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ABSTRACT

The RADARSAT Constellation Mission (RCM) is a Canadian Synthetic Aperture Radar (SAR)
mission, providing C-band SAR data continuity of the RADARSAT-1 and RADARSAT-2 satellite
missions. The RCM which was recently launched (June 2019) will provide compact polarim-
etry (CP) as a polarization option for all non-quad-polarization imaging modes. Maritime pol-
lution monitoring is one of the RCM core applications. Thus, the purpose of this study is to
provide an initial evaluation of the expected potential of the RCM mission for maritime pol-
lution monitoring. Herein, we investigate simulated CP SAR data of three RCM Medium
Resolution (MR) SAR modes for oil slick detection and discrimination from lookalike (LA) fea-
tures. Results of our study indicated that the steeper radar incidence angle seems to be
preferable for oil slick detection in all examined modes. The ScanSAR 50m resolution
(SC50M) mode showed the highest overall performance in terms of LA and Emulsion (EM)
classification (95.4%). This was also valid for LA and Crude Oil (CO) classification (96.7%).
The performance of the SC50M mode was slightly higher than that of the ScanSAR 30m
resolution (SC30M) mode.

RESUME

La Mission Constellation RADARSAT (MCR) est une mission Canadienne de radar a synthese
d'ouverture (RSO), fournissant la continuité des données en bande C des missions satelli-
taires RADARSAT-1 et RADARSAT-2. La MCR, qui fut lancée récemment (juin 2019) fournira
une option de polarisation en polarimétrie compacte (PC) pour tous les modes d'imagerie
autres que le mode quad-pol. La surveillance de la pollution maritime est I'une des applica-
tions centrales de la MCR. Le but de cette étude est donc de fournir une évaluation initiale
du potentiel attendu de la mission MCR pour la surveillance de la pollution maritime. Nous
évaluons l'aptitude des données ROS simulées en polarimétrie compacte pour les trois
modes MCR de résolution moyenne envers la détection de nappes de pétrole et la discrimi-
nation entre les nappes de pétrole et d'autres régions aux signatures similaires. Les résultats
indiquent que I'angle d'incidence le plus étroit est préférable pour la détection des nappes
de pétrole pour tous les modes examinés. Le mode ScanSAR ayant une résolution de 50 m
(SC50M) a obtenu la meilleure performance globale (95.4%) pour classifier les émulsions
(EM) et les régions aux signatures similaires (LA) a des nappes de pétrole. Cette performance
(96.7%) s'applique également a la classification du pétrole brut (CO) et des régions similaires
(LA) a des nappes de pétrole. La performance du mode SC50M est légerement meilleure
que celle du mode ScanSAR ayant une résolution de 30 m (SC30M).
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Introduction

Major advancements in the remote sensing techniques
for oil slick detection in the ocean have been observed
recently (Minchew et al. 2012; Angelliaume et al.
2018; Fingas and Brown 2018). State-of-the-art

satellite imagery, especially Synthetic Aperture Radar
(SAR), enables to spot oil slicks in the early stages of
an accident and to monitor systematic pollution over
major shipping routes (Vijayakumar and Santhi 2015).
Moreover, the trajectory of the oil slick may be
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obtained through multi-temporal imagery; thereby
assisting in drift prediction modelling that may be
used to facilitate clean-up operations and warning sys-
tems (Cheng et al. 2014). The backscattered micro-
wave energy of the electromagnetic spectrum from a
radar target (e.g. slick-free sea surface) is governed
mainly by constructive and destructive interferences
of the electromagnetic radar signals, causing the
speckle noise (Lee and Pottier 2009). Oil films
dampen the capillary waves on the sea surface and
thus the backscatter, causing slicks to appear as dark
spots in gray tones intensity SAR images, while the
surrounding slick-free sea remains relatively brighter
(Apel and Jackson 2004). The detectability of oil slicks
depends on a number of factors, such as the rheo-
logical properties of oil slicks, the speckle noise in
SAR imagery, the radar incidence angle and the wind
speed (Alpers et al. 2017; Buono et al. 2018; Skrunes
et al. 2018; Nunziata et al. 2019). Oil slicks are not
the only phenomenon that produces dark spots in
SAR images. Common meteorological and oceano-
graphical phenomena that produce similar kind of
dark spots in SAR images are referred to as lookalikes
(LA). Frequently occurring LA phenomena are low-
wind sea surface areas, upwelling and down-welling
zones, ocean currents, atmospheric fronts, rain cells
and most prominently the presence of algae bloom
(Topouzelis 2008). Discrimination between oil slicks
and LA still remains a major challenge for implement-
ing automated operational oil slick detection systems.

To distinguish between oil slicks and LA features, a
number of automatic and semi-automatic techniques
based on single polarization SAR data (traditionally
ScanSAR type imagery) have been developed
(Topouzelis and Psyllos 2012; Brekke and Solberg
2005; Singha et al. 2013). Some semi-automated meth-
ods have been implemented for operational services
(Singha et al. 2014). These methods traditionally
exploit features, such as patch backscatter, texture,
and geometry to discriminate oil slicks and LA.
However, such techniques suffer from considerable
misclassification rate which is undesirable for oper-
ational services. Furthermore, small operational spills
from offshore platforms are often ignored as their sig-
nature is not captured on traditional ScanSAR images
due to their coarser spatial resolution.

Fully polarimetric (FP) SAR imagery is acknowl-
edged as providing high performance in oil slick detec-
tion, due to the complete radar target information
content (Migliaccio et al. 2015; Zhang et al. 2011;
Skrunes et al. 2014; Skrunes et al. 2015), compared to
conventional single or dual polarization SAR imagery.

A number of polarimetric features extracted from FP
SAR imagery have been proposed for pixel-based oil
slick classification (Migliaccio et al. 2015; Skrunes et al.
2014; Singha et al. 2016), which are found to be suitable
for oil slick and LA discrimination to a greater extent.
A recent study by Singha et al. (2016) proposed a
method which exploits a combination of traditional and
polarimetric features and yielded considerably better
discrimination compared to results obtained using only
traditional features (e.g. area, perimeter, complexity,
spreading, object standard deviation, maximum and
minimum contrast, etc.). A review of polarimetric SAR
methods for sea oil slick observation is presented in
Migliaccio et al. (2015). Yet current FP SAR systems
have reduced swath width with limited range of inci-
dence angles relative to single and dual polarized SAR
imagery, and higher system requirements (e.g. power
consumption, system complexity, etc.).

