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Abstract: In the face of rapid global change it is imperative to preserve geodiversity for the overall
conservation of biodiversity. Geodiversity is important for understanding complex biogeochemical
and physical processes and is directly and indirectly linked to biodiversity on all scales of ecosystem
organization. Despite the great importance of geodiversity, there is a lack of suitable monitoring
methods. Compared to conventional in-situ techniques, remote sensing (RS) techniques provide
a pathway towards cost-effective, increasingly more available, comprehensive, and repeatable, as
well as standardized monitoring of continuous geodiversity on the local to global scale. This paper
gives an overview of the state-of-the-art approaches for monitoring soil characteristics and soil
moisture with unmanned aerial vehicles (UAV) and air- and spaceborne remote sensing techniques.
Initially, the definitions for geodiversity along with its five essential characteristics are provided,
with an explanation for the latter. Then, the approaches of spectral traits (ST) and spectral trait
variations (STV) to record geodiversity using RS are defined. LiDAR (light detection and ranging),
thermal and microwave sensors, multispectral, and hyperspectral RS technologies to monitor soil
characteristics and soil moisture are also presented. Furthermore, the paper discusses current and
future satellite-borne sensors and missions as well as existing data products. Due to the prospects
and limitations of the characteristics of different RS sensors, only specific geotraits and geodiversity
characteristics can be recorded. The paper provides an overview of those geotraits.

Keywords: geodiversity; geotraits; abiotic diversity; abiotic spectral traits; remote sensing; earth
observation; soil characteristic; soil moisture; land surface temperature
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1. Introduction

Biodiversity or biotic diversity is the “variability among living organisms from all sources including,
among others, terrestrial, marine, and other aquatic ecosystems and the ecological complexes of which
they are part; this includes diversity within species, between species, and of ecosystems” (Convention
on Biological Diversity-CBD, Article 2, www.cbd.int.). It encompasses the diversity of living organisms
on different levels of biological organization, which ranges from the molecular level, to the genetic,
individual, and species level to populations, communities, biomes, ecosystems, and landscapes is
described by five essential characteristics — the phyllo-, taxonomic-, structural, functional, and
trait-diversity [1–3]. Biodiversity is essential for ecosystems and their services to function properly, as
well as to ensure their resilience [4]. Rapid global change, as well as increased human intervention in
ecosystems, are changing biodiversity and ecosystem functions, leading to the degradation of species
habitats at an alarming rate and are considered to be the main reasons for disturbances and loss of
biodiversity [5]. The consequences are dramatic changes and disturbances to all entities of the biotic
and abiotic habitat, starting with epigenetic changes, shifts in traits, and disturbances to biotic and
abiotic species communities as far as detrimental changes to entire ecosystems. To better understand
the effects of impacts of natural and human disturbances such as land-use intensity or urbanization
on ecosystems, it is crucial to know how intra- and interspecific interactions of organisms with one
another and their interactions with the abiotic environment control the processes and functions of
ecosystems [6].

A major breakthrough in the understanding of ecology was the growing realization that ecosystems
consist of both above-ground and below-ground subsystems. The feedback between these two
subsystems plays a crucial role in regulating the diversity of the community structure and the
functioning of the entire ecosystem [7,8]. Interactions and feedback mechanisms between the biosphere
and the geosphere thus play a fundamental role in regulating ecosystem responses, processes, and
functions to anthropogenic and global changes and disturbances [6].

Biosphere–geosphere interactions and feedback mechanisms are complex, multidimensional, and
mostly non-linear, and vary depending on the spatio-temporal scale on which they are acting [9].
In fact, there are numerous examples of interactions between abiotic and biotic components and
interactions on all spatio-temporal scales starting from genes, to the field [10] and regional scale [11],
up to landscapes [12]. Geo-drivers and plant traits, for example, lead to characteristic landscape-scale
patterns in soil microbial communities [13]. Furthermore, there are strong ecological links between
the above-ground and below-ground interfaces of soil biota, plants, and their processes and
functions [9,14] or the diversity–function relationships of soil biodiversity and carbon cycling in
the soil–plant–atmosphere system [15]. Plants above- and below-ground components respond to
stress, disturbances, and the limitations of geo-factors by changing multiple aspects of their plant
traits such as biomass allocation, morphology, physiology, or the architecture of plant traits [16,17].
Plants, for example, adapt phenotypically to different light and nutrient conditions to efficiently
use these resources. Various abiotic factors such as solar radiation, temperature, water, surface
characteristics, and soil conditions influence the richness, abundance, and diversity of plants and
thus animal species [18–20]. Land surface temperature (LST) is a key variable for explaining energy
and water vapor exchange at the biosphere–atmosphere interface [21]. Water characteristics and
eutrophication processes in water bodies also influence biodiversity in the short and long term [22].

www.cbd.int


Remote Sens. 2019, 11, 2356 4 of 51

Studies have explained the strong link between the leaf traits of plants, climate, and soil
measurements of nutrient fertility [23]. Changes in biotic and abiotic interactions may lead to changes
in plant communities [24]. In this way, abiotic ecosystem properties and the environmental gradients
of climate, topography, soil properties [25–27], or land-use intensity [1,28] and urbanization [2] interact
with plants and communities [29], causing variations in the structural, physiological, and functional
traits in species, between communities, and biomes. A good example for the strong link between biotic
and abiotic interactions are the plant functional types such as the CSR-strategy types (competitor-C,
stress tolerator-S, ruderal-R) [25]. Their functional traits alter as a consequence of the adaptation to
changes from abiotic conditions caused by land-use intensity or land management strategies. Therefore,
plant functional types are dependent on the interaction of abiotic ecosystem properties as well as their
survival strategies assigned to groups of plant species with common functional traits [30,31].

Global change not only has a direct effect on biodiversity, distribution, and incidence, but
also an indirect effect through the interactions with the geosystems of individual plant species and
communities [32–34]. Although ecosystems and biodiversity always had to deal with climate change, it
is important to note that the change of air temperature has been faster over the last 10,000 years than in
any other recent geological time scales [35]. Global warming and increase in land surface temperature
(LST) can lead to an enormous increase in surface water warming rates and phytoplankton biomass in
large lakes [36,37]. However, both studies also show how complex and sometimes counterintuitive
results can be, if a combination of different geo-variables like climate, local characteristics of water
morphology, and the trophic state of water are not included in the assessment of surface water
warming [37] or increase in chlorophyll-a concentration as a proxy for phytoplankton biomass [36].
Furthermore, based on pollen counts, it has been demonstrated how the occupation of niches, the
distribution, and the migration behavior of plant species have changed as a result of climate change [38].
For forest species in the eastern United States, Fei et al. [39] showed how long-term stress due to
climate change and changes in moisture availability led to species divergences in spatial distribution
and changed the preference of other forest species’ ecological niches. In their study, evergreen trees
primarily migrated northwards, whereas deciduous trees moved to the west. Deciduous trees such as
oaks and sycamores reacted more sensitively to changes in water availability, whereas they were less
sensitive to temperature changes. This indicates that reactions to stress are species-specific [39].

The Nature Conservancy, one of the world’s leading conservation organizations, has set the goal
of “Conserving nature’s stage” [40]. According to that, biodiversity can only be protected by focusing
on the maintenance of abiotic conditions, stress, and disturbances, which cannot be separated from
biodiversity. In the face of rapid global climate change [41], the increase in land-use intensity [42],
and resulting species homogenization [43] as well as increasing urbanization [44], there is a strong
necessity for biodiversity research to develop robust methods and models that can monitor, describe,
and predict biodiversity and its interactions with abiotic compartments in space and time, with the
aim of predicting and responding in a timely manner to changes or disruptions in ecosystem functions
and services [45,46]. Given the functional importance of geodiversity and patterns of geomorphology,
geology, soil, surface, water, or atmosphere for biodiversity, and the resilience of the ecosystem as a
whole, there are enormous gaps and a mismatch in knowledge and monitoring of geodiversity, traits,
and their patterns from the local to the global scale [47].

Remote sensing (RS) sensors that are mounted on versatile platforms can record numerous
geo-characteristics from the local to the global scale, repeatedly and with different spectral and spatial
detail. There are extensive reviews for mapping the properties of land surfaces and their changes [48],
soil characteristics [49], and soil moisture [50,51], for monitoring land surface temperature [52] or
the diversity of water characteristics and water quality [53,54]. Due to increased open access to data
archives such as the Landsat archive [55,56] and the archives hosting the data of the EUs Copernicus
Programm including the data of the Sentinel satellites and their predecessors, as well as open software
and cloud computing services [57], the potential of RS information to record geo- and biodiversity
has improved tremendously [58–60]. On the other hand, there are currently no clear guidelines as to



Remote Sens. 2019, 11, 2356 5 of 51

which RS approaches are suitable for monitoring geo-variables. The objectives of this review paper are
therefore:

• Discuss approaches to monitor geodiversity and its traits (geotraits) with RS,
• Define geodiversity and its characteristics,
• Explain the concepts of spectral traits (ST) and the spectral trait variation (STV) approach applicable

for monitoring issues,
• Present the state-of-the-art technologies and capabilities of monitoring geodiversity and traits

remotely, including: Soil characteristics (mineralogical characterization, pedology, and soil
moisture) with different RS sensors, and

• Provide a concise overview of those geo-traits that can be monitored using RS.

2. Understanding Geodiversity

Gray [61] defined “geodiversity“ as the diversity of soil, geological, and geomorphological
characteristics and the processes that lead to these characteristics. Other definitions of geodiversity
integrate elements and characteristics of the lithosphere, the atmosphere, the hydrosphere, and the
cryosphere, as well as their processes and interactions within and between the geo-components that
are directly and indirectly related to biodiversity [62–64].

Geodiversity in this article is defined as the range and variability of geo-components and their
intraspecific and interspecific interactions on all levels of organization of their geo-components.
Geodiversity comprises components of the atmospheric, the terrestrial, the marine and aquatic
ecosystems, and the ecological complexes to which they belong. Geodiversity is described by five
characteristics that appear on all levels of organization and interact with each other. These are (see also
Figures 1 and 2):

(I) Geo-genesis diversity - GGD (which is described by the geo-genesis concept - GGC) represents
the diversity of the length of evolutionary pathways, linked to a given set of geo-taxa. Therefore,
geo-taxa sets that maximize the accumulation of geo-functional diversity are identified.

(II) Geo-taxonomic diversity - GTD (which is described by the geo-taxonomic concept, GTaxC) - is
the diversity of geo-components that differ from a taxonomic perspective.

(III) Geo-structural diversity - GSD (which is described by the geo-structural concept, GSC) - is the
diversity of composition or configuration of 2D to 4D geo-components.

(IV) Geo-functional diversity - GFD (which is described by the geo-functional concept, GFC) - is the
diversity of geo-functions and processes as well as their intra- and inter-specific interactions.

(V) Geo-trait diversity - GTD (which is described by the geo-trait concept, GTC) - represents
the diversity of biogeochemical, bio-/geo-optical, chemical, physical, morphological, structural,
textural, or functional characteristics of geo-components that affect, interact with, or are influenced
by the geo-genesis diversity, the geo-taxonomic diversity, the geo-structural diversity, or the
geo-functional diversity.
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Figure 1. Five characteristics of soil diversity: Soil diversity as part of geodiversity can be described
under five characteristics: Soil-genesis diversity, soil-taxonomic diversity, soil-structural diversity,
soil-functional diversity, and soil-trait diversity. All of the characteristics involve different levels of
soil organization from elements, minerals, molecules, pedons, soil communities, polypedons, up to
pedoshere. Different characteristics of the processes (the extent, process intensity, process consistency,
resilience, and their characteristics) influence the resilience of soil and ecosystem health (modified after
Lausch et al. [57]).

3. Approach for Monitoring Geodiversity by RS

There are two main methods to monitor geodiversity, (i) in-situ or field-based monitoring
and (ii) RS. The in-situ approach refers to the direct quantitative and qualitative observation of
the environmental spheres (pedosphere, lithosphere, atmosphere, hydrosphere, and cryosphere)
either by direct measurements or by laboratory analysis of samples taken directly (destructive) in the
environment. By contrast, RS approaches enable a non-destructive monitoring of the geo-characteristics
without direct contact. The distance between the sensor and the object can range from a few millimeters
to thousands of kilometers, enabling the coverage of diverse scales. In the RS case, the sensors are
mounted or integrated onto platforms and can be used at many different scales. RS can be used in
the laboratory (e.g., spectro-radiometers), in the field on the ground (e.g., Gamma Ray spectrometry
and GPR-ground-penetrating RADAR) to sense features of the Earth’s subsurface, or be hand-held or
tower-mounted spectro-radiometers or thermal IR sensors (close-range RS techniques). A large range
of sensors is airborne (mounted on UAV, in microlights, gyrocopters, or airplanes), or spaceborne
(mounted on satellites, space shuttles). The scope of this review paper focuses on the state-of the-art in
monitoring geodiversity and traits using airborne and spaceborne RS sensors and approaches.

RS is capable of monitoring some geotraits and geotrait variations based on the principles of image
spectroscopy across the electromagnetic spectrum from ultraviolet light to microwaves. Geo-traits can
be directly or indirectly recorded using RS techniques in the time and space domains. Yet, in contrast
to in-situ observations, RS approaches are not able to record all geotraits and geotrait variations of the
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entities in geodiversity [57] (Figure 2). The geotraits that can be monitored using RS techniques are
therefore called spectral traits (ST) and the changes to the spectral traits are referred to as spectral trait
variations (STV). Consequently, the related RS approaches are referred to as the remote sensing–spectral
traits and –spectral trait variations–concept (RS-SV/STV-C), respectively (Figure 2).
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Figure 2. In-situ and remote sensing approaches to monitor geodiversity and their characteristics by
remote sensing and in-situ approaches (modified after Lausch et al. [57]).

