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ABSTRACT

This work proposes a new shadow restoration method for hy-
perspectral images based on nonlinear unmixing. A physical
model is introduced to estimate the shadowed spectrum from
a spectrum of the same material exposed to direct sunlight.
By defining pure spectra receiving direct and indirect illumi-
nation as sunlit and shadowed endmembers, respectively, the
proposed method estimates the abundance maps for both sun-
lit and shadowed endmembers pixelwise, taking into account
nonlinear effects up to the second order, which are of partic-
ular importance in shadow areas. Subsequently, the spectrum
of a pixel in a scene is restored by a linear combination of
sunlit and shadowed endmembers. Experimental results show
that shadowed spectra can be successfully recovered and their
true reflectance better estimated. In addition, the proposed
method solves shadow detection and restoration simultane-
ously, so that it does not need a shadows mask as an additional
Input.

Index Terms— shadow restoration, hyperspectral im-
ages, nonlinear spectral unmixing

1. INTRODUCTION

Hyperspectral imagery contains rich spectral information and
its use in remote sensing applications has increased in re-
cent years [1]. For the case of hyperspectral data acquired
by airborne sensor, the high spatial resolution allows observ-
ing shadowed areas caused e.g. by buildings, trees, or clouds.
Due to the lack of direct sun illumination, the reflectance esti-
mated in shadowed pixels is not correct and leads to problems
in image analysis [2]. Therefore, it would be desirable to de-
rive the real reflectance for a material in the shadows before
further analysis.

Ashton et al. [3] transformed hyperspectral reflectance
data to hyperspherical coordinates in order to suppress the
difference between shadowed and lighted pixels of the same
material. Roussel et al. [4, 5, 6] assumed that the spectral
angle between sunlit and shadow pixels for the same material
is small. Yamazaki et al. [7] observed that the shadow effects
depend on acquisition time and season of an image, casting

conditions of the shadows, and wavelength. They computed a
linear relationship between exposed and shadowed pixels for
each band with the same material by using linear regression.
Two models based on clear physical assumptions have also
been proposed in ([2, 8]), where the authors modeled spec-
tral radiance pixelwise based on the physics of the image pro-
cessing chain. Pixels under direct sunlight are assumed to re-
ceive both direct sun illumination and irradiance from the sky,
while shadowed pixels only receive irradiance from the sky.
Lidar or DSM data were used to compute the casting condi-
tions of shadows and the amount of sky directly visible from
each pixel. In addition, spectral unmixing methods have been
widely used to analyze elementary materials in hyperspectral
images, and they allow multiple materials to be present in one
pixel [1]. Traditional spectral unmixing methods [1] could
fail when applied to shadowed areas. Liu et al. [9] proposed a
shadow restoration method based on linear unmixing. A shad-
owed pixel is assumed to be a wavelength-dependent affine
transformation of a pixel exposed to direct sunlight for a spe-
cific material. However, shadowed pixels contain nonlinear
interactions which should not be omitted [10, 11], as their
contribution becomes meaningful. Heylen et al. [10] pro-
posed a nonlinear mixture model with a clear physical process
to detect shadow pixels. Nascimento et al. [11] studied an
example of dry grass shadowed by trees through a nonlinear
mixture model. Shadow pixels were regarded as an endmem-
ber which was computed by multiplying the reflectance of the
dry grass with the one related to the tree. To the best of our
knowledge, current works about shadow restoration methods
are still limited by the following aspects. Firstly, a shadow de-
tection step is required before conducting shadow restoration,
as a shadows mask is usually required as additional input.
Secondly, the training samples should be manually selected.
Finally, some methods, which are not based on physical inter-
pretation, may lead to large spectral distortion between the
restored spectra of shadowed pixels and the spectra of the
corresponding sunlit pixels. In this work, we aim at deal-
ing with airborne hyperspectral images and propose a shadow
restoration method based on the nonlinear mixture model, un-
der some physical assumptions. In our model, the shadow



detection step is naturally embedded, and endmembers must
be manually selected. The results include abundance maps
related to spectra belonging the same material under direct
sunlight or in the shadows, nonlinearity parameters, and a re-
stored hyperspectral image subset.

2. METHOD

According to [12], direct sunlight and diffused skylight are
two major illumination sources for sunlit pixels (pixels ex-
posed to direct sunlight). We neglect the latter for sunlit pix-
els in this paper, as it is significantly smaller. Besides, we
assume that the targets on ground are Lambertian, and that
both the incident direction of sunlight and the viewing direc-
tion of the sensor are constant across a small scene. Then, the
reflectance of a sunlit pixel is written as:
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where L;(\) = M is the radiance of the sunlit pixel
at wavelength A, and Ej is the irradiance at the sunlit pixel at
wavelength \!.