A SAR system with compact polarimetric (CP) SAR
architecture constitutes a significant advancement in
the field of Earth observation using radar remote sens-
ing (Raney 2007). A CP SAR architecture transmits cir-
cular (right or left) or 45° oriented linear polarization
and receives 2 orthogonal, mutually coherent linear
horizontal and vertical polarizations (Raney 2007; Nord
et al. 2009; Cloude et al. 2012; Yin et al. 2015; Buono
et al. 2016a). Another CP SAR configuration could
transmit circular (right or left) polarization and receives
2 mutually coherent right and left circular polarizations.
The 3 recently proposed CP SAR configurations for
Earth observation could be a compromised choice for
SAR applications (Buono et al. 2016a; Buono et al.
2016b; Charbonneau et al. 2010). The main advantage
of such SAR systems is that they provide increased
radar target information in comparison to standard sin-
gle and dual polarized SAR systems, while covering
much greater swath widths compared to FP SAR sys-
tems (Charbonneau et al. 2010). Such SAR architectures
were included in the C-band Indian Radar Imaging
Satellite (RISAT-1), in the L-band Japanese Advanced
Land Observing Satellite (ALOS-2) carrying the Phased
Array type L-band Synthetic Aperture Radar (PALSAR-
2), and in the RADARSAT Constellation Mission
(RCM). The RCM is a Canadian SAR mission which
was recently launched (June 2019) with the purpose of
supporting the operational use of SAR imagery for dif-
ferent Earth observation applications, including mari-
time pollution monitoring. The mission, through its
three identical satellites, will provide daily revisits of
Canada’s vast territory and marine regions, as well as
daily access to 90% of the world’s surface. The nominal
orbital altitude of the satellites is 600 km with a revisit



time of 4 days (12 days/satellite). In the CP architecture
of the RCM, the antenna transmits a right-hand circu-
larly polarized signal and receives two orthogonal,
mutually coherent linear horizontal and vertical polar-
izations. The CP option is available in all RCM imaging
modes, except for the quad-polarization SAR mode
(Dabboor et al. 2018a). Ocean surveillance is one of the
core RCM applications. Specific imaging modes of
medium and low spatial resolutions are dedicated for
ice mapping, maritime pollution monitoring, and mar-
ine wind estimation. The potential of the RCM with
respect to RADARSAT-2 lies in its rapid revisit time
and compact polarimetry as new polarization option.

The potential of CP SAR imagery for oil slick mon-
itoring is still an active research area, which is con-
ducted using mainly CP SAR data simulated from FP
SAR imagery. Espeseth et al. (2017) compared the
performance of simulated CP SAR data for the detec-
tion of oil slicks under various conditions to that of
FP SAR using polarimetric features. Espeseth et al.
(2017) concluded that CP SAR could be an effective
alternative to FP SAR for oil slick detection and mon-
itoring. Zhang et al. (2017) confirmed also this con-
clusion, where ten CP features were extracted from
simulated CP SAR data and used in a Support Vector
Machine (SVM) classification for the detection of
mineral oil slicks. This conclusion was previously
highlighted by Buono et al. (2016b). Shirvany et al.
(2012) investigated the potential of the degree of
polarization feature, while Li et al. (2016) studied the
effectiveness of the second element of the Stokes vec-
tor from simulated CP SAR data for oil slick detec-
tion. The sensitivity of a set of CP features to oil slick,
LA, and clean sea surface was investigated in
Nunziata et al. (2015). In that study, some CP features
such as the polarimetric entropy derived from the
simulated CP SAR data were found to exhibit a pro-
nounced sensitivity which could allow for the discrim-
ination between oil slicks, LA, and clean sea surface.
In Salberg et al. (2014), a new CP feature similar to
the polarimetric coherence feature from FP SAR
imagery was derived and proved effective for the dis-
crimination between oil slick and LA caused by low-
wind conditions.

Different studies focused on proposing models for
pseudo quad-pol reconstruction from CP SAR data,
considering different assumptions (Nord et al. 2009;
Zhang et al. 2017; Collins et al. 2015; Li et al. 2015; Yin
et al. 2015). Nord et al. (2009) studied the degree to
which FP SAR data can be approximated by the differ-
ent CP SAR configurations through the reconstruction
of the quad-pol covariance matrix, assuming symmetry
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properties of the geophysical media. Sabry and Vachon
(2014) explored the links between CP and FP covari-
ance matrices which can be used to examine target
property assumptions for various CP configurations.
Also, they provided means to explore a priori target
property assumptions and their suitability for the
pseudo quad-pol covariance matrices reconstruction
from CP covariance matrices. Some studies focused on
considering assumptions applicable only to ocean sur-
face backscattering for the pseudo quad-pol reconstruc-
tion from CP SAR data (Zhang et al. 2017; Collins et al.
2015; Li et al. 2015; Yin et al. 2015). Studies on oil slick
detection and monitoring using real CP SAR data are
quite limited. This is because the CP SAR architecture
of the ALOS-2 satellite is currently on experimental
mode and the RISAT-1 CP SAR imagery suffered from
high-noise floor up to —17dB (Misra et al. 2013) and
calibration issues related to the non-circularity of the
transmitted radar signals. However, a study by Kumar
et al. (2014) assessed the potential of different decom-
position methods for oil slick detection using RISAT-1
CP SAR data.

The innovative aspect of this study lies in the fact
that it provides the first evaluation of the expected
potential performance of compact polarization of all
the RCM Medium Resolution (MR) modes for the
discrimination between oil slicks and plant oil which
is treated as LA. These modes are the StripMap 16 m
resolution (16M) mode, the ScanSAR 30 m resolution
(SC30M) mode, and the ScanSAR 50m resolution
(SC50M) mode, and are characterized by different
Noise Equivalent Sigma Zero (NESZ) or nominal
noise floors (—25dB, —24dB, and —22dB, respect-
ively). Simulated CP SAR data were derived and 23
CP features were extracted for each RCM MR mode
using 2 RADARSAT-2 FP SAR images acquired dur-
ing an oil slick exercise in the North Sea. A signal-to-
noise analysis was performed on the simulated RCM
datasets. Next, a separability analysis based on the
Kolmogorov-Smirnov (K-S) distance was conducted
to identify those CP features with discrimination cap-
ability between LA and oil slicks. The identified CP
features were further investigated for possible infor-
mation redundancy using the Spearman correlation
coefficient. Hence, optimal CP vectors were extracted
and used as input for the classification of LA and oil
slicks in a SVM classification approach. Finally, classi-
fication results were analyzed and compared between
RCM modes. Since the ultimate objective of this study
is to investigate the expected potential of the RCM
MR modes for the discrimination between LA and oil
slicks, we followed the same procedure indicated in
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Skrunes et al. (2014) for masking out ships and clean
sea surface. Thus, possible effects of ships and varying
sea clutter are avoided in our study. It is worth men-
tioning that the expected potential of the RCM MR
modes for maritime pollution monitoring is of high
interest, since for the next few years the RCM will be
the only C-band SAR satellite operationally providing
CP SAR imagery.

Experimental site and SAR imagery

The experimental site for this study is located in the
North Sea offshore Norway. An oil slick exercise by
the Norwegian Clean Seas Association for Operating
Companies at the Frigg field was conducted in June
2011 and previously reported in (Skrunes et al. 2014).
Three different types of oil were discharged at sea;
Crude Oil (CO), Emulsion (EM), and plant oil to be
treated as LA. The EM was released first, 16hours
before the release of the plant oil. The CO was
released 4 hours after the release of plant oil. As stated
in Skrunes et al. (2014), the released EM was 20 m®> of
Oseberg blend crude oil mixed with 5% intermediate
fuel oil with viscosity <380 cSt. The water content of
EM during the released was found to be equal to 69%.
A volume of 0.4m’ of Radiagreen EBO plant oil (a
biodegradable lubricant used by the oil industry as an
additive to drilling muds) was spilled and left
untouched on the surface (Skrunes et al. 2014). An
evaporated Balder CO of volume 30 m> was released.
Detailed information about the experimental setup
and the released oil slicks is reported in Skrunes
et al. (2014).

