0.4 100 4 1.36
H4_r 0.4 100 r 90
H8_m1 0.8 100 1 0.79
H8_m2 0.8 100 2 1.40
H8_m3 0.8 100 3 2.04
H8_m4 0.8 100 4 2.71
H8_r 0.8 100 r 90
H12_m1 1.2 100 1 1.18
H12_m2 1.2 100 2 2.08
H12_m3 1.2 100 3 3.07
H12_m4 1.2 100 4 4.07
H12_r 1.2 100 r 90
H12_L50_m1 1.2 50 1 2.36
H12_L50_m2 1.2 50 2 4.15
H12_L50_m3 1.2 50 3 6.12
H12_L50_m4 1.2 50 4 8.06
H12_L50_r 1.2 50 r 90
H12_L150_m1 1.2 150 1 0.79
H12_L150_m2 1.2 150 2 1.40
H12_L150_m3 1.2 150 3 2.05
H12_L150_m4 1.2 150 4 2.72
H12_L150_r 1.2 150 r 90
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PSE.18 Here, a brief introduction to the AHLNS methodology is
given. For a detailed description of this methodology, the readers
are referred to the precursory work of Guo et al.14 or the more recent
work of Franco and Hein15 (focused on the effect of surface imper-
fections on boundary-layer instabilities). For a complete explanation
about the PSE methodology, the readers are referred to Bertolotti
et al.19 and Herbert.20

The AHLNS equations are obtained from the compressible
Navier–Stokes (NS) equations linearized for small disturbances. All
flow and material quantities q are decomposed into a steady base
flow q̄ plus an unsteady disturbance flow component q̃, i.e.,

q(x, t) = q̄(x) + εq̃(x, t), ε≪ 1, (4)

where x, y, and z are the streamwise, normal, and spanwise coor-
dinate components of the position vector x, respectively. Here, t
represents time. This flow decomposition is introduced into the NS
equations, then the base state solution is subtracted and products of
disturbance quantities are neglected. To further simplify the analy-
sis, it is assumed that the base flow is homogeneous in the spanwise
z direction. Moreover, disturbances are assumed to be periodic in
time t and in the spanwise z direction. The adaptive approach is
introduced here: the disturbance flow variables are divided into an
amplitude function and a suitable, iteratively updated wave function,
i.e.,

q̃(x, y, z, t) = q̂(x, y)eiΘ, (5)

where the wave function is defined as

Θ = ∫ α(x)dx + βz − ωt. (6)

Here, α, β, and ω stand for streamwise wavenumber, spanwise
wavenumber, and frequency of the disturbance, respectively. The
physical disturbance is recovered from the real part of q̃.

The major advantage of the adaptive approach is that it exploits
the wave-like character of the convective instabilities in a similar
fashion as in the PSE method. However, unlike the PSE approach,18

two aspects are crucial in this approach: First, the streamwise
wavenumber α is allowed to rapidly vary in the streamwise direction.
Second, the adaptive approach does not introduce any further sim-
plification in the system of equations, i.e., all terms of the linearized
Navier–Stokes (LNS) equations are kept.

Once the wave decomposition mentioned above is introduced
into the LNS equations, the AHLNS equations are obtained. These
equations can be written in matrix form

Aq̂ + B
∂q̂
∂y

+ C
∂2q̂
∂y2 + D

∂q̂
∂x

+ E
∂2q̂
∂x∂y

+ F
∂2q̂
∂x2 = 0, (7)

where q̂ = (û, v̂, ŵ, T̂, p̂). Here, p and T stand for pressure and
temperature, while u, v, and w are the streamwise, normal, and
spanwise components of the velocity vector u, respectively. The coef-
ficients A−F are 5 × 5 matrices, which contain base flow quantities,
real-valued parameters β and ω, and the complex-valued wavenum-
ber α. The disturbance field is subjected to the following boundary
conditions at the wall and at the farfield:

û = v̂ = ŵ = T̂ = 0 at y = 0
û = v̂ = ŵ = T̂ = p̂→ 0 as y →∞.

(8)

At the inflow, prescribed values for all five quantities are imposed.
At the outflow, disturbance quantities are extrapolated from inner
points. Once the boundary conditions are incorporated into the
system of equations, Eq. (7), and after discretization, a system
of linear algebraic equations of the form Lq̂ = b is reached,
where vector b collects the information on the inflow boundary
condition.

The streamwise wavenumber distribution α(x) is adjusted iter-
atively in a similar fashion as in the PSE approach,20 i.e.,

αnew = αold − i
∫ ∞0 (q̂

† ∂q̂
∂x )dy

∫ ∞0 (∥q̂∥2)dy
, (9)

with superscript † referring to the complex conjugate. The adjust-
ment of α(x) is repeated iteratively, until α(x) can be considered as
converged.