For shadowed pixels, two additional relevant illumina-
tion sources are diffused skylight and reflections from the
surrounding objects. The atmospheric correction step does
not process sunlit and shadow pixels separately, as it adopts
the same workflow for both. The observed reflectance for a
shadow pixel can be written as:
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where Ly(\) = M is the radiance of the shadowed
pixel contributed by the linear part at wavelength A, L’ (}) is
the radiance of the shadowed pixel contributed by nonlinear
effects at wavelength A, and F,()\) is the diffuse skylight at
wavelength \.

The problem becomes then how to model L, (\) in equa-
tion (2). Modeling nonlinear effects for spectral unmixing
has been explored for decades. Recent reviews on nonlinear
spectral unmixing could be found in [1, 13, 14]. In this pa-
per, we model L/,()) using a second-order polynomial with
a free parameter b [15]. This model considers self-reflections
of endmembers and contains only one scaling parameter. As

diffused skylight is the only illumination source, the indirect
light source of multi-reflections is diffused skylight.
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where b is a scaling parameter, F¢()\) is diffused skylight
at wavelength A, p is the number of materials (endmember)

)\ is a given wavelength in this paper unless otherwise noted

in one pixel, r;;(A) is the i-th reflectance of sunlit material
(endmember) at wavelength A, a; is the i-th abundance corre-
sponding to 7y ;.

After combining equation (1-3), r; can be written as:
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Here, gj((/’\\)) could be interpreted as the ratio between dif-

fused skylight and sun’s emissions. If images are acquired un-
der a clear sky, rayleigh scattering could be seen as the main
contribution of atmospheric particles, Vo ((i‘)) preserves a
positive correlation with an exponential decreasing function

27416, 17]:
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where A is a wavelength, \. the c-th central wavelength for a
band of the input hyperspectral image, B the total number of
bands of the input image, and F' a scaling factor.

By combining equation (4) and (5), we have:
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So far, shadowed reflectance has been modeled by using
sunlit reflectance at the same wavelength A, together with
abundances and estimated parameters. We further extend
equation (6) to vector form to solve all wavelengths together,
and construct a nonlinear mixture model to allow more ma-
terials to be present in one pixel, and to be only partially
exposed to direct sunlight.

Here e_l; is the i-th sunlit endmember containing B spec-
tral bands, where ¢ = 1,2, ...p, p is the total number of end-
members, a_l; the i-th abundance corresonding to the i-th
sunlit endmember, and a_s; the i-th abundance correspond-
ing to the the i-th shadowed endmember. Given an ¢-th sunlit
endmember e_l;, a corresponding shadowed endmember e_s;
can be written as:
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Then both e_l; and e_s; can be regarded as endmembers.
Additionally, we model nonlinear effects of sunlit endmem-
bers e_l; through a second-order polynomial [15]. Thus, for



one pixel & with B spectral bands we have:
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where Y ¥  al;+as; =1,al; >0,and a_s; > 0.

As a_s; and a_l; are the abundances of shadowed and sun-
lit endmembers for the same material, the shadow restoration
result T estore Of pixel  with B spectral bands is computed
by:

P
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3. DATA

We used a subset from an airborne hyperspectral image ac-
quired over Oberpfaffenhofen, Bavaria, Germany (Fig. 1)
with a HySpex VNIR sensor flying at an altitude of 1615
m, resulting in a spatial resolution of 0.7 m. The image
comprises 160 spectral bands ranging from 416 nm to 988.4
nm. The image was atmospherically corrected, and ground
reflectance data were used in this paper. We have manually
selected 6 (sunlit) endmembers from the image: grass, tree,
highway, road, roof1, and roof2 (see Fig. 1).

(a) image

(¢) endmembers

(b) subset

~ reflectance
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Fig. 1. Hpyerspectral image with manually selected endmem-
bers.

4. RESULTS

In the reported experiments, our inputs were the hyperspec-
tral image and the manually selected endmembers introduced

in section 3. Furthermore, the spectral unmixing process as-
sumes two constraints on the abundances, i.e., the abundance
non-negativity constraint (ANC) and the abundance sum-
to-one constraint (ASC) [13]. The outputs of the proposed
method were the abundance maps of sunlit and shadowed
endmembers, and two scaling factors (see Fig. 2).