4. Trends in Air- and Spaceborne RS for Assessing Soil Characteristics

This section provides an overview of the state-of-the-art for assessing and monitoring geodiversity
and traits using airborne (UAV, airplanes) and spaceborne (satellite) RS sensors and approaches
(Figure 3). We present different technologies such as RADAR (radio detection and ranging) LiDAR,
thermal, multispectral, and hyperspectral sensors that are deployed to record geodiversity and traits.
We discuss current and future satellite-borne sensors and missions as well as existing data products
that allow the respective geo-compartments to be monitored.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 53 
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Figure 3. Different air- and spaceborne remote sensing platforms for assessing geodiversity and geotraits,
(a) unmanned aerial vehicles (UAV, or drone), (b) microlight-gravity-controlled (c) gyrocopter-microlight
helicopter, (d, top) Ecodemona, (d, bottom) Cessna, (e) satellite.
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4.1. Characterization of Soil Diversity and Soil Traits by RS

4.1.1. Mineralogical Characterization by RS

Biodiversity is strongly linked to the prevailing geological and soil characteristics, since bedrock and
unconsolidated rock often determines the prevailing pedological and morphological conditions, which
not least influence the distribution of animal and plants species, populations, and communities [6,65].
Therefore, mineralogy and soil properties play important roles in determining the ecology of an area
through their contribution to the formation of soils and their influence on relief. Both factors can
influence local climatic conditions, water availability, and thus the vegetation type and structure. In
addition, geology will determine different landforms such as limestone karst, cliffs, and escarpments,
which offer a range of different habitats and thus are key to the distribution of flora and fauna.

Space- and air-borne multi- and hyperspectral sensor data can significantly contribute to an
area-wide understanding of land cover patterns and vegetation distribution and their changes, which
can ultimately alter biodiversity on all spatial scales [48]. Comprehensive overviews of how image
spectroscopy has aided the characterization and mapping of soil mineral composition are provided by
Mulder et al. [66] and Wulf et al. [49]. Key characteristic surface mineralogical properties, which can be
derived from optical RS data in the visible (VIS, λ = 0.4–0.7 µm), near infrared (NIR, λ = 0.7–1.0 µm),
and short-wave thermal infrared (SWIR, λ = 1.0–2.5, 5–14 µm) are clay, sand, carbonate, silicate,
sulphate, or iron content (see Table 1). They can be mapped using imaging spectroscopy, for example,
with the airborne visible/infrared imaging spectrometer (AVIRIS; [49,67,68]). To access the characteristic
absorption features, hyperspectral data are required, which limits the applicability of RS for this issue.
EO-1 Hyperion (= Earth Observing-1 Hyperion; [69]) has been the only operational spaceborne imaging
spectrometer to date that covers the full spectral range, including the short-wave infrared region for
λ > 2 µm. Hyperion data were used, for example, to map iron-bearing minerals on tailings, dams, and
areas affected by mining in South Africa (Figure 4; [70]). The surface cover of a platinum mine tailings
facility was characterized with the United States geological survey (USGS) material identification and
characterization algorithm (MICA; [71]) that analyzes the characteristic mineral absorption (Figure 4a).
Complementary, the characteristic absorption feature of iron-bearing pyroxenes around λ = 900 nm was
deployed to trace these minerals over a wider area by applying the three-point band depth index “iron
feature depth” (IFD) to the multispectral data of Landsat-8 OLI [72]. Figure 4 shows the results of this
approach, illustrating the close match to the hyperspectrally mapped iron bearing surface cover types
shown in Figure 4a. Further capabilities to map iron were opened with the launch of the Sentinel-2
satellites [73], since the multispectral instrument (MSI) covers important iron absorption features [74].
Another example for the use of Hyperion data is the detection and quantification of different salt types
that is combined with the detection of stable and dynamic areas at the surface of a Namibian salt pan
on the basis of a 30-year-long Landsat time series [75]. The combination of multispectral time-series for
monitoring dynamic processes with hyperspectral observations for soil and sediment characterization
enabled the extraction of new knowledge on the salt pan crust development.

Further rock forming and soil mineral contents that are featureless in the VIS-NIR-SWIR can
be retrieved from the thermal infrared (TIR, λ = 8–14 µm), where carbonate, clay, quartz, feldspars,
olivines, pyroxenes, and micas possess diagnostic spectral features [76]. For instance, the previous
advanced spaceborne thermal emission and reflection radiometer (ASTER; [77]) was equipped with six
and five bands in the SWIR and TIR region, respectively, and allowed for the (qualitative) mapping of
clay minerals (illite, kaolinite), sulfate minerals (alunite), carbonate minerals (dolomite, calcite), iron
oxides (goethite, hematite), or silica (quartz), which allowed modifications in facies (propylitic, argillic,
etc.; [78]) to be monitored. Furthermore, mineral and lithology mapping was successfully enabled by
multispectral TIR sensors like the airborne thermal infrared multispectral scanner (TIMS) [79,80].

Currently, there is no spaceborne hyperspectral TIR sensor available. With the future surface
biology and geology (SBG) mission, the mapping of more minerals will be enabled, due to the larger
number of bands in the VIS-NIR-SWIR-TIR region and the broad swath-width, which will allow for
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more levels of information from complementary spectral regions in a synergistic fashion. Silicate
minerals, for instance, demonstrate a distinct emittance minimum caused by fundamental Si–O
stretching vibrations occurring near λ = 10 µm. Quartz and feldspar have emittance minima at shorter
wavelengths (λ = 9.3 and 10 µm, respectively) than sheet silicates such as muscovite (λ = 10.3 µm) or
chain silicates such as the amphibole minerals (λ = 10.7 µm; [81]). Carbonates have features associated
with CO3 internal vibrations both at λ = 11.4 and 14.3 µm due to C–O bending modes [82]. Sulfate
minerals on the other hand have an intense feature near to λ = 8.7 µm caused by fundamental stretching
motions [83]. The thermal range of the spectrum has been demonstrated to be very important for
an improved determination of sand, clay, and organic carbon content in soils [84,85]. In addition
to mineral mapping, the SBG mission should provide important information for soil textural and
mineralogical characterization, for example, for sandy soils that are common in semi-arid landscapes.

Currently, several TIR hyperspectral airborne sensors are deployed for geological and soil mapping,
including the spatially enhanced broadband array spectrograph system (SEBASS; [86,87]), the airborne
hyperspectral scanner (AHS; [88]), AisaOWL [89–91], the thermal airborne spectrographic imagery
(TASI; [92]), and the hyperspectral camera HyperCam [93]. In summary, hyperspectral RS allows for
the discrimination of similar minerals with spectrally adjacent absorption features. Calcite–dolomite
ratios, for example, were mapped in the SWIR using the GER 63-channel imaging spectrometer data
(GERIS; [94] and by SEBASS in the TIR [95]. This type of information can thus be used to monitor and
quantify the surface mineralogy that has an impact on biodiversity, from local to global scales.

Geologists have been using RS data since the introduction of RS technology to describe the status
as well as the processes of the geology, geo-chemistry, and mineralization of an area, which are the
basis of geological mapping, for structural interpretations, and for mineral resource mapping [96,97].
Due to the scope and manifold applications of RS for geological investigations, reference is only made
to central work on this subject [78].Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 53 
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Figure 4. Geological classification: (a) Expert system result showing mineral and material abundance
in the Platinum mining area near Rustenburg (USGS MICA) from EO-1 Hyperion data; expert system
result overlaid with Landsat-8 OLI near-infrared channel. (b) Iron feature depth result calculated from
Landsat-8 OLI data in the Platinum mining area near Rustenburg (USGS MICA). Expert system result
overlaid with Landsat-8 OLI short-wave infrared channel. Inset map of the topography of Africa from
ETOPO-1 data (data provided with the courtesy of NOAA). White rectangle outlines the areas that are
most affected by mining activity in South Africa. (from Mielke et al. [98]).
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4.1.2. Pedology

Soil is the uppermost, weathered layer of the Earth’s crust. It is a complex matrix at the
interface of the lithosphere, biosphere, hydrosphere, and atmosphere governed by different site-specific
characteristics. Soil provides the basis for plant growth, which among others is controlled by the
physical, chemical, and biological properties of the soil. Soil-related factors like nutrient availability,
carbon content, or soil structure affect biodiversity on the one hand, but biodiversity also determines
the spatial soil heterogeneity on the other hand [48,99]. As a consequence, there are strong interactions
between biodiversity and soil characteristics.

Soil traits can be monitored by RS approaches either directly (from bare soil, (Figure 4, Figure 5,
and Table 1) or indirectly, i.e., through vegetation as a sensor or proxy of soil characteristics [48,100]).
Thus, direct or indirect indicators derived from remotely sensed satellite or airborne data have been
proven to be important for the prediction of soil variables, classes, or processes [101]. They are used in
different digital soil mapping approaches, which combine soil-related factors or which are based on
environmental similarities or correlations [102].

Following comprehensive reviews of remotely sensed variables for digital soil mapping [48,103–105],
remotely sensed indicators can be distinguished according to their spatio-temporal resolution or the
respective sensor properties, which can refer to active or passive systems. Active systems like RADAR,
LiDAR, or SONAR (sound navigation and ranging) are mainly used to detect surface properties or
to estimate soil moisture content (see also chapter 4.3; [106]). Passive systems relate to reflectances
and emitted radiation using the VIS-NIR-SWIR, the far-infrared, and the microwave region. Direct
reflectances of bare soils enable the prediction of top-soil variables like soil texture, soil organic
carbon, iron content, or heavy metals in plants as well as soil salinity or carbonates, the classification
of soil types, or even hydraulic properties [107,108]. Since soils are mostly covered by vegetation,
spatio-temporal variations in vegetation indices can also help to predict soil properties [109].

Imaging spectroscopy for mapping soil characteristics in the VIS-NIR-SWIR domain emerged at
the beginning of the 21st century [110,111]. It builds upon many years of extensive research in soil
spectroscopy under laboratory conditions (e.g., [111],) which revealed quantitative and qualitative
relationships between the spectral signal and the chemical and physical properties of soils [112].
Castaldi et al. [113] recently showed that narrowband, hyperspectral imagers provide significantly
higher potential for the quantitative estimation of soil variables compared to multispectral sensors
because broadband instruments cannot resolve diagnostic spectral features of the soil spectrum.
On the other hand, recent works show the potential of the Sentinel-2 sensor for soil organic carbon
mapping [99,113]. For both laboratory and imaging spectroscopy, mostly non-parametric regression
algorithms are applied [114]. Focusing on single mineral absorption features has been proven to be
less successful due to the complex nature of soil [115]. Although automatic methods such as the
HYSOMA (hyperspectral soil mapper) algorithms [116] are based on the direct analyses of the spectral
signal, they proved to be more generic and have the potential to be transferable to the regional–global
scale [117,118].

Compared to in-situ approaches, there are several items that make the remote spectroscopy of
soils challenging. Firstly, optical RS captures only the properties of the uppermost centimeters of the
top-soil and cannot provide information about the entire soil body. Secondly, atmospheric effects
and sensor constraints [119], soil moisture contents [120], soil roughness, or soil surface coverage by
vegetation or plant residues [117] can interfere with the spectral signal [121].

Vegetation cover is a major challenge in RS aided soil trait estimation in many parts of the world.
Ouerghemmi et al. [122] reported that prediction errors increased progressively as vegetation cover
exceeded 5% to 10%. The majority of hyperspectral studies therefore focus on bare soils accepting that
a noticeable amount of cultivated area cannot be mapped instantly. The associated limitations can
be reduced, either by the multi-temporal stacking of soil maps [123], pixel compositing [124], or by
applying advanced algorithms to correct for the impact of vegetation [125] and soil moisture [126].
Beyer et al. [127] for example, suggested calculating a residual soil signature to reduce the influence of
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non-soil materials. Another strategy for areas with permanent vegetation may be to infer information
on the underlying soil by exploring the spectral signal of the vegetation itself [128,129]. In this indirect
approach, vegetation traits are used as indicators for the status or changes of soil traits [100].

Irrespective of the limitations of imaging spectroscopy, its potential to provide quantitative and
qualitative soil information is demonstrated by several studies: Ben-Dor et al. [130] were some of the
first to apply hyperspectral image data from the DAIS 7915 airborne scanner for the mapping of soil
characteristics of clayey soils in Israel. They obtained reliable predictions for soil moisture, soil salinity
(electrical conductivity), soil saturated moisture, and organic matter content, disclosing the spatial
distribution of soil properties in the study area. Selige et al. [131] estimated the percentage of soil
organic carbon, total nitrogen, sand, and clay of agricultural fields on a test site in East Germany from
image data of the Australian HyMap sensor. Vohland et al. [132] used HyMap data to estimate soil
organic carbon and, as a sub-fraction, microbial biomass-carbon for agricultural soils. The soil organic
carbon content has also been explored in several other studies, for example by Stevens et al. [118]
on Central European croplands in Luxembourg using the airborne hyperspectral scanner AHS-160
or by Castaldi et al. [113], who analyzed data from the airborne prism experiment (APEX) acquired
in Belgium and Luxembourg. Deploying the Aisa/DUAL system, Kanning et al. [133] estimated soil
organic carbon (SOC) [134] and the soil particle fraction sand, silt, and clay. Furthermore, Paz-Kagan
et al. [135] developed a spectral soil quality index (SSQI) using airborne imaging spectroscopy. Selige
et al. [131] and Vohland et al. [132] showed that nitrogen (an essential nutrient for plant growth)
can be estimated by imaging spectroscopy. Further studies on nitrogen have been conducted under
standardized conditions in the laboratory [136]. Imaging spectroscopy can also provide some insights
into the pedogenesis processes, land degradation, and erosion processes by mapping the iron content
as shown by [137], or by direct mineralogical mapping in association with erosion and deposition
stages [138]. Applications on soil crust mapping were also successful for physical crust [139] and
biological crust discrimination in the laboratory and the field [140], although at the imagery scale these
applications are still challenging and scarce.