In order to extend the capabilities of the AHLNS approach for
studying surface irregularities of any particular shape, two features
have been implemented:15 First, a multi-block technique is used in
cases where the surface irregularity contains sharp corners (i.e., rect-
angular humps). Second, a coordinate transformation is applied in
order to transform the physical domain (x, y) into the equally spaced
computational domain (ξ, η). If the multi-block technique is used,
then the coordinate transformation is applied in each block indi-
vidually (in order to avoid singularities at the sharp corners). At
the interface between two neighboring blocks, the amplitude func-
tions and their first derivatives normal to the block boundaries have
to match at both sides of the interface. The spatial derivatives in
this computational domain are discretized using a 4th-order finite-
difference scheme in both (ξ, η) directions. Based on our experience,
we did not find any significant benefits from using discretization
schemes of even higher order.

C. Multi-zonal approach
Figure 2 illustrates a typical example of a wall-bounded flow in

the presence of a local surface irregularity (in this case, a rectangular
hump on a flat plate) and indicates the region where AHLNS equa-
tions are applied in a multi-zonal approach. Relatively far away from
the surface irregularity, the streamwise variations of the laminar
base flow ∂q̄/∂x and amplitude functions ∂q̂/∂x are barely affected
by the presence of the irregularity. These variations are relatively

FIG. 2. Sketch of the multi-zonal technique for boundary-layer instability analysis
in the presence of surface irregularities. The vertical dashed lines represent the
inflow and outflow locations for AHLNS computations. Magnitude q holds for both
base flow quantities q̄ and amplitude function of the disturbances q̂. Flow direction
is from left to right.
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small (compared with normal changes ∂q̄/∂y and ∂q̂/∂y, respec-
tively), and the assumptions made for PSE are valid. However, in the
vicinity of the surface irregularity, the streamwise gradients may be
of the same order as the normal gradients. In this region, the use of
PSE could be questionable and, therefore, the AHLNS equations are
applied. At the inflow location of the AHLNS zone, the amplitude
functions q̂PSE and streamwise wavenumber αPSE provided by PSE
are taken as inflow boundary conditions for AHLNS. At the outflow
location of the AHLNS zone, the amplitude functions q̂AHLNS and
streamwise wavenumber αAHLNS provided by AHLNS can be used
as inflow conditions for a subsequent PSE computation. The inflow
and outflow boundaries of the AHLNS domain are placed at a cer-
tain distance from the roughness, where the assumption of a slow
streamwise variation of the laminar base flow and of the amplitude
functions is still valid.

In the present paper, results obtained using this multi-zonal
approach will be labeled AHLNS results. But actually, the results
shown in this work are obtained by the multi-zonal combination of
PSE and AHLNS methodologies described above.

D. Growth rate and N -factor envelope
The physical growth rate σ of an arbitrary disturbance quantity

ζ is defined as

σζ = −αi + Real(1
ζ
∂ζ
∂x
), (10)

where the first rhs term is the contribution from the wave part of
the disturbance [Eq. (5)]. The second term is the correction due to
changes in the amplitude function. In the present paper, ζ is taken
to be the streamwise velocity component û at the y location, where
û reaches its maximum value. The n-factor, which measures the
accumulated growth of the disturbances, is computed as

n = ∫
x

xs

σûdx, (11)

where xs denotes the streamwise position where the disturbance
starts to grow. Similar to the work of Ragab and Nayfeh,21 the n-
factor is set to zero if during the course of the integration, the value
of n becomes negative. Each n-factor curve is computed for a single
wave defined by a particular nondimensional frequency F and span-
wise wavenumber β. The nondimensional frequency F is defined as

F = 2πf ∗
μ∗∞

ρ∗∞(U∗∞)2 × 106, (12)

where f ∗ is the physical frequency of the disturbances. The enve-
lope of these curves is called the N-factor envelope, following the
definition given by Arnal.22

E. Validation of the AHLNS methodology
The AHLNS methodology has been validated already (see Ref.

15) for the spatial evolution of TS waves present in wall-bounded
incompressible flows. Here, we include a case found in the work of
Edelmann23 where the Mach number was set to 0.8. The geometri-
cal configuration of this case corresponds to a rectangular forward-
facing step, placed on a flat plate at x∗c = 1 m, with a unit Reynolds

number of Reu = 2.45 × 106 m−1 and a Reynolds number ReH based
on the step height of ReH = 1320. This configuration is very sim-
ilar to that of Fig. 1. However, in this section, we are considering
a rectangular forward-facing step instead of a rectangular hump.
The reduced frequency F selected for this comparison was 21.875.
Figure 3 compares the n-factor evolution of a TS wave computed
by AHLNS with the results of Edelmann23 using DNS. This case
is very useful not only to show the very good agreement between
AHLNS and DNS but also to illustrate some differences between
both methodologies. In the work of Edelmann,23 the number of grid
points used in the DNS computations is not mentioned explicitly.
However, we can still illustrate the differences in terms of compu-
tational resources needed for this validation case. Edelmann stated
that, for a single run, 6144 processors were used at the High Perfor-
mance Computed Center Stuttgart (HLRS) for the DNS. Depending
on the finite-difference scheme he used, each run took between 103 s
(explicit 8th-order finite differences) and 352 s (compact 6th-order
finite differences). On the other hand, for this validation test, our
AHLNS computation was done using a single work-station with four
cores and the result was obtained after 300 s (explicit 4th-order finite
differences). We used a mesh with 500 × 200 points in streamwise
and normal directions, respectively.

