
Software and Embedded Systems Engineering
Fakultät IV Elektrotechnik und Informatik
Technische Universität Berlin

Automated Test Generation for Satellite
On-Board Image Processing

Master Thesis

for the degree of

Master of Science

Ulrike Witteck
Matr.-Nr. 376475

07. September 2018

Supervisor:

Prof. Dr. Sabine Glesner
Prof. Dr. Olaf Hellwich

Sworn Affidavit

I hereby declare that the thesis submitted is my own, unaided work, completed
without any unpermitted external help. Only the sources and resources listed were
used.

Berlin, 07. September 2018

Signature

Abstract

On-board image processing technologies in the satellite domain are subject to
extremely strict requirements with respect to reliability and accuracy in hard real-
time. Due to their large input domain, it is infeasible to exhaustively execute
all possible test cases. Furthermore, because of their complex computations, it is
difficult to find specific test cases that provoke mission-critical behavior.
To overcome these problems, we first define a test approach that efficiently and

systematically captures the input domain of satellite on-board image processing
applications. We present a dedicated partitioning into equivalence classes for each
input parameter. As a result, our approach systematically reduces the number of
test cases. Moreover, we define novel multidimensional coverage criteria to assess a
given test suite for its coverage on the input domain. We present a test generation
algorithm that automatically inserts missing test cases into the given test suite
based on our multidimensional coverage criteria. This results in a reasonably small
test suite that covers the whole input domain of satellite on-board image processing
applications.
Second, we define a test approach that automatically searches for test cases that

are specifically tailored to provoke mission-critical behavior of satellite on-board
image processing applications. For that, we present a novel genetic algorithm.
We define a two-criteria fitness function that is based on the execution time and
mathematical accuracy of the application under test. Therefore, our algorithm
automatically selects test cases that provoke worse execution times and inaccurate
results of the satellite on-board image processing application.
We investigate the efficiency of our approaches on the PLAnetary Transits and

Oscillation of stars (PLATO) Fine Guidance System (FGS) algorithm. This is
a satellite on-board algorithm that calculates the high-precision attitude of the
spacecraft. The experimental results show that our first approach efficiently and
systematically generates a test suite. This suite completely covers the input domain
with respect to our multidimensional coverage criteria. This test suite has a higher
error-detection capability than a randomly generated test suite. Therefore, our
test approach increases the test efficiency and quality. Furthermore, our genetic
algorithm automatically finds test cases that provoke longer execution times and
less accurate results when using the generated test suite from the first approach
as search space than using a randomly generated test suite. Hence, our genetic
approach improves a given test suite to support robustness testing.
As a summary, the combination of our approaches increases the efficiency and

effectiveness of the test process for satellite image processing applications.

Zusammenfassung

Bordeigene Bildverarbeitungsanwendungen im Bereich der Satellitentechnik un-
terliegen extrem hohen Anforderungen bezüglich Zuverlässigkeit, Genauigkeit und
Echtzeitfähigkeit. Die Menge an Testfällen ist extrem groß. Daher ist es nicht mög-
lich alle Testfälle auszuführen. Zudem ist es aufgrund der komplexen Berechnungen
schwer, Testfälle zu finden, die missionskritisches Verhalten provozieren.
Als Lösung, präsentieren wir zuerst einen Testansatz, der die Eingabedomäne von

Bildverarbeitungsanwendungen eines Satelliten effizient und systematisch erfasst.
Dazu unterteilen wir jeden Eingangsparameter in speziell definierte Äquivalenz-
klassen. Auf diese Weise wird die Anzahl der Testfälle systematisch reduziert. Um
eine bestimmte Testsuite hinsichtlich ihrer Abdeckung auf der Eingabedomäne zu
bewerten, definieren wir neuartige multidimensionale Abdeckungskriterien. Zusätz-
lich präsentieren wir einen Algorithmus zur Testgenerierung, der fehlende Testfälle
basierend auf unseren mehrdimensionalen Abdeckungskriterien automatisch in die
gegebene Testsuite einfügt. Das ergibt eine reduzierte Testsuite, die die gesamte
Eingabedomäne von Bildverarbeitungsanwendungen für Satelliten abdeckt.
Wir definieren einen zweiten Testansatz, der automatisch nach Testfällen sucht.

Diese sind speziell auf das missionskritische Verhalten von Bildverarbeitungsan-
wendungen eines Satelliten zugeschnitten. Für diesen Zweck stellen wir einen neu-
artigen genetischen Algorithmus vor, der eine Fitnessfunktion mit zwei Kriterien
nutzt. Diese Funktion basiert auf der Ausführungszeit und der mathematischen
Genauigkeit der zu prüfenden Anwendung. Daher wählt unser Algorithmus auto-
matisch Testfälle aus, die zu schlechteren Ausführungszeiten und ungenauen Er-
gebnissen der Bildverarbeitungsanwendung führen.
Wir untersuchen die Effizienz unserer Ansätze anhand des Algorithmus des PLATO

 FGS. Hierbei handelt es sich um einen bordeigenen Algorithmus, der die hoch-
präzise Lage des Satelliten berechnet. Die Versuchsergebnisse zeigen, dass unser
erster Testansatz eine Testsuite effizient und systematisch generiert. Diese Testsui-
te deckt die Eingabedomäne in Bezug auf unsere multidimensionalen Abdeckungs-
kriterien vollständig ab und verfügt daher über eine höhere Fehlererkennung als
eine zufällig generierte Testsuite. Somit steigert unser Testansatz die Testeffizienz
und -qualität. Wird die Testsuite vom ersten Ansatz als Suchraum für unseren
genetischen Algorithmus verwendet, findet dieser Testfälle, die zu längeren Aus-
führungszeiten und weniger genauen Ergebnissen führen, als bei der Verwendung
einer zufällig generierten Testsuite. Somit verbessert unser genetischer Ansatz eine
gegebene Testsuite, um Robustheitstests zu unterstützen.
Hieraus ergibt sich, dass die Kombination unserer Ansätze die Effizienz und Effek-

tivität des Testprozesses für Anwendungen der Satellitenbildverarbeitung erhöht.

Acknowledgements

I would like to thank my academic advisor Dr. Paula Herber from the Technical
University (TU) Berlin for her encouragement and guidance as well as her contin-
uous support. She gave me valuable advice regarding the structure and content of
this thesis.
I also thank Dr. Denis Grießbach from the German Aerospace Center (DLR) for

introducing me to the topic of the Fine Guidance System (FGS). He patiently an-
swered my questions to the topic and gave me insightful comments and suggestions
about my work.
In addition, I thank Gisbert Peter from the DLR for his many years of support

and for initiating the topic of this thesis.
My thank also go to Bernd Ulmer from Ingenieurbüro Ulmer for his support

with technical knowledge about satellite on-board applications, their design, and
development. I thank Mr. Ulmer and Karsten Westerdorff from the DLR for their
work to run the FGS algorithm on the target board.
I would like to thank Rainer Berlin from the DLR for his help on packet definitions

for the communication between the test application and the application under test.
Finally, my thanks go to all named persons as well as to Claas Ziemke and Eilke

Santjer from the DLR as proofreaders of this thesis. I am thankful for their valuable
comments on this work.

Contents

1 Introduction 1

2 Background 3
2.1 Equivalence Class Partition Testing 3
2.2 Genetic Algorithms . 4
2.3 Context: PLAnetary Transits and Oscillation of stars 5

3 Related Work 9

4 Multidimensional Coverage Criteria for Automated Testing of
Image Processing Algorithms 12
4.1 Assumptions and Limitations . 13
4.2 Running Example: Input Parameters 13
4.3 Equivalence Class Definitions . 15
4.4 Multidimensional Coverage Criteria 19
4.5 Automated Test Generation . 21
4.6 Summary . 22

5 Genetic Algorithm for Automated Test Generation for Image
Processing Algorithms 24
5.1 Assumptions and Limitations . 25
5.2 Proposed Genetic Algorithm . 26
5.3 Automated Test Generation . 31
5.4 Summary . 33

6 Evaluation 35
6.1 Implementation . 35
6.2 Experimental Results: Partitioning Approach 36
6.3 Experimental Results: Genetic Algorithm 39

7 Conclusion 46

List of Figures iii

List of Tables iv

List of Algorithms v

List of Acronyms vi

Bibliography x

i

ii

1 Introduction

Various on-board image processing applications are subject to strict requirements
with respect to reliability and accuracy in hard real-time. Due to the large in-
put domain of such applications, testing the systems manually is error-prone and
time-consuming. Hence, a test approach is needed that automatically and system-
atically generates test cases for testing such applications. However, the automated
test generation for on-board image processing applications poses two major chal-
lenges: First, the large amount of input parameters and their possible combinations
leads to a high number of test cases. Hence, the systematic and efficient coverage
of the whole input domain is expensive. Second, many on-board image processing
applications perform complex algorithmic computations. Therefore, it is difficult
to find all test cases with a high probability that provoke mission-critical behavior.
That means, scenarios where, for example, the real-time behavior or the deliv-
ered mathematical accuracy does not meet specified requirements. This may cause
system failures, damages, or unexpected behaviors during mission lifetime.
Previous work [BK06][HP16][SBW01][MA00][VM14] presents diverse automated

test approaches for several systems in various domains, for example for the au-
tomotive and the railway applications. The studies investigate systems with huge
input domains and complex functional-behavior. However, these approaches do
not define test requirements tailored to the specific domain of satellite on-board
image processing applications, as considered in this thesis. Moreover, the presented
approaches are not designed to search for test cases provoking real-time critical
behavior and scenarios where the accuracy of the application gets critically low.
In this thesis, we present two novel test approaches for the specific domain of

satellite on-board image processing applications: The first approach systematically
selects test cases from the huge input domain of such applications. Our objective
is to achieve a high coverage of the input domain while at the same time using
reasonably small test suites. The second approach automatically generates test
cases that provoke mission-critical behavior of the system. In this way, we aim for
an improvement of a given test suite to support robustness testing.
For our first proposed approach, we adopt the equivalence class partition testing

method. In general, this method partitions a given input domain or output domain
into disjoint sub-domains called equivalence classes [VM14]. The use of some test
values as representatives of each class reduces the number of required test cases
[BQ15]. In our test approach, we specify a dedicated partitioning for each input pa-
rameter of the satellite on-board image processing application. At the same time,
we present various concepts for the partitioning of image processing input data
that can be transferred to other domains. Moreover, we define multidimensional
coverage criteria for this specific application domain. The proposed criteria unite
the individual coverage criteria of the input parameters. We present a test gen-

1

1 INTRODUCTION

eration approach that uses our multidimensional criteria to automatically assess
given test suites with respect to their coverage of input parameter combinations.
In this way, our test approach enables efficient test case generation for the domain
of such applications.
To reach the goal of our second approach, we define a genetic algorithm. It auto-

matically searches for test cases that provoke mission-critical behavior with respect
to run time and mathematical accuracy of the on-board image processing appli-
cation. In general, a genetic algorithm solves search or optimization problems by
applying evolutionary mechanisms. It evaluates solutions with respect to given
criteria using a so-called fitness function. Then it improves the best solutions to
satisfy these criteria [Moh05]. For our proposed test approach, we define a novel
two-criteria fitness function based on the real-time behavior and mathematical ac-
curacy provided by a satellite on-board image processing application. With that
function, our genetic algorithm automatically steers the search of test cases that
provoke long execution times and inaccurate results of the application.
To investigate the efficiency of our proposed test approaches, we used the Fine

Guidance System (FGS) algorithm of the PLAnetary Transits and Oscillation of
stars (PLATO) mission as a case study. It is a special satellite on-board image
processing algorithm that calculates the high-precision attitude of the spacecraft
by comparing tracked star positions in image frames taken on board with known
star positions in a star catalog. The experimental results demonstrate the efficiency
of the partitioning approach due to an increased error-detection capability of a
given test suite. Furthermore, they show the efficiency of the genetic approach due
to the automated search of specific test cases tailored for robustness testing.
This thesis is structured as follows: Section 2 gives a brief overview of equivalence

class partition testing and describes the concept of genetic algorithms in general.
Furthermore, it presents an introduction of the PLATO mission and the PLATO
FGS algorithm. Section 3 outlines related work on equivalence class partition test-
ing and on the use of genetic algorithms for test case generation in practice. Section
4 presents our definitions of the proposed equivalence class partitioning approach
by means of the case study. First, it gives an introduction of the input parame-
ters of the PLATO FGS algorithm and presents our equivalence class formulations
of these specific parameters. Then, it shows our definition of multidimensional
coverage criteria on the specified equivalence classes and sketches the overall test
generation process. Section 5 presents our proposed genetic algorithm. First, it pro-
vides our description of the algorithm components. Then it gives an overview of
our automated test generation approach. Our implementation of both approaches
is represented in Section 6. After that, the section provides a summary of the
practical results for both approaches. The thesis concludes with a summary of the
main results and gives an overview of future work.