The released oil was captured by two RADARSAT-
2 FP SAR images. The first image shown in Figure la
(RSa), acquired on 8 June 2011, captured the EM and
plant oil during the descending pass of the satellite
(the CO was not spilled yet at the time of the satellite
pass). The age of the spilled oil slicks at the time of
the acquisition of the first RADARSAT-2 image was
18hours and 2hours for the EM and plant oil,
respectively. The mid-range radar incidence angle of
the first image was 46.7°. The second image shown in
Figure 1b (RSb) was acquired on the same date and
captured all the three released oil types (CO, EM, and
plant oil) during a subsequent ascending pass of the
satellite. The ages of the oil slicks at the time of the
acquisition of the RSb image were 29 hours, 13 hours,
and 9hours, for the EM, plant oil and CO, respect-
ively. The mid-range radar incidence angle of the RSb
image was 35.3°. Table 1 summarizes the SAR
imagery acquired during the experiment.

The wind at the time of the SAR imagery acquisi-
tion for both images was northwest with quite low
speed; 1.6-3.3 m/s. In our study, samples of plant oil
and mineral oil slicks (Figure 1) were collected based
on those indicated in Skrunes et al. (2014). For the
rest of the paper, we refer to the released plant oil as
LA. Also, as in Skrunes et al. (2014), we refer to the
first SAR image as RSa and the second SAR image
as RSb.

Methodology

An RCM data simulator developed at the Canada
Center for Mapping and Earth Observation is used for
the RCM data simulation. The simulator produces
simulated SAR products based on the pre-launch
specifications provided by the Canadian Space
Agency. Specifications such as the spatial resolution,
noise floor and number of looks of each mode are
considered in the simulation process. The RCM simu-
lator uses as input FP RADARSAT-2 images to simu-
late RCM data of any of the ten planned RCM modes.
The RCM simulator converts the RADARSAT-2
16-bit complex products to 32-bit float complex by
applying the sigma-nought calibration coefficients
provided. Then, the RH (right circular transmit and
linear horizontal receive) and RV (right circular trans-
mit and linear vertical receive) polarizations are calcu-
lated from the calibrated HH, HV, VH, and VV
polarizations. Based on the RCM product specifica-
tions, RH and RV are down-sampled using 2D fast
Fourier transformation techniques to the spatial reso-
lution defined for each beam mode. The RH and RV
are converted to Stokes vector, which is then speckle
filtered and used for incoherent CP decomposition
and feature extraction.

In our study, each RADARSAT-2 image was used
to simulate three sets of RCM CP data, corresponding
to the 16M, SC30M and SC50M SAR modes.
Specifications of the three RCM modes are presented
in Table 2.

For each set of simulated RH and RV channels
(RCM deliverable product), the simulator derived 23
CP features which are presented in Table 3. Thus, for
the two available RADARSAT-2 images we had a total
of six sets of simulated RCM CP features to
be analyzed.

The NESZ, which is also called noise floor, is crit-
ical in the ability of SAR imagery in detection and
classification of oil slicks, and must be lower than the
measured normalized radar cross section. Therefore, a
noise analysis procedure is applied to the simulated
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Figure 1. (a) Total backscattering power (named SPAN) of the first RADARSAT-2 image (RSa) with plant oil and emulsion and (b)
SPAN of the second RADARSAT-2 image (RSb) with plant oil, emulsion, and crude oil. Green polygons indicate plant oil, while red
polygons indicated mineral oil.
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Table 1. Summary of SAR image acquisitions.

RADARSAT-2 Acquisition Date Incidence
Beam Mode and Time Orbit Direction Angle Nominal Azimuth Resolution Nominal Range Resolution
FQ28 08/06/2011 Descending 46.7° 7.7m 7.2 m (near range)
05.59 UTC 7.1 m (far range)
FQ15 08/06/2011 Ascending 35.3° 7.7m 9.2 m (near range)
17.27 UTC 8.8 m (far range)

Table 2. Specifications of the RCM 16M, SC30M, and SC50M SAR modes.

Beam Mode Nom. Res. (m) Swath (km) Number of Looks (range x azimuth) Noise Floor (dB)
SC50M (ScanSAR) 50 350 4x1 -22
SC30M (ScanSAR) 30 125 2x2 —24
16M (StripMap) 16 30 1x4 -25

Table 3. Assessed features extracted from the simulated RCM CP SAR data.

Short form Description
SV0, SV1, SV2, SV3 Stokes vector elements (Raney et al. 2012)
SE_Pol, SE_Int Shannon entropy polarimetric and intensity components (Réfrégier and Morio 2006)

0o 0 0 0
ORLr Oprr ORur TRy

Sigma naught backscattering—right circular transmit and left circular, right circular, linear

horizontal or linear vertical receive polarization (Dabboor and Geldsetzer 2014)

v/ Rm

Right co-polarized ratio (Lee and Pottier 2009)

PRHRV RH RV correlation coefficient (Dabboor and Geldsetzer 2014)

m-6_S, m-6_V, m-5_DB
m-y_odd, m-y_V, m-y_even

Surface, volume, and double bounce scattering from m-6 decomposition (Raney 2007)
odd, volume, and even bounce scattering from m-y decomposition (Raney et al. 2012)

m Degree of polarization (Raney et al. 2012)
ORHRV RH RV phase difference (Charbonneau et al. 2010)
Conformity coefficient (Truong-Loi et al. 2009)
oS/ 0% Circular polarization ratio (Raney 2007)
Ol Alpha feature related to the ellipticity of the compact scattered wave (Cloude et al. 2012)

RH and RV images, which will be the deliverables of
the RCM, to verify that the 6%y and 0%, backscatter-
ing values are higher than the expected nominal noise
floor of each RCM mode. It is worth mentioning that
the nominal noise floor of each RCM mode shown in
Table 2 represents the highest expected noise floor.
The actual noise floor value will depend on the radar
beam position and the position within the beam swath
(Dabboor et al. 2018b). It is worth mentioning that
the nominal noise floors of the SC30M and SC50M
modes shown in Table 2 are expected to be further
improved with the implementation of the stepped
receive functionality in the RCM ScanSAR modes.
According to the stepped receive functionality, the
receive beam is steered in elevation in discrete steps
during the receive window, allowing for improved
NESZ and range ambiguity levels.

Following the noise analysis, the oil slicks are
investigated in a nonparametric approach to avoid
any statistical distribution assumption. The first step
in our nonparametric approach is the estimation of
the separability between LA and mineral oil slicks
(EM and CO) in each CP feature using the nonpara-
metric Kolmogorov-Smirnov (K-S) distance. The K-S
distance is the maximum absolute difference between
2 cumulative distribution functions (Duda et al. 2000).
The K-S distance can take values between 0 and 1.