We believe that there are three main reasons for the different
amount of computational effort needed in both methodologies:

● The AHLNS method (like PSE) assumes that instabilities
are convective in nature and can be expressed in a normal-
mode form (i.e., the wave-like character of the disturbances
is exploited). However, in DNS (like LNS or HLNS) no
assumptions are made regarding the nature of the instabil-
ities in the streamwise direction.

● The effect of the step on the development of the TS wave is
very localized. For this reason, we apply AHLNS in a small
region in the vicinity of the step (i.e., x∗ ∈ [0.9,1.1] m), while
we make use of PSE in the rest of the plate. The DNS used

FIG. 3. n-factor distribution for an incoming TS wave of reduced frequency F
= 21.875 along a flat plate in the presence of a rectangular forward-facing step.
The gray line represents the location of the step. The two vertical dashed lines,
placed at x∗ = 0.9 m and x∗ = 1.1 m, indicate the position where the interfaces
between PSE and AHLNS methods are placed. DNS data courtesy of C. A. Edel-
mann, “Influence of forward-facing steps on laminar-turbulent transition,” Ph.D.
dissertation (University of Stuttgart, 2014).
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by Edelmann does not apply this multi-zonal approach, and
therefore, the whole domain is computed at once.

● The AHLNS approach (like PSE) assumes that disturbances
are periodic in time. This assumption is not included in the
DNS approach, and therefore, a time-integration scheme is
used in the DNS solver.23 In order to achieve a converged
time-periodic solution, Edelmann claimed that up to 20 000
time steps were required for the DNS computations.23

III. NUMERICAL RESULTS
A. Base flow computations
1. Approach

The laminar steady two-dimensional flow on a flat plate in
the presence of a hump was computed numerically. We used the
compressible Navier–Stokes solver TAU,24 developed at DLR. Grids
were generated using the structured grid generator MEGACADS,
also developed at DLR. A schematic representation of the compu-
tational domain and the boundary conditions imposed for com-
puting the base flows is depicted in Fig. 1. Farfield boundary con-
ditions were imposed sufficiently far from the surface irregularity
(about 2500 δ∗ in both streamwise and normal directions). Sim-
ulations were run until the variations in lift and drag coefficients
within last 40 iterations were smaller than 10−7 and 3 × 10−8,
respectively.

2. Grid convergence
Three sets of grids were used to verify the grid-independence

of the base flow results. In all sets of grids, points were clustered
near the walls, where the largest variations of flow quantities are
expected. The first set of grids is referred to as coarse. These grids
have about 700 and 150 points in streamwise and normal directions,
respectively. The number of points can vary slightly in the normal
direction when the value of H is changed (in order to keep the same
grid spacing close to the wall). Another set of grids, named medium,
was also used to compute the base flows. In this second set of grids,
the number of points was increased in both directions: about 1100
and 225 points in streamwise and normal directions, respectively.

The number of points within the boundary layer is about 70% of the
total number of points in the normal direction for all meshes consid-
ered in the present work. Finally, the third group of grids, called fine,
has about 1500 and 300 points in streamwise and normal directions,
respectively.

Figure 4 shows the results of the grid convergence study for
the case H12_r. Depicted in this figure is the dividing line ū = 0
that limits the region where the reverse flow (ū < 0) is present.
For this case, three recirculation areas appear: one in front of the
hump, one on top of the hump [both represented in Fig. 4(a)], and a
large recirculation area after the hump [shown in Fig. 4(b)]. The size
of these recirculation regions is only slightly smaller in the case of
coarse grid, but identical for medium and fine meshes. Therefore, the
grid-independence of the base flow computations is demonstrated.
The base flows for all cases considered in this work are station-
ary. The largest peak-recirculation velocity found is smaller than
4%. Therefore, we are not expecting that global instabilities, in the
sense of self-excitation of the base flow, play any role in the sta-
bility analysis (see Ref. 25). Figure 5 shows the results of the grid
convergence study for the case H12_m4 based on the skin-friction
coefficient cf and nondimensional displacement thickness δ distri-
bution. The value of cf is given by the following expression (see
Ref. 17):

cf =
(μ∂u

∂y )y=0

1
2ρ
∗
∞(U∗∞)2

. (13)