2

2 Background

This section gives an overview of equivalence class partition testing in general and
describes the concept of genetic algorithms. After that, it outlines the PLATO
mission and the mission-critical PLATO FGS algorithm.

2.1 Equivalence Class Partition Testing

To make testing more efficient and less time consuming, it is preferable to examine
as many test cases as necessary to satisfy specified test criteria. However, the
selection of a few test cases from a huge input domain is a major problem when
testing an application. Test cases should be representatives of the entire input
domain. At the same time, they should increase the number of detected errors in
the code [Pet09].
Equivalence class partition testing offers a possible solution to this problem. It

is a commonly used approach in practice. The technique partitions a given input
domain or output domain into disjoint sub-domains, the equivalence classes. The
method partitions the domain in such a way, that all elements in an equivalence
class are expected to provoke the same system behavior according to a specifica-
tion. The partitioning is based on one or multiple input parameters specified in
the requirements. Equivalence classes represent subsets of parameter values that
completely cover the input or output domain. For the purpose of software testing,
it is therefore sufficient to test some representative values of each equivalence class.
Broekman and Notenboom [BN03] explain the method on following small example:
assume that a system behavior is subjected to a given temperature condition:

15.0 ≤ system temperature ≤ 40.0 (1)

Testing this system requires a huge number of test cases. However, applying the
equivalence class partitioning approach leads to three equivalence classes:

- the system temperature is lower than 15.0

- the system temperature value is in the range from 15.0 to 40.0

- the system temperature is higher than 40.0

In this case, three test cases, are sufficient to cover the whole input domain of the
parameter. Example test cases for each equivalence class are: 10.0 (invalid), 35.0
(valid), 75.0 (invalid).
The example demonstrates that the application of equivalence class partition

testing leads to a limited number of required test cases. The selection of test cases
from equivalence classes can be made according to various criteria: using border
values, testing special values or randomly selecting test cases [BQ15, HP13, Pet09].

3

2 BACKGROUND

The increased partitioning effort is a drawback of using equivalence class parti-
tion testing compared to random testing. In many cases, several definitions of the
domain partitioning are applicable. This is mainly because the tester assumes that
test cases of the same equivalence class have the same system behavior. However,
the approach removes redundant test cases but retains the completeness of the
tests. Hence, the approach reduces the test effort compared to exhaustive testing
[BQ15].

2.2 Genetic Algorithms

Manual generation of test cases by the tester for software application tests is error-
prone and inefficient. Especially, if the number of input parameter combinations
is considerable. Hence, an automated test approach is needed, designed to search
for test cases specifically tailored to provoke erroneous behavior. In this case, the
system violates given requirements. A promising approach is based on genetic al-
gorithms. They transform the test case design into an optimization problem and
automatically search for parameter combinations that satisfy given test criteria. In
general, a genetic algorithm is a search-based method to solve complex optimiza-
tion problems. The approach uses a cost function that evaluates automatically
generated optimization parameters with respect to predefined test criteria. It is
an effective method which rapidly delivers high-quality solutions to a problem
[JT99, SPA16].
Genetic algorithms are inspired by the concept of biological evolution. The solu-

tions to a problem experience evolutionary mechanisms like selection, mutation,
and recombination. In terms of genetic algorithms, a solution to a problem is called
an individual. It consists of a specified number of genes. The algorithm assigns each
individual a value as a measure of their quality with respect to specified criteria by
means of a cost function, called fitness function. The goal of applying the genetic
algorithm is to create new individuals, so-called children, from previously created
individuals, so-called parents, in each generation. This is done until a certain cri-
terion is satisfied by a generation [SPA16, Moh05].
Figure 1 depicts the work-flow of a genetic algorithm. It shows that the algorithm

first creates a start population from its search space. The population size indicates
the number of individuals per generation. In the next step, the fitness value of
each individual is computed and evaluated. This value is decisive for the survival
probability of an individual in the selection process. The selection operator selects
individuals with high fitness values in the current population to generate a new
population from the old one. This corresponds to the principle: survival of the
fittest. After that, the genetic algorithm applies the crossover operator to the new
population. In this step, the operator swaps genes at random positions between two
individuals at a predefined crossover probability pc. The goal is to generate a better

4

2.3 Context: PLAnetary Transits and Oscillation of stars

Figure 1: Genetic algorithm procedure

population by combining genes from fitter individuals. As seen in the picture, the
next step of the genetic algorithm is the mutation process. The algorithm applies
the mutation operator to the population to preserve the diversity of gene values.
With a predefined mutation probability pm, the process alters randomly selected
gene values of individuals. As Figure 1 depicts, the genetic algorithm repeats the
last four steps on the newly generated population if the current generation does not
satisfy the predefined termination condition. This condition may define a maximum
number of generations or a reasonably accurate solution [SPA16, Moh05, GKK04,
pp. 36-41].
The selection strategy affects the convergence of the genetic algorithm. Too high

convergence is a common problem. In that case, the algorithm delivers a locally
optimal solution. On the other hand, solutions do not evolve if the convergence
is too low. An advantage of genetic algorithms is the possibility to run on paral-
lel processors. They can solve different complex, computation intensive problems,
with many possible solutions in a wide search-space. Hence, it is possible to au-
tomatically search for optimal test data that provoke a specified behavior of the
software application [JT99, SPA16, Moh05, GKK04, pp. 61-62].

2.3 Context: PLAnetary Transits and Oscillation of stars

PLATO is an European Space Agency (ESA) mission in the
”
cosmic vision“1 pro-

gram. The German Aerospace Center (DLR) manages the international consortium
for developing the payload and scientific operation of the PLATO project [DLR17].
The main goal of the PLATO mission is the detection and characterization of

Earth-like exoplanets orbiting in the habitable zone of solar-type stars. It achieves
its scientific objectives by long uninterrupted ultra-high precision photometric
monitoring of large samples of bright stars. This requires a very large Field of

1Cosmic vision is an ESA long-term space scientific program [ESA12].

5

2 BACKGROUND

View (FOV) as well as a low noise level. To achieve a high pupil size and the
required FOV the instrument contains 26 telescopes for star observation. 24 nor-
mal cameras monitor stars fainter than magnitude 8 at a cycle of 25 s. Two fast
cameras observe stars brighter than magnitude 8 at a cycle of 2.5 s. The size of
the FOV of a fast camera is 38.7°×38.7°.
The cameras are equipped with four Charge Coupled Devices (CCD) in the focal

plane, each with 4510× 4510 pixels. Figure 2 shows the CCD composition for the
fast cameras. The blue areas represent the image area. The other half of the CCD
is the frame transfer storage area.

≥ 38.7° (camera optics unobstructed FoV)

≥ 18.0° (CCD width)

≤ 0.46° (gap between CCDs)

Storage Area

Image Area

≥
9

.0
°

Nominal FoV

Figure 2: Camera Field of View [Gri17]

Each fast camera comes with a Fast camera Data Processing Unit (F-DPU).
On this unit, the FGS algorithm is running. It calculates attitude data with an
accuracy of milliarcseconds from the image data of the fast cameras. The F-DPU
supplies the attitude data to the Attitude and Orbit Control System (AOCS).
The FGS in connection with the AOCS is regarded as mission-critical component.
Hence, it requires high reliablity [WP17].

6

2.3 Context: PLAnetary Transits and Oscillation of stars

Fine Guidance System Algorithm

Many spacecraft missions use a FGS to obtain accurate knowledge about the space-
craft orientation. We use the PLATO FGS algorithm as a case study to investigate
the efficiency of the proposed test approaches. This section gives an overview of
the PLATO FGS operation.
The attitude calculation of a telescope is based on estimated star centroids on the

CCD compared to their reference directions in a star catalog. Figure 3 presents
an overview of the FGS algorithm [Gri17].

Figure 3: Overview of the Fine Guidance System algorithm [Gri17]

As Figure 3 shows, the FGS gets an initial attitude with an accuracy of 2 arcmin-
utes as input. It uses the value for the initialization of the autonomous attitude
tracking. Every 2.5 s, the FGS reads 7× 7 pixel sub-windows from a full CCD-
image. It determines the sub-windows by means of the initial attitude, preselected
guide stars and the camera model. The latter, also called pinhole model, includes
equations to transform the centroid coordinates (uc, vc)

T on the CCD into unit
vectors (x, y, z)T in the camera coordinate system [Lie02, Gri17].
Each sub-window contains one guide star. Guide stars are predefined stars in a

star catalog that satisfy given criteria. For example, the magnitude of the star is
within a certain range, the star has very low contamination, etc. [Gri17].
The FGS algorithm calculates centroids after reading sub-images, as Figure 3

depicts. A linear center of mass calculation estimates the centroid position. To get
a more precise solution, the algorithm separately estimates each centroid using a
Gaussian-Point Spread Function (PSF) observation model. The PSF describes the
distribution of the star light over the CCD pixels [SW15]. In the case of a Gaussian-

7

2 BACKGROUND

PSF there is a Gaussian distribution. Otherwise, we call it a non-Gaussian-PSF.
Equation 2 presents a Gaussian-PSF observation h(i, j) of a single pixel [Gri17].

h(i, j) = Im ·
1

2πσ2

i+1∫
i

e−
(u−uc)2

2σ2 du

j+1∫
j

e−
(v−vc)2

2σ2 dv +D + ξ (2)

The FGS algorithm uses the pixel observation to determine the centroid po-
sition (uc, vc)

T , intensity Im, image background D and PSF width σ. A non-
linear least square fitting method iteratively refines the parameters of the PSF
model. The PLATO FGS algorithm calculates the correction by means of the QR-
decomposition [Gri17].
In the next step, shown in Figure 3, the FGS algorithm transforms the pixel coor-

dinates of the calculated centroid position into a star direction vector in the camera
boresight2 reference frame. Figure 3 shows the differential aberration as an input
of the vector calculation. The aberration is the difference between an apparent po-
sition change of a star to an average aberration due to movement of the telescope
[MC14]. The aberration value is an optional input and corrects the transformed
star direction. We do not consider the value in the following considerations.
In the last step, the FGS algorithm calculates an attitude quaternion from at least

two star directions in the boresight reference frame and the corresponding reference
vectors from a star catalog by means of the QUaternion ESTimator (QUEST) al-
gorithm. In addition, it delivers an attitude covariance matrix. Within the QUEST
algorithm, a TASTE-test measures the validity of the data. The TASTE-test is a
simple scalar test that validates the input data for the QUEST-algorithm. The fast
validation algorithm uses a variable, called TASTE, which gives the name to the
test. If an input star is misidentified, then the TASTE value is high. Therefore, we
use the value as a qualitative measure of the accuracy of the FGS algorithm. In
the following sections, we denote it as a quality index[Gri17, Shu08].

2The boresight is a line passing the geometric center of the focal plane and the pinhole of the
camera system [Lie02].

8

3 Related Work

Equivalence class partition testing
”
is probably the most widely described, and one

of the most widely practiced, software testing techniques“ [Kan04]. This section
presents a selection of published work on equivalence class partition testing. More-
over, it represents some previously published work on genetic algorithms used for
software testing. The first genetic algorithm was developed by John Holland at the
University of Michigan in 1975 [JT99].

Equivalence Class Partition Testing

Various studies investigated equivalence class partition testing strategies for dif-
ferent domains, for example, railway, automotive, avionics, etc. [HP16].
In the automotive domain, DaimlerChrysler Research developed a test approach,

called Time Partition Testing (TPT), to test the continuous behavior of control
systems. Systems with continuous behavior operate on steadily changing input
and output signals. Various projects for production-vehicle development used this
approach. Bringmann and Krämer [BK06] explained the principle of the TPT
approach using an exterior headlight controller as an example. In most cases, au-
tomotive embedded control systems based on complex functional behavior and a
large input domain. To increase the test efficiency the TPT approach systemati-
cally selects test cases revealing redundant or missing test scenarios in a test set.
Using a graphical, formal state machine notation, the TPT approach partitions
a test scenario into stream-processing components. Each component defines the
behavior of output variables depending on the behavior of input variables up to a
certain point in time, specified by a temporal predicate. Test cases define variations
in the state machine to test different functional aspects of the system under test.
The study shows that state machines are suitable to partition the temporal be-

havior of input and output variables in order to model, compare and select test
cases. The modeled test cases test the complex functional requirements of control
systems. A huge input domain and complex functional behavior are also charac-
teristics of the system class we investigate in this thesis. However, the behavior of
systems from this class is not dependent on the arrival time of the input values.
Hence, the TPT approach is not applicable to the system class that we consider.
Huang and Peleska [HP16] developed a model-based black-box equivalence class

partition testing strategy used in the railway domain. The approach automati-
cally generates finite and complete test suites for safety-critical reactive systems
in relation to fault models. Huang and Peleska investigated the approach using
the Ceiling Speed Monitor of the European Train Control System as an example
for systems with potentially infinite input domain but finite output domain and
internal variables. Their approach models the reactive behavior of such systems by

9

3 RELATED WORK

means of deterministic state transition systems. Moreover, it partitions the state
space into a finite number of equivalence classes such that all states in a class
provide the same output traces for the same non-empty input trace.
The study shows that the proposed approach partitions a large input domain of a

complex system into finite equivalence classes. Based on these classes, the approach
generates a complete test suite. In the study, it is considered as complete, if the
following conditions hold: First, at least one test in this suite fails when testing an
application that violates a given specification. Second, each test in the suite passes
for all applications that satisfy the specification. Huang and Peleska investigated
models whose behavior can be represented by state transition systems. However,
we have no state transition system description of the considered satellite on-board
image processing application. Hence, we develop an approach that does not need
such a description.