In this study, we take the CP features with K-S dis-
tance between 2 classes >0.5 as features with separ-
ability potential. Moderate separability is assumed
existing if 0.5 <K-S distance <0.7, which becomes
good separability if 0.7 <K-S distance <0.9. We
assume a CP feature has very good separability
between 2 classes if the K-S distance >0.9. The
selected 0.7 and 0.9 values are reasonable threshold
values to define the 3 aforementioned groups and
were successfully used in different image processing
and feature selection studies (Desbordes et al. 2017;
Dabboor et al. 2017, 2018b). In each RCM mode, the
analysis of the separability using the K-S distance
leads to the identification of CP features with poten-
tial separability between LA and mineral oil slicks and
the exclusion of those CP features with no separ-
ation capability.

Since some of the identified features might be cor-
related, the next step in our nonparametric analysis
approach is the estimation of the correlation between
the identified CP features. This step is important since
it allows for the detection of possible redundancies
between the identified CP features. The correlation
between the identified CP features is evaluated using
the nonparametric Spearman correlation coefficient R
(Press et al. 2007). The Spearman correlation coeftfi-
cient can take values between —1 and 1. However, in



this study we consider its absolute value, leading to R
ranges between 0 and 1. Correlation analysis of the
extracted features from the first step allows for the
exclusion of possible correlated CP features. In this
study, we consider 2 CP features highly correlated if
the Spearman correlation value > 0.90. The ultimate
goal is to obtain a vector of less correlated CP features
(R < 0.90) suitable of the classification of LA and min-
eral oil slicks. We selected the threshold value of 0.9
since it was adopted and successfully used in different
feature extraction studies (Geldsetzer et al. 2015,
Dabboor et al. 2017, 2018b). The output of the correl-
ation analysis for each RCM mode is a CP vector con-
taining less correlated CP features which are used as
input in the SVM classification algorithm for the clas-
sification of LA and mineral oil slicks. SVM classifica-
tion is a machine learning supervised classification
technique based on decision planes which define clas-
sification decision boundaries (Burges 1998). Half of
the collected samples (Figure 1) are randomly selected
and used for training the classification algorithm
and the other half for the classification accur-
acy assessment.

Results
Noise analysis

In the RSa image, the signal-to-noise analysis was per-
formed based on the selected sample polygons of LA
and EM (Figure 1a). In the 16 M mode, the number
of LA and EM samples is 15312 and 44393, respect-
ively. In the SC30M and SC50M modes, the number
of LA and EM samples is 1932 and 5489, respectively.
Figure 2 shows the mean and standard deviation of
the simulated 6% and 0%, backscattering values for
the three RCM Modes in the RSa image.

In Figure 2, the simulated RH and RV signals are
seen to fluctuate close to the nominal noise floor of
the 16 M (—25dB, Figure 2a), SC30M (—24 dB, Figure
2b), and SC50M (—22dB, Figure 2c¢) RCM modes,
with all mean values being below it. In the 16 M
mode (Figure 2a), LA has mean RH values 2.4-2.5dB
and mean RV values 0.9-1.6 dB below the noise floor
level. EM has mean values 2.5-3.5dB and 1.1-2.8dB
below the noise floor level of the RH and RV chan-
nels, respectively. In the SC30M mode (Figure 2b), LA
regions have mean signal values of 2.2-2.4dB and
0.7-1.8dB below the noise floor in RH and RV,
respectively. In this mode (Figure 2b), mean signal
values from EM regions are also below the noise level
(-24dB) in both RH and RV (2.8-3.5dB and
1.3-3.3dB, respectively). Similar to 16 M and SC30M
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mode, mean values for LA lie below the noise floor of
the SC50M mode (Figure 2c) for RH (2.5-3.6 dB) and
RV (1.7-2.3dB). This is also valid for the EM regions
which have mean signal values of 2.8-3.8dB and
1.8-3.6 dB below the noise level (-22dB) in RH and
RV (Figure 2c). These results suggest high noise con-
tamination observed in the simulated RH and RV in
all 3 RCM modes. This could be explained by the
large incidence angle of the RSa image (46.7°) which
decreases the ocean backscattering (Skrunes et al.
2014), confirming the preferred steep incidence angle
for oil slick detection (Marghany and Hashim 2011).

Figure 3 shows the mean and standard deviation of
the simulated 6%, and 6%, backscattering values for
the 3 RCM Modes in the RSb image, calculated from
the selected samples in Figure 1b. In the 16 M mode,
the number of LA, EM, and CO samples is 88210,
29880, and 143511, respectively. In the SC30M and
SC50M modes, the number of LA, EM, and CO sam-
ples is 7555, 2567, and 12303, respectively.

For the 16 M mode (Figure 3a), the mean values in
the RV channel of LA, EM, and CO are always higher
than the mean values in the RH channel. The mean
values for LA lie mostly above the noise floor for both
RH and RV channels (Figure 3a), whereas the mean
values of EM and CO are closer to and sometimes
slightly below the noise floor of the 16 M mode
(—25dB). The LA mean values lie 1-1.8 dB above the
noise floor for the RH channel and 2.0-2.9 dB above
the noise floor for the RV channel. In EM regions,
the mean values lie from 0.9 dB below to 0.1 dB above
the noise floor of the RH channel and from
0.1-1.0dB above the noise floor for the RV channel
(Figure 3a). In the CO regions, the mean values in the
RH channel lie from 0.7 dB below to 0.2 dB above the
noise floor, whereas for the RV channel the mean val-
ues lie from 0.4dB below to 0.7 dB above the noise
floor (Figure 3a).

Figure 3b shows the RH and RV mean values for
LA, EM and CO in the SC30M mode. Similar to the
16 M mode, the mean backscattering values in the
RV channel of LA, EM, and CO are always higher
than the mean values in the RH channel for the
SC30M mode. The mean values for LA lie mostly
above the noise floor in both RH and RV channels.
For EM and CO, mean values are closer to and
sometimes slightly below the noise floor of the
SC30M mode (—24dB). LA mean values range from
1.5-2.5dB and 2.7-3.6dB above the SC30M noise
level, for RH and RV channels, respectively. In the
EM regions, the mean values in the RH channel lie
from 0.4dB below to 0.2 above the noise floor,
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Figure 2. Signal-to-noise analyses of the simulated RH and RV channels. Error bars show the mean and the standard deviation of
the selected samples in the RSa image in Figure 1a for a) 16 M, b) SC30M, and c) SC50M.
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Table 4. Identified CP features with discrimination capabilities between LA and EM or CO in the RSb image for the three

RCM modes.
LA vs. EM LA vs. CO

16M K-S SC30M K-S SC50M K-S 16M K-S SC30M K-S SC50M K-S
m-6_S 0.541 oo 0.713 oy 0.679 ORHRV 0.756 ORHRY 0.821 aS/oN 0.854
m-y_odd 0.538 Sv3 0.706 o 0.652 oo/ oY 0.756 oo/ 0% 0.820 @ 0.854
Sv3 0.533 als /0% 0.692 SE_Int 0.644 m 0.756 1 0.820 PRiRY 0.848
ad 0.531 1 0.692 Vo 0.644 m 0.754 m 0.820 m 0.827
/0% 0.514 PriRy 0.692 sv3 0.636 m-y_odd 0.734 m-6_S 0.803 sv3 0.813
u 0.514 m-y_odd 0.691 m-y_odd 0.631 m-0_S 0.732 m-y_odd 0.802 m-y_odd 0.811
SE_Int 0513 ad 0.688 m-0_S 0.615 SV3 0.728 V3 0.799 m-0_S 0.804
SVo 0513 SE_Pol 0.675 PRHRV 0.605 SE_Pol 0.700 SE_Pol 0.773 SE_Pol 0.789
m 0.513 m-6_S 0.674 SE_Pol 0.592 o 0.679 o3 0.763 o 0.734
PRiRY 0.507 SE_Int 0.674 0% /0% 0.587 SE_Int 0.598 SE_Int 0.698 SE_Int 0.583