Results for the flat plate case have been added for compari-
son. Similar to the above-mentioned case H12_r, the results show
that the base flows are grid-independent for medium and fine grids.
Figure 5 illustrates another fact that has to be pointed out: The pres-
ence of the hump affects strongly the base flow characteristics, but
this effect is limited to the vicinity of the hump. In other words, at a
certain distance of the hump, the base flow properties in the stream-
wise direction change slowly (compared with variations in normal
direction), similar to the flat plate case. This circumstance (localized
influence of the surface irregularity) permits us to apply the multi-
zonal approach described in Sec. II C for the subsequent stability
analysis. As a result of the grid-convergence study, the base flow

FIG. 4. Base flow grid convergence study for case H12_r. The green dashed lines (coarse), continuous red lines (medium), and long-dashed blue lines (fine) represent the
points in the base flow where ū = 0, upstream (a) and downstream (b) of the hump. The gray area represents the hump. Flow direction is from left to right. Axes are not to
scale.
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FIG. 5. Base flow grid convergence study for case H12_m4, based on skin-friction coefficient cf (a) and nondimensional displacement thickness δ (b). The gray area indicates
the position of the hump.

computed with meshes of the set medium will be used for stability
analysis.

3. Base flow results
The base flow pressure p̄ is made nondimensional by twice the

incoming dynamic pressure, i.e., ρ∗∞(U∗∞)2. Figure 6 compares the

contours of p̄ and streamlines for several cases. For small (H = 0.4)
roughnesses [Figs. 6(a)–6(c)], the flow field exhibits little variations
in the three cases considered. Only in the rectangular case H4_r
[Fig. 6(c)], there is a tiny separation bubble at the downstream side
of the hump. The streamwise pressure gradients at the leading and
trailing edges of the humps are more intense as the humps tend

FIG. 6. Pressure p̄ contours and streamlines for small (H = 0.4) and large (H = 1.2) humps in cases m = 1 [labels (a) and (d)], 4 [labels (b) and (e)], and r [labels (c) and (f)],
respectively. Flow direction is from left to right. Axes are not to scale.
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to the rectangular shape (i.e., the value of m increases). For large
(H = 1.2) roughnesses [Figs. 6(d)–6(f)], variations in the flow field
are more relevant. The flow in case H12_m1 [Fig. 6(d)] remains
attached, although the pressure gradients are more pronounced than
in case H4_m1. For case H12_m4 [Fig. 6(e)], a separation bubble
appears at the trailing edge of the hump. The length of this bubble
(in the x-direction) is approximately one quarter of the length L of
the hump. The last case considered here, namely, H12_r [Fig. 6(f)],
exhibits a large separation bubble downstream of the hump (approx-
imately one half of the length L in the streamwise direction). The
disturbance in the base flow provoked by the presence of the rough-
ness is limited to the vicinity of the hump. At a certain distance from
the hump, the flow field recovers the key characteristics of the undis-
turbed flow field (i.e., small variations of flow magnitudes in the
streamwise direction). This fact, highlighted above in Fig. 5, assures
that the multi-zonal approach proposed in Sec. II C is perfectly
suited for this configuration.

B. Instability analysis
The computation of the spatial development of a broadband

spectrum of TS waves (each one computed individually and defined
by its frequency F and spanwise wavenumber β) is described in this
section. The spatial growth in amplitude of each TS wave is collected
in the corresponding n-factor curve (defined in Sec. II D).

The instability analysis is computed in the domain (x − xc) ∈
[−500, 2000]. An initial investigation performed on a flat plate
using PSE revealed that two-dimensional (β = 0) TS waves of
frequencies F ∈ [20, 75] produce the highest n-factor curves
in the domain mentioned above. When a surface irregularity
is present, the multi-zonal approach described in Sec. II C is
applied. The interfaces between PSE and AHLNS are placed at
(x − xc) = ±165, sufficiently far away from the recirculation regions
(see Fig. 6). The following results were obtained considering
incoming two-dimensional TS waves (β = 0) only. The effect of
humps on three-dimensional waves (β ≠ 0) will be discussed in
Sec. III G.

1. Grid convergence
The presence of sharp corners increases significantly the num-

ber of points required for a correct representation of the TS waves
in the vicinity of the hump. This is the reason to select two humps
(H8_r and H8_m4) to prove that the instability results presented
here are grid-independent. For rounded humps, the reference grid
is made of 100 points in the streamwise direction and 100 points in
the normal direction. However, for cases where sharp corners are
present the reference grid is made of 500 × 300 points in stream-
wise and normal directions, respectively. Moreover, we will refer
here only to the number of points used for the AHLNS computa-
tions {i.e., in the domain (x − xc) ∈ [−165, 165]}. For each hump,
the number of points for the stability analysis is increased by 40%
in each direction independently with respect to the corresponding
reference grid. Figure 7 reports the results of this investigation for a
single TS wave of frequency F = 48.