Genetic Algorithms

Various papers present genetic algorithms employed as automated software testing
method. The algorithms are used to automatically generate test data for example

- for structural-oriented tests, like control flow testing, data flow testing [SK09]
[VM14] [SBW01]

- fault-based testing [JES98]

- function-oriented tests, for example examining the temporal behavior of an
application [WM01] [AM99] [SBW01] or detecting errors in the software un-
der test [MA00].

Mantere and Alander [MA00] used a genetic algorithm to automatically generate
test images that detect errors in an image processing software. These test images
improve a commonly used, limited set of test cases. Mantere and Alander inves-
tigated various fitness functions considering the difference between the input test
image and the processed output image of the application under test.
The study shows that genetic algorithms are useful to automatically generate test

data that detect errors in image processing software. In contrast to the application
presented in the study, the class of on-board image processing algorithms consid-
ered in this thesis does not manipulate the input data. Therefore, the difference
between input and output image is not available for the fitness function.
Varshney and Mehrotra [VM14] used genetic algorithms for structural testing.

Their algorithm uses the data flow dependencies of a program to automatically
optimize test data. The data flow analysis focuses on the interaction of variable
definitions and references in a program using a control flow graph. The genetic
algorithm automatically generates test data that satisfies specified path criteria.

10

Varshney and Mehrotra applied the test approach to sample programs, for example,
the triangle classification problem.
The study shows that genetic algorithms are feasible to generate test data that

achieve high coverage of variable definition and reference paths in the program
code. Moreover, the study compares the proposed genetic algorithm with random
testing. It shows that the data generated by the genetic algorithm achieves higher
coverage of the program flow graph in fewer generations than data generated by a
random testing approach. Therefore, the genetic approach is more effective. How-
ever, in contrast to Varshney and Mehrotra, we develop an approach that does not
depend on the internal structure of the system.
In the first part of their work, Sthamer, Baresel, and Wegener [SBW01] present

like Varshney and Mehrotra the use of an evolutionary algorithm that automati-
cally generates test cases for structural testing. In the second part, Sthamer, Bare-
sel, and Wegener used an evolutionary approach to investigate the temporal be-
havior of embedded systems. The evolutionary approach transforms the test case
generation in an optimization problem. It automatically searches for input situa-
tions such that the system under test violates specified timing constraints. Hence,
the execution time determines the fitness value of individuals. Sthamer, Baresel,
and Wegener used an engine control system as a case study. Such systems depend
on a large number of input parameters and specified timing constraints. The ex-
periments illustrate that the evolutionary approach generates test data that detect
errors in the timing behavior of systems. Thus, the effectiveness and efficiency of
the test process increase and development costs decrease. The study shows that
the evolutionary approach is applicable to different test goals as well as for testing
systems of various application fields. However, we investigate, besides the temporal
behavior of image processing applications, the accuracy of the application for var-
ious input values. Therefore, we define a fitness function that considers additional
metrics to evaluate the individuals.
All of these proposed approaches show that both methods, equivalence class par-

tition testing and genetic algorithms, improve the software test efficiency. The
methods are applicable to test various systems with large input space in different
domains. According to the results, equivalence class partition testing seems to be
capable to efficiently reduce an existing set of test cases by detecting redundant
test cases. In addition, the method generates a complete set of test cases by adding
missing relevant test cases to the set. The studies confirm that genetic algorithms
are applicable to automatically generate test cases that satisfy special test criteria.
However, the partitioning of the input domain for equivalence class partition test-
ing and the definition of fitness functions for the utilization of genetic algorithms
must be adapted to the specific problem.

11

4 PARTITIONING APPROACH

4 Multidimensional Coverage Criteria for Auto-

mated Testing of Image Processing Algorithms

Many image processing applications require various input parameters such as the
position of an object in the image, the magnitude of an object, the position of an
object in a pixel, a pattern to distinguish different objects, an observation model,
etc. This leads to a huge input domain, which makes testing expensive. Testing such
applications manually is error-prone and time-consuming. Therefore, automated
test systems are needed. However, automated test generation for satellite on-board
image processing applications poses a challenge: The number of possible input
parameter combinations in the test image are very large. That means an enormous
amount of test cases is possible. This makes it hard to efficiently capture the huge
input domain and makes sure that standard inputs, as well as corner cases, are
methodically covered.
To overcome that problem, we define a partitioning approach that systematically

selects test cases from the huge input domain of satellite on-board image processing
applications and enhances a given test suite. To evaluate the efficiency of our
proposed test approach, we investigate a case study, namely the PLATO FGS
algorithm (Section 2.3). Satellite on-board image processing algorithms are subject
to strict requirements with respect to their reliability and accuracy in hard real-
time. Therefore, such systems require extensive testing.
Figure 4 depicts an overview of our proposed partitioning approach. Our key idea

is to define equivalence classes on input parameters typically used by satellite on-
board image processing applications. Section 4.3 presents our concepts to partition
the individual input parameters into equivalence classes. Furthermore, we define
multidimensional coverage criteria, described in Section 4.4.

Figure 4: Overview of the partitioning approach

12

4.1 Assumptions and Limitations

These criteria are based on the equivalence class definitions and measure the num-
ber of covered input combinations of a given test suite. As shown in Figure 4, our
equivalence classes, as well as coverage criteria, are inputs of our implemented test
generation algorithm (see Section 4.5). The algorithm selects for each equivalence
class combination a test case from a given test suite as representatives. Our idea
is to reduce the number of redundant test cases. Furthermore, our algorithm gen-
erates new test cases for missing combinations to reach complete coverage of the
input domain. As a result, the algorithm generates a reasonably small test suite
that covers the whole input domain of on-board image processing application. The
selected test cases serve as input for our automated testing framework. Moreover,
we insert requirements for the automated evaluation of the results of the on-board
image processing application. If the results do not meet the requirements, the
test detects an error. The goal of the test is to automatically detect errors in the
on-board image processing application code.
The following sections describe the mentioned steps of the partitioning approach

in more detail using the PLATO FGS as a case study.

4.1 Assumptions and Limitations

This section states the assumptions and limitations of our proposed partitioning
approach and discuss its applicability to the PLATO FGS algorithm.
In the following, we consider systems with objects in a 2D camera image as inputs.

In the case study, the observed objects are stars with magnitudes between 5.5 to
7.0, uniformly distributed in the image.
We consider four star parameters that affect the mathematical accuracy of the

centroid estimation of the FGS algorithm: the position in the image, the magni-
tude, the sub-pixel, and the PSF shape. The input of the centroid calculation is
a single star. Hence, a test case for the automated test generation is a test star.
The test evaluation is based on the centroid position calculated by the centroid
algorithm of the FGS algorithm. In the following sections, we denote a test suite
as complete if it reaches full coverage on the input domain with respect to our
defined multidimensional coverage criteria.

4.2 Running Example: Input Parameters

One of the main contributions of this thesis is our definition of multidimensional
coverage criteria on the input domain of satellite on-board image processing appli-
cations. These criteria are based on the combination of equivalence classes of the
PLATO FGS input star parameters: position on the Focal Plane Assembly (FPA),
magnitude, sub-pixel position, and PSF shape. The accuracy of the centroid esti-
mation mainly depends on the combination of these input parameters.

13

4 PARTITIONING APPROACH

This section describes how the parameters affect the quality of the centroid calcu-
lation of the PLATO FGS algorithm.
The star signal is spread over all pixels in the sub-image. Hence each pixel includes

information about the star. However, 90% of the energy is within 2× 2 pixel around
the centroid. Each pixel also contains noise. We call the information usable if the
star signal is less interfered by noise and the Signal-to-Noise Ratio (SNR) is high. If
the SNR in the pixel is sufficient, a linear independent equation exists for this pixel.
The centroid calculation needs at least 5 linear independent equations to estimate
the 5 unknown parameters of the pixel observation (cf. Section 2.3 Equation 2).
The distribution of the star signal depends on the star position on the FPA and

the position in a pixel. Due to optical aberrations of the telescope, the PSF shape
of the star is wider in the FPA corner than close to the FPA center. Assume
that the other input parameters contain reasonably good, constant values. Then
a small PSF leads to a low number of pixels with a high SNR and a low number
of linear independent equations. In case of a wide PSF the SNR is low but many
linear independent equations exist. Both cases can be sufficient for an accurate
parameter estimation [Gri17].
The SNR in a pixel also depend on the centroid sub-pixel position. Suppose the

other parameters have adequate, constant values. If the centroid is positioned in
the pixel center, most star flux is accumulated in a few pixels. Then these pixels
have a high SNR compared to the neighboring pixel. In contrast, more pixels have a
sufficient SNR if the centroid is on the pixel border or corner. In this case, the star
information is distributed more evenly over several pixels. The other pixels have a
low SNR. Due to movement, the centroid may move to neighbor pixels. This leads
to variations in the pixel illumination and the apparent centroid position [Gri17].
The star magnitude affects the measured flux (photoelectrons per second) of the

star. The accumulated number of photoelectrons per pixel denotes the illumination
of the pixel. Equation 3 shows the relation between the magnitude m and the
corresponding flux Fm in e−/s.

Fm = F0TQA ∗ 10−0.4∗m (3)

with magnitude m of a star, reference flux F0 of star with m = 0, transmission
efficiency T of the optical system, quantum efficiency Q of the detector, and effec-
tive light-collecting area A. As the equation shows, the star flux is non-linear to
the magnitude of the star. Assume that the other input parameters have sufficient
good, constant values. Then, a low magnitude corresponds to a high number of
photoelectrons. This means the SNR per pixel is high. More information is usable
than in case of a high magnitude [Gri17].
In addition, the accuracy of the centroid calculation depends on the PSF shape.

In the best case scenario, the shape is a symmetric Gaussian-PSF. Then, the
observation model perfectly fits the star. Therefore, the accuracy of the centroid

14

4.3 Equivalence Class Definitions

calculation is high. But in reality, the PSF shape is non-Gaussian. In that case, the
observation model is less accurate. Besides, movements lead to stronger variations
in the expected centroid positions [Gri17].
While individual parameter values provide a good centroid estimation, a com-

bination of these parameters leads to changes in the quality of the results. For
illustration, Figure 5 shows some example stars with non-Gaussian-PSF shape
that are less suitable as guide stars. They all lead to inaccurate estimation results.

Figure 5: Examples of different low quality stars [Gri17]

What the three stars have in common is that their intensity is concentrated on
the pixel edge. For all stars, the magnitude and the FPA position are sufficient
good. However, a small variation due to movement may lead to a big change of
the illumination of the pixels. Because the Gaussian-PSF observation model does
not fit the star PSF shape, the centroid estimation is less accurate and the FGS
assumes a big movement of the star.
This section demonstrated the affection of the four most important input param-

eters on the accuracy of the centroid calculation: the star position on the FPA, the
star magnitude, the star position in a pixel and the star PSF shape.

4.3 Equivalence Class Definitions

The quality of centroid calculation of the PLATO FGS algorithms depends on
various parameters as described in Section 4.2. For this reason, we define the input
domain as a set of input parameters I. The set includes the star position on the
FPA P , the star magnitude M, the star position in a pixel E and the star PSF
shape G. This section presents our concepts for partitioning the input parameters
P , M, E and G into equivalence classes.

15

4 PARTITIONING APPROACH

Star position on the FPA

Section 4.2 clarifies that the size and shape of the PSF depend on the star position
on the FPA. Hence, our idea is to partition the FPA into equally sized, circular
areas, as shown in Figure 6. The tester specifies the initial radius r0.

Figure 6: Example partitioning of the Focal Plane Assembly

We partition parameter P into equivalence classes Prn . Each class Prn corresponds
to a circular FPA area with inner radius rn−1 and outer radius rn.

P = Pr1 ∪ Pr2 ∪ ... ∪ Prn ∪ ... ∪ PrIP
with 1 ≤ n ≤ IP (4)

Let S denote the set of available stars. A star s ∈ S lies in an equivalence class
Prn if following condition holds.

rn−1 ≤ p(s) < rn, with p(s) =
√
xs2 + ys2 (5)

where (xs, ys) is the position of star s on the FPA and p(s) is the distance of the
star s to the FPA center.

Star magnitude

A useful partitioning of magnitude values into equivalence classes is not obvious.
Our idea is to partition the flux range into IM ∈ N equidistant parts that represent
the equivalence classes. We define Equation 6 to obtain the upper limit of a sub-
range.