In terms of multi-spectral imagery provided by satellite sensors, a multitude of approaches have
been successfully applied using sets of environmental covariates over recent decades [48]. With the
increased spatio-temporal availability of remotely-sensed imagery and other auxiliary data such as
digital elevation models, “digital soil mapping has shifted from a research phase into operational
use” [102]. Since RS imagery is affected by different atmospheric conditions and soil moisture
variations on image acquisition dates, the transferability of digital soil mapping solutions remains a key
challenge [141]. To this end, the derivation of indicators based on the analysis of multi- (three or more
images) or hyper-temporal imagery (e.g., images for one or many years; [105]) may be useful. Multi-
or hyper-temporal image data can be obtained from satellite image archives [142] or be generated
by applying data fusion algorithms [143]. Maynard and Levi [105] for example, were able to show
that hyper-temporal time series of a vegetation index based on Landsat imagery enable typical and
temporally stable spectral fingerprints to be derived, which significantly increased the prediction
accuracy of soil texture. Especially in agricultural regions, multi- and hyper-temporal imagery enables
bare soil areas to be detected at different time steps. As a result, regional [144] and even national bare
soil composites [145,146] can be created and used for soil mapping parameterization.

Blasch et al. [147] applied multi-temporal RapidEye composites to predict spatial variations in
soil organic matter (SOM). Multi-temporal Landsat image composites have also been used by Dematte
et al. [148] in order to perform soil texture classification. Since soil-related indicators based on multi-
and hyper-temporal time series or composites are less affected by atmospheric conditions and soil
moisture variations, they can be considered as a key for the automatic and operational derivation of
standardized soil mapping products. Standardization means that all steps of geodata processing are
reproducible, harmonized protocols are applied, and that the soil mapping products are evaluated by
accuracy metrics [149]. This concerns both digital soil mapping parameterization and the provision of
scale-specific harmonized and representative training samples [150,151].
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Figure 5. Maps of clay content over the Kamech catchment predicted from the PLSR (partial least
squares regression) models using spectral configurations from (a) LANDSAT-7 ETM+, (b) LANDSAT-8
OLI, (c) SENTINEL-2 MSI, (d) ASTER, (e) AISA-DUAL (from Gomez et al. [68], License Number
4582290225360; (f) soil texture and soil microstructures derived from hyperspectral video camera–Cubert
(from Jung et al. [136]).

The RS-aided derivation of soil characteristics and soil traits shown in Table 1 and Figure 6 shows
the enormous number of current and future space-based RS missions and satellites for monitoring soil
characteristics and traits with information about the mission status, according to the CEOS database
(Committee on Earth Observation Satellites).

Table 1. Remote sensing (RS)-aided derived soil characteristics and soil traits.

Mission/Sensor/
Platform
UAV 1

Airborne 2

Spaceborne 3

Sensor Type Spectral Resolution
Spectral Bands/Frequency

Spatial
Resolution [m] References

Clay Content
Landsat 5 TM 3

Landsat 7 ETM+ 3 Multispectral/TIR 0.45–12.5 µm/8 L5:30/120
L7:30/60 [68]

Landsat 8 OLI/TIRS 3 Multispectral/TIR 0.43–2.3 µm/8
10.6–12.51 µm/2 30/100 [68]

Terra ASTER 3 Multispectral/TIR 0.52–9.2 µm/9
8.12–11.65 µm/5 30/90 [68,80,85]

Sentinel–2 MSI 3 Multispectral 0.40 3.0 µm/13 10/20/60 [68]

IKONOS OSA3 Multispectral 0.45–0.85 µm/4 4 [152]

AHS 2 Hyperspectral 0.43–12.7 µm/~80 ~2 [88]

AisaDUAL 2 Hyperspectral 0.40–2.45 µm/~200–400 ~1–5 [68,151]

AisaOWL 2 Hyperspectral Longwave Infrared (LWIR) 7.7–12.0 µm/~100 ~2 [89,90]

AVNIR 2 Hyperspectral 0.43–1.01 µm/~60 ~1.20 [153]

AVIRIS 2 Hyperspectral 0.37–2.45 µm/~200 ~18 [67,154]

DAIS-7915 2 Hyperspectral 0.40–2.50 µm/~72 ~8 [130]
EnMAP 2 (simulated) Hyperspectral 0.42–2.45 µm/~250 30 [155]

HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [84,115–117,123,
131,156]
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Table 1. Cont.

Mission/Sensor/
Platform
UAV 1

Airborne 2

Spaceborne 3

Sensor Type Spectral Resolution
Spectral Bands/Frequency

Spatial
Resolution [m] References

Clay Content
HySpex 2 Hyperspectral 0.40–2.45 µm /~200–400 ~1–5 [157]

HyperSpecTIR 2 Hyperspectral 0.40–2.45 µm/~178 ~2.5 [158]

TASI-600 2 Thermal Airborne Spectrographic Imager 8.0–11.4 µm/~32 ~1–5 [84,85]

SEBASS 2 Hyperspectral Thermal Infrared (TIR) Sensor 2.5–13.5 µm/~260 ~2 [87,95]

Cubert UHD 185 1 Hyperspectral 0.45–0.95 µm/~125 ~ 0.2–0.5 [95]
Silt Content
AisaDUAL 2 Hyperspectral 0.40–2.45 µm /~200–400 ~1–5 [133]

HyperSpecTIR 2 Hyperspectral 0.40–2.45 µm/~178 ~2.5 [158]
Sand Content
EO-1 Hyperion 3 Hyperspectral 0.40–2.50/242 µm/220 30 [159]

AisaDUAL 2 Hyperspectral 0.40–2.45 µm /~200–400 ~1–5 [133]

HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [84]

HyperSpecTIR 2 Hyperspectral 0.40–2.45 µm/~178 ~2.5 [158]

TASI-600 2 Thermal Airborne Spectrographic Imager 8.0–11.4 µm/~32 ~1–5 [84]
Carbonate Content

Terra ASTER 3 Multispectral/TIR 0.52–9.2 µm/9
8.12–11.65 µm/5 30/90 [76,79,80,85]

AVIRIS 2 Hyperspectral 0.37–2.45 µm/~200 ~18 [67]

HySpex 2 Hyperspectral 0.40–2.45 µm/~200–400 ~1–5 [115,116]

HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [117,156,160]

HyperSpecTIR 2 Hyperspectral 0.40–2.45 µm/~178 ~2.5 [158]

AisaOWL 2 Hyperspectral Longwave Infrared (LWIR) 7.7–12.0 µm/~100 ~2 [89]

SEBASS 2 Hyperspectral Thermal Infrared (TIR) Sensor 2.5–13.5 µm/~260 ~2 [86,87,95]
Iron Content

Terra ASTER 3 Multispectral/TIR 0.52–9.2 µm/9
8.12–11.65 µm/5 30/90 [76]

Sentinel-2 MSI 3 Multispectral 0.40 3.0 µm/13 10/20/60 [76]

EnMAP 2 (simulated) Hyperspectral 0.42–2.45 µm/~250 30 [155]

CASI 2 Hyperspectral 0.40–1.0/ 48 ~3 [137]

HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [98,117,155]

HySpex 2 Hyperspectral 0.40–2.45 µm /~200–400 ~1–5 [98,155]

HyperSpecTIR 2 Hyperspectral 0.40–2.45 µm/~178 ~2.5 [158]

ROSIS 2 Hyperspectral 0.42–0.87/ 115 ~2 [161]

TASI-600 2 Thermal Airborne Spectrographic Imager 8.0–11.4 µm/~32 ~1–5 [84]
Heavy metals (in plants and vegetation)
HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [162]
Silicate Content

Terra ASTER 3 Multispectral/TIR 0.52–9.2 µm/9
8.12–11.65 µm/5 30/90 [76,80]

AHS 2 Hyperspectral 0.43–12.7 µm/~80 ~2 [88]

AisaOWL 2 Hyperspectral Longwave Infrared (LWIR) 7.7–12.0 µm/~100 ~2 [89,91]

HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [84]

SEBASS 2 Hyperspectral Thermal Infrared (TIR) Sensor 2.5–13.5 µm/~260 ~2 [86,87,95]

TASI-600 2 Thermal Airborne Spectrographic Imager 8.0–11.4 µm/~32 ~1–5 [85]
Sulphate Content

Terra ASTER 3 Multispectral/TIR 0.52–9.2 µm/9
8.12–11.65 µm/5 30/90 [80]

AisaOWL 2 Hyperspectral Longwave Infrared (LWIR) 7.7–12.0 µm/~100 ~2 [89]

AisaFENIX 2 Hyperspectral 0.40–2.45 µm/~200–400 ~1–5 [90]

AVIRIS 2 Hyperspectral 0.37–2.45 µm/~200 ~18 [67]

SEBASS 2 Hyperspectral Thermal Infrared (TIR) Sensor 2.5–13.5 µm/~260 ~2 [87,95]
Granitoid Classification
TASI-600 2 Thermal Airborne Spectrographic Imager 8.0–11.4 µm/~32 ~1–5 [92]
Further Elements: (Chemometric diversity of soil)
Aluminium (AL), Potassium (K), Calcium (Ca), Magnesium (Mg), Manganese (Mn), Zinc (Zn), (Nt)
HyperSpecTIR 2 Hyperspectral 0.40–2.450 µm/~178 2.5 [158]

HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [131,132]
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Table 1. Cont.

Mission/Sensor/
Platform
UAV 1

Airborne 2

Spaceborne 3

Sensor Type Spectral Resolution
Spectral Bands/Frequency

Spatial
Resolution [m] References

Soil Organic Carbon (SOC)

Terra ASTER 3 Multispectral/TIR 0.52–9.2 µm/9
8.12–11.65 µm/5 30/90 [163]

Sentinel-2 MSI 3 Multispectral 0.40 –3.0 µm/13 10/20/60 [164]

EO-1 Hyperion 3 Hyperspectral 0.40–2.50/242 µm/196 30 [115]

AHS 2 Hyperspectral 0.43–12.7 µm/~80 ~2 [118]

AisaDUAL 2 Hyperspectral 0.40–2.45 µm/~200–400 ~1–5 [133]

APEX 2 Hyperspectral 0.40–2.50 µm/~320 ~1–3 [113]

AVNIR 2 Hyperspectral 0.43–1.01 µm/~60 ~1.20 [153]

DAIS-7915 2 Hyperspectral 0.40–2.50 µm/72 8 [130]

EnMAP 2 (simulated) Hyperspectral 0.42–2.45 µm/~250 30 [155]

HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [84,123,127,131,
132,165]

TASI-600 2 Thermal Airborne Spectrographic Imager 8.0–11.4 µm/~32 ~1–5 [84]
Soil Organic Matter (SOM)
HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [84]

TASI–600 2 Thermal Airborne Spectrographic Imager 8.0–11.4 µm/~32 ~1–5 [84].

HyperSpecTIR 2 Hyperspectral 0.40–2.45 µm/~178 ~2.5 [158]
Total Nitrogen
HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [131,132]
Microbial Biomass C (MBC)
HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [132]
Hot Water Extractable C (HWEC)
HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [132]
pH -Soil
HyperSpecTIR 2 Hyperspectral 0.40–2.45 µm/~178 ~2.5 [158]
Salinity (EC)
Landsat 5 TM 3

Landsat 7 ETM+ 3 Multispectral/TIR 0.45–2.3 µm/6
10.4–12.5 µm/1

L5:30/120
L7:30/60 [166,167]

Landsat 8 OLI/TIRS 3 Multispectral/TIR 0.43–2.3 µm/8
10.6–12.51 µm/2 30/100 [168]

Sentinel-2 MSI 3 Multispectral 0.40 –3.0 µm/13 10/20/60 [169]

HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [130,170]

AIRSAR TOPSAR 2 Microwave
P–, L-bands (full
polarimetric), C-band (VV
polarization)

[171]

JERS-1 3 Microwave L-band (23 cm)-HH pol [171]
Cation-Exchange Capacity (CEC)
HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [117,139]
Soil crust (physical, biological crust)
Landsat 5 TM 3

Landsat 7 ETM+ 3 Multispectral/TIR 0.45–2.3 µm/6
10.4–12.5 µm/1

L5:30/120
L7:30/60 [172]

AISA-EAGLE 2 Hyperspectral 0.42–0.89 µm/~30 ~3 [173]

DAIS-791 2 Hyperspectral 0.50–2.50 µm/~72 ~1–3 [174]

CASI 2 Hyperspectral 0.42–0.95 µm/~36 ~1 [175]
Soil surface roughness
TerraSAR-X/TanDEM-X 3 X-band 9.63 GHz [176]

Sentinel-1 3 C-band 5.3 GHz [177]

PLMR 2

InfraTec thermal imager 2

AISA-EAGLE 2

L-band microwave radiometer /
TIR/
Hyperspectral

1.26 GHz
7.5–14 µm
0.42–0.89 µm/~30

~3–5 [178]

Riegl-LMS-Q560
full-waveform 2D laser
scanner-LiDAR 2

LiDAR 240 KHz [179]

RGB-Camera-UAV 1 Photogrammetry ~1–4mm [180]
Soil texture, sediment texture
Landsat 5 TM 3

Landsat 7 ETM+ 3 Multispectral/TIR 0.45–2.3 µm/6
10.4–12.5 µm/1

L5:30/120
L7:30/60 [166]

Landsat 8 OLI/TIRS 3 Multispectral/TIR 0.43–2.3 µm/8
10.6–12.51 µm/2 30/100 [159]

Terra ASTER 3 Multispectral/TIR 0.52–9.2 µm/9
8.12–11.65 µm/5 30/90 [181]
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Table 1. Cont.