We have found out that it is difficult to estimate abun-
dances of shadowed endmembers accurately when their cor-
responding sunlit endmembers are very similar, as reflectance
values decrease significantly for shadowed pixels, and the
noise plus the variations in illumination conditions may
be larger than the spectral differences between the similar
classes. When two materials are similar in sunlit condition,
their difference is negligible in the shadowed condition. This
phenomenon happens between grass and tree and also comes
out among highway, road, and roofs.

Therefore, it is reasonable to combine abundance val-
ues of shadowed endmembers by summing them, when their
corresponding sunlit endmembers are highly similar. We
summed up the abundance maps of shadowed grass and shad-
owed tree as shadowed vegetation, and the abundance maps
of shadowed highway, shadowed road, and shadowed roofs
as shadowed asphalt.

Furthermore, the spectra of shadowed pixels where as-
phalt was shadowed by tree exhibited an obvious red edge
feature due to nonlinear scattering effects. Such feature was
less evident than in shadowed vegetation. Thus, normalized
difference vegetation index (NDVI) was applied in order to
separate shadowed vegetation from shadowed asphalt through
thresholding (the threahold was empirically set as 0.75 in this
paper).

Fig. 2 (a)-(f) presents the abundance maps of sunlit end-
members, while Fig. 2 (g)-(h) shows the abundances of shad-
owed vegetation and asphalt. After comparing abundance
maps with the input image, it has been observed that our pro-
posed method has successfully extracted abundance values of
sunlit and shadowed endmembers.

In addition, F' and b maps are reported in Fig. 2 (i) and
(k), respectively. The former, which is a scaling factor of
Rayleigh scattering, is larger for sunlit pixels and lower for
shadow pixels. The latter, which is a scaling factor in the pro-
posed nonlinear mixture model, is much higher for shadow
pixels.This indicates that nonlinear effects have a high impact
on shadow pixels and are important for shadow analysis.

Fig. 3 reports a visual comparison of the original image
with the restored one in four regions, in which road, grass,
or roof were shadowed by trees. The proposed method suc-
cessfully restored shadow pixels. In order to assess if shadow
restoration results could introduce spectral distortions among
all spectral bands, we compare in Fig. 3 the restored spec-
trum (“restored”) with three other spectra selected respec-
tively from the input shadow pixel ("observed” in the legend),
the endmember illuminated from direct sunlight correspond-
ing to the input shadow pixel ("endmember” in the legend),



and a spectrum from the same material under direct sunlight,
located in the neighborhood of the shadowed pixel (”sunlit”
in the legend). Ideally, the spectra noted as “endmember” and
”sunlit” should be very similar, but they are different in reality
due to interclass spectral variability. In this experiment, we
regarded both the spectra “endmember” and “sunlit” as true
spectra of the material exposed to direct sunlight. In Fig. 3,
the spectrum of an input shadowed pixel (“observed”) is not
simply divided by a scaling factor with respect to the spec-
trum of the same material exposed to direct sunlight, as both
Rayleigh scattering and nonlinear effects have a large impact
on the spectral features and are wavelength dependent. Af-
ter applying our proposed method, the restored spectra (“re-
stored”) exhibit similar spectral characteristics to the ”sun-
lit” and “endmember” spectra, indicating that our shadow re-
moval results are not only visually convincing in a true color
combination of the image subset, but more importantly keep
unaltered the main spectral features of the targets of interest.
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Fig. 2. Estimated abundances and parameters.
abundances for endmembers exposed to sunlight.

Top row:
Bottom

row, from left to right: abundances of shadowed vegetation
and asphalt, Rayleigh scaling factor F', and nonlinear scaling
factor for PPNM b.

Fig. 3. Results for spectral reconstruction in shadowed ar-
eas. Center: true color subset of hyperspectral HySpex image
acquired over DLR premises in Oberpfaffenhofen, Germany.
Four corners: detail of the image subset (left), its reconstruc-
tion image (right), spectral comparison of shadowed material,
restored spectrum, spatially close pixel exposed to sunlight,
and relative endmember exposed to sunlight.

5. CONCLUSION

This paper proposes a novel shadow restoration method for
hyperspectral images based on the nonlinear mixture model,
based on physical assumptions of the different indirect illu-
mination sources which are relevant in shadowed areas. The
proposed method achieves satisfying results on a high resolu-
tion hyperspectral dataset. The restored shadowed areas are
visually convincing, and their spectral information presents
only limited distortion.

Future work includes the development of a fully automatic
shadow restoration framework by embedding an automatic
endmember extraction algorithm, and the validation on dif-
ferent and larger hyperspectral subsets.
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