Fmj
= F7.0 + j

F5.5 − F7.0

IM
(6)

16

4.3 Equivalence Class Definitions

Fmj
is the flux of magnitude mj and j = 1...IM represents the j-th equivalence

class of parameter M. F5.5 and F7.0 are the numbers of photons for magnitude
5.5 and 7.0. We calculate the flux values F5.5 and F7.0 by using Equation 3 from
Section 4.2. Furthermore, we use Equation 7 to recalculate the magnitude mj from
the calculated flux limit Fmj

of the flux sub-range.

m = −2.5 ∗ log
(

Fm

F0TQA

)
(7)

From a formal point of view, we partition the parameter M into equivalence
classes Ml.

M = M7.0 ∪ ... ∪Mlj ∪ ... ∪M5.5,with lj ∈ R and 5.5 ≤ lj ≤ 7.0. (8)

Each equivalence class Mlj is a magnitude sub-range with upper limit lj. Each
available star s lies in an equivalence Mlj if it satisfies the condition in Equation 9.

lj−1 ≤ m(s) < lj (9)

m(s) denotes the observed magnitude of star s and lj with j = 1...IM is the
upper limit of the j-th magnitude sub-range. The tester specifies the number of
equivalence classes IM ∈ N of the parameter M. Figure 7 illustrates an example
partitioning of the magnitude range.

Figure 7: Example partitioning of magnitude range

Star sub-pixel

A third parameter elaborated in Section 4.2, is the sub-pixel position of a star
center. The quality of the centroid estimation of stars close to a pixel border is as
sensitive to movements as the estimation of stars with centroids on a pixel corner
and vice versa. For this reason, we divide the pixel area into different sub-areas as
shown in Figure 8.
The tester specifies the ratio r of the central area of the pixel to the pixel size,

for example, 1/2, 3/5, etc. If a is the pixel size, then the length of the edge of the
central area results from Equation 10.

b =
√
a2r (10)

17

4 PARTITIONING APPROACH

Figure 8: Example partition of a pixel

With this information, the we obtain the lower left corner l and the upper right
corner u of the central pixel area, with

l = (
a

2
− b

2
,
a

2
− b

2
) and u = (

a

2
+
b

2
,
a

2
+
b

2
) (11)

Based on these corners, we partition parameter E into equivalence classes Ei with
i = 0...8. The equivalence class Ei is the i-th pixel sub-area.

E = E0 ∪ E1 ∪ ... ∪ E8 (12)

A star s lies in an equivalence class if it satisfies the corresponding condition.

E0 : 0 ≤ ex(s) < xl ∧ 0 ≤ ey(s) < yl

E1 : 0 ≤ ex(s) < xl ∧ yl ≤ ey(s) < yu

E2 : 0 ≤ ex(s) < xl ∧ yu ≤ ey(s) < a

E3 : xl ≤ ex(s) < xu ∧ 0 ≤ ey(s) < yl

E4 : xl ≤ ex(s) < xu ∧ yl ≤ ey(s) < yu

E5 : xl ≤ ex(s) < xu ∧ yu ≤ ey(s) < a

E6 : xu ≤ ex(s) < a ∧ 0 ≤ ey(s) < yl

E7 : xu ≤ ex(s) < a ∧ yl ≤ ey(s) < yu

E8 : xu ≤ ex(s) < a ∧ yu ≤ ey(s) < a

(13)

where ex(s) and ey(s) return the x-coordinate and y-coordinate of s in the pixel
respectively.

Star PSF shape

We partition the parameter G in two equivalence classes GG and GNG. A star is
in class GG if is has a Gaussian-PSF. Otherwise the star covers class GNG.

Based on these definitions, we define multidimensional coverage criteria to evalu-
ate a given test suite with respect to its coverage of the full input domain.

18

4.4 Multidimensional Coverage Criteria

4.4 Multidimensional Coverage Criteria

We define multidimensional coverage criteria on the input domain of satellite on-
board image processing applications to measure the coverage of a test suite with
respect to input parameter combinations. If the measured coverage of a test suite
is not complete, our automated test generation algorithm automatically inserts
test cases for missing combinations. This section presents our definitions of multi-
dimensional coverage criteria on the input domain I = {P ,M, E ,G}.
The individual coverage of an input parameter denotes the ratio of equivalence

classes that are covered by at least one test case from a given test suite to the
number of equivalence classes of this input parameter. Equation 14 to 17 express
the definition for the input parameters P ,M, E and G.

CP =
covered equivalence classes of P

|P|
(14)

CM =
covered equivalence classes of M

|M|
(15)

CE =
covered equivalence classes of E

|E|
(16)

CG =
covered equivalence classes of G

|G|
(17)

The coverage domain for our multidimensional coverage criteria is the Cartesian
product of equivalence classes of the input parameters P ,M, E and G. Therefore,
an input combination is a tuple of equivalence classes (Pi,Mj, Ek, Gl), where Pi ∈
P , Mj ∈M, Ek ∈ E and Gl ∈ G. Furthermore, a test case is a star represented by
a tuple of parameter values (p,m, e, g) ∈ (Pi,Mj, Ek, Gl). The following example
test cases clarify these definitions.

Example 1: (1030.4, 6.5, (0.45, 0.13), G) ∈ (P2000 ×M6.56 × E3 ×GG):
The test case comprises a star whose position is in the FPA area with radius
2000. The star belongs to equivalence class M6.56, because its magnitude
value is between 6.25 and 6.56. The star center is located in the middle-left
pixel sub-area. That corresponds to equivalence class E3. The star is part of
equivalence class GG, because it has a Gaussian-PSF shape.

Example 2: (579.1, 6.5, (0.95, 0.2), G) ∈ (P2000 ×M6.56 × E6 ×GG):
The test case comprises a similar or the same star as in the first example.
But on the contrary, it belongs to equivalence class E6 because the center of
the star is positioned nearby the upper left pixel border.

19

4 PARTITIONING APPROACH

Example 3: (187.7, 5.9, (0.93, 0.07), NG) ∈ (P2000 ×M6.0 × E6 ×GNG):
The test case comprises a star from equivalence classes P2000, M6.0 and E6.
Because of its non-Gaussian-PSF, it is part of the equivalence class GNG.

The multidimensional coverage criterion is completely satisfied if the test cases
in a test suite cover all possible input combinations at least once. The number of
required covered input combinations for a complete coverage is |P ×M× E × G|.
In the remaining sections, we denote a test suite with complete coverage on the
input domain with respect to our multidimensional coverage criteria as a complete
test suite. The achieved coverage C results from the ratio of the number of input
combinations that are covered by at least one test case to the total number of
input combinations.

C =
covered input combinations

|P ×M× E × G|
(18)

Applying Algorithm 1, the partitioning approach computes the individual and
multidimensional coverage of a given test suite. The input parameters P , M, E ,
and G contain IP , IM, IE , IG equivalence classes respectively.

Input: Test suite TS
Output: Multidimensional coverage Cov of TS

1 CP = CM = CE = CG = C = ∅;
2 foreach tc with (p, m, e, g) ∈ TS do
3 iP = getPosECId(p);
4 CP ← CP ∪ iP ;
5 iM = getMagECId(m);
6 CM ← CM ∪ iM ;
7 iE = getPixECId(e);
8 CE ← CE ∪ iE;
9 iG = getModECId(g);

10 CG ← CG ∪ iG;
11 C ← C ∪ (iP , iM , iE, iG);

12 end
13 CovG = |CP |/IP ;
14 CovM = |CM|/IM;
15 CovE = |CE |/IE ;
16 CovG = |CG|/IG;
17 Cov = |C|/(IP · IM · IE · IG)
Algorithm 1: Calculation of individual and multidimensional coverage

20

4.5 Automated Test Generation

For each test case in the given test suite, the algorithm gets for each input param-
eter the index iP , iM , iE, iG of the corresponding equivalence class from P , M, E
and G. The algorithm adds the indexes to the sets CP , CM, CE and CG respec-
tively. Moreover, it inserts the tuple (iP , iM , iE, iG) into the set C that contains
all covered input combinations. Because the algorithm uses the union operator to
add the tuples to the set, each tuple is included in the set only once. The algo-
rithm applies Equation 14 to 18 to compute the individual and multidimensional
coverage.

Input: Value g of G
Output: Index i of equivalence class Gi

1 if g == gaussian then
2 return 0
3 else
4 retun 1
5 end

Algorithm 2: Get equivalence class index

Algorithm 2 shows the function getModECId() as an example for determining the
equivalence class index of a parameter value. The function checks which equivalence
class the input value g of parameter G belongs to and returns the corresponding
equivalence class index iG.
The partitioning approach assesses the quality of different test suites with re-

spect to their coverage of the input space of a satellite on-board image processing
application, using multidimensional coverage criteria. The next section describes
our automated test generation algorithm that systematically selects and evaluates
test cases for the test execution. It uses our formulated multidimensional coverage
criteria to deliver a complete test suite.

4.5 Automated Test Generation

This section explains the systematic generation and evaluation of a test suite with
complete coverage of the input domain according to our proposed multidimensional
coverage criteria.
Our test approach is based on the partitioning of the input domain into disjoint

sub-domains with respect to our equivalence class definitions of the input parame-
ters of the PLATO FGS algorithm. Our approach applies Algorithm 1 (Section 4.4)
to evaluate a given test suite with respect to its coverage of equivalence class com-
binations. If the multidimensional coverage of the given test suite is not complete,
the approach applies Algorithm 3 to generate missing test cases.

21

4 PARTITIONING APPROACH

Input: Universe of input combinations U , set of input combinations
C covered by test suite TS

Output: Test suite TS with complete multidimensional coverage

1 Cov = computeMultidimensionalCoverage(TS);
2 if Cov < 1 then
3 W ← U \ C;
4 foreach w ∈ W do
5 tc = generateTC(w);
6 TS ← TS ∪ tc;
7 end

8 end

Algorithm 3: Generate complete test suite

The algorithm generates the set W that contains all input combinations that the
given test suite does not cover. For each input combination in W , our algorithm
generates a test case by randomly selecting values from the equivalence classes
of the missing combinations. The algorithm adds the new generated test case to
the test suite. In this way, it efficiently inserts missing but relevant test cases
into the test suite. This increases the multidimensional coverage and therefore the
error-detection capability of the given test suite. As a result, our automated test
generation algorithm returns a complete test suite.
If the set of covered input combinations C is empty, then the set of uncovered

input combinations W is equal to the universe of possible input combinations U .
Hence, Algorithm 3 generates a new test suite that completely satisfies the multi-
dimensional coverage criteria. Our automated testing framework only selects one
test case per input combination. This efficiently reduces the number of redundant
test cases for the test execution.
We demonstrate in Section 6.2 the efficiency of our test approach according to the

error-detection capability of test suites with different multidimensional coverage
on the input domain.

4.6 Summary

In the last sections, we have developed an automated test approach that system-
atically covers the input domain of the PLATO FGS algorithm as a case study.
As input domain we have considered four star parameters that affect the math-

ematical accuracy of the centroid calculation: position on the FPA, magnitude,
sub-pixel position, and PSF shape.

22

4.6 Summary

The quality of the centroid calculation mainly depends on the combination of
these input parameters. For that reason, we have defined dedicated equivalence
classes for these input parameters of the FGS algorithm. The partitioning is based
on specifications of the tester. This turns it into a flexible approach that can be
easily adjusted to various applications.
The random selection of a test case from a given test suite per equivalence class

combination leads to a minimum number of relevant test cases. In addition, we
have defined multidimensional coverage criteria based on the equivalence classes
to measure the number of input combinations covered by a given test suite. If a test
suite covers all combinations of the equivalence classes, the test suite is complete
with respect to our defined multidimensional coverage criteria.
We have defined an automated test generation algorithm that uses our multidi-

mensional coverage criteria to automatically insert test cases for missing equiva-
lence class combinations. This implies that our algorithm systematically generates
a complete test suite with a minimum of test cases for the given input domain.
In the following sections, we use the generated test suite as the search space of

our proposed genetic algorithm.

23

5 GENETIC APPROACH

5 Genetic Algorithm for Automated Test Gen-

eration for Image Processing Algorithms

One major challenge of satellite on-board image processing applications is the ob-
servance of strict requirements with respect to their reliability and accuracy in
hard real-time. Often, on-board image processing applications perform complex
algorithmic computations. Therefore, it is hard to find test cases that are specifi-
cally tailored to provoke real-time critical behavior or scenarios where the accuracy
gets critically low.
We define a test approach that automatically searches for test cases that increase

the robustness of a given system. Our solution is based on genetic algorithms.
We investigate the efficiency of our proposed genetic approach with the PLATO
FGS algorithm as a case study. However, the input of the FGS algorithm is a
combination of 30 stars. For a realistic test scenario, we only use stars with non-
Gaussian-PSF shape. Using the complete test suite generated by Algorithm 3 from
Section 4.5 without stars with Gaussian-PSF shape leads to(

IP · IM · IE
30

)
(19)

possible input star combinations, where IP , IM, and IE are the number of equiva-
lence classes of the input parameters P ,M, and E described in Section 4.3. The ap-
plication of the equivalence class specification from Section 6.2 results in 1.6× 1046

possible combinations. Due to this huge amount of possible star combinations, a
manual search, as well as the execution of all possible combinations, is not feasible.