Mission/Sensor/
Platform
UAV 1

Airborne 2

Spaceborne 3

Sensor Type Spectral Resolution
Spectral Bands/Frequency

Spatial
Resolution [m] References

Sentinel-2 MSI 3 Multispectral 0.40–3.0 µm/13 10/20/60 [159]

EO-1 Hyperion 3 Hyperspectral 0.40–2.50/242 µm/220 30 [159]

HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 ~5 [117,123]

EnMAP 2 (simulated) Hyperspectral 0.42–2.45 µm/~250 30 [155,159]

AisaDUAL 2 Hyperspectral 0.40–2.45 µm/~200–400 ~1–5 [182]
Sediment dynamic
EO-1 Hyperion 3 Hyperspectral 0.40–2.50/242 µm/220 30 [75]

Terra/Aqua MODIS 3 Multispectral/TIR 0.41–14.34 µm/36 250/500/1km [183]
Land degradation
Terra/Aqua MODIS 3 Multispectral/TIR 0.41–14.34 µm/36 250/500/1km [184]
Soil erosion
Landsat 5 TM 3

Landsat 7 ETM+ 3 Multispectral/TIR 0.45–2.3 µm/6
10.4–12.5 µm/1

L5:30/120
L7:30/60 [185]

Landsat 8 OLI/TIRS 3 Multispectral/TIR 0.43–2.3 µm/8
10.6–12.51 µm/2 30/100 [186]

Sentinel-1 3 C-band 5.3 GHz [177]

UAV 1

Lumix DMC-LX3 (Panasonic);
Sony NEX 5N (Sony)

Photogrammetry 2 & 4 µm 2–4 mm [187]

Desertification processes

Landsat 8 OLI/TIRS 3 Multispectral/TIR 0.43–2.3 µm/8
10.6–12.51 µm/2 30/100 [188]

Spectral Soil Quality Index (SSQI)
AisaDUAL 2 Hyperspectral 0.40–2.45 µm/~200–400 ~1–5 [135]

Sensor is used on the RS platform: UAV 1 - unmanned aerial vehicles (UAV); airborne 2 – airborne RS platform;
spaceborne 3 – spaceborne RS platform.

See Chabrillat et al. [121] for a recent review of the potential of upcoming spaceborne hyperspectral
imagery for global soil mapping and monitoring. Table 2 provides an overview of the recent and future
spaceborne hyperspectral missions with their sensor characteristics deriving soil characteristics and traits.

Table 2. Current and future important spaceborne hyperspectral missions with their sensor
characteristics deriving soil characteristics and their traits (modified after [189]).

Mission/
Sensor

Organisation
(Country)

Spatial
Resolution

[m]

Swath at
Nadir [km]

Spectral
Resolution

[µm]

Number of
Bands

Spectral
Resolution

[nm @FWHM]

Launch
Year Reference

Missions Currently in Orbit

Hyperion NASA (USA) 30 7.65 0.37–2.57 242 10 2000 [69]

CHRIS ESA (UK) 17/34 13 (nominal) 0.40–1.05 18/63 5.6–32.9 2001 [190]

HJ-1A CAST (China) 100 ≥50 0.45–0.95 110–128 5 2008 [191]

HySI ISRO (India) 506 129.5 0.45–0.95 64 ~10 2008 [192]

HICO NASA/ONR
(USA) 90 42 0.35–1.08 128 5.7 2009 [193]

Missions under construction

GISAT ISRO (India) 500 NA NA 210 NA 2019 [194]

PRISMA ASI (Italy) 30 30 0.40–2.50 237 ~12 2019 [195]

HISUI METI (Japan) 30 15 0.40–2.50 185 10 (VNIR) 12.5
(SWIR) 2019 [196]

EnMAP DLR/GFZ
(Germany) 30 30 0.42–2.45 218 5/10 (VNIR) 10

(SWIR) 2020 [197]

Missions in the planning stage

FLORIS/FLEX ESA 300 100–150 0.50–0.78 NA 0.3–3.0 2022 [198,199]

HYPXIM-P CNES (France) 8 16 0.40–2.50 >200 ≤10 In study [200]

HyspIRI NASA (USA) 60 145 0.38–2.50 >200 10 2025 [129]

CHIME ESA 20–30 NA 0.40–2.50 >200 10 2025 [201,202]

SHALOM ISA/ASI
(Israel/Italy) 10/5 10 0.40–2.50 200 10 2022 [203]
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Table 3 provides an overview of current and future important missions of the Copernicus program
– Sentinel satellites monitoring geodiversity and their traits developed by ESA. For more information
about the sensor characteristics of the Sentinel Satellites, see also Malenovský et al. [204].

Table 3. Current and future important missions of the Copernicus program – Sentinel satellites for
derivation of geodiversity and their traits developed by ESA.

Sentinel Satellite Sensor
Type Link Spatial

Resolution Launch Time

S-1 RADAR land and ocean monitoring, ice
mapping, ground movements

https://www.esa.int/Our_
Activities/Observing_the_
Earth/Copernicus/Sentinel-1

5–20 m

S-1A–2014
S-1B–2016
S-1C–2022
S-1D–2028

S-2 Multi-spectral

land monitoring, land
cover/land use, vegetation, soil
and water cover, inland
waterways, and coastal areas

https://www.esa.int/Our_
Activities/Observing_the_
Earth/Copernicus/Sentinel-2

10–60 m

S-2A–2015
S-2B–2017
S-2C–2022
S-2D–2029

S-3 RADAR and
multispectral

land- and ocean monitoring,
sea-surface topography, sea-
and land-surface temperature,
ocean color, land color

https://www.esa.int/Our_
Activities/Observing_the_
Earth/Copernicus/Sentinel-3

300–1000 m

S-3A–2016
S-3B–2018
S-3C–2023
S-3D–2029

S-4 Atmospheric sensors
optical, geo-stationary

atmospheric monitoring Air
quality (O3, NO2, SO2)

S-4A–2022
S-4B–2032

S-5 Atmospheric sensors
optical

air quality (O3, NO2, SO2,
HCHO, CO, CH4)

S-5A–2013
S-5B–2030
S-5B–2037

S-5P
Sentinel-5 Precursor

Atmospheric sensors
optical air quality (O3, UV)

https://www.esa.int/Our_
Activities/Observing_the_
Earth/Copernicus/Sentinel-5P

7 × 3.5 km S-5-2017

S-6 RADAR-Altimeter

global sea-surface height,
primarily for operational
oceanography and for climate
studies

S-6A–2020
S-6B–2025
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Table 4. Selection of RS-aided data products of soil characteristics.

Data Products Scale Link References

State Soil Geographic (STATSGO) database Global

https://gcmd.nasa.gov/KeywordSearch/
Metadata.do?Portal=idn_ceos&KeywordPath=
%5BKeyword%3D%27USDA%27%5D&
OrigMetadataNode=GCMD&EntryId=
MSU0035&MetadataView=Full&
MetadataType=0&lbnode=mdlb3

[206]

Imperious Surface Cover Global http://www.landcover.org/data/isa/ [207]

Global Soil Texture and Derived Water-Holding
Capacities Global

https://data.globalchange.gov/dataset/nasa-
ornldaac-548
https://doi.org/10.3334/ORNLDAAC/548

[208]

Global 1-Degree Vegetation and Soil Types Global https://rda.ucar.edu/datasets/ds767.0/ [209]

Global Soil Types, 1-Degree Grid (Zobler) Global https://data.nasa.gov/dataset/Global-Soil-Types-
1-Degree-Grid-Zobler-/2wbf-79dx NA

Global Soil Regions Global https://sdgs-amerigeoss.opendata.arcgis.com/
datasets/204d94c9b1374de9a21574c9efa31164_2 NA

Global assessment of soil phosphorus retention potential Global https://doi.org/10.1594/PANGAEA.858549 [210]

Global Soil Biodiversity Atlas Maps Global https://ec.europa.eu/jrc/en NA

Harmonized Soil Carbon Database Global https://climatedataguide.ucar.edu/climate-data/
harmonized-soil-carbon-database NA

Soil Geographic Databases Global https://www.isric.org/explore/soil-geographic-
databases NA

Using greenhouse gas fluxes to define soil functional
types Global https://datadryad.org/resource/doi:

10.5061/dryad.kq7h7 [211]

Global Gridded Surfaces of Selected Soil Characteristics
(IGBP-DIS) Global https://doi.org/10.3334/ORNLDAAC/569 NA

Global Soil Wetness Project (GSWP) Global http://grads.iges.org:80/gswp/ NA

Global and regional phosphorus budgets in agricultural
systems and their implications for phosphorus-use
efficiency

Global https://doi.org/10.1594/PANGAEA.875296 [212]

SoilGrids (250m and 1km) Global http://soilgrids.org [213]

4.2. Soil Moisture by RS

Soil moisture is part of the hydrological cycle, even if it only accounts for 0.001% of the global water
storage, it still has a crucial effect on compositional, structural, and functional biodiversity [101,214,215].
Volume distribution and temporal dynamics of moisture within the soil are key drivers of biodiversity.
Part of the soil water (the so-called plant available soil water) is accessible to plants for metabolic
processes. The temporal and spatial dynamics of soil moisture reflecting the interplay between
evaporation, transpiration, infiltration, and the replenishment of groundwater are imperative to
understand water movements in the soil and the water cycle at local to global scales [216].

A reliable and adequate description of the spatial and temporal heterogeneity of soil moisture
is one of the most critical challenges in the monitoring and modelling of water and energy fluxes,
nutrient transport, and matter turnover within soil landscape systems. In order to generate reliable
predictions about these processes from models, sufficient knowledge needs to be gained about the soil
heterogeneity and moisture patterns at larger scales [217]. Furthermore, soil moisture is a key variable
controlling biosphere–pedosphere/process–pattern interactions, hydrological, and biological processes,
not to mention climate and other ecosystem processes including the dynamics in biodiversity [218].

Vereecken et al. [101] found that soil moisture was the most important driver, accounting for 65%
of the variation in ecosystem multi-functionality. Moeslund et al. [219] found that soil moisture drives
plant diversity patterns within grasslands. They calculated relative ecological indicator values for soil
moisture and found pronounced differences in the responses of grassland types to grazing depending
on the moisture regimes with an increasing effect of grazing from the dry towards the wet grassland
types [219]. Especially in extreme ecosystems, e.g., the dry valleys of Antarctica, spatial soil moisture
and soil carbon patterns dominate the distribution of soil organisms [220]. Established patterns of
soil biological communities due to changes in soil moisture and temperature also vary over seasonal
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https://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=idn_ceos&KeywordPath=%5BKeyword%3D%27USDA%27%5D&OrigMetadataNode=GCMD&EntryId=MSU0035&MetadataView=Full&MetadataType=0&lbnode=mdlb3
https://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=idn_ceos&KeywordPath=%5BKeyword%3D%27USDA%27%5D&OrigMetadataNode=GCMD&EntryId=MSU0035&MetadataView=Full&MetadataType=0&lbnode=mdlb3
https://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=idn_ceos&KeywordPath=%5BKeyword%3D%27USDA%27%5D&OrigMetadataNode=GCMD&EntryId=MSU0035&MetadataView=Full&MetadataType=0&lbnode=mdlb3
https://gcmd.nasa.gov/KeywordSearch/Metadata.do?Portal=idn_ceos&KeywordPath=%5BKeyword%3D%27USDA%27%5D&OrigMetadataNode=GCMD&EntryId=MSU0035&MetadataView=Full&MetadataType=0&lbnode=mdlb3
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https://data.nasa.gov/dataset/Global-Soil-Types-1-Degree-Grid-Zobler-/2wbf-79dx
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or larger time scales and alter the resource supply for the growth of plants. Droughts, for example,
change the relationship between biodiversity and ecosystem functioning [221]. Moreover, projected
increasing climate-induced drought severity suggests that changing tree and forest biogeography
could substantially lag habitat shifts that are already underway [222]. One interesting example is that
of nematodes (roundworms) that can enter anhydrobiosis and become inactive when the soil is dry.
Therefore, their activity is closely related to levels of soil moisture, and the proportion of anhydrobiotic
nematodes increases with the distance from stream sediments to drier soils [223].

Soil moisture measurement techniques have been recently reviewed by Babaeian et al. [50]. In general,
there are two different approaches that use RS techniques to understand soil characteristics, their hydrological
traits and eventually the spatial and temporal dynamics of soil moisture: (i) Direct measurements for areas
where the soil has no or limited vegetation (using active and passive microwave sensors as well as optical
RS data, Figure 7) and (ii) indirect measurements where vegetation covers the soil, using vegetation traits as
a proxy of the soil and soil moisture traits. Optical RS data are preferred for indirect measurements of soil
moisture patterns. In general, spaceborne RS of soil moisture is very advanced at global scales [51] with
high accuracy [224] and a large variety of applications [225]. For local scales, adequate spatio-temporal
resolutions are less common and tend to be the domain of airborne observations or proximalsensing, like
cosmic ray neutron sensing [226] or ground penetrating RADAR [227,228].