Vo 0.674 u 0.587 Vo 0.598 Vo 0.698 SVo 0.583

m 0.629 m 0.550 ohy 0.571 oy 0.657 7y 0.553

Y 0.573 Y 0.545 oo 0.626 o 0.553

o 0.531

Italic indicates CP features of moderate separability and bold indicates CP features of good separability.

whereas in the RV channel the mean values lie from
0.4-1.1dB above the noise floor level (Figure 3b). In
the CO regions, the mean values in the RH channel
lie from 0.5dB below to 0.5dB above the noise floor
level, whereas in the RV channel the mean values lie
from 0.1-1.5dB above the noise floor level (Figure
3b). Figure 3c shows the RH and RV mean values for
LA, EM and CO in the SC50M mode. As for the
16 M and SC30M modes, the mean backscattering
values of LA, EM, and CO in the RV channel are
always higher than the mean values in the RH chan-
nel for the SC50M mode. Generally, we note in the
SC50M mode that the mean values of LA and oil
slicks are closer to the noise level of the mode com-
pared to the 16 M and SC30M modes. The mean val-
ues for LA in the RH channel lie from 0.0-1.0dB
above the noise level and in the RV channel from
1.0-2.1dB above the noise level. EM regions have
mean signal values of 1.7dB below to 0.1dB above
the noise level in the RH channel and 0.9 dB below
to 0.4dB above the noise level in the RV channel
(Figure 3c). In the CO regions, the mean values in
the RH channel lie from 1.3 dB below to 0.1 dB above
the noise floor level, whereas in the RV channel the
mean values lie from 1.0dB below to 0.3dB above
the noise level (Figure 3c). We note from Figure 3
that mean signal values of LA is always higher than
mean signal values of EM and CO in the three RCM
modes. The results presented here indicate that simu-
lated RH and RV channels in RSb image provide
higher signal-to-noise ratios than the RSa image. Due
to the high noise contamination observed in the RH
and RV channels of the RSa image, our subsequence
analysis in the next sections is confined to the
RSb image.

Separability analysis

The discrimination between LA and oil slicks in the
derived CP features of the RSb image is quantitatively
evaluated using the collected samples (Figure 1b).
Table 4 shows the identified CP features presenting
discrimination capabilities between LA and the two
mineral oil types sorted in a descending order in
terms of their K-S distance. We highlight CP features
of moderate separability between LA and EM or CO
in italic. CP features of good separability are high-
lighted in bold.

For the 16 M mode, the identified CP features
which present a potential separability between LA and
EM are all of moderate separability. The highest K-S
distance between LA and EM (0.541) is provided by
the m-6_S feature. Unlike the 16 M mode, the SC30M
mode has among the identified CP features 2 with
good separability between LA and EM, with the high-
est K-S distance (0.713) given by the 6% feature. The
0% feature is also the CP feature with the highest K-
S distance between LA and EM (0.679) in the SC50M
mode, but with moderate separability. Thus, similar to
the 16 M mode, all the identified CP features in the
SC50M mode are of moderate separability between
LA and EM.

As shown in Table 4, the discrimination between
LA and CO seems to be easier than the discrimination
between LA and EM. This is evident from the fact
that all the three RCM modes contain CP features
with good separability. In the 16 M mode, the highest
K-S distance between LA and CO (0.756) is given by
the pryry feature. This feature is also on the top of
the list of features for discrimination capabilities
between LA and CO in the SC30M mode, with K-S
distance equal to 0.821. In the SC50M mode, the



o]
(FY]

CANADIAN JOURNAL OF REMOTE SENSING . 11

[
b

(]
—_

2
=

—
o

b i
-1 CO

[
[=}

—
h

Y
N

—_
[¥]

—_
—_

[
=1
1

Number of CP Features
o

O =W B h OV ] 00D
I

16M SC30M

LA vs. EM

SC50M

16M | SC30M I SC50M
LA vs. CO

Good separability (0.7 = K-S <0.9)
Moderate separability (0.5 <K-S <0.7)
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highest K-S distance between LA and CO (0.854) is
given by the o%y/0%; feature. This feature is the
second in terms of K-S distance values in the 16 M
and SC30M modes (Table 4). It is worth stating that
the assumption we make in this study that two sample
sets (e.g. LA and EM) are separable in a CP feature if
their K-S distance is >0.5, implies that we reject the
null hypothesis that the two sample sets came from the
same statistical distribution. This assumption should be
valid for a defined alpha value (e.g. 0.05), given the
large sample sizes we used for the calculation of the K-S
distance. The 0.5 threshold value is an appropriate con-
servative cutoff, as smaller K-S distances could also lead
to a rejection of the null hypothesis at the defined alpha
value, given the large sample sizes.

Figure 4 shows the change in the number of identi-
fied CP features for both EM and CO between the
three RCM modes. For the discrimination between
LA and EM, the number of identified CP features in
the 16 M mode is 10 (moderate separability only).
This number becomes 13 in the SC30M and SC50M
modes. However, two of the 13 identified CP features
are of good separability only in the SC30M mode,
while all the identified CP features in the SC50M are
of moderate separability.

The number of identified CP features with discrim-
ination capabilities between LA and CO for the 16 M
mode is equal to 12, which is the lowest among the
other RCM modes (Figure 4). From the identified 12
CP features, four are of moderate separability and
eight are of good separability. The maximum number
of identified CP features with discrimination capabil-
ities between LA and CO is achieved in the SC30M
mode (14 CP features), with 5 features being of mod-
erate separability and 9 features being of good separ-
ability. The total number of identified CP features
decreases to 13 in the SC50M mode, with 4 features
being of moderate separability and 9 features being of
good separability (Figure 4). The change in the num-
ber of identified CP features between the RCM modes
could be due to the difference in spatial resolutions
and noise floors. It is worth noting that for the 16 M
and SC30M modes, all the CP features with discrimin-
ation capabilities between LA and EM can also separ-
ate LA and CO (Table 4). This is also valid for the
SC50M mode, except for the 0%, feature which
appears as the best CP feature for the discrimination
between LA and EM (largest K-S distance), but fails
in the SC50M mode in the separation between LA
and CO (K-S distance <0.5). We also note for this
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feature (0%) that it provides discrimination capabil-
ities between LA and CO only in the SC30M. This is
because in the 16 M and SC50M modes the K-S dis-
tance between LA and CO was slightly below (0.476
and 0.487, respectively) the predefined threshold value
of 0.5. It seems here that the K-S distance is mainly
affected by both the noise floor and the spatial reso-
lution of each RCM mode. The 16 M mode has the
lowest noise floor (—25dB) but the highest spatial
resolution (16 m), while the SC50M has the highest
noise floor (—22dB) but the lowest spatial resolution
(50m). The SC30M is sort of a mode between the
16 M and the SC50M in terms of noise floor (—24 dB)
and spatial resolution (30 m). This seems to allow the
0% to slightly pass the threshold of 0.5 for the K-
S distance.