Figure 9: Overview of the automated test case generation approach

24

5.1 Assumptions and Limitations

Typically, the robustness of satellite on-board image processing applications de-
pends on different parameters, for example, the real-time behavior and the math-
ematical accuracy of the algorithm. Hence, our objective is to find test cases that
provoke long execution times or inaccurate results or both of the satellite on-board
image processing application. We present a genetic algorithm that transforms the
test case generation into an optimization problem. Therefore, we define a novel
two-criteria fitness function that is specifically tailored for the domain of satellite
on-board image processing application.
Figure 9 shows the workflow of our proposed approach. As the figure depicts, a

test set with complete coverage on the input domain with respect to our multidi-
mensional coverage criteria is an input of our genetic algorithm (see Section 5.2).
To make the approach more flexible, the tester inserts a parameter specification
for the genetic algorithm. This specification includes, for example, the population
size, the mutation rate, termination conditions, etc.
As Figure 9 shows, our proposed genetic algorithm evaluates the test cases with

respect to their fitness values. It iteratively evolves promising test cases using
evolutionary mechanisms, namely selection, crossover, and mutation. As a result,
it delivers test cases that satisfy the given test criteria. Our idea is that the genetic
algorithm automatically searches for test cases that support robustness testing by
provoking mission-critical behavior with respect to run time and mathematical
accuracy. The following sections describe our genetic approach using the PLATO
FGS as a case study.

5.1 Assumptions and Limitations

The same assumptions as described in Section 4.1 apply for our proposed auto-
mated genetic approach. Except, that the genetic approach examines all parts of
the PLATO FGS algorithm.
Performance and mathematical accuracy of the FGS algorithm depend among

other things on the number and distribution of preselected guide stars. Currently,
the algorithm gets 30 guide stars as input. Therefore, in the following sections, a
test case is a combination of 30 different stars. A simulated time series exists for
each star. It comprises 1000 exposures with movements of the camera.
For realistic tests, the complete test set only contains stars with non-Gaussian-

PSF shape. We denote a test set as complete if it covers the input domain with
respect to our multidimensional coverage criteria. This means the set includes one
star for each combination of equivalence classes of the input parameters except the
PSF shape.
For the evaluation of our test approach, we use the TASTE-value as a qualitative

measure of the mathematical accuracy of the FGS algorithm. Hence, a low quality
index corresponds to a high accuracy of the FGS algorithm.

25

5 GENETIC APPROACH

5.2 Proposed Genetic Algorithm

We define a genetic algorithm to support robustness testing of satellite on-board
image processing applications. Our algorithm automatically searches for test cases
in a given test set. These test cases are specifically tailored to provoke mission-
critical behavior with respect to run time and mathematical accuracy. This section
describes the components and strategies of our developed genetic algorithm.

Representation

In terms of our proposed genetic algorithm, a test case represents an individual
with 30 genes. A gene is a tuple of equivalence class identifiers (iP , iM , iE, iG) where
P ∈ P , M ∈M, E ∈ E , and G ∈ G are equivalence classes of the respective input
parameters of the FGS algorithm (cf. Section 4.3). The gene values are limited to
the equivalence classes of the corresponding input parameter. Figure 10 clarifies
the definition by representing the example stars from Section 4.4 as individuals.

Figure 10: Example individual representation

Initial Population

Our genetic algorithm uses a given complete test set with respect to our coverage
criteria (cf. Section 4.4) as its search space. From this space, the algorithm ran-
domly selects 30 stars to form an individual. Each selected star covers a different
combination of equivalence classes. Hence an individual does not include a gene
twice. The tester specifies the population size. Thus the genetic algorithm gener-
ates individuals until the required population size is reached. Algorithm 4 shows
the initialization process.

26

5.2 Proposed Genetic Algorithm

Input: Test set TS, population size popsize
Output: Population population with popsize individuals

1 for i ← 1 to popsize do
2 for j ← 1 to 30 do
3 gene = getRandomTestStar(TS);
4 individual ← individual ∪ gene;

5 end
6 population ← population ∪ individual;

7 end

Algorithm 4: Select initial population

Fitness Function

In the evaluation process (Algorithm 5), our genetic algorithm sends each indi-
vidual in the current population as input to the FGS algorithm. The resulting
execution time and quality index are crucial for the fitness value of an individual.
Hence, the genetic algorithm uses our two-criterion fitness function that depends
on both parameters. To capture a trade-off between them, we applied the weighted
sum.

fitness(c) = ftime(c) · w1 + ftaste(c) · w2, with

ftime(c) =
t

atime

,

ftaste(c) =
taste

ataste
,

0 ≤ wi ≤ 1, i = {1, 2} and
2∑

i=1

wi = 1

(20)

fitness(c) provides the fitness value of the individual c. Individuals with a high
fitness value are more effective, also called fitter, than individuals with lower fitness
values. ftime(c) calculates the fitness value of the individual c with respect to the
execution time. It measures the execution time relative to a reference value atime

specified by the tester. atime defines, for example, the average of known execution
times. ftaste(c) calculates the fitness value of the individual c with respect to the
quality index delivered by the FGS algorithm. It measures the delivered quality
index relative to a reference value ataste, for example, the average of known quality
values, defined by the tester. Moreover, the tester specifies the weighting factors
wi to determine which parameter has a stronger impact on the new generation.
For example, if the weight of one parameter is set to zero, the genetic algorithm
optimizes new generations only for the other parameter.

27

5 GENETIC APPROACH

Input: Population population, fitness parameter weights wtime,
wtatse, reference values atime, ataste

Output: population fitness populationFit, longest execution time
fittestTime, worst quality index fittestTaste

1 maximalFit = 0;
2 populationFit = 0;
3 foreach individual ∈ currentPopulation do
4 time, taste = FGS(individual);
5 fitValue = time

atime
· wtime + taste

ataste
· wtaste;

6 if fitValue > maximalFit then
7 maximalFit = fitValue;
8 fittestTime = time;
9 fittestTaste = taste;

10 end
11 individual.fit = fitValue;
12 individual.prevFitSum = populationFit;
13 populationFit += fitValue;
14 individual.afterFitSum = populationFit;

15 end

Algorithm 5: Fitness evaluation

In addition, Algorithm 5 computes the fitness value of the whole population and
the accumulated fitness value of the individual’s predecessor. The genetic algorithm
uses these fitness values in the selection process.

Selection

After calculating the fitness fitness(c) of each individual in the population, our
genetic algorithm computes the selection probability p(ci) of an individual ci using
Equation 21. Ft denotes the total fitness of the population of generation t.

p(ci) =
fitness(ci)

Ft

,with Ft =

popsize∑
i=1

fitness(ci),

popsize∑
i=1

p(ci) = 1 and 0 ≤ p(ci) ≤ 1

(21)

The selection mechanism applies the stochastic universal sampling method [GKK04,
p. 80]. Figure 11 illustrates the stochastic universal sampling with 6 individuals.
Table 1 shows the fitness values and selection probabilities of each individual.

28

5.2 Proposed Genetic Algorithm

Figure 11: Stochastic Universal
Sampling[Wei15]

Individual c fitness(c) p(c)
1 45 3

8

2 30 1
4

3 15 1
8

4 10 1
12

5 10 1
12

6 10 1
12

120 1

Table 1: Example fitness values and se-
lection probability of individuals

As Figure 11 depicts, each individual gets a section on an imaginary roulette-
wheel proportional to its fitness value. The method arranges as many pointers
around the roulette wheel as there are individuals in the population. The pointers
are at the same distance from each other.

Input: Population currentPopulation, population size popsize,
population fitness populationF it

Output: Population selectedPopulation

1 selectedPopulation ← ∅;
2 pointer = getRandomDoubleNumber(0, 1/popsize);
3 for i ← 1 to popsize do
4 foreach individual ∈ currentPopulation do
5 prevSelectProp = individual.prevFitSum/populationFit;
6 afterSelectProp = individual-afterFitSum/populationFit;
7 if prevSelectProp ≤ pointer < afterSelectProp then
8 selectPopulation ← selectPopulation ∪ individual;
9 end

10 end
11 pointer = pointer + (i-1) · 1

popsize
;

12 end

Algorithm 6: Stochastic universal sampling selection of individuals

As Algorithm 6 shows, it randomly selects the first pointer. After turning the
roulette wheel once, the algorithm inserts each individual into the new population
that satisfies Equation 22. This means it selects for each pointer that individual
whose field the pointer points to [GKK04, p. 80].

29

5 GENETIC APPROACH

j<i∑
j=1

p(ci) ≤ pointer <

j≤i∑
j=1

p(ci) (22)

pointer represents the imaginary pointer indicating the roulette-wheel section
of individual ci. The genetic algorithm selects each individual ci at least bp(ci) ·
popsizec times and at most dp(ci) · popsizee times into the new generation. The
selection method ensures that the algorithm selects the fittest individual in any
case [GKK04, p. 80].

Crossover

We adopt the parameterized uniform crossover strategy [GKK04, p. 89]. As Al-
gorithm 7 shows, the crossover mechanism randomly chooses two not yet selected
individuals as parents in each loop. For every single gene of the parents, the genetic
algorithm decides according to the crossover probability pc whether the gene is ex-
changed or not. The tester specifies the crossover probability pc [GKK04, p. 89].

Input: Population parentPopulation, population size popsize,
crossover probability pc

Output: Population childPopulation

1 childPopulation ← ∅;
2 for i ← 1 to popsize/2 do
3 parentA = getRandomIndividual(parentPopulation);
4 parentB = getRandomIndividual(parentPpopulation);
5 for j ← 1 to 30 do
6 x = getRandomDoubleNumber(0,1);
7 if x ≤ pc then
8 childA[j] = parentB[j];
9 childB[j] = parentA[j];

10 else
11 childA[j] = parentA[j];
12 childB[j] = parentB[j];

13 end

14 end
15 childPopulation ← childPopulation ∪ childA ∪ childB;

16 end

Algorithm 7: Crossover

30

5.3 Automated Test Generation

Mutation

Algorithm 8 shows the mutation process of the genetic algorithm. It decides for
each gene according to a mutation probability pm whether it mutates or not
[GKK04, p. 98]. If the gene mutates, the genetic algorithm randomly selects a
new star from its search space, which is not contained in the individual, as a gene.
The tester specifies the mutation probability pm.

Input: Population population, mutation probability pm, test set TS
Output: Population mutatedPopulation

1 mutatedPopulation ← ∅;
2 foreach individual ∈ population do
3 for i ← 1 to 30 do
4 x = getRandomDoubleNumber(0,1);
5 if x ≤ pm then
6 individual[i] = getRandomTestStar(TS);
7 end

8 end
9 mutatedPopulation ← mutatedPopulation ∪ individual;

10 end

Algorithm 8: Mutation

Termination Condition

The genetic algorithm terminates in four cases:

- it reaches a specified number of generations,

- no improvement of the best solution in the last n generations, or

- the FGS algorithm takes a predefined longest execution time

The tester specifies these criteria.

5.3 Automated Test Generation

This section describes our genetic approach that automatically searches for test
cases that provoke mission critical behavior of the PLATO FGS algorithm. The ob-
jective of our test approach is to find star combinations that provoke long execution
times or inaccurate results of the satellite on-board image processing application.
The approach utilizes the partitioning of the input parameters of the FGS algo-

rithm (see Section 4.3). A given test set contains one star for each equivalence class
combination of the parameters. This results in approximately 2.8× 1055 possible

31

5 GENETIC APPROACH

combinations using the equivalence class specification from Section 6.2. Testing
all possible combinations is therefore infeasible. Hence, our key idea is to develop
a genetic algorithm that is specifically tailored to find test cases in this specific
domain.