C. Effect of hump height and shape
Figure 8 illustrates how the N-factor envelope curve is built

for each hump (here, the case H4_m1 is considered). A total of

FIG. 7. Stability analysis grid convergence study for cases H8_r and H8_m4. Black
solid lines represent AHLNS computations using the reference grid. For rectangu-
lar humps, this reference grid consists of (nx, ny) = (500, 300) points. For smooth
humps, the reference grid consists of (nx, ny) = (100, 100) points. The results
marked by red dashed and blue dashed–dotted lines were obtained by increasing
the number of points in streamwise and normal directions by 40%, respectively.
The gray area indicates the position of the hump.

34 TS waves, with frequencies in the range between F = 20 and
F = 75, are computed. At each streamwise location, the maximum
n-factor value for all frequencies computed is taken as the cor-
responding N-factor at that particular location. This process is
repeated for the 25 cases considered in the present paper (see
Table I). The results will be presented in Secs. III C 1–III C 3 by
grouping the different roughnesses according to their height (small,
medium, and large).

FIG. 8. Definition of the N-factor envelope curve (blue line with circles) for the
case H4_m1. A total of 34 TS waves (gray lines) were computed. The smallest
(F = 20) and largest (F = 75) frequencies considered have been highlighted for
simplicity. Vertical dashed lines indicate the location of the interfaces between
PSE and AHLNS methodologies. The gray area represents the position of the
hump.
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FIG. 9. N-factor envelope curves for small humps (H = 0.4). Vertical dashed lines
indicate the location of the interfaces between PSE and AHLNS methodologies.
The gray area represents the position of the hump.

1. Small humps
Figure 9 compares the N-factor envelope curves when small

humps (H = 0.4) are considered. The spatial variation of the N-factor
curves is similar for all five humps analyzed here. At the end of the
domain (i.e., x = xc + 2000), the N-factor increases from 9.9 (flat
plate) to 10.6 (case H4_r) and 10.4 (case H4_m4). In the vicinity of
the humps, the development of the TS waves is driven by the pres-
sure gradients that the presence of the hump introduces into the flow
field. It is well known (see Ref. 26) that an acceleration in the flow
usually has a stabilizing effect. Figure 10 shows the nondimensional
pressure distribution at the wall p̄wall for three values of the shape
factor m: 1, 4, and rectangular. The flat plate case is also considered
for comparison. In these cases, in the leading region of the hump
(x − xc ≈ − 50), there is an initial deceleration of the flow followed

FIG. 10. Pressure distribution at the wall p̄wall for small humps (H = 0.4) in cases
m = 1 (red line), m = 4 (yellow line), and m = r (green line). The flat plate case
(black line) is included for comparison. The gray area represents the position of
the hump.

by a rapid acceleration. This effect explains why on the upstream
side of the hump, there is a small increase in the N-factor curves fol-
lowed by a reduction. In the rear part of the hump (x − xc ≈ 50), the
pressure distribution indicates that a rapid deceleration of the flow
is followed by a less pronounced acceleration. The strong decelera-
tion is translated into a rapid increase in the N-factor curves. The
effect of reducing the smoothness of the hump (increasing m) pro-
vokes that the pressure variations concentrate at the borders of the
hump. Downstream of the hump, where the zero pressure gradient
is recovered, the N-factor curves grow almost parallel to the flat plate
case.

2. Medium humps
Figure 11 shows the N-factor envelope curves when medium

humps (H = 0.8) are considered. At the end of the domain (i.e.,
x = xc + 2000), the N-factor is 12.5 for case H8_r and 11.5 for
case H8_m4. The behavior of the N-factor in the vicinity of the
humps is similar as described previously for small humps. How-
ever, since the height of the humps H considered here is twice that
of the small humps, the pressure gradients around the hump are
more intense (see Fig. 12). Once the zero pressure gradient region
is reached, the N-factor curves grow parallel to the flat plate case as
expected.

3. Large humps
In this section, the results of the investigation for large humps

(H = 1.2) are described. For simplicity, only the cases where the
length L is 100 are presented here. Variations of the parameter
L will be discussed in Sec. III D. Figure 13 plots the amplifica-
tion curves for the five humps considered here. At the end of the
domain (i.e., x = xc + 2000), the N-factor is 14.4 for case H12_r
and 12.9 for case H12_m4. The pressure gradients (Fig. 14) fol-
low a similar behavior as it was already described for the previous
cases. Readers can observe [Fig. 13(b)] that differences between the
rectangular hump (case H12_r) and rounded humps are especially

FIG. 11. N-factor envelope curves for medium humps (H = 0.8). Vertical dashed
lines indicate the location of the interfaces between PSE and AHLNS methodolo-
gies. The gray area represents the position of the hump.
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FIG. 12. Pressure distribution at the wall p̄wall for medium humps (H = 0.8) in
cases m = 1 (red line), m = 4 (yellow line), and m = r (green line). The flat plate
case (black line) is included for comparison. The gray area represents the position
of the hump.

noticeable in the hump region. This effect indicates that humps
with rounded edges alleviate the intensity of the pressure gradi-
ents around the hump, and therefore, they reduce the rapid varia-
tions of the N-factor curve present in the rectangular-shaped case.
As a result, the effect of the smooth-shaped humps is a signifi-
cant reduction in terms of N-factor compared with the rectangular
case.