Correlation analysis

Prior to the classification of LA and mineral oil slicks,
the Spearman correlation between the identified CP
features in Table 4 is calculated to detect correlated
features and eliminate information redundancy. Figure
5 shows a representation of the Spearman correlation
for the three RCM modes for the case of LA and EM
(left-hand column) and for the case of LA and CO
(right-hand column).

LA and EM

Figure 5a shows the Spearman correlation between
the identified CP features of the 16 M mode. Based on
the calculated Spearman correlation, two groups of
strongly correlated CP features (> 0.90) are obtained.
The two groups are shown in Table 5 with the CP
features sorted in a descending order in terms of the
K-S distance between LA and EM.

Figure 5b shows the Spearman correlation between
the identified CP features of the SC30M mode. Based
on the calculated Spearman correlation, four groups
of strongly correlated features are obtained, which are
presented in Table 5 with the CP features sorted in a
descending order in terms of the K-S distance
between LA and EM. Figure 5c shows the Spearman
correlation between the identified CP features of the
SC50M mode. Based on the calculated Spearman cor-
relation, 3 groups of strongly correlated features are
obtained, which are presented in Table 5 sorted in a
descending order in terms of the K-S distance values.
Furthermore, Table 5 shows that the oy, feature
is found less correlated with all the other CP features
(< 0.9) in the SC50M mode.

LA and CO

The Spearman correlation coefficient was also calcu-
lated for the identified CP features of the 16M mode
before the classification of LA and CO. Figure 5d
presents a plot of the calculated correlation between
all the identified CP features. Based on the obtained
correlation 4 groups of highly correlated (> 0.90) CP
features are created, as shown in Table 6.

Figure 5e shows the Spearman correlation between
the identified CP features in the SC30M mode. Four
groups of highly correlated CP features are obtained
and shown in Table 6. Furthermore, two CP features
(a5 and o%y) are found less correlated (< 0.90) with all
the other CP features. For the SC50M, the obtained
Spearman correlation between the identified CP fea-
tures is shown in Figure 5f. Based on the calculated cor-
relation, three groups of highly correlated CP features
are obtained. Furthermore, the o feature is found less
correlated with all the other CP features (< 0.9).

Data classification

Classification of LA and EM

As shown in Table 5, both CP feature groups in 16 M
mode has the m-5_S as the top CP feature with the
highest K-S distance between LA and EM. Thus, the
m-0_S feature is selected and used for the classifica-
tion of LA and EM. This feature is ingested in the
SVM classification algorithm and the classification
results of LA and EM for the 16 M mode are shown
in Figure 6a. LA is assigned to the green class, while
EM is assigned to the red class.

Also, the confusion matrix of the classification
results is shown in Table 7. Herein, a high classifica-
tion accuracy of 96.6% is achieved for the EM regions,
while a low classification accuracy of 55.5% is
obtained for the LA. The achieved overall classifica-
tion accuracy is 63.6% with a Kappa coefficient equal
to 0.314.

For the SC30M mode, a CP vector is created con-
taining the o%;; and SV3 features, given the 4 groups
of strongly correlated features in Table 5. This feature
vector is ingested in the SVM classification algorithm
and the classification results of LA and EM in the
SC30M mode are shown in Figure 6b. Also, Table 7
shows the accuracy of the classification results. A
lower classification accuracy of EM is obtained in the
SC30M (80.5%) compared to the 16 M mode (96.6%).
However, the classification accuracy of LA in the
SC30M mode (95.5%) is found much higher than that
of the 16 M mode (55.5%), with accuracy improve-
ment of 40.0%. The SC30M mode achieved an overall
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Table 5. Groups of strongly correlated (R>0.90) CP features for each RCM mode in the RSb image for LA and EM.

16M SC3oM

SC50M

Strongly Correlated CP Features

Strongly Correlated CP Features

Strongly Correlated CP Features

Group# Group# Group#

1 2 1 2 3 4 1 2 3
m-6_S m-0_S sv3 %y V3 V3 V3 o, sv3 %
m-y_odd m-y_odd o/ 0% o m-y_odd o/ m-y_odd SE_Int ORHRY
NE] SV3 u SE_Int o m-6_S SVo SE_Pol
o o PRHRV Vo m-6_S PRHRV PRHRV TRy e/ TR
oS/ oY SE_Int m-y_odd SE_Int SE_Pol oo/ u
I svo oy SVo m
m m-5_S 7y m
PRHRV m
Table 6. Groups of strongly correlated CP features for each RCM mode in the RSb image for LA and CO.

16M SC3oM SC50M

Strongly Correlated CP Features

Strongly Correlated CP Features

Strongly Correlated CP Features

Group# Group# Group#
1 2 3 4 1 2 3 4 1 2 3
PRHRV o ow/of SELNt  prupy SE_Int  ppygy o % Oy Of/0R R SE_Int o
oo/ 0% SE_Int  u S\({O oo/ o% S\({O o%/oy  SE_Int I SE_Int S\gO
u SV0 SE_Pol Opy u Opy u Svo PRHRV SVo Opy
m m NE m
m-y_odd m-0_S SE_Pol NE]
m-0_S m-y_odd m-y_odd
SV3 N'E] m-6_S
(b)
16M SC30M
- T

LA
EM

SC50M

B

Figure 6. Classification of LA and EM in the a) 16 M, b) SC30M, and ¢) SC50M modes.

classification accuracy of 92.5% with a Kappa coefti-
cient of 0.765, both much higher than the 16 M mode.
For the SC50M mode, a CP vector is created contain-
ing the o3, and SV3 features from the 3 groups of
strongly correlated CP features in Table 5. Also, the

0%y feature (less correlated) is added to the created
CP vector for the SVM classification. Figure 6¢ shows
the classification results of the SC50M mode, with the
obtained accuracy in Table 7. The classification accur-
acy of EM regions is 87.7% in the SC50M mode, which



is slightly higher than that of the SC30M (80.5%) but
still lower than that of the 16 M mode (96.6%). Very
high classification accuracy of LA (97.3%) is achieved in
the SC50M mode, which is slightly higher than the
achieved in the SC30M mode (95.5%), as indicated in
Table 7. The overall classification accuracy of LA and
EM in the SC50M mode is 95.4% (Kappa coefficient =
0.855), which is the highest compared to the 16 M and
SC30M modes (Table 7).

The effect of the different spatial resolutions of the 3
RCM modes should be evident in the classification
results shown in Figure 6. We note that the 16 M mode
with its higher spatial resolution could detect success-
fully EM, with only a small zone around the EM edges
misclassified as LA (green). However, due to the higher
spatial resolution of that mode, some areas within the
LA slicks were misclassified as EM probably due to
properties more similar to EM. These could be areas
with thicker film of plant oil. The lower resolution of
the SC30M and SC50M has masked out almost all these
areas within the LA slicks. Nevertheless, the lower spa-
tial resolution of the SC30M and SC50M modes
increased the green zone (misclassification as LA)
around the EM edges. This misclassified green zone in
the outermost part of EM regions is probably due to
thinner film of EM over time (Skrunes et al. 2014).