Input: Test set TS, population size popsize, fitness parameter
weights wtime, wtatse, fitness parameter references atime, ataste
crossover probability pc, mutation probability pm, maximal
number of generations T , maximal execution time
maxTime, worst quality index maxTaste, number of
observing generations n, minimal variance var

Output: Individual that provokes longest execution time and worst
quality index

1 t = 0;
2 P ← ∅;
3 fitTime = 0;
4 fitTaste = 0;
5 variance = 0;
6 P ← createInitialPopulation(TS, popsize);
7 popFit, fitTime, fitTaste ← evaluation(P, wtime, wtaste, atime, ataste);
8 while t < T AND (fitTime < maxTime OR fitTaste < maxTaste

AND variance > var) do
9 P ← selection(P, popsize, popFit);

10 P ← crossover(P, popsize, pc);
11 P ← mutation(P, pm, TS);
12 popFit, fitTime, fitTaste ← evaluation(P, wtime, wtaste, atime,

ataste);
13 t++;
14 if n ≤ t then
15 variance ← getFitnessVariance(n);
16 end

17 end

Algorithm 9: Proposed genetic algorithm

Algorithm 9 gives an overview of the structure of our defined genetic algorithm us-
ing the components described in Section 5.2. The complete test set with respect to
our equivalence classes, except stars with Gaussian-PSF shape, is its search space.
Therefore, this space is reduced to the equivalence classes of the input parameters.
Our genetic algorithm creates the initial population by randomly selecting stars
from its search space. Due to our defined two-criterion fitness function, it automat-

32

5.4 Summary

ically generates test cases to provoke long execution time of the FGS algorithm or
an increased quality index or both. By specifying the weights of the criteria in the
fitness function, the tester is flexible to determine the test goal.
The applied selection method stochastic universal sampling reduces the evolu-

tionary pressure. This means, it also selects test cases with low fitness values in
the new generation. Therefore, the method preserves the variability in the popu-
lation. Hence, our algorithm scans the search space extensively to find test cases
that globally provoke the most critical system behavior [GKK04, pp. 79-83]. The
parameterized uniform crossover strategy in the crossover function generates new
combinations by mixing the selected individuals. The mutation function adds never
inserted stars or removed stars into the current population. Depending on the mu-
tation probability, the mutation function preserves the diversity in the population
or inserts minimal changes to find test cases that locally provoke critical behavior
[GKK04, p. 42].
By applying the crossover or mutation process, stars may appear twice in an in-

dividual. To avoid this, we specify that the genes do not swap or mutate if the
new gene is already in the individual. Our genetic algorithm iteratively evolves
individuals until they satisfy our specified termination conditions. The algorithm
terminates if it reaches a predefined number of generations T or the achieved
maximum execution time or quality index of a generation exceeds a specified max-
imum execution time maxTime or maximum quality index maxTaste respectively.
An additional termination criterion is the variance of the maximum fitness values
achieved in the last n generations [BMP12]. If the value is lower than a prede-
fined variance var, the condition is satisfied. The getFitnessVariance() function
calculates the fitness variance of the last n generations.
Using our proposed genetic algorithm, the test approach improves a given test set

to efficiently achieve a worst-case execution time and inaccurate results of the FGS
algorithm. If the test detects violations of the requirements, the FGS algorithm
has to be corrected and tested again.

5.4 Summary

In the last sections, we have defined a test approach that automatically and sys-
tematically searches for star combinations that provoke long execution times and
inaccurate results of the PLATO FGS algorithm.
We have defined a genetic algorithm that uses test cases as individuals. Each

test case is a combination of 30 stars. The search space of our genetic algorithm
contains one star for each equivalence class combination. This reduces the space
to our defined equivalence classes.
We have adopted the commonly used evolutionary mechanisms selection, crossover,

and mutation such that they prevent the variability of stars in the populations.

33

5 GENETIC APPROACH

Therefore, our genetic algorithm extensively scans the search space and does not
converge prematurely.
Our main result is a two-criteria fitness function that is based on the measured

execution time and quality index of the FGS algorithm. We have specified the
quality index as a qualitative measure of the mathematical accuracy of the FGS
algorithm. Using our specified fitness function our genetic algorithm automatically
searches for star combinations that provoke long execution times and high quality
indexes of the FGS algorithm. In this way, these combinations are an improvement
of a given test set to support robustness testing.
The tester is able to specify the termination conditions and the impact of each

criterion to the fitness value of a star combination. This makes our approach adapt-
able to various test goals.
In the following sections, we demonstrate the efficiency of our partitioning ap-

proach and genetic approach on the example of the PLATO FGS algorithm.

34

6 Evaluation

The evaluation of our proposed test approaches based on various test suites to
investigate the efficiency of these approaches for satellite on-board image processing
applications. Section 6.1 describes the implementation of our test environment.
Sections 6.2 and 6.3 present the practical results from our test execution of the
equivalence class partition testing and the execution of the genetic algorithm.

6.1 Implementation

Figure 12: Block diagram of test setup

Figure 12 shows the block diagram of our test setup. As the figure depicts, our test
environment runs on a Windows system. We implement the environment in C++
based on the model-view-controller pattern. Our goal is to improve the scalability
and allow the tester to specify the input parameters with Graphical User Interface
(GUI) or without GUI. We implement the GUI using the wxWidgets C++ library.
Our automated test generation algorithm returns a star catalog in order to sim-

ulate star data for missing input combinations. The catalog is a text file that
includes right ascension, declination, and magnitude of the stars that should be
simulated. We manually insert the catalog into the PLATO simulator PlatoSim
[KU 18]. PlatoSim writes the simulated star data to a HDF5-file3. Therefore, our
test environment uses an hdf5 C++ library to read the data. Each simulated star
comprises an image sequence of several time steps of the star. Because PlatoSim is
not developed for Windows systems, the simulator runs in a Linux virtual machine.

3HDF5 is a hierarchical file format for storing a large number of data types [The18].

35

6 EVALUATION

As shown in Figure 12, we connect the Windows system via a SpaceWire4-
Universal Serial Bus (USB) brick to a GR-XC6S Field Programmable Gate Array
(FPGA) development board5 running at 50MHz. A prototype of the PLATO FGS
algorithm, written in C, runs on this board. Our test environment sends FGS al-
gorithm input data and receives FGS algorithm results via SpaceWire. For that,
it uses the C SpaceWire USB Application Programming Interface (API) Library
for the SpaceWire USB brick. We load the FGS software with GRMON6 onto the
evaluation board. Via a Universal Asynchronous Receiver Transmitter (UART)
interface we receive debug information, for example, stack size, hardware informa-
tion, etc. in a terminal.
Our objective is to evaluate our approaches for the development and test of the

FGS algorithm implementation. In addition, our goal is to test the execution time
and mathematical accuracy of the FGS algorithm under realistic conditions. For
example, the calculation with double values on the development board is slower
than the same calculation on the windows system. Moreover, due to the different
hardware components, the development board rounds the values differently than
the windows system. This leads to different accuracies of the results. Therefore, we
run the application under test on the target hardware and keep the test system in
the software development cycle.

6.2 Experimental Results: Partitioning Approach

This section presents the experimental results of applying the proposed partitioning
approach to generate a test suite for the test of the PLATO FGS algorithm.
In the experiments, we have specified the following parameters for the definition
of equivalence classes on the input domain.

� initial radius r0 for circular partitioning of the FPA: 1900 pixel

� number of magnitude sub-ranges: 6

� ratio r of the middle sub-area of the pixel to the pixel area: 0.2

The application of these parameters results in 8 equivalence classes of input pa-
rameter P , 6 equivalence classes of the parameter M and 9 equivalence classes
of input parameter E . Additionally, the parameter G consists of two equivalence
classes (GG and GNG). Thus, our automated testing framework needs 864 test
cases to completely cover the whole input domain of the FGS algorithm.

4SpaceWire is a data-handling network for spacecraft defined in the European Cooperation
for Space Standardization standard ECSS-E-ST-50-12C [Eur17].

5FPGA development board used for the development of Leon processor systems [PEN11].
6GRMON is a debug monitor for Leon Processors. Please refer [Cob17] for more information.

36

6.2 Experimental Results: Partitioning Approach

To practically evaluate our approach, we have investigated the quality of two
different test suites with respect to their multidimensional coverage on the input
domain. One test suite contains 82 randomly generated stars. Our automated test
generation algorithm identifies 10 stars in the suite as redundant. The test suite
achieves 8.3 % coverage of the input domain with respect to our defined multidi-
mensional coverage criteria. Algorithm 3 from Section 4.5 enhances the suite to
achieve complete coverage on the input domain. In the following, we call it the
complete test suite. The other test suite contains 902 randomly generated but
evenly distributed stars. We call it random test suite and did not improve it. Table
2 presents the coverage of the test suites for each input parameter as well as the
achieved multidimensional coverage for each test suite.

Table 2: Individual and multidimensional coverage of the test suites

random test suite complete test suite
Number of test stars 902 874

Number of covered input combinations 112 864
CP in % 87.5 100
CM in % 16.7 100
CE in % 100 100
CG in % 100 100

Multidimensional coverage in % 13.0 100

Table 2 shows, the utilization of the equivalence class partitioning method reduces
the random test suite by hundreds of redundant test cases. Thereby, the method
increases the efficiency of the test process. The random test suite achieves a high
individual coverage of three input parameters. But due to the low individual cov-
erage of the input parameter M, the multidimensional coverage of the test suite
is also low. Furthermore, Table 2 exhibits that the complete test suite covers the
whole input domain of the FGS algorithm.
For the assessment of the equivalence class definitions, we have automatically

inserted some faults into the code of the centroid calculation of the PLATO FGS
algorithm. These injected faults belong to three classes: missing assignment, wrong
assignment and wrong condition. For each test execution, we have injected a single
error at a different position in the code. Our objective is to check whether the test
suite with complete multidimensional coverage of the input domain achieves a
higher error-detection capability than the random test suite.
In each experiment, our test application sent 1000 exposures of each selected star

from the test suites to the development board where the FGS centroid algorithm
is running. Our test application averages the resulting centroid positions over all

37

6 EVALUATION

exposures and compares it with the centroid position in the corresponding star
catalog. If the deviation of the positions is greater than a predefined, required
value, the test detected the error.
An excerpt from the output for a test case detecting a missing assignment error
is given by Table 3. The high deviation between the calculated position and the
given position reveals an error in the centroid calculation.

Table 3: Output for a sample test case

iG iP iM iE Star-Id x in pixel y in pixel deviation in pixel result
1 1 0 8 28 2.96× 1019 2.38× 1019 3.80× 1019 error detected

In total, during the experiments, we have injected three missing assignment er-
rors, three wrong assignment errors, and three wrong condition errors. Table 4
summarizes the results of the experiments for both test suites.

Table 4: Test suites evaluation results

random test suite complete test suite
test cases 112 864
execution time in h ∼ 1.5 ∼ 11.8
detected errors 1 3
undetected errors 9 7
error-detection capability in % 10 30

Table 4 shows, that both test suites do not reveal all injected errors with respect
to the given test criterion. The random test suite, as well as the complete test suite,
detects one missing assignment error. In addition, 6 test cases from the complete
test suite reveal one wrong assignment error and 1 test case detects one wrong
condition error. During the test development, we detected an error in the FGS
algorithm code that we did not inject. But using the specified test criterion, both
test suites do not detect the error. Moreover, the tests do not detect three of the
injected errors because the deviation only changes slightly in case of these errors.
In addition, for some test cases, the deviation increases and in others decreases
in such a way that the specified deviation value is not reached. The tests also do
not detect the other three injected errors and the unintended error because these
errors affect the other parameters estimated by the centroid calculation. Therefore,
the deviation for all test cases is smaller than the predefined value in the test
criterion. However, the error-detection capability of the complete test suite is with

38

6.3 Experimental Results: Genetic Algorithm

respect to the specified test criterion three times higher than the error-detection
capability of the random test suite. Nevertheless, for both test suites, the error-
detection capability is low because we have specified that tests only detected errors
if the deviation between the calculated centroid position and the reference centroid
position from the star catalog rise above a specified value. However, not all injected
errors affect the results in such a way that the deviation increases. Therefore, our
specified test criterion is not suitable to detect all injected errors.
This shows, that the specified test criterion plays an important role in the suc-

cess of the tests. We have specified another test criterion: the test passes if the
distance between the centroid position calculated by an erroneous calculation and
the centroid position resulting from an assumed error-free calculation exceeds a
predefined value. In this case, both test suites reveal all injected errors and the
unintended error. But not all test cases of the test suites detect the errors. This
means special input combinations are more capable to detect errors than others.
In case of three injected errors and the unintended error, the percentage of error-
detecting test cases from the random test suite is up to one third compared to
the percentage of error-detecting test cases of the complete test suite. In the other
cases, the percentage of error-detecting test cases is approximately 99 % for both
test suites. Therefore, for this test criterion, the complete test suite has a higher
error-detection capability than the random test suite.
Our partitioning approach reduces the number of relevant test cases. Therefore,

applying the approach increases the test efficiency. The results show that the error-
detection capability of the test suite that completely satisfies our multidimensional
coverage criteria is significantly higher than the capability of the random test suite.
The success of our approach depends on the specified test criterion as well as on the
definition of the equivalence classes. Therefore, further investigations are needed.

6.3 Experimental Results: Genetic Algorithm

This section presents the results of applying our proposed genetic approach to
examine the execution time and mathematical accuracy of the PLATO FGS al-
gorithm. Using the test set generated by the first approach, without stars with
Gaussian-PSF shape, results in 1.5× 1046 possible combinations of 30 stars. Test-
ing this amount of combinations is infeasible. Therefore, we have investigated
whether our approach efficiently examines many test cases to increase the con-
fidence in the system behavior.
In the first tests, our genetic algorithm optimizes solutions for one fitness criteria:

execution time or quality index. For that, we have set the respective weighting
factor wtime or wtaste to 1 and the other to 0. In addition, we have set the reference
values atime and ataste to 1. The resulting maximum execution time and quality
index serves as reference values for subsequent experiments.