It is also important to note that the presence of reverse flow
increases significantly the growth of the TS waves (see Ref. 27).
Therefore, the existence and size of a recirculation bubble may play a
significant role in the evolution of the N-factor. As it was mentioned
before [Figs. 6(d)–6(f)], at the trailing edge of the hump, the size of
the recirculation bubble strongly depends on the shape of the hump.
This finding also contributes to the understanding of how the shape
of the hump affects the evolution of the N-factor.

FIG. 14. Pressure distribution at the wall p̄wall for large humps (H = 1.2) in cases
m = 1 (red line), m = 4 (yellow line), and m = r (green line). The flat plate case
(black line) is included for comparison. The gray area represents the position of
the hump.

D. Effect of hump length
For large humps (H = 1.2), the effect of the length L is studied.

Figure 15 shows the N-factor curves when the length is fixed to 50.
A comparison with the previous case L = 100 indicates that the N-
factor curve for the rectangular-shaped case (H12_L50_r) is similar
to case H12_r (Fig. 13). However, the N-factor values for rounded
humps are significantly higher when the length L is reduced. The
reason for this behavior can be found again in the pressure distribu-
tion p̄wall (Fig. 16). Reducing the length L of the hump provokes that
the pressure gradients around the rounded humps are significantly
increased, resulting in an overall increase in the N-factor curves for
the rounded humps.

Consequently, when the length of the hump is increased (L
= 150) the major effect is an overall reduction in the N-factor curves
for rounded humps (compared with the cases L = 100). However, the

FIG. 13. N-factor envelope curves for large humps (H = 1.2) and L = 100, for the complete domain (a), and a detailed view in the vicinity of the hump (b). Vertical dashed
lines indicate the location of the interfaces between PSE and AHLNS methodologies. The gray area represents the position of the hump.
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FIG. 15. N-factor envelope curves for large humps (H = 1.2) and L = 50. Verti-
cal dashed lines indicate the location of the interfaces between PSE and AHLNS
methodologies. The gray area represents the position of the hump.

N-factor curve for the rectangular-shaped hump is barely affected by
this increase in length (Fig. 17). The pressure distribution at the wall
p̄wall (Fig. 18) confirms these findings.

E. Prediction of transition location
The results of the linear instability analysis, together with the

eN methodology, can lead to a predicted transition location xtr .
Without having any further information, it is very common5 to set
the expected transition location xtr as the closest point to the lead-
ing edge where the amplification curves reach the threshold value of
N = 9. Therefore, starting upstream of the roughness location, we
follow the N-factor curve downstream until it reaches this thresh-
old value. The corresponding streamwise location is defined as the

FIG. 16. Pressure distribution at the wall p̄wall for large humps (H = 1.2) and length
L = 50 in cases m = 1 (red line), m = 4 (yellow line), and m = r (green line).The flat
plate case (black line) is included for comparison. The gray area represents the
position of the hump.

FIG. 17. N-factor envelope curves for large humps (H = 1.2) and L = 150. Verti-
cal dashed lines indicate the location of the interfaces between PSE and AHLNS
methodologies. The gray area represents the position of the hump.

expected location where the transition to turbulence takes place.
The eN methodology, assuming a transition N-factor of 9, has been
applied to all N-factor curves previously described. The resulting
expected transition locations xtr for the different cases are summa-
rized in Fig. 19. Despite the shortcomings of the eN methodology (see
Ref. 22) in predicting laminar–turbulent transition, it can still illus-
trate some interesting features of the different cases considered in
the present work. For a flat plate, transition is expected at (xtr − xc)
= 1595.5. When small humps (H = 0.4) are considered, the transition
location moves slightly upstream. The change of xtr with respect to
the flat plate case is larger when the value of the geometrical param-
eter m is increased, although this change in transition location is
relatively small [(xtr − xc) = 1515 for case H4_m1 and (xtr − xc)
= 1376.7 for case H4_r].

FIG. 18. Pressure distribution at the wall p̄wall for large humps (H = 1.2) and length
L = 150 in cases m = 1 (red line), m = 4 (yellow line), and m = r (green line). The
flat plate case (black line) is included for comparison. The gray area represents
the position of the hump.

Phys. Fluids 32, 034102 (2020); doi: 10.1063/1.5131577 32, 034102-11

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 19. Expected transition location xtr for all humps considered in the present
work. The eN methodology, with a transition N-factor of 9, is applied. The vertical
dashed line corresponds to the flat plate case. The gray area represents the posi-
tion of the hump (for L = 100). Rectangular cases (m = r) can be considered as
limiting cases when m→∞.

For medium humps (H = 0.8), the transition location is more
sensitive to changes in hump shape. This is especially noticeable for
the rectangular case, where the expected transition location takes
place at (xtr − xc) = 680.4.