4.2.1. Soil Moisture Characteristics using Active and Passive Microwave RS Approaches

Surface soil moisture estimation using microwave RS is based on the different dielectric properties
(ε) of dry soil (ε~4) and liquid water (ε~80) [229]. However, extracting the part of the microwave signal
that actually originates from the soil water is a challenging task. Not only sensor characteristics such as
polarization, incidence angle, wavelength, and spatial as well as temporal resolution, but also surface
characteristics such as vegetation cover with its shape, orientation, as well as water content and soil
surface roughness have a distinct influence on the microwave signal that is received.

Both active and passive microwave systems are sensitive to the complex dielectric constant of
the soil rather than to soil moisture directly. Here, soil dielectric mixing models have been developed
for their linkage, e.g., by [230–232]. All models rely on the separate contribution of bound water and
free water to compute the complex dielectric constant of the soil. The empirical approach by [230]
has the advantage that it does not require information on soil texture, although it only appears to be
satisfactory for coarse-textured soils. The semi-empirical approach by [231] is valid for a large range of
microwave frequencies (1–18GHz), but is restricted to a certain range of soil textures. The Mironov
approach [232] on the other hand is based on the refractive mixing model for moist soils. It is validated
for a large range of soil textures and therefore suitable for global-scale applications (cf. SMOS [225]
(Figure 7a) and SMAP [233] satellite missions).

4.2.2. Active Microwave Sensors (RADAR, Scatterometers)

Active microwave sensors (RADAR, scatterometers) send microwaves using their antenna devices
and are therefore independent of illumination and weather [234]. Due to the active transmission, the
strength of the signal is distinctively higher than that of passive microwave sensors (radiometers), which
depend on the weak natural emission of the radiation from Earth. Hence, the recorded microwave
signal is not directly prone to system noise or exposed to external radiation sources/interferences due
to the strength of the active signal compared to passive devices. Moreover, the higher radiation budget
of the recorded scattering at the active sensors also allows a shorter integration time and therefore a
distinctively higher spatial resolution in terms of meters (in case of synthetic aperture RADAR, SAR)
compared to the kilometer range for passive sensors. However, the calibration of the active sensors is
much more complex with a transmitting and a receiving antenna part in contrast to passive devices.

Active sensors pick up the backscattered microwave radiation, normally measured in normalized
backscattering coefficients or sigma noughts σ0 (normalized RADAR cross sections), returning from
interaction with media on Earth [235]. For soil moisture estimation from natural surfaces, the signal
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recorded at the sensor is a mixture of scattering contributions. For bare soil surfaces, it is not only
the dielectric constant (soil moisture), but also the soil roughness that influences the scattering of the
microwaves depending on their strength [229]. The scattering scenario becomes more complicated with
the occurrence of vegetation cover, where plant geometry, density, and moisture are influential factors
on the scattering of the microwaves [236]. It is mainly a function of the wavelength as to how deep the
microwaves can penetrate natural media. Hence, for soils with vegetation cover, longer wavelengths,
such as L-band (23 cm), are preferred. This also enables soil moisture to be retrieved under vegetation
cover [237] — at least until a certain density and wetness of the vegetation cover. In order to extract
from the recorded backscattering signal, only the scattering component triggered by the moisture
of the soil, decomposition methods are essential to invert soil moisture from the corresponding part
of the signal. Polarimetry offers an exploitable observation space for the decomposition of RADAR
measurements to invert for soil moisture [238–240].

Moreover, there are a plethora of algorithms for estimating soil moisture from active microwave
RS, and a non-exhaustive overview is provided below [241–243]. The algorithms can mainly
be divided into empirical (including machine-learning) [244–250], semi-empirical [251–254], and
physical-based [229,255,256] retrieval techniques [237]. While empirical and semi-empirical algorithms
can only be performed successfully in environments, where their empirical relationships were
established, physical-based methodologies are generally valid and do not depend on test site
characteristics. The inclusion of vegetation scattering comes with the selection of an appropriate model.
Here, a range from more simple [257–259] to sophisticated [260,261] scattering models can be applied.
However, the possibility of inversion decreases with the degree of complexity of the model due to an
increase in variables for vegetation cover with a constant number of observations. Hence, the available
observation space (multi-temporal, multi-angular, multi-frequency, multi-polarimetric) determines the
complexity and performance of the inversion algorithm for soil moisture (under vegetation cover).

Beyond intensity- and polarimetry-based backscatter as well as machine-learning methods, another
active microwave methodology to retrieve soil moisture dynamics in space and time is differential
SAR interferometry (DInSAR). Ref. Morrison et al. [262–264] found significant dependence of the
interferometric phase on changes in soil moisture. It was not possible to explain this relation by swelling
soils and changes in penetration depth. The behavior of the phase points towards changes in volume
scattering within the soil, which might also explain moisture-related temporal decorrelation [264].

At the global scale, a prominent active sensor system to estimate soil moisture is the advanced
scatterometer on MetOp (ASCAT) [265,266]. Backscatter measurements at six different azimuth
angles are used to calculate soil moisture by the change detection algorithm after Naeimi et al. [267].
The angular information is used to characterize the vegetation contribution and its temporal variability
to be eliminated before soil moisture inversion. In contrast to this 12.5 km posting product, a 1 km
product is available from Sentinel-1 [268] or a combined ASCAT-Sentinel-1 approach [269]. It has to be
noted that the data are expressed in relative units (degree of saturation).

4.2.3. Passive Microwave Sensors

Passive microwave sensors (radiometers) record naturally emitted microwave radiation, usually
expressed in brightness temperatures (Tb), i.e., the product of emissivity (e) and the physical temperature of
the target (T). This implies that the physical temperature of the target needs to be known for soil moisture
retrieval. The emissivity of a smooth surface can be predicted by the Fresnel reflection equations. Accordingly,
it depends on the incidence angle and the complex dielectric constant of a soil. Rough soils behave differently,
because roughness decreases the reflectivity and thus increases emissivity. In theory, with an increased
surface area, rough targets can emit more thermal energy. In field applications, the effective soil roughness is
probably more related to the distribution of water in the topsoil rather than a pure geometric soil surface
roughness as the latter can only occur when the soil is very wet. In addition to the general problematic
consideration of the incidence angles within one radiometer footprint, this issue affects the soil moisture
retrieval, especially in mountainous areas and needs to be accounted for in the retrieval methodology.
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Another factor causing attenuation of the microwave emission is vegetation. Moreover, vegetation
adds its contribution to the land surface emission signal [270]. To simulate these effects, a simple
approach referred to as the τ-ωmodel [271], was developed. The τ-ωmodel is a zero-order solution of
the radiative transfer equation [272] and uses only two variables for canopy characterization — the
vegetation optical depth (VOD) τ and the single-scattering albedoω. While the first one parameterizes
the attenuation effects, the latter one describes the scattering effects within the canopy [273]. The optical
depth is often linearly related to vegetation water content (VWC), [274] and can to a certain extent be
derived from leaf area index or multispectral vegetation indices [275]. At L-band, soil moisture retrieval
is only possible up to VWC of 5 kg/m2 [276]. In addition, to the sole and direct relationships of plant
biodiversity with soil moisture patterns, vegetation is additionally involved in soil moisture retrieval.
This additional component needs to be separated when soil moisture and biodiversity dependencies
should be investigated exclusively.

There are several approaches for soil moisture inversion and most of them are based on the
vegetation attenuation concept of Mo et al. [271] e.g., the normalized polarization difference (NPD)
algorithm, the single-channel algorithm (SCA), the L-band microwave emission of the biosphere
(L-MEB) model, the community microwave emission model (CMEM), the land parameter retrieval
model (LPRM), and the University of Montana (UMT) approach [277–279]. It is worth noting that
spaceborne brightness temperature products are typically only valid for the top-of-atmosphere (except
for the SMAP products). To estimate surface level brightness temperatures before soil moisture
inversion, atmosphere attenuation, upward atmosphere emissivity, and the polarization rotation
according to the Faraday theory need to be considered.

Global scale soil moisture monitoring is provided by the Japan Aerospace Exploration Agency
(JAXA) Global Change Observation Mission-1st Water (GCOM-W1) satellite that hosts the AMSR2
sensor [280]. Together with its precursor AMSR-E, the time series, with a gap of a few months, expands
from mid-2002 until present. Further systems are the soil moisture and ocean salinity (SMOS) [281]
and soil moisture active and passive (SMAP) missions [233,282], started in 2009 and 2015, respectively.

4.2.4. Combining Active and Passive Microwave Sensors

For the long-term analysis of surface soil moisture within the water and energy feedbacks of the
climate system, large time series were generated and developed. The ESA Climate Change Initiative
(CCI) combines active and passive microwave observations to obtain a consistent time series from 1978
until mid-2018 [283]. According to their suitability for soil moisture retrieval, C-band scatterometers
(ERS-1/2 scatterometer, ASCAT) and multi-frequency radiometers (SMMR, SSM/I, TMI, AMSR-E,
Windsat) were merged at the level of retrieved surface soil moisture data (Level 2) to avoid problems
arising from different sensor specifications.

With the launch of NASA’s missions Aquarius and SMAP, both active and passive microwave
remote-sensing observations are combined to improve the spatial resolution [284]. The combination
extracts the relative advantages of the two sensing techniques, as there is a tradeoff between resolution
and soil moisture sensing sensitivity between active and passive microwave measurements [285]. Fusion
methods include temporal change detection methods [286], Bayesian merging approaches [287], statistical
disaggregation [285,288,289], and physics-based covariation algorithms [290–292]. Other methods retrieve
vegetation variables from active microwave measurements for the utilization of passive microwave soil
moisture inversion [293,294]. Unfortunately, the RADAR on the SMAP satellite went out of service on 7
July 2015. Therefore, combined active–passive microwave data were only recorded over the first months
of the mission (April–July 2015). Due to the failure of SMAP’s L-band RADRA, the substitution with
ESA Copernicus Sentinel-1′s C-band RADAR is in final preparation [295] and a first 3 km soil moisture
product was released in November 2017 [295]. Due to Sentinel-1′s varying acquisition geometry and the
reduced amount of coincident active-passive overpasses, the standard statistical (time-series) downscaling
approach using passive brightness temperatures with active RADAR backscatter is no longer possible
and a physics-based downscaling was developed by [295,296] for a dual-frequency downscaling.
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Moreover, soil moisture sensing is also a topic of discussion for airborne microwave RS
working on resolutions that are valid for habitat research and precision farming and capable of
retrieving soil moisture patterns with a high spatial resolution (<100 m). On airborne platforms
joint active–passive remote-sensing instrument constellations include PLMR (polarimetric L-band
multibeam radiometer) [178,297,298] (Figure 7c) and F-SAR sensors [299,300] (Figure 7d), also referred
to as multi-sensor platforms.

With these multi-sensor platforms, [301] analyzed different active–passive fusion methods and
their advantages and drawbacks for a central European region. In Australia, the SMAPEx campaigns
(e.g., [302]) provided first combined observations of PLMR and PLIS (polarimetric L-band imaging
synthetic aperture RADAR). In North America, the PALS (passive and active L- and S-band sensor; [303])
recorded soil moisture from RADAR and radiometer to analyze soil moisture heterogeneity across
scales in several campaigns. Table 5 provides an overview of recent satellite missions and airborne
systems for soil moisture estimation. With these sensors, soil moisture retrieval is only possible for the
top few cm of the soil surface, namely the surface soil moisture. Root zone soil moisture, which to a
larger extent effects the biodiversity of a habitat rather than the water content of the top layer, can
be estimated by additional methods. Examples are: Direct retrieval by longer wavelengths such as
P-band [304], surface soil moisture assimilation into a hydrological model [305–310], or data-driven
methods such as neural networks [311] to improve root zone soil moisture estimates. Moreover,
indirect methods use the plants as “sensors” of root-zone properties. Wilson [312] can therefore be
used to gain knowledge about root zone soil conditions (see also Chapter 4.3.5) and Rudolph [313], for
example, presented the link between crop-status patterns in large-scale multispectral satellite imagery
with multi-receiver electromagnetic induction (EMI) hydro-geophysical data.
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4.2.5. Direct and Indirect Measurements by Optical and Thermal Sensors

To obtain and assess the direct approaches to assess spatial and multitemporal surface soil
moisture data, in addition to microwave RS techniques, there are also various optical sensors such
as MODIS [315], Landsat [316], hyperspectral RS sensors (HyMap, [317]), as well as thermal infrared
sensors (Landsat, Sentinel-3, or SEVIRI [318], Table 2). Since soil moisture is subject to a very high
spatial-temporal variability, the suitability of optical and thermal sensors to derive soil moisture related
information very much depends on the spatial, spectral, and temporal resolution of the RS sensors.
Furthermore, soil moisture is a very dynamic parameter along the soil profile, and passive and active
RS sensors can sense soil moisture at different depths. In addition, to the sensor characteristics, an
extensive acquisition of in-situ data on soil moisture is also required. Such in-situ measurements
(previously conducted manually using close-range sensors) are often insufficient due to the tremendous
spatial and temporal variability of RS data. To gain access to in-situ data with a high temporal
and spatial resolution as well as to soil moisture data from different locations with differentiated
land-use-land-cover and soil characteristics, the development and implementation of distributed soil
moisture sensor networks is imperative to achieve an improved calibration and validation of air-
and spaceborne RS data. Some promising preliminary approaches have already been made in this
respect [319].