39

6 EVALUATION

For the experiments, we have inserted the input parameter specification given by
Table 5 to examine the satisfaction of a specified time requirement of the PLATO
FGS algorithm. We have used the same parameter specification, except that we
have set wtaste to 1 and wtime to 0, to investigate the qualitative measure of the
accuracy of the FGS algorithm.

Table 5: Input parameters of the genetic algorithm evaluating execution time

Input parameter Parameter value
Population size 24
Number of genes per individual 30
Weighting factor wtime 1
Weighting factor wtaste 0
Reference time in ms 254.45
Reference taste 1.68× 10−10

Maximum execution time in ms 300
Crossover probability pc 0.5
Mutation probability pm 0.06
Maximum number of generations 50
Observing Iterations 10
Permitted variance 1× 10−5

Due to the small population size, the diversity of genes is low. Only the mutation
process inserts non-present genes into the population. Therefore, we have set the
mutation probability to 0.06 to avoid premature convergence. In the case of prema-
ture convergence, the search ends in a random local optimum in early generations
[GKK04, p. 42].
During the experiments, our test application sends each selected star combination

to the development board. Then, the FGS algorithm subsequently calculates the
centroids of the stars. The result and the execution time of the centroid calculation
are always the same for a star exposure. Furthermore, the centroid calculation is
the most time-consuming part of the FGS algorithm. Therefore, we have speci-
fied that the FGS algorithm calculates the centroid for each star exposure only
once to be more efficient. Our test application saves the calculated centroid and
time required for each exposure of the stars. If a star appeares another time in
a selected combination the test application sends the known centroid to the FGS
algorithm. The algorithm then calculates the star direction vectors and performs
the QUEST algorithm. The execution time of the FGS algorithm for a star com-
bination is the sum of the time required for the centroid calculation of each star
in this combination and the execution time of the star vector calculation and the
QUEST algorithm. Our test application averages the execution times and the re-

40

6.3 Experimental Results: Genetic Algorithm

sulting quality indexes over 1000 exposures. Based on these values, our developed
fitness function calculates the fitness value of the executed star combinations. The
genetic algorithm terminated if

� it completed 50 generations, or

� the execution time of the FGS algorithm for one test star combination ex-
ceeded 300 ms, or

� the variance of the maximum fitness values of the last 10 observed generations
fell below the permitted variance of 1× 10−5.

We have specified no termination condition with respect to the quality index
because no PLATO requirement exists for this measure. For one test the genetic
algorithm uses a given randomly generate test set, denoted as incomplete test
set, as its search space. For another test, our algorithm uses given complete test
set with respect to our multidimensional coverage criteria as search space. Our
objective is to compare the capability of our genetic algorithm to provoke a long
execution time or a high quality index of the FGS algorithm using the different
search spaces.
Figure 13 to Figure 14 show the resulting maximum execution times and quality

indexes for the incomplete test set and the complete set. In the experiments, our
genetic algorithm evolves star combinations first for the execution time and then
for the delivered quality index.

Figure 13: Maximum execution time per generation evaluating execution time

41

6 EVALUATION

Figure 13 illustrates the fittest execution times achieved by the use of the incom-
plete test set and the complete set subsequently. The genetic algorithm optimizes
star combinations based on their execution time. Both tests terminates after 10
generations because the variance of the maximum fitness values per generation fell
below 1× 10−5. In both tests, the maximum execution times do not violate the
specified timing requirement. Using the incomplete test set, our genetic algorithm
provides a maximum execution time after three generations. However, Figure 13
shows that the maximum execution time was longer using the complete test set as
search space.

Figure 14: Maximum quality index per generation evaluating accuracy

Figure 14 shows the fittest quality indexes per generation using the incomplete test
set as search space in one test and using the complete set in the other test. The
genetic algorithm optimizes test star combinations based on the resulting quality
index. Using the complete test set results in higher quality indexes than using the
incomplete test set.
In both experiments, the complete test set achieves better results. The fittest

solutions achieved by the complete test set covers 26 equivalence class combinations
that are not covered by the incomplete test set. Because the complete test set
covers all equivalence class combinations, it is more capable to provoke a long
execution time or a high quality index than the incomplete test set. However, our
genetic algorithm does not find test star combinations that violate specified timing
requirements.

42

6.3 Experimental Results: Genetic Algorithm

We have used the resulting maximum execution time and quality index as refer-
ence values atime and ataste for another experiment. We have compared the capa-
bility of the complete test set and the incomplete set to provoke a long execution
time and a high quality index. Table 6 shows the input parameter specification for
this experiment.

Table 6: Input parameters of the genetic algorithm evaluating two criteria

Input parameter Parameter value
Population size 50
Number of genes per individual 30
Weighting factor wtime 0.5
Weighting factor wtaste 0.5
Reference time in ms 254.998
Reference taste 1.82× 10−10

Maximum execution time in ms 300
Crossover probability pc 0.5
Mutation probability pm 0.06
Maximum number of generations 75
Observing Iterations 75
Permitted variance 1× 10−5

To test a higher number of test star combinations, we have increased the pop-
ulation size to 50 individuals and the maximum number of generations to 75. In
addition, we have set the weighting factors wtime and wtaste to 0.5. Hence, the exe-
cution time and the quality index affect the fitness value of a test star combination.
Figure 15 depicts the maximum fitness values per generation for evaluating star

combinations with respect to execution time and quality index of the FGS algo-
rithm. The figure shows that the fitness value of test cases from the complete test
set is higher than for the incomplete test set. The fitness values for the incomplete
test set do not evolve. The genetic algorithm finds a maximum fitness value in
the first generations for this set. In case of the complete test set the fitness value
evolves until generation 35.
Figure 16 shows that for both test sets the resulting quality index for these max-

imum fitness values have the similar course as the corresponding fitness values.
Because the difference between the relative quality indexes is higher than the dif-
ferences between the relative execution times (see Figure 17), the differences in the
relative quality indexes leads to higher impact on in the fitness values. However,
the test cases from the complete test set provoke longer execution times and higher
quality indexes than test cases from the incomplete test set. The figures also show,
that the execution time and the quality index do not depend on each other.

43

6 EVALUATION

Figure 15: Maximum fitness value per generation evaluating execution time and
accuracy

Figure 16: Maximum quality index per generation evaluating execution time and
accuracy

In all tests using the complete test set as search spaces the longest execution
time and the maximum quality index are higher than using the incomplete set.

44

6.3 Experimental Results: Genetic Algorithm

Figure 17: Maximum execution time per generation evaluating execution time and
accuracy

The evolved solutions are better because the complete test set provides star com-
binations that provoke long execution times and inaccurate results of the FGS
algorithm. These combinations are not possible with the random test set because
it does not cover the corresponding equivalence class combinations. However, our
proposed genetic algorithm automatically provides worse execution times and qual-
ity indexes in a few generations. Hence, it improves the efficiency of the software
testing process. But it will never examine all possible 1.6× 1046 combinations.
Therefore we can not rule out if there are other combinations that provoke longer
execution times or higher quality indexes. However it increases the confidence in
the temporal behavior and accuracy of the satellite image processing application.

45

7 CONCLUSION

7 Conclusion

This section summarizes the results regarding our proposed partitioning approach
and genetic algorithm. Moreover we discuss future work.
Due to the large input domain of on-board image processing applications, an

enormous amount of test cases is possible. This makes it infeasible to capture the
whole input domain and execute the test cases exhaustively. In addition, due to
the complex computations, performed by the satellite on-board image processing
applications, it is difficult to find test cases that provoke mission-critical behavior.
Therefore we have presented two novel test approaches to overcome these problems:
First, we have defined a partitioning approach that systematically generates a
reasonably small test suite with complete coverage on the input domain of satellite
on-board image processing applications. Second, we have defined a novel genetic
algorithm specifically tailored to automatically find test cases that provoke mission-
critical behavior of a given satellite on-board image processing application.
To achieve the goal of our first approach, we have defined the following parts.

- A dedicated partitioning for each input parameter of a satellite on-board
image processing application.

- Multidimensional coverage criteria based on the equivalence class definitions
to assess a given test suite with respect to its coverage on the input domain.

- An automated test generation algorithm that systematically generates miss-
ing but relevant test cases.

As a result, our approach is able to fully automatically generate test suites that are
complete with respect to our defined multidimensional coverage criteria. The tester
specifies the size of our equivalence classes. This makes our approach adaptable to
other applications.
In our second approach, the genetic algorithm uses the complete test suite gener-

ated by our partitioning approach as search space to generate a combination of test
cases. Because the test suite contains at most one test case for each equivalence
class combination, the search space is reduced.
We have defined a novel two-criteria fitness function. It is based on the execution

time and the mathematical accuracy of a given satellite on-board image process-
ing application. Using that function our genetic algorithm automatically steers the
search for test cases that provoke long execution times or inaccurate results or both.
The tester is able to specify which criterion has more impact on the fitness value
of a test case. In addition, the tester specifies the input parameters of the genetic
algorithm, for example, population size, crossover probability, termination condi-
tions, etc. This makes our proposed genetic algorithm more flexible and adaptable
to different test goals and various on-board image processing applications.

46

We have investigated the effectiveness of our proposed test approach on the FGS
algorithm as an application with high criticality for the PLATO mission. In the
experiments, our automated test generation algorithm generates a test suite that
is complete with respect to our multidimensional coverage criteria. To demon-
strate the effectiveness of our partitioning approach, we have compared the error-
detection capability of a randomly generated test suite and the generated complete
test suite. The use of our equivalence classes of the input parameters reduces the
number of redundant test cases in the randomly generated test suite by 87.6%.
In the experiments, we have successively injected 9 errors in the code of the

FGS algorithm to investigate the error-detection capability of both test suites.
We have used two different test criteria: First, a test case detects an error if the
distance between the calculated centroid position and a given position is larger
than a predefined value. Second, a test case detects an error if the distance of
the erroneous calculated position and an assumed error-free calculated position
exceeds a specified value.
We have observed that different test criteria lead to different test results. For

the first specified criterion, the complete test suite detects 3 injected errors while
the randomly generated test suite detects 1 injected error. Therefore, the error-
detection capability of the complete test suite is about 3 times higher than the
capability of the randomly generated test suite. But both test suites do not detect
all injected errors.
In the second experiment, we have used the second test criterion. In this case,

both test suites detect all 9 injected errors and one unintended error. However, not
all test cases in the test suites detect all errors. In the case of 3 injected errors and
the unintended error, the percentage of error-detecting test cases in the complete
test suite is again about 3 times higher than for the randomly generated test suite.
For the other 6 injected errors, the percentage of error-detecting test cases is for
both test suites approximately 99%.
The experiments showed that a systematic test using our proposed partitioning

approach increases the error-detection capability of a given test suite. This makes
the partitioning approach efficient and effective. In addition, it facilitates the au-
tomated generation, the execution, and the evaluation of test cases.
To demonstrate the efficiency of our genetic approach, we have investigated the

capability of the algorithm to automatically find test cases that support robustness
testing of the satellite on-board image processing application. In subsequent tests,
our genetic algorithm uses a randomly generated test set and the complete test set
generated by our partitioning approach as search space. In the first experiments,
we have specified that our genetic algorithm automatically evolves test cases with
respect to the execution time or the mathematical accuracy of the FGS algorithm.
In a second experiment, we changed the input parameters in such a way that our

47

7 CONCLUSION

algorithm automatically evolves test cases with respect to the execution time and
the mathematical accuracy of the FGS algorithm.
In all experiments, test cases generated from the complete test set provoke maxi-

mum execution times that are approximately 1.5ms longer than for the randomly
generated test set. The maximum qualitative accuracy, measured by a quality in-
dex, provoked by the test cases from the complete test set is about 3.7 times higher
than for the other test set. However, we can not exclude that there might be other
test cases that provoke longer execution times or less accurate results or both due
to the huge amount of possible combinations. The results show that our genetic
approach automatically searches for test cases that provoke long execution times
and inaccurate results of a given satellite on-board image processing application.
Both proposed approaches, which defining a partition to systematically generate

a reasonably small test suite and a novel genetic algorithm specifically tailored to
automatically find special test cases, are suitable to generate test cases for black
box tests of image processing applications. They systematically capture the large
input domain and efficiently searches for test cases that support robustness testing.
Therefore, the novel test approaches increase the efficiency of the test process and
increase the test coverage of the applications.

Our work opens up several ways for future work, for example

- injecting errors in the binary code,

- adapt the fitness function of the genetic algorithm,

- considering additional parameters in the partitioning approach,

- investigate the efficiency of our test approaches for other applications.