For large humps (H = 1.2), not only the shape (parameter m)
was varied, but three different lengths (L = 50, 100, 150) were also
considered. Transition moves upstream toward the hump by either
reducing the smoothness (increasing the value of m) or reducing the
length L. We found that, if the shape of the hump is rectangular (m
= r), transition to turbulence is expected to occur in the vicin-
ity downstream of the hump. This conclusion holds for the three
lengths considered in this study (L = 50, 100, 150). On the other
hand, if the shape of the hump is rounded, the expected tran-
sition location xtr is strongly influenced by the length L of the
hump. Furthermore, if the length L is fixed to 50, the onset of

FIG. 20. Influence of the presence of a hump (case H4_r) on the real part of
the streamwise velocity disturbance R(ũ/ũmax) for an incoming TS wave of fre-
quency F = 25 at an arbitrary instant of time. Flow direction is from left to right.
Axes are not to scale.

transition is also expected to occur in the vicinity downstream
of the hump, independent of the shape of the roughness. These
findings might suggest that, if transition to turbulence is intended
to be significantly delayed, both length and shape of the hump
should be considered simultaneously. However, we must stress
that results presented here regarding the expected transition loca-
tion are based on the assumption that the transition N-factor
is 9.

F. Effect of the hump on the TS wave structure
In Secs. III C–III D, the influence of the stationary base flow

pressure distribution p̄ on the N-factor evolution has been described
in detail for all cases considered in the present paper. In this sec-
tion, we illustrate how the presence of the hump affects the spatial
structure of an incoming TS wave. Figure 20 shows the isocontours

FIG. 21. Growth rate σû evolution (a) for an incoming TS wave of frequency F = 25 in the presence of a rectangular hump (case H4_r), and a detailed view in the vicinity of
the hump (b). The gray area represents the position of the hump. Vertical dashed lines indicate the location of the interfaces between PSE and AHLNS methodologies.

Phys. Fluids 32, 034102 (2020); doi: 10.1063/1.5131577 32, 034102-12

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

of the real part of the streamwise velocity disturbance R(ũ/ũmax)
for a particular instant of time when an incoming TS wave of fre-
quency F = 25 encounters a rectangular hump (case H4_r). This
particular case and frequency have been chosen due to its moder-
ate overall variation of TS wave amplitude in the plotted domain,
which facilitates a visualization by isocontours in Fig. 20. Upstream
of the hump, the growth rate σû of the TS wave [defined in Sec. II D
and depicted in Fig. 21(a) for the same case H4_r and frequency F
= 25] and its structure are similar to the well-known development
of a TS wave in a flat-plate boundary layer. Only in the vicinity of
the hump [Fig. 21(b)], the structure of the TS wave changes dra-
matically in order to accommodate to the presence of the hump.
This effect is very noticeable at the edges of the hump, especially
at the upstream corner. The large variations in growth rate found at
the edges of the hump when compared with the flat plate case (see
Fig. 21) can be related to the base flow pressure deviations from the
flat plate case (see Fig. 10): adverse pressure gradients have a desta-
bilizing effect and, therefore, imply an increase in the growth rate
of the flow instabilities. Readers can also check that variations in
p̄wall are much larger at the upstream side of the hump than at the
downstream side. However, when the TS wave passes the hump, its
amplitude grows much more rapidly than in the attached flow case
(Fig. 9). This is due to the recirculation bubble downstream of the
hump [Fig. 6(c)].

G. 2D vs 3D TS waves
Although Drazin and Reid26 stated Squire’s theorem28 as “to

obtain the minimum critical Reynolds number it is sufficient to con-
sider only two-dimensional disturbances,” Mack29 pointed out that
this theorem only applies to incompressible self-similar boundary
layers in the temporal approach, and it refers “to the minimum crit-
ical Reynolds number and not to the critical Reynolds number of a
particular frequency.” In the present paper, our approach is focused
on the spatial development of TS disturbances along compressible
boundary-layer flows where locally there is a strong streamwise

FIG. 22. n-factor curves for TS waves of frequency F = 48 and several spanwise
wavenumbers β. Case H8_r is considered. Vertical dashed lines indicate the loca-
tion of the interfaces between PSE and AHLNS methodologies. The gray area
represents the position of the hump.

gradient caused by a surface irregularity. Therefore, it cannot be
assured a priori that the most unstable disturbances are two-
dimensional. For this reason, we varied the spanwise wavenumber
β for a given TS wave of frequency F = 48. The results of this inves-
tigation are shown in Fig. 22. Clearly, the maximum amplification is
found for the two-dimensional wave. This assures that, for the pur-
pose of our investigations, the two-dimensional TS disturbances are
the most relevant ones in terms of n-factor curves.