Soil moisture is difficult to determine in most European regions using the direct approach with
active and passive microwave and optical sensors, because the soil is mostly covered with vegetation
that varies in height, density, and plant species composition over the entire year [100]. Therefore,
vegetation and its biochemical, morphological, physiological, or functional characteristics of plants or
spectral plant traits are used as a proxy for determining soil moisture patterns and soil characteristics
in space and time [100] (see also Figure 8).
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soil characteristics, photographs taken near Koethen-Wulfen, (b) study area “Rosslauer Oberluch”,
Germany, (c) color Infrared image (CIR) taken from the hyperspectral sensor AISA-EAGLE/HAWK
(DUAL), 0.40–2.5 µm spectral resolution, 2 m ground resolution, 461 spectral bands, date of recording 23
September 2010 with a Cessna 207, (d) measured electrical conductivity electrical conductivity–EM38DD
H with measurement arrangement of gamma-ray spectrometer and EM38DD with a tractor, (e) predicted
electrical conductivity–EM38DD H with hyperspectral sensor AISA-EAGLE/HAWK (DUAL) (modified
after Lausch et al. [100]).
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4.2.6. Airborne Geophysical Sensors of Natural Radiation-Gamma and Cosmic-Ray Neutron Sensors

Natural sources of radioactivity or cosmogenic radiation are increasingly used in environmental
sciences for the spatial exploration of soil properties. While the space-borne detection of gamma and
albedo-neutron radiation from satellites became a standard method to map the soil water distribution on
Mars [320], the Earth’s atmosphere allows for the detection of terrestrial radiation only with car-borne
or low-flying airborne vehicles. Nevertheless, the much deeper soil penetration and the effortless
installation are the main advantages of gamma and neutron sensing compared to optical techniques.

Sources of gamma radiation are radioactive isotopes in the ground, such as potassium-40,
thorium-232, and their daughters in the decay chain. Their signal is attenuated by any material, but
particularly by the water molecule. The gamma rays of the corresponding energy window can travel
up to 30 cm in the ground and 25 m in the air [321]. Hence, gamma radiation can be a proxy for
the average soil water content in the upper root zone [227]. However, the distribution of potassium
and thorium in the soil is highly variable, and the signal attenuation depends on soil chemistry. The
corresponding variability dominates over the relatively subtle dependence on soil moisture [322].
Therefore, spatial estimation of soil texture is the main application of gamma-ray surveys [323–325],
while the estimation of soil or snow water relies on known reference data (i.e., background radiation)
of the study region [326,327].

Cosmic-ray neutrons are part of the omnipresent background radiation on Earth. In contrast to
electro-magnetic signals, neutrons do not interact with the electric fields of atoms, allowing them to
penetrate deeply into materials [328]. In the soil, neutrons collide with atomic nuclei and reflect back to
the atmosphere. Since neutrons are extraordinarily sensitive to the lightweight nucleus of the hydrogen
atom, the reflected (or albedo) component of neutrons above ground depends inversely on the soil
water content [329]. Consequently, neutrons are also sensitive to other sources of hydrogen, such as
biomass and snow [330,331]. However, the target geometry does not play a role at all, such as terrain
roughness and or leaf orientation, which can be an issue for electro-magnetic/optical remote sensing.

The neutrons penetrate the soil down to 15 cm (for wet) or 70 cm (for dry soils) and thereby sample
the highly relevant “root zone” [328]. In air, neutrons can travel hundreds of meters before detection
and thereby act as a proxy for the average water content within 10–20 hectares. This so-called footprint
area increases with increasing terrestrial altitude and also with the detector height above ground. Due
to their random-walk nature, neutrons enter the detector mostly isotropically, where the collisions with
the detector gas induce countable electrical pulses [332]. Due to the isotropic nature and the fact that
neutrons are almost insensitive to most materials other than hydrogen, the detector can be mounted
effortlessly on or in a vehicle irrespective of configuration, orientation, viewing angle, or window.

In the last couple of years, soil moisture measurements with cosmic-ray neutrons have been
conducted using stationary sensors or car-borne sensors (“rovers”), which are, however, limited to
accessible terrain [240,333,334]. Very recent developments by Schrön [335] pioneered the application of
airborne neutron sensing. First campaigns made use of a gyrocopter and in-situ data in areas of various
land use types including agricultural fields, urban areas, forests, flood plains, and lakes (Figure 9b).
The study indicated that neutrons are sensitive to soil water variability in heights of up to 200 m above
ground. Both gamma and neutron methods rely on a high signal-to-noise ratio, which increases with
detector volume and decreases with height above ground. Hence, ongoing developments are aiming
for airborne technologies with high payload and low flying altitude. The proof of concept indicated a
high potential of airborne neutron sensing, which could become a valuable addition — or even an
alternative — to conventional remote-sensing methods. Moreover, cosmic-ray neutron data can also be
used to ground-truth remote-sensing products [336,337], or in synergy with airborne PolSAR to correct
the cosmic-ray soil moisture product for the influence of biomass [240].
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Figure 9. (a) Soil moisture estimation by the cosmic-ray neutron sensor (CRNS) rover in the Schäfertal
agricultural field (from Schrön et al. [334]). (b) Measurement campaign in the Elbe-Mulde region
around the City of Dessau (Germany) using detectors for cosmic-ray neutron albedo mounted on a
gyrocopter. The aircraft operated at heights around 200 m above ground and circulated multiple times
at certain points of interest (the floodplain, an agricultural field, the lake). Apparent measurement
locations show collected neutron data over the course of 1 min. The footprint area in which 86% of
measured neutrons were soil contact is indicated as a dashed rope (modified after Schrön [335]).

Table 5. RS-aided derived traits of soil moisture.

Mission/Sensor/Platform
UAV 1

Airborne 2

Spaceborne 3

Name
Spectral Resolution
Spectral
Bands/Frequency

Reference

Soil moisture estimation for bare soil to sparse vegetation conditions
Active and passive microwave sensors

SMAP 3 Radiometer 1.41 GHz [233]

RADAR 1.26 GHz [233]

SMOS 3 MIRAS 1.4 GHz [276,314,338,339]

ALOS-2 3 PALSAR-2 1.3 GHz [340]

GCOM 3 AMSR2 6.9 GHz [341]

Coriolis 3 Windsat 6.8 GHz [342]

MetOp 3 ASCAT 5.3 GHz [343]

RADARSAT2 3 SAR 5.3 GHz [344]

RISAT 3 Compact-SAR 5.35 GHz [345]

Sentinel-1 3 SAR 5.3 GHz [346]

TerraSAR-X/TanDEM-X 3 SAR 9.63 GHz [347–349]

PLMR 2 L-band microwave
radiometer 2.4 GHz [178,275,297,298,350–352]

PALS 2 Radiometer 1.41 and 2.69 GHz [353]
RADAR 1.26 and 3.15 GHz

PLIS 2 RADAR 1.26 GHz [302]

FSAR 2 RADAR
9.60 GHz, 5.30 GHz, 3.25
GHz, 1.325 GHz, and
0.435 GHz

[299]
Horn et al., 2018

Other geophysical methods-passive radiation techniques

Cosmic-ray neutron sensing 2 Natural neutron
radiation 1–1000 eV [335]

Gamma-ray surveys 2 Natural gamma
radiation

40K, 208Tl (0.4–3.0 MeV) [326]
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Table 5. Cont.

Mission/Sensor/Platform
UAV 1

Airborne 2

Spaceborne 3

Name
Spectral Resolution
Spectral
Bands/Frequency

Reference

Optical remote sensing sensors
Terra/Aqua MODIS 3 Multispectral/TIR 0.41–14.40 µm/ 36 [315,354]

Landsat 5 TM 3

Landsat 7 ETM+ 3 Multispectral/TIR 0.45–2.3 µm/6
10.4–12.5 µm/1 [316,355]

Landsat 8 OLI/TIRS 3 Multispectral/TIR 0.43–2.3 µm/8
10.6–12.51 µm/2 [356]

Terra ASTER 3 Multispectral/TIR 0.52–9.2 µm/9
8.12–11.65 µm/5 [357]

Meteosat II SEVIRI 3 Multispectral/TIR 0.48–7.6µm/8
8.5–13.9 µm/5 [318]

Sentinel-2 MSI 3 Multispectral 0.40–3.0 µm/13 [358]

APEX 2 Hyperspectral 0.38–2.50 µm /~125 [126]

HyMAP 2 Hyperspectral 0.45–2.48 µm/~125 [123,317,359]

DAIS-7915 2 Hyperspectral 0.40–2.50 µm/72 [130]

AHS 2 Hyperspectral 0.43–12.7 µm/~ 80 [357]

Cubert UHD 185 1 Hyperspectral 0.45–0.95 µm/~125 [136]
Soil moisture and soil characteristics estimation using plant proxy information
Landsat 4 MSS 3, Landsat 5 TM 3; Landsat 7
ETM+ 3, Landsat 8 OLI/TIRS 3, Sentinel-1 3,
Sentinel-2 MSI 3

Multispectral/TIR/SAR [360]

RapidEye REIS 3 Multispectral 0.40–1.3 µm/5 [144]

AisaDUAL 2 Hyperspectral 0.40–2.45 µm /~200–400 [100]

* SMAP RADAR stopped operation on 7 July 2015. Sensor is used on the RS platform: UAV 1 - unmanned aerial
vehicles (UAV); airborne 2 – airborne RS platform; spaceborne 3 – spaceborne RS platform.

The RS-aided derivation of geotraits of soil moisture is shown in Table 5. Figure 10 shows the
enormous number of current and future space-based RS missions and satellites for monitoring soil
moisture with information about the mission status, according to the CEOS database [205].
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Table 6. Selection of RS-aided data products of soil moisture estimation with RS.

Data Products Scale Link References

NASA-Soil Moisture Products Global/
Regional https://lpvs.gsfc.nasa.gov/SM/SM_home.html NA

International Soil Moisture Network https://ismn.geo.tuwien.ac.at/en/ [361]

Rapid Mapping (on demand): Drought Affected
Countries

https://emergency.copernicus.eu/mapping/list-
of-activations-rapid NA

European Drought Observatory (EDO)
Combined Drought Indicator Europe

https://www.eea.europa.eu/policy-documents/
european-drought-observatory-edo
http://edo.jrc.ec.europa.eu/edov2/php/index.
php?id=1000

NA

Global Drought Observatory (GDO)
Global Drought Global http://edo.jrc.ec.europa.eu/gdo/php/index.php?

id=2000 NA

NASA-USDA SMAP Global Soil Moisture Data Global
https://developers.google.com/earth-engine/
datasets/catalog/NASA_USDA_HSL_SMAP_
soil_moisture

NA

NOAA Soil Moisture Products System (SMOPS) Daily
Blended Products Global https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.

noaa.ncdc:C00994 NA

SMAP/Sentinel-1 L2 Radiometer/RADAR 3 km Global https://nsidc.org/data/SPL2SMAP_S/versions/2 [362]

SMAP Enhanced L3 Radiometer Global Daily 9 km Global https://nsidc.org/data/SPL3SMP_E/versions/2 [363]

SMOS Level 3 daily soil moisture and brightness
temperature maps Global https://www.catds.fr/sipad/ [364]

Metop ASCAT SSM time series Global http://hsaf.meteoam.it [266]

Global Land Data Assimilation System (GLDAS) Global https://grace.jpl.nasa.gov/data/get-data/land-
water-content/ [365]

GRACE–Platform
NASA’s Gravity Recovery and Climate Experiment
(GRACE) satellites

Global/
Regional

https://grace.jpl.nasa.gov/data/get-data/
https://nasagrace.unl.edu/Default.aspx [366]

4.2.7. Surface and Soil Moisture Characterization by Land Surface Temperature RS Approach

Land surface temperature (LST) is one of the most important state variables representing the
coupled interaction of the surface energy and water balance and represents a valuable source of
information for ecological and hydrological modeling from the local to the global scale [367–369].
The knowledge of LST provides crucial understanding of spatio-temporal variations of the surface
equilibrium state [370] and is helpful in exploring and modelling plant–environment interactions [371].
LST is highly influenced by the radiative, thermal, and hydraulic properties of the soil–plant–atmosphere
system and has therefore been recognized as one of the high-priority variables of the International
Geosphere and Biosphere Program (IGBP) [372].

LST is used in various research contexts such as urban ecology like monitoring plant and
human health during heat waves [373], for the description of the hydrological cycle, in climate
research, or in studies of vegetation dynamics [374,375]. Furthermore, LST is often used to estimate
evapotranspiration [369,376–378], which is a variable that is highly controlled by atmospheric
conditions, but also by stomata conductance, the plant available, the soil moisture, and processes of
the surface–subsurface interactions [379]. In this sense, the monitoring of LST with high spatial and
temporal resolution can provide valuable information about the water and energy exchange between
the soil–plant–atmosphere continuum as well as related photosynthetic activities of the vegetation.
Differences in the spatio-temporal behavior of LST can therefore be related to different plant species
distributions, to differences related to the local energy, water, or nutrient conditions [380], and can
even be used to improve the classification of soil texture data [181]. LST is also strongly influenced by
the patterns and heterogeneity of vegetation and land surface characteristics such as soil, topography,
and vegetation [381]. Therefore, the recording of surface characteristics and their heterogeneity by
using RS is important for being able to adequately describe, explain, and predict LST distribution.