From the results above, it seems that in terms of
EM detection, the 16 M mode performs the best.

Table 7. CP features used for the LA and EM classification
with the classification accuracy and Kappa coefficient for each
RCM mode.
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However, both SC30M and SC50M showed high over-
all performance, with the SC50M being slightly high-
est (Table 7).

Classification of LA and CO

From the created 4 groups in the case of 16 M mode
(Table 6), a CP vector containing the ppypy and %
features is formed and ingested in the SVM classification
algorithm. It is worth mentioning that in order to per-
form the classification on the LA and CO and exclude
the EM which is located in-between, we extracted the
perimeters of the LA and CO slicks and used them as a
mask in which the classification is applied. Figure 7a
shows the classification results of LA and CO for the
16 M mode. Also, the resulting classification accuracy
and Kappa coefficient are presented in Table 8.

As shown in Table 8, a high classification accuracy
of 91.9% is achieved for the CO, while the LA is
detected with a lower accuracy equal to 86.5%. The
overall classification accuracy of LA and CO is equal to
89.6% with a Kappa coefficient equal to 0.788 (Table 8).

For the SC30M mode, a feature vector containing
the less correlated CP features (Table 6) in addition to
Prury and oy, from the 4 groups of highly correlated
features (Table 6) is formed and ingested in the SVM
classification algorithm. Figure 7b shows the SC30M
classification results of the LA and CO, with the
obtained accuracy presented in Table 8. Herein, the

Table 8. CP features used for the LA and CO classification
with the classification accuracy and Kappa coefficient for each
RCM mode.

Classification Accuracy (%)

Classification Accuracy (%)

RCM Mode  CP Vector LA EM Overall  Kappa RCM Mode CP Vector LA co Overall  Kappa

16M m-3_S LA 55.5 34 636 0314  16M PReRY TR LA 85 81 896 0788
EM 445 966 o 135 919

SC30M o3y SV3 LA 95.5 19.5 92.5 0.765 SC30M Orirv 09 Os Ony LA 93.5 45 946  0.891
EM 45 805 co 65 955

SC50M oYy o5 SV3 LA 97.3 123 95.4 0.855 SC50M o%/o% o3 as LA 95.5 23 9.7 0934
EM 27 877 (€0) 45 977
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Figure 7. Classification of LA and CO in the a) 16 M, b) SC30M, and ¢) SC50M modes.
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Figure 8. Classification of LA and oil slicks (EM and CO) in the a) 16 M, b) SC30M, and c) SC50M modes.

classification accuracy of both LA and CO (93.5% and
95.5%, respectively) is higher than that of 16 M mode.
The overall classification accuracy of LA and CO is
equal to 94.6%, with a Kappa coefficient of 0.891.

For the SC50M mode, a CP vector containing the
0% /0%, O% and o features (Table 6) is created and
ingested in the SVM classification algorithm. Table 8
shows the accuracy of the classification results shown in
Figure 7c. In the SC50M mode, both LA and CO
achieve the highest classification accuracy (95.5% and
97.7%, respectively), as shown in Table 8. This accuracy
is slightly higher than that of the SC30M and much
higher than that of the 16 M mode (Table 8). Thus, the
highest overall accuracy is achieved in the SC50M
mode and reaches the 96.7% (Kappa = 0.934), which is
slightly higher than that of the SC30M (94.6%).

From the results above for all examined modes, it
seems that in terms of overall performance the
SC30M and SC50M showed high performance, with
the SC50M being slightly higher (Table 8).

Classification of LA and oil

Herein, we attempt to discriminate between LA and
all the mineral oil slicks (EM and CO) in the experi-
mental site using the SVM classification algorithm. In
each mode, we use for the classification the CP fea-
tures in both feature vectors shown in Table 7 and 8.
In the 16 M mode, the CP vector used for the classifi-
cation of LA and EM contains the m-6_S feature,
which is highly correlated with the ppyry feature con-
tained in the CP vector used for the classification of
LA and CO. Thus, we excluded the m-0_S feature and
used for the classification of LA and mineral oil slicks
the CP vector in Table 8. Figure 8a shows the classifi-
cation results of LA and oil slicks. Also, the accuracy
of the classification results is shown in Table 9. The
LA and oil slicks are classified with accuracy equal to
86.2% and 87.6%, respectively. The achieved overall

Table 9. CP features used for the LA and oil slicks (EM and
CO) classification with the classification accuracy and Kappa
coefficient for each RCM mode.

Classification Accuracy (%)

RCM Mode CP Vector LA Qil Overall  Kappa

16M PRHRV Ot LA 862 124 871 0733
ol 138 876

SC30M Prirv 0o % 0% LA 939 95 926 0845
oil 6.1 905

SC50M o%/0% o8 % as LA 940 3.1 958 0911
oil 60 969

classification accuracy and Kappa coefficient are equal
to 87.1% and 0.733, respectively.

In the SC30M mode, the CP vector used for the
classification of LA and EM contains two features; o}y
and SV3 (Table 7). The first feature (ayy) is also one
of the elements of the CP vector used for the classifi-
cation of LA and CO, while the second feature (SV3)
is highly correlated with the pgppy feature (Table 8).
Thus, the CP vector used for the classification of LA
and oil slicks in the SC30M is identical to the CP vec-
tor used for the classification of LA and CO in the
same mode. Figure 8b shows the classification results
of LA and oil slicks in the SC30M mode, while in
Table 9 the achieved accuracy is presented. As shown
in Table 9, higher classification accuracy is obtained
for both LA (93.9%) and oil slicks (90.5%) in the
SC30M compared to the 16 M mode. Therefore, higher
overall classification accuracy (92.6%) and Kappa coef-
ficient values (0.845) are achieved in this mode.

In the SC50M mode, the CP vector used for the
classification of LA and EM contains 3 features; agy;,
o9, and SV3 (Table 7). The second feature (c%;) is
also one of the elements of the CP vector used for the
classification of LA and CO (Table 8), while the third
(SV3) is highly correlated with the o3y/0%, feature
(Table 6). Thus, the CP vector used for the classifica-
tion of LA and oil slicks in the SC50M includes the
features of the CP vector used for the classification of
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Table 10. Summary of the classification accuracy of LA and oil slicks in our study and Skrunes et al. (2014).

Classification Accuracy (%)

16M SC30M SC50M log(yco) log(p) log(yco)+log()
LA oil LA oil LA Oil LA Oil LA oil LA oil
LA 86.2 124 93.9 9.5 94.0 3.1 99.8 27.2 98.6 20.9 99.0 21.8
Oil 13.8 87.6 6.1 90.5 6.0 96.9 0.2 72.8 14 79.1 1.0 78.2
Overall Accuracy 87.1 92.6 95.8 79.8 84.1 83.6

LA and CO in the same mode, in addition to the 6%y
feature. Figure 8c shows the classification results of
LA and oil slicks, while in Table 9 the achieved accur-
acy is presented. Classification accuracy of LA in the
SC50M mode (94.0%) is approximately equal to that
of the SC30M mode (93.9%). Furthermore, the highest
classification accuracy of oil slicks (96.9%) is achieved
in the SC50M mode, which is slightly higher than that
of the SC30M mode (90.5%). Consequently, highest
overall classification accuracy and Kappa coefficient
(95.8% and 0.911, respectively) are obtained in the
SC50M mode, and are slightly higher than that of the
SC30M mode (92.6% and 0.845, respectively).