H. PSE vs AHLNS
Some of the reasons that make the application of the PSE

approach in the vicinity of the hump questionable have been pre-
viously exposed. However, it is also interesting to quantify whether
these shortcomings in fact imply an incorrect computation of the
n-factor curves. For this reason, we select the case H8_r and we
compute the n-factor curve for a single TS wave of frequency
F = 48. Figure 23 shows the spatial development of the n-factor
curve in the domain (x − xc) ∈ [−165, 165] computed with AHLNS
and PSE. Differences between both methods in reproducing the spa-
tial development of the mentioned TS wave are significant, and we
believe that there are two main reasons for these differences: First,
the marching procedure used in PSE restricts the minimum step
size (see Ref. 30) in order to avoid that the remaining ellipticity in
PSE makes the numerical procedure unstable. This is a tough limi-
tation, especially at the leading edge of the hump, where it has been
shown that large flow variations occur on very short distances. Sec-
ond, the PSE assume in their formulation that streamwise variations
are relatively small. Again, this assumption is very questionable in
the vicinity of the hump, especially in cases where sharp corners are
present (see, e.g., Fig. 20).

On the other hand, we do not believe that the presence of sepa-
ration bubbles with moderate reverse flow is a source of discrepancy
between PSE and AHLNS. Previous studies for pressure-induced
laminar separation bubbles on a flat plate (see Ref. 27) showed an
excellent agreement between PSE and DNS.

FIG. 23. n-factor curve for frequency F = 48 (case H8_r) computed with AHLNS
(black line) and PSE (black lines with circles). Only the domain (x − xc) ∈

[−165, 165] is shown. The gray area represents the position of the hump.
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IV. SUMMARY AND CONCLUSIONS

The spatial linear stability analysis of Tollmien–Schlichting
waves in the presence of a large variety of two-dimensional humps
on a flat plate in a compressible flow is presented here. In order
to reduce the scope of all possible parameter combinations, unit
Reynolds number, Mach number, and hump location have been kept
fixed. The geometrical parameters, which define the hump (height,
length, and shape), have been systematically varied. The shape of the
hump is defined through a geometrical parameter m, which varies
from m = 1 (Gaussian shape) to m→∞ (rectangular shape).

The analysis shown here has been done using the recently
developed AHLNS methodology, which, as has been demonstrated
and justified, offers a significant reduction in the computational
resources required when compared with current alternatives such
as DNS solvers. Moreover, it has been explained why method-
ologies such as PSE or LSA have to be avoided for cases with
strong streamwise gradients in the flow caused by large surface
irregularities.

For each combination of height, length, and shape, the N-factor
envelope curve has been computed. The results of the stability anal-
ysis have been related to an expected transition location via the eN

methodology, assuming that a value of N = 9 triggers the onset of
transition to turbulence. Three different groups of humps have been
considered (regarding their height): small, medium, and large. It has
been found that when the height of the hump is approximately half
of the boundary-layer displacement thickness δ∗ (small humps), the
transition location moves slightly upstream (compared with the flat
plate case). This upstream movement of the transition onset is larger
when the shape of the smooth humps tends to the rectangular shape.
However, differences between rectangular and smooth humps have
been found to be relatively small.

When the height is slightly smaller than δ∗ (medium humps),
the behavior of the expected transition location is similar to that
of the small humps. However, differences between rectangular and
smooth humps have been found to be noticeable. The rectangular
hump promotes a much earlier transition location than any of the
equivalent smooth humps considered.

When the height is slightly larger than δ∗ (large humps) and
its shape is rectangular, transition is expected to occur in the vicin-
ity right downstream of the hump. This result is common for the
three lengths considered in our work. On the other hand, if the
large humps have a rounded shape, the transition location depends
strongly on the length L. It can be concluded that an effective way
to delay the transition onset would be to smooth the shape and to
extend the length of the humps.

The effect of humps on the development of three-dimensional
TS waves was also considered. It could be confirmed that, in
the presence of humps, three-dimensional TS waves are still less
amplified than the corresponding two-dimensional waves. There-
fore, stability analysis based solely on two-dimensional waves
would be enough to determine the expected transition loca-
tion in subsonic two-dimensional boundary-layer flows where TS
waves are the dominant instabilities triggering laminar–turbulent
transition.

This systematic parametric study clearly demonstrated that the
effect of surface humps on the location of laminar–turbulent tran-
sition depends on various geometrical properties of this surface

irregularity. Moreover, most likely, the instability characteristics of
the laminar boundary layer are of major importance as well. There-
fore, attempts to assess the effect of surface irregularities on the tran-
sition location based on a simple parameter, e.g., the hump height
Reynolds number, appear to have little prospect of success. Further
parametric studies, which extend the scope of the present work, are
required instead. The AHLNS methodology presented here is very
well suited for such parametric studies as it can be applied to other
types of surface irregularities, such as steps, gaps, porous walls, and
suction slots, in both two-dimensional and quasi-three dimensional
boundary layers.

To quantify the influence of such irregularities on the location
of laminar–turbulent transition represents one of the major tasks in
the design of laminar wings for future aircraft.
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