While LST is easily measured by thermometers at the point scale, RS thermal infrared data
(TIR) are needed to derive LST routinely at high temporal and spatial resolutions over large spatial
extents. However, the derivation of LST from TIR data is a difficult task for the following reasons: The
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radiance measurements on board the satellites not only depend on LST, but also surface emissivity
and atmospheric conditions [382]. Therefore, besides cloud detection and radiometric calibration,
corrections for emissivity and atmospheric effects have to be carried out. A large number of studies
have addressed these issues and many of them are described in the review by Li et al. [370].

To quantify the landscape surface energy balance, there are various in-situ measurements of
surface fluxes at the canopy level. Such in-situ measurements are very valuable, but they are only
representative for small areas. It is therefore difficult and costly to investigate the detailed spatial
pattern of energy fluxes over entire areas. TIR data can therefore be used to derive the LST of
different surfaces. Hitherto, a range of airborne and satellite sensors were developed to record TIR
image data i.e., Landsat TM/ETM+, MODIS, ASTER, and new satellites such as the HyspIRI that are
under development

Given a large number of influences on LST, airborne platforms [21] and UAV [383,384] are in use
for the retrieval of LST. RS platforms and sensors currently providing TIR data differ in the spatial,
spectral, and temporal resolution of LST data and are the only way to measure LST from the local to
the global scale with high spatial and temporal resolution (see also Figure 11 and Table 7).
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Figure 11. Land surface temperature and related traits: (a) Daytime land surface temperature (LTS)
composite. Derived from Aqua MODIS RS data for 1 June 2010 (from Ghent et al. [385]), (b) daily global
evapotranspiration using Menman–Ponteith equation and remotely sensed land surface temperature
(Raouf and Beighley, [386]). (c) Near 3D-True-Ortho-RGB image of Magdeburg (City Centre) RGB
image, (d) 3D–TIR image based on the Aerial Oblique System [AOS-Tx8] with 8 cameras (4 cameras
FLIR A65 SC, 4 RGB cameras Baumer VC XG-53c) rendered as a 3D TIR image of Magdeburg. (c,d) were
taken by Prof. Lutz Bannehr, Department of Architecture, Facility Management and Geoinformation,
Institute for Geoinformation and Surveying, Dessau, Germany.



Remote Sens. 2019, 11, 2356 28 of 51

Table 7. RS-aided derivation traits of land surface temperature estimation and soil moisture
characterization by thermal infrared (TIR) RS approaches.

Mission/Sensor/
Platform
UAV 1

Airborne 2

Spaceborne 3

Sensor Type Spectral Resolution
Spectral Bands/Frequency

Spatial
Resolution [m] References

Land surface temperature (LST)
Terra/Aqua MODIS 3 Multispectral/TIR 0.41–14.40 µm/36 250/500/1000 [21,387,388]

Landsat 5 TM 3

Landsat 7 ETM+ 3 Multispectral/TIR 0.45–2.3 µm/6
10.4–12.5 µm/1

L5:30/120
L7:30/60 [389,390]

Landsat 8 OLI/TIRS 3 Multispectral/TIR 0.43–2.3 µm/8
10.6–12.51 µm/2 30/100 [356,391]

NOAA/MetOp AVHRR 3 Multispectral/TIR 0.58–3.93 µm/4
10.3–12.5 µm/2 1100 [392,393]

Terra ASTER 3 Multispectral/TIR 0.52–9.2 µm/9
8.12–11.65 µm/5 30/90 [388,394]

Sentinel-3 OLCI/SLSTR 3 Multispectral/TIR 0.4–1.02 µm/21
0.55–12.0 µm/9 300/1000 [395]

MSG (Meteosat Second Generation)
SEVERI/GERB 3 Multispectral/TIR 3.4–12.0 µm/8 3000 [396,397]

GEOS 17 (Geostationary Operational
Environmental Satellites) ABI 3 Multispectral/TIR 0.45–2.27µm/6

3.8–13.56 µm /10 4000 [21,398]

AHS 2 Hyperspectral 0.43–12.7 µm/~80 ~ 2 [399]

Heitronics IR Pyrometer 2 Pyrometer 9.6 and 11.5 µm 16 m (Radius) [21]

Q300, QuestUAV, UK 1 TIR 7.5–13 µm ~ 0.13 m [383]

ThermalCapture 2.0 640 thermal camera
(TeAx, Wilnsdorf, Germany) 1 TIR 7.5–13.5 µm NA [384]

RGB-compact digital camera (Samsung
ES80)/Optris Pi 400 1 RGB/TIR 7.5–13 µm 1-5 cm [377]

Land surface emissivity (LSE)

Meteosat II/SEVIRI 3 Multispectral/TIR 0.48–7.6 µm/8
8.5–13.9 µm/5 NA [318]

Telops HYPER-CAM 2 Hyperspectral TIR 1.5–5.5 µm
8–11.5 µm NA [400,401]

RGB-compact digital camera (Samsung
ES80)/Optris Pi 400 1 RGB/TIR 7.13 µm 1-5 cm [377]

Evapotranspiration

MODIS Aqua SST 3 Multispectral/TIR 3.66–4.08 µm/4
10.78–12.27 µm/2 1000 [385]

Terra ASTER 3 Multispectral/TIR 0.52–9.2 µm/9
8.12–11.65 µm/5 30/90 [402]

Landsat 5 TM 3 Multispectral/TIR 0.45–12.5 µm/8 L5:30/120 [403]

Landsat 7 ETM+ 3 Multispectral/TIR 0.45–12.5 µm/8 30/60 [404]

Q300, QuestUAV, UK 1 TIR 7.5–13 µm ~0.13 [383]

Optris Pi Lightweight kit, Optris GmbH,
Germany 1 RGB/TIR 7.5–13 µm 1–5 cm [377]

RGB-Samsung ES80)/Optris Pi 400 1 RGB/TIR 7.5–13 µm 1–5 cm [377]
Heat fluxes
RGB-Samsung ES80)/Optris Pi 400 1 RGB/TIR 7.5–13 µm 1–5 cm [377]

Sensor is used on the RS platform: UAV 1 - unmanned aerial vehicles (UAV); airborne 2 – airborne RS platform;
spaceborne 3 – spaceborne RS platform.

The RS-aided derivation of traits of LST and related traits is shown in Table 7. Figure 12 shows
the enormous number of current and future space-based RS missions and satellites for monitoring LST
with information about the mission status, according to the CEOS database [205].
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A selection of RS-aided data products for deriving LST from RS is shown in Table 8.

Table 8. Selection of RS-aided data products of land surface temperature and related variables.

Data Products Scale Link References

NASA-Land Surface Temperature & Emissivity Products Global/Regionalhttps:
//lpvs.gsfc.nasa.gov/LSTE/LSTE_home.html NA

Landsat and Surface Temperature
Land Surface Temperature
True Land Suface Albedo

Global http://rslab.gr/downloads.html
http://rslab.gr/downloads_LandsatLST.html [405]

GLS Surface Reflectance Global http://www.landcover.org/data/gls_SR/ [406]

Downward Shortwave Surface Radiation (DSSR) Global http://www.landcover.org/data/dssr/ [407]

Tropospheric Emission Monitoring Internet Service Global http://www.temis.nl/index.php NA

Land-Surface Temperature Global https:
//land.copernicus.eu/product-portfolio/overview

NA

Surface Albedo Global NA

Lake Surface Water Temperature Global NA

Global Land Data Assimilation System (GLDAS) Global
https://grace.jpl.nasa.gov/data/get-data/land-
water-content/
https://ldas.gsfc.nasa.gov/

[365]

5. Conclusions and Further Requirements in Monitoring Geodiversity

In order to understand the complexity, processes, disturbances, and resilience of biodiversity,
it is imperative to gain a deep understanding of the status, stress-induced changes, disturbances,
and resource limitations for geodiversity and traits as well as their interactions and feedbacks with
above-and below-ground biodiversity.

Geodiversity and its five essential characteristics, a novel concept for the first time defined in
this paper, and the definitions of traits and trait variations were introduced. Geodiversity and its
traits (geotraits) can be recorded by in-situ and RS-techniques. In-situ techniques are accurate, largely
point-based, but are more time-consuming and can only be repeated with considerable personnel and
financial means. RS techniques on the other hand are a cost-effective alternative that are becoming

https://lpvs.gsfc.nasa.gov/LSTE/LSTE_home.html
https://lpvs.gsfc.nasa.gov/LSTE/LSTE_home.html
http://rslab.gr/downloads.html
http://rslab.gr/downloads_LandsatLST.html
http://www.landcover.org/data/gls_SR/
http://www.landcover.org/data/dssr/
http://www.temis.nl/index.php
https://land.copernicus.eu/product-portfolio/overview
https://land.copernicus.eu/product-portfolio/overview
https://grace.jpl.nasa.gov/data/get-data/land-water-content/
https://grace.jpl.nasa.gov/data/get-data/land-water-content/
https://ldas.gsfc.nasa.gov/


Remote Sens. 2019, 11, 2356 30 of 51

increasingly more accessible, comprehensive, and repeatable, while providing the opportunity for
a standardized recording of continuous geodiversity and trait variables. Geo-traits exist on all
spatio-temporal scales and can thus be monitored by RS sensors on different platforms.

This paper presents the state-of-the-art in monitoring geodiversity and its traits using air- and
spaceborne RS of soil characteristics including soil moisture. RADAR, LiDAR, thermal sensors,
multispectral, hyperspectral, and microwave RS technologies that record soil characteristics including
soil moisture are presented. Furthermore, the paper discusses future satellites and existing data
products that are suitable for monitoring geodiversity and its traits.

As a physical-based system, RS can monitor geodiversity and its traits (depending on the RS
characteristics and composition and configuration of traits [1,3]) by using the spectral traits (ST) as
well as the spectral traits variations (STV) approach. Consequently, the RS approach is then referred to
as the remote sensing–spectral traits/spectral trait variations–concept–RS-ST/STV-C.

Unlike in-situ techniques, RS approaches can only record specific geo-traits/trait combinations
and trait variations due to the different RS characteristics (spectral, radiometric, geometric, directional,
and temporal). This paper provides an overview of those traits and trait variations that can be recorded
by air- and spaceborne RS techniques (see Figure 13).
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Figure 13. Spectral traits for monitoring soil characteristics and their traits with remote sensing and its
constraints (modified after Lausch et al. [1,3]).

There are limitations to monitoring soil characteristics and soil moisture, because they are
influenced by the growth of vegetation. In the paper we illustrate how indirect techniques can be used
on vegetation as a sensor, proxy, and indicator to monitor the status, stress, or resource limitations of
soil characteristics and soil moisture.

No single monitoring technique, RS sensor, RS-approach, sensor platform, scale, or model
approach is sufficient on its own to monitor and model the complexity of biodiversity, the abiotic
systems, and the interactions between abiotic and biotic processes and functions in order to assess the
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resilience of biodiversity and ecosystem health. As a result, the RS sensors and techniques illustrated
here need to be incorporated into a single network to establish a multi-source-ecosystem health
monitoring network (MUSO-EH-MN) based on Data Science, the Semantic Web (Web 4.0), and Linked
Open Data approaches [57,408–410].

Furthermore, the monitoring of geodiversity and their geotraits is the basis for a better
understanding of ecosystem integrity [411].

Author Contributions: A.L. was responsible for the main part of this review, writing and production of some
tables and figures. M.V., S.C., A.K., M.M. (Markus Möller), C.M. (Christian Mielke), H.G., C.T., C.R., O.R.,
C.M. (Carsten Montzka), A.J., D.H., M.M. (Mohsen Makki), C.S. (Christian Schweitzer), J.B. (Jussi Baade), C.S.
(Christiane Schmullius), and C.G. contributed their knowledge to the section on soil characteristics; T.J., C.M.
(Carsten Montzka), and M.S. wrote the section on soil moisture; K.S. and R.K. developed the topic land surface
temperature: L.B., J.M.H., S.J., D.S., A.L., M.P., and M.E.S. have operated airborne platforms for many years and
were thus able to provide decisive examples and figures for the review paper. E.B., J.B. (Jan Bumberger), P.D.,
H.M., R.W., U.W. (Ulrike Werban), U.W. (Ute Wollschläger), U.W. (Ute Weber), C.S. (Claudia Schütze), P.S., and S.Z.
gave important inputs for close-range and in-situ methods for the recording of soil characteristics. In proofreading
and conceptual implementation, the following support is particularly important S.C.T. (Sina C. Truckenbrodt), F.S.,
A.K.S., and M.E.S. All co-authors provided extensive reviews of the paper and revised all requirements, checked,
and contributed to the final text, tables, and figures.

Funding: This research received no external funding.