So far, we have injected errors in the application code. But in space, many missions
suffer from cosmic radiation that flips bits in the binary code or cause hot pixels in
the input images. Therefore, we plan to investigate the efficiency of our approaches
by injecting errors in the input data or in the binary code of the application.
In this thesis, we have considered the TASTE value as a qualitative measure of

the mathematical accuracy. To investigate the accuracy of the application more
precisely we will adapt the fitness function of our genetic algorithm. For that case,
we consider the errors of the results, for example, angle errors for each axis, as a
criterion for the mathematical accuracy.
In our definitions, we have only considered the input parameters of satellite on-

board image processing applications. However, it may also be required to apply the
equivalence class partitioning method to the output parameters of the application.
Furthermore, we have investigated our developed approaches by means of a single

satellite on-board image processing application. Due to the flexibility of our ap-
proaches the suitability for other application, for example, blob feature extraction
in the robotics domain [BBV00] [MWC+06], can be investigated.

48

List of Figures

1 Genetic algorithm procedure . 5
2 Camera Field of View . 6
3 Overview of the Fine Guidance System algorithm 7
4 Overview of the partitioning approach 12
5 Examples of different low quality stars 15
6 Example partitioning of the Focal Plane Assembly 16
7 Example partitioning of magnitude range 17
8 Example partition of a pixel . 18
9 Overview of the automated test case generation approach 24
10 Example individual representation 26
11 Stochastic Universal Sampling . 29
12 Block diagram of test setup . 35
13 Maximum execution time per generation evaluating execution time 41
14 Maximum quality index per generation evaluating accuracy 42
15 Maximum fitness value per generation evaluating execution time

and accuracy . 44
16 Maximum quality index per generation evaluating execution time

and accuracy . 44
17 Maximum execution time per generation evaluating execution time

and accuracy . 45

iii

List of Tables

1 Example fitness values and selection probability of individuals . . . 29
2 Individual and multidimensional coverage of the test suites 37
3 Output for a sample test case . 38
4 Test suites evaluation results . 38
5 Input parameters of the genetic algorithm evaluating execution time 40
6 Input parameters of the genetic algorithm evaluating two criteria . 43

iv

List of Algorithms

1 Calculation of individual and multidimensional coverage 20
2 Get equivalence class index . 21
3 Generate complete test suite . 22
4 Select initial population . 27
5 Fitness evaluation . 28
6 Stochastic universal sampling selection of individuals 29
7 Crossover . 30
8 Mutation . 31
9 Proposed genetic algorithm . 32

v

List of Acronyms

AOCS Attitude and Orbit Control System
API Application Programming Interface
CCD Charge Coupled Device
COM Center Of Mass
DLR German Aerospace Center
ECSS European Cooperation for Space Standardization
ESA European Space Agency
F-DPU Fast camera Data Processing Unit
FGS Fine Guidance System
FOV Field of View
FPA Focal Plane Assembly
FPGA Field Programmable Gate Array
GUI Graphical User Interface
HDF5 Hierarchical Data Format version 5
PLATO PLAnetary Transits and Oscillation of stars
PSF Point Spread Function
QUEST QUaternion ESTimator
S/C Spacecraft
SNR Signal-to-Noise Ratio
TPT Time Partition Testing
TU Technical University
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus

vi

References

[AM99] Alander, Jarmo T. ; Mantere, Timo: Automatic software testing
by genetic algorithm optimization, a case study. In: Proceedings of the
1st International Workshop on Soft Computing Applied to Software
Engineering, 1999, S. 1–9

[BBV00] Bruce, James ; Balch, Tucker ; Veloso, Manuela: Fast and inex-
pensive color image segmentation for interactive robots. In: Intelligent
Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ
International Conference on Bd. 3 IEEE, 2000, S. 2061–2066

[BDH98] B.F. Jones ; D.E. Eyres ; H.-H. Sthamer: 97063.dvi. In: THE
COMPUTER JOURNAL 41 (1998), Nr. 2, S. 98–107

[BK06] Bringmann, Eckard ; Krämer, Andreas: Systematic testing of the
continuous behavior of automotive systems. In: Proceedings of the
2006 international workshop on Software engineering for automotive
systems ACM, 2006, S. 13–20

[BMP12] Bhandari, Dinabandhu ; Murthy, CA ; Pal, Sankar K.: Variance
as a stopping criterion for genetic algorithms with elitist model. In:
Fundamenta Informaticae 120 (2012), Nr. 2, S. 145–164

[BN03] Broekman, Bart ; Notenboom, Edwin: Testing embedded software.
Pearson Education, 2003

[BQ15] Bhat, Asma ; Quadri, SMK: Equivalence class partitioning and
boundary value analysis-A review. In: Computing for Sustainable
Global Development (INDIACom), 2015 2nd International Conference
on IEEE, 2015, S. 1557–1562

[Cob17] Cobham Gaisler AB: GRMON2 User’s Manual. www.cobham.com/
gaisler. Version: 2017

[DLR17] DLR: Grünes Licht für europäisches Weltraumteleskop PLATO.
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/

151_read-22858/#/gallery/27241. Version: 27.06.2017

[ESA12] ESA: ESA’s ’Cosmic Vision’. http://www.esa.int/

Our_Activities/Space_Science/ESA_s_Cosmic_Vision.
Version: 19.10.2012

vii

www.cobham.com/gaisler
www.cobham.com/gaisler
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-22858/#/gallery/27241
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-22858/#/gallery/27241
http://www.esa.int/Our_Activities/Space_Science/ESA_s_Cosmic_Vision
http://www.esa.int/Our_Activities/Space_Science/ESA_s_Cosmic_Vision

REFERENCES

[Eur17] European Space Agency: SpaceWire Standard. http:

//spacewire.esa.int/content/Standard/Standard.php.
Version: 2000-2017

[GKK04] Gerdes, Ingrid ; Klawonn, Frank ; Kruse, Rudolf: Evolutionäre Al-
gorithmen: Genetische Algorithmen - Strategien und Optimierungsver-
fahren - Beispielanwendungen. 1. vieweg, 2004

[Gri17] Grießbach, Denis: Fine Guidance System Algorithm. 2.3(Draft1).
DLR, Berlin, 13.04.2017

[HP13] Huang, Wen-ling ; Peleska, Jan: Exhaustive model-based equiv-
alence class testing. In: IFIP International Conference on Testing
Software and Systems Springer, 2013, S. 49–64

[HP16] Huang, Wen-ling ; Peleska, Jan: Complete model-based equiva-
lence class testing. In: International Journal on Software Tools for
Technology Transfer 18 (2016), Nr. 3, S. 265–283. – ISSN 1433–2779

[JES98] Jones, Bryan F. ; Eyres, David E. ; Sthamer, H-H: A strategy for
using genetic algorithms to automate branch and fault-based testing.
In: The Computer Journal 41 (1998), Nr. 2, S. 98–107. – ISSN 1460–
2067

[JT99] Jarmo T. Alander ; Timo Mantere: Automatic software testing
by genetic algorithm optimization, a case study. In: Proceedings of the
1st International Workshop on Soft Computing Applied to Software
Engineering (1999), S. 1–9

[Kan04] Kaner, Cem: Teaching domain testing: A status report. In: Software
Engineering Education and Training, 2004. Proceedings. 17th Confer-
ence on IEEE, 2004, S. 112–117

[KU 18] KU LEUVEN: PLATO Simulator: Main Page. http://

ivs-kuleuven.github.io/PlatoSim3/. Version: 17.05.2018

[Lie02] Liebe, Carl C.: Accuracy performance of star trackers-a tutorial. In:
IEEE Transactions on aerospace and electronic systems 38 (2002), Nr.
2, S. 587–599

[MA00] Mantere, Timo J. ; Alander, Jarmo T.: Automatic image genera-
tion by genetic algorithms for testing halftoning methods. In: Intelli-
gent Robots and Computer Vision XIX: Algorithms, Techniques, and
Active Vision Bd. 4197 International Society for Optics and Photonics,
2000, S. 297–309

viii

http://spacewire.esa.int/content/Standard/Standard.php
http://spacewire.esa.int/content/Standard/Standard.php
http://ivs-kuleuven.github.io/PlatoSim3/
http://ivs-kuleuven.github.io/PlatoSim3/

REFERENCES

[MC14] Markley, F L. ; Crassidis, John L.: Fundamentals of spacecraft
attitude determination and control. Bd. 33. Springer, 2014

[Moh05] Moheb R. Girgis: Automatic Test Data Generation for Data Flow
Testing Using a Genetic Algorithm. In: Journal of Universal Computer
Science 11 (2005), Nr. 6, S. 898–915

[MWC+06] Merino, Luis ; Wiklund, Johan ; Caballero, Fernando ; Moe,
Anders ; De Dios, José Ramiro M. ; Forssen, P-E ; Nordberg,
Klas ; Ollero, Anibal: Vision-based multi-UAV position estimation.
In: IEEE robotics & automation magazine 13 (2006), Nr. 3, S. 53–62

[PEN11] PENDER ELECTRONIC DESIGN GmbH: GR-XC6S-
product sheet. 2011

[Pet09] Peter Liggesmeyer: Software-Qualität: Testen, Analysieren und
Verifizieren von Software. 2. Spektrum Akademischer Verlag, 2009. –
ISBN ISBN 978–3–8274–2056–5

[SBW01] Sthamer, Harmen ; Baresel, André ; Wegener, Joachim: Evo-
lutionary testing of embedded systems. In: Proceedings of the 14th
International Internet & Software Quality Week (QW’01) (2001), S.
1–34

[Shu08] Shuster, Malcolm D.: The TASTE test. In: Advances in the Astro-
nautical Sciences 132 (2008), S. 71–81

[SK09] Srivastava, Praveen R. ; Kim, Tai-hoon: Application of genetic al-
gorithm in software testing. In: International Journal of software En-
gineering and its Applications 3 (2009), Nr. 4, S. 87–96

[SPA16] Sharma, Akshat ; Patani, Rishon ; Aggarwal, Ashish: Soft-
ware Testing Using Genetic Algorithms. In: International Jour-
nal of Computer Science & Engineering Survey 7 (2016), Nr. 2, S.
21–33. http://dx.doi.org/10.5121/ijcses.2016.7203. – DOI
10.5121/ijcses.2016.7203. – ISSN 09763252

[SW15] Suszyński, Robert ; Wawryn, Krzysztof: Stars’ Centroid Determi-
nation Using PSF-Fitting Method. In: Metrology and Measurement
Systems 22 (2015), Nr. 4, S. 547–558

[The18] The HDF Group: HDF5. https://portal.hdfgroup.org/

display/HDF5/HDF5. Version: April 05, 2018

ix

http://dx.doi.org/10.5121/ijcses.2016.7203
https://portal.hdfgroup.org/display/HDF5/HDF5
https://portal.hdfgroup.org/display/HDF5/HDF5

REFERENCES

[VM14] Varshney, Sapna ; Mehrotra, Monica: Automated software test
data generation for data flow dependencies using genetic algorithm.
In: International Journal 4 (2014), Nr. 2

[Wei15] Weicker, Karsten: Evolutionäre Algorithmen. 3., überarb. und
erw. Aufl. Wiesbaden : Springer Vieweg, 2015. http://dx.doi.

org/10.1007/978-3-658-09958-9. http://dx.doi.org/10.1007/

978-3-658-09958-9

[WM01] Wegener, Joachim ; Mueller, Frank: A comparison of static anal-
ysis and evolutionary testing for the verification of timing constraints.
In: Real-time systems 21 (2001), Nr. 3, S. 241–268

[WP17] Wohlfeil, Jürgen ; Peter, Gisbert: Instrument Technical Require-
ment Document (TRD). 3.2 (Draft 7). DLR, Berlin, 18.07.2017

x

http://dx.doi.org/10.1007/978-3-658-09958-9
http://dx.doi.org/10.1007/978-3-658-09958-9
http://dx.doi.org/10.1007/978-3-658-09958-9
http://dx.doi.org/10.1007/978-3-658-09958-9

	Inhaltsverzeichnis
	1 Introduction
	2 Background
	2.1 Equivalence Class Partition Testing
	2.2 Genetic Algorithms
	2.3 Context: PLAnetary Transits and Oscillation of stars

	3 Related Work
	4 Multidimensional Coverage Criteria for Automated Testing of Image Processing Algorithms
	4.1 Assumptions and Limitations
	4.2 Running Example: Input Parameters
	4.3 Equivalence Class Definitions
	4.4 Multidimensional Coverage Criteria
	4.5 Automated Test Generation
	4.6 Summary

	5 Genetic Algorithm for Automated Test Generation for Image Processing Algorithms
	5.1 Assumptions and Limitations
	5.2 Proposed Genetic Algorithm
	5.3 Automated Test Generation
	5.4 Summary

	6 Evaluation
	6.1 Implementation
	6.2 Experimental Results: Partitioning Approach
	6.3 Experimental Results: Genetic Algorithm

	7 Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Bibliography