Comparison with Co-polarization SAR results

It would be of interest for our study to compare the
obtained classification results using the simulated RCM
CP SAR data for LA and mineral oil slicks with those
reported in Skrunes et al. (2014) using polarimetric fea-
tures derived from the copolarization channels (HH
and VV) of the RSb image. It is worth mentioning that
Skrunes et al. (2014) considered only the classification
of LA and all mineral oil slicks as one class. Unlike our
study, the separate classification of LA and EM or LA
and CO in the RSb SAR image was not tested in
Skrunes et al. (2014). In Skrunes et al. (2014), the classi-
fication of LA and oil slicks was performed using: (1)
the logarithm of the copolarization power ratio
(log(y)), (2) the logarithm of the geometric intensity
(log(w)), and (3) both log(y.,) and log(u).

As shown in Table 10, the classification accuracy of
LA in the 3 experiments conducted in Skrunes et al.
(2014) is slightly higher than that of the SC30M and
SC50M, but much higher than that of the 16 M. In
contrary, the classification accuracy of the mineral oil
slicks in all RCM modes is much higher than that
obtained in the 3 experiments of Skrunes et al. (2014).

In terms of overall classification performance,
Table 10 shows that the classification performance of
the examined RCM modes in our study is better than
that reported in Skrunes et al. (2014), especially for
the case of SC30M and SC50M modes. The observed
higher overall performance of the RCM modes is
noted, though the polarimetric features used for the
classification of LA and mineral oil slicks in Skrunes

et al. (2014) were obtained from dual polarized SAR
imagery ~ with  lower  noise  contamination
(RADARSAT-2 noise floor was between —32dB and
—35dB), compared to the CP features in our study
which were obtained from simulated RCM data with
higher noise floor (between —22dB and —25dB). The
higher information content of the CP SAR data
against the conventional dual polarized SAR data
should have contributed to the observed higher per-
formance. Another factor should be the classification
algorithm which we used in our study compared to
the one used in Skrunes et al. (2014). An unsuper-
vised k-means classification approach was adopted by
Skrunes et al. (2014), where k numbers of class cen-
ters are randomly selected and the classification is
iteratively performed based on the minimum
Euclidean distance. In our case, we performed a
supervised classification using the SVM algorithm,
which is a sophisticated machine learning classifica-
tion algorithm with well-known better performance.

It is worth mentioning that in Zhang et al. (2017),
ten CP features were extracted from simulated CP SAR
data obtained from the RSb image. These features were
used for the classification of mineral oil using SVM
classification. The overall classification accuracy was
95.2%, which is higher than the obtained overall classifi-
cation in the 16 M and SC30M (87.1% and 92.6%,
respectively), but slightly lower than the obtained over-
all classification accuracy of the SC50M (95.8%).
However, it is important to emphasize the difference
between our study and that by Zhang et al. (2017),
which lies on the fact that in our study the focus is on
the discrimination between LA and mineral oil slicks,
while in Zhang et al. (2017) the focus was on the detec-
tion of mineral oil slicks by discriminating them from a
class which included both clean sea and LA.

Discussion

CP features calculated from simulated SAR data of the
RCM MR SAR modes could be utilized for the classi-
fication of LA and mineral oil slicks (EM and/or CO).
Within the limited number of acquired SAR images
for this oil release experiment, results in this study
proved that the performance of the 3 RCM modes in
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the discrimination and the subsequent classification of
mineral oil slick varies between the 3 modes.
As expected, this variation in the performance is not a
function of the nominal noise floor only, but also the
spatial resolution of each mode. This explains the fact
that in our study the 16 M mode had the weakest per-
formance compared to the other two modes, though it
has the lowest nominal noise floor (—25 dB).

We note from Table 5 and 6 that the discrimination
between LA and mineral oil spills is achieved using CP
features associated mainly with the surface scattering
mechanism and the power of the backscattered signals.
This agrees with the literature where biogenic oil (i.e.
LA) was found to exhibit surface scattering mechanism
close to the Bragg scattering from the clean sea sur-
face, while scattering from mineral oil is characterized
by higher randomness process (Skrunes et al. 2014;
Nunziata et al. 2008; Migliaccio et al. 2007). Also, the
power of the backscattered signal from the biogenic oil
is higher than that from mineral oil slicks.

In Table 7, we note that the 3 sets of CP features
corresponding to the 3 modes are not identical.
However, they are in many cases highly correlated. For
example, the 6%, in the SC50M mode and the SV3 in
both SC30M and SC50M modes (Table 7) are highly
correlated features with the m-0_S feature in the 16 M
mode (Table 5). Furthermore, the 6%, feature in the
SC50M is also one of the features highly correlated
with the ¢%,; in the SC30M (Table 5). The o%; in
SC30M and SC50M (Table 5) is an exception since in
the 16 M mode it is not correlated with any of the two
feature groups in Table 5. In Table 8, we note that the
Prurv and ob; features are common in the 3 modes,
except for the SC50M where the ppypy is replaced
with the 6% /a%, feature, with which it is highly corre-
lated (Table 6). The ¢ is common in both SC30M and
SC50M modes only, while 6% is unique in the
SC30M (Table 8).

For the operational marine pollution monitoring, it
is preferable to identify a single set of CP features
consistent across the RCM MR modes and suitable
for the discrimination and classification of mineral oil
slicks. Thus, in terms of consistency, we note in Table
4 that all the identified CP features with discrimin-
ation capabilities between LA and mineral oil slicks
(EM and CO) in the 16 M mode are common with
the SC30M and SC50M modes.

Conclusions

All the medium resolution modes of the recently
launched RCM are investigated for their expected
potential in the discrimination between LA and

different mineral oil slicks using simulated data. A
noise analysis of the simulated data suggested that the
feasibility of oil slick detection might not be possible
at large radar incidence angles due to the backscatter-
ing in the RH and RV channels which could be lower
than the nominal noise level. Results of the discrimin-
ation between LA and mineral oil slicks at steeper
radar incidence angle (RSb image) showed that the
SC50M mode provides the highest overall perform-
ance in term of LA and oil slicks (EM and/or CO)
classification. This performance was slightly higher
than that of the SC30M mode. Furthermore, results
showed that the discrimination between LA and CO
could be easier than the discrimination between LA
and EM in the 3 modes. This is because the overall
classification accuracy was always higher in the case
of LA and CO. We should acknowledge that further
research work is still required to confirm the above
results using real RCM imagery with their induced
speckle noise acquired under wide range of radar inci-
dence angles. Furthermore, validation of the results
with the suggested parameterization of this study is
also needed over all types of oil slicks and lookalike
phenomena (e.g. upwelling, ship wake, low wind, etc.)
and under different environmental conditions (e.g.
wind speed).
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