Acknowledgments: We particularly thank the researchers for the Hyperspectral Equipment of the Helmholtz
Centre for Environmental Research—UFZ and TERENO funded by the Helmholtz Association and the Federal
Ministry of Education and Research. This work was supported by funding from the Helmholtz Association
in the framework of MOSES (Modular Observation Solutions for Earth Systems). At the same time we truly
appreciate the support that we received from the project ‘GEOEssential — Essential Variables workflows for
resource efficiency and environmental management‘. The authors also thank the reviewers for their very valuable
comments and recommendations. The authors gratefully acknowledge the German Helmholtz Association for
support of the activities. This study (Soil Moisture retrival–Figure 7c–e) was conducted under the funding of the
HGF Alliance HA-310 ‘Remote Sensing and Earth System Dynamics’. UM is grateful to the Helmholtz funded
virtual institute DESERVE. Airborne Research Australia is substantially supported by the Hackett Foundation,
Adelaide. One of the ARA ECO-Dimonas was donated by the late Dr. Don and Joyce Schultz of Glen Osmond,
South Australia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lausch, A.; Bannehr, L.; Beckmann, M.; Boehm, C.; Feilhauer, H.; Hacker, J.M.; Heurich, M.; Jung, A.;
Klenke, R.; Neumann, C.; et al. Linking Earth Observation and taxonomic, structural and functional
biodiversity: Local to ecosystem perspectives. Ecol. Indic. 2016, 70, 317–339. [CrossRef]

2. Lausch, A.; Olaf, B.; Stefan, K.; Leitao, P.; Jung, A.; Rocchini, D.; Schaepman, M.E.; Skidmore, A.K.;
Tischendorf, L.; Knapp, S. Understanding and assessing vegetation health by in-situ species and remote
sensing approaches. Methods Ecol. Evol. 2018, 9, 1799–1809. [CrossRef]

3. Lausch, A.; Erasmi, S.; King, D.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote
Sensing-Part I—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sens.
2016, 8, 1029. [CrossRef]

4. Schrodt, F.; Bailey, J.J.; Kissling, W.D.; Rijsdijk, K.F.; Seijmonsbergen, A.C.; van Ree, D.; Hjort, J.; Lawley, R.S.;
Williams, C.N.; Anderson, M.G.; et al. Opinion: To advance sustainable stewardship, we must document not
only biodiversity but geodiversity. Proc. Natl. Acad. Sci. 2019, 116, 16155–16158. [CrossRef] [PubMed]

5. Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; BloomÞeld, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.;
Jackson, R.B.; Kinzig, A.; et al. Biodiversity: Global biodiversity scenarios for the year 2100. Science 2005, 287,
1770–1775. [CrossRef] [PubMed]

6. Bardgett, R.D.; Wardle, D.A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and
Global Change; Oxford University Press: Oxford, UK, 2010; ISBN 0199546886.

7. De Deyn, G.B.; Van Der Putten, W.H. Linking aboveground and belowground diversity. Trends Ecol. Evol.
2005, 20, 625–633. [CrossRef] [PubMed]

8. Eisenhauer, N. Aboveground-belowground interactions drive the relationship between plant diversity and
ecosystem function. Res. Ideas Outcomes 2018, 4, e23688. [CrossRef]

http://dx.doi.org/10.1016/j.ecolind.2016.06.022
http://dx.doi.org/10.1111/2041-210X.13025
http://dx.doi.org/10.3390/rs8121029
http://dx.doi.org/10.1073/pnas.1911799116
http://www.ncbi.nlm.nih.gov/pubmed/31409742
http://dx.doi.org/10.1126/science.287.5459.1770
http://www.ncbi.nlm.nih.gov/pubmed/10710299
http://dx.doi.org/10.1016/j.tree.2005.08.009
http://www.ncbi.nlm.nih.gov/pubmed/16701446
http://dx.doi.org/10.3897/rio.4.e23688


Remote Sens. 2019, 11, 2356 32 of 51

9. Wardle, D.A. Ecological Linkages Between Aboveground and Belowground Biota. Science 2004, 304,
1629–1633. [CrossRef]

10. Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From in Posidonia oceanica
cadmium induces changes in DNA genes to the field. J. Exp. Bot. 2012, 63, 3523–3544. [CrossRef]

11. Van der Ploeg, M.J.; Baartman, J.E.M.; Robinson, D.A. BIOPHYSICAL LANDSCAPE INTERACTIONS:
BRIDGING DISCIPLINES AND SCALE WITH CONNECTIVITY. Land Degrad. Dev. 2017, 29, 1167–1175.
[CrossRef]

12. Balzotti, C.S.; Asner, G.P. Biotic and Abiotic Controls Over Canopy Function and Structure in Humid
Hawaiian Forests. Ecosystems 2018, 21, 331–348. [CrossRef]

13. De Vries, F.T.; Manning, P.; Tallowin, J.R.B.; Mortimer, S.R.; Pilgrim, E.S.; Harrison, K.A.; Hobbs, P.J.; Quirk, H.;
Shipley, B.; Cornelissen, J.H.C.; et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil
microbial communities. Ecol. Lett. 2012, 15, 1230–1239. [CrossRef]

14. Porazinska, D.L.; Bardgett, R.D.; Blaauw, M.B.; Hunt, H.W.; Parsons, A.N.; Seastedt, T.R.; Wall, D.H.
Relationships at the Aboveground-Belowground Interface: Plants, Soil Biota, and Soil Processes. Ecol.
Monogr. 2018, 73, 377–395. [CrossRef]

15. Nielsen, U.N.; Ayres, E.; Wall, D.H.; Bardgett, R. Soil biodiversity and carbon cycling: A review and synthesis
of studies examining diversity-function. Eur. J. Soil Sci. 2011, 62, 105–116. [CrossRef]

16. Freschet, G.T.; Violle, C.; Bourget, M.Y.; Scherer-Lorenzen, M.; Fort, F. Allocation, morphology, physiology,
architecture: The multiple facets of plant above- and below-ground responses to resource stress. New Phytol.
2018, 219, 1338–1352. [CrossRef] [PubMed]

17. Freschet, G.T.; Swart, E.M.; Cornelissen, J.H.C. Integrated plant phenotypic responses to contrasting above-
and below-ground resources: Key roles of specific leaf area and root mass fraction. New Phytol. 2015, 206,
1247–1260. [CrossRef] [PubMed]

18. Ríos-Casanova, L.; Valiente-Banuet, A.; Rico-Gray, V. Original article Ant diversity and its relationship with
vegetation and soil factors in an alluvial fan of the Tehuacán Valley, Mexico. Acta Oecol. 2006, 29, 316–323.
[CrossRef]

19. Orwin, K.H.; Buckland, S.M.; Johnson, D.; Turner, B.L.; Smart, S.; Oakley, S.; Bardgett, R.D. Linkages of plant
traits to soil properties and the functioning of temperate grassland. J. Ecol. 2010, 98, 1074–1083. [CrossRef]

20. Mueller, K.E.; Hobbie, S.E.; Chorover, J.; Reich, P.B.; Hale, C.M.; Jagodzin, A.M. Effects of litter traits, soil
biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 2015,
123, 313–327. [CrossRef]

21. Krishnan, P.; Kochendorfer, J.; Dumas, E.J.; Guillevic, P.C.; Baker, C.B.; Meyers, T.P.; Martos, B. Comparison
of in-situ, aircraft, and satellite land surface temperature measurements over a NOAA Climate Reference
Network site. Remote Sens. Environ. 2015, 165, 249–264. [CrossRef]

22. Biggs, J.; von Fumetti, S.; Kelly-Quinn, M. The importance of small waterbodies for biodiversity and
ecosystem services: Implications for policy makers. Hydrobiologia 2017, 793, 3–39. [CrossRef]

23. Ordoñez, J.C.; Van Bodegom, P.M.; Witte, J.M.; Wright, I.J.; Reich, P.B.; Aerts, R. A global study of relationships
between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 2009, 18, 137–149.
[CrossRef]

24. Williams, J.W.; Jackson, S.T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol.
Environ. 2007, 5, 475–482. [CrossRef]

25. Grime, J.P. Vegetation classification by reference to strategies. Nature 1974, 250, 26–31. [CrossRef]
26. Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.;

Prentice, I.C.; et al. The global spectrum of plant form and function. Nature 2015, 529, 1–17. [CrossRef]
[PubMed]

27. Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.;
Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827.
[CrossRef] [PubMed]

28. Beckmann, M.; Gerstner, K.; Akin-Fajiye, M.; Ceaus, u, S.; Kambach, S.; Kinlock, N.L.; Phillips, H.R.P.;
Verhagen, W.; Gurevitch, J.; Klotz, S.; et al. Conventional land-use intensification reduces species richness and
increases production: A global meta-analysis. Glob. Chang. Biol. 2019, 25, 1941–1956. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.1094875
http://dx.doi.org/10.1093/jxb/ers100
http://dx.doi.org/10.1002/ldr.2820
http://dx.doi.org/10.1007/s10021-017-0151-y
http://dx.doi.org/10.1111/j.1461-0248.2012.01844.x
http://dx.doi.org/10.1890/0012-9615(2003)073[0377:RATAIP]2.0.CO;2
http://dx.doi.org/10.1111/j.1365-2389.2010.01314.x
http://dx.doi.org/10.1111/nph.15225
http://www.ncbi.nlm.nih.gov/pubmed/29856482
http://dx.doi.org/10.1111/nph.13352
http://www.ncbi.nlm.nih.gov/pubmed/25783781
http://dx.doi.org/10.1016/j.actao.2005.12.001
http://dx.doi.org/10.1111/j.1365-2745.2010.01679.x
http://dx.doi.org/10.1007/s10533-015-0083-6
http://dx.doi.org/10.1016/j.rse.2015.05.011
http://dx.doi.org/10.1007/s10750-016-3007-0
http://dx.doi.org/10.1111/j.1466-8238.2008.00441.x
http://dx.doi.org/10.1890/070037
http://dx.doi.org/10.1038/250026a0
http://dx.doi.org/10.1038/nature16489
http://www.ncbi.nlm.nih.gov/pubmed/26700811
http://dx.doi.org/10.1038/nature02403
http://www.ncbi.nlm.nih.gov/pubmed/15103368
http://dx.doi.org/10.1111/gcb.14606
http://www.ncbi.nlm.nih.gov/pubmed/30964578


Remote Sens. 2019, 11, 2356 33 of 51

29. Knapp, S.; Dinsmore, L.; Fissore, C.; Hobbie, S.E.; Jakobsdottir, I.; Kattge, J.; King, J.Y.; Klotz, S.; McFadden, J.P.;
Cavender-Bares, J. Phylogenetic and functional characteristics of household yard floras and their changes
along an urbanization gradient. Ecology 2012, 93, 83–98. [CrossRef]

30. Lavorel, S.; McIntyre, S.; Landsberg, J.; Forbes, T.D.A. Plant functional classifications: From general groups
to specific groups based on response to disturbance. Trends Ecol. Evol. 1997, 12, 474–478. [CrossRef]

31. Kattenborn, T.; Fassnacht, F.E.; Schmidtlein, S. Differentiating plant functional types using reflectance: Which
traits make the difference? Remote Sens. Ecol. Conserv. 2018, 5, 5–19. [CrossRef]

32. Walther, G.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.;
Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395.
[CrossRef]

33. Franklin, J.; Serra-Diaz, J.M.; Syphard, A.D.; Regan, H.M. Global change and terrestrial plant community
dynamics. Proc. Natl. Acad. Sci. USA 2016, 113, 3725–3734. [CrossRef] [PubMed]

34. Thakur, M.P.; Tilman, D.; Purschke, O.; Ciobanu, M.; Cowles, J.; Isbell, F.; Wragg, P.D.; Eisenhauer, N. Climate
warming promotes species diversity, but with greater taxonomic redundancy, in complex environments. Sci.
Adv. 2017, 3, 1–10. [CrossRef] [PubMed]

35. Marcott, S.A.; Shakun, J.D.; Clark, P.U.; Mix, A.C. A Reconstruction of Regional temperatures. Science 2013,
339, 1198–1201. [CrossRef] [PubMed]

36. Kraemer, B.M.; Mehner, T.; Adrian, R. Reconciling the opposing effects of warming on phytoplankton
biomass in 188 large lakes. Sci. Rep. 2017, 7, 10762. [CrossRef] [PubMed]

37. Reilly, C.M.O.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.;
Mcintyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the
globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [CrossRef]

38. Veloz, S.D.; Williams, J.W.; Blois, J.L.; He, F.; Otto-Bliesner, B.; Liu, Z. No-analog climates and shifting realized
niches during the late quaternary: Implications for 21st-century predictions by species distribution models.
Glob. Chang. Biol. 2012, 18, 1698–1713. [CrossRef]

39. Fei, S.; Desprez, J.M.; Potter, K.M.; Jo, I.; Knott, J.A.; Oswalt, C.M. Divergence of species responses to climate
change. Sci. Adv. 2017. [CrossRef] [PubMed]

40. Lawler, J.J.; Ackerly, D.D.; Albano, C.M.; Anderson, M.G.; Dobrowski, S.Z.; Gill, J.L.; Heller, N.E.; Pressey, R.L.;
Sanderson, E.W.; Weiss, S.B. The theory behind, and the challenges of, conserving nature’s stage in a time of
rapid change. Conserv. Biol. 2015, 29, 618–629. [CrossRef] [PubMed]

41. Smith, S.J.; Edmonds, J.; Hartin, C.A.; Mundra, A.; Calvin, K. Near-term acceleration in the rate of temperature
change. Nat. Clim. Chang. 2015, 5, 333–336. [CrossRef]

42. Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.;
Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520,
45–50. [CrossRef]

43. Gossner, M.M.; Lewinsohn, T.M.; Kahl, T.; Grassein, F.; Boch, S.; Prati, D.; Birkhofer, K.; Renner, S.C.;
Sikorski, J.; Wubet, T.; et al. Land-use intensification causes multitrophic homogenization of grassland
communities. Nature 2016, 540, 266–269. [CrossRef] [PubMed]

44. Haase, D.; Güneralp, B.; Dahiya, B.; Bai, X.; Elmqvist, T. Global Urbanization: Perspectives and Trends. In
Urban Planet; Elmqvist, T., Bai, X., Frantzeskaki, N., Griffith, C., Maddox, D., McPhearson, T., Parnell, S.,
Romero-Lankao, P., Simon, D., Watkins, M., Eds.; Cambridge University Press: London, UK, 2018; pp. 19–45.
ISBN 9781316647554. [CrossRef]

45. Beier, P.; Brost, B. Uso de elementos territoriales para planificar para el cambio cliḿatico: Conservando las
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