Accurate Monitoring of the Danube Delta Dynamics using Copernicus Data

Corneliu Octavian Dumitru1, Gabriel Dax1,2, Gottfried Schwarz1, Constantin Cazacu3,4, Mihai Cristian Adamescu4, and Mihai Datcu1

1German Aerospace Center (DLR), Münchener Str. 20, 82234 Weßling, Germany
2Fachhochschule Salzburg, Urstein Süd 1, 5412 Puch bei Hallein, Austria
3Department of Systems Ecology and Sustainability, University of Bucharest, Romania
4Research Center in Systems Ecology and Sustainability, University of Bucharest, Romania

Emails: corneliu.dumitru@dlr.de, gottfried.schwarz@dlr.de, gabriel.dax@dlr.de, constantin.cazacu@g.unibuc.ro, mihaiestiant.adamescu@g.unibuc.ro, mihai.datcu@dlr.de

Keywords: Classification, change detection, Copernicus data, coastline detection, Danube Delta, normalized compression distance

Abstract:

The Danube Delta is the second largest river delta in Europe and is the best preserved one on the continent and is inscribed on the UNESCO World Heritage List due to its biological uniqueness [1]. The Delta is formed around the three main channels of the Danube, named after their respective ports Chilia (in the north), Sulina (in the middle), and Sfantu Gheorghe (in the south). The greater part of the Danube Delta lies in Romania (Tulcea County), while its northern part, on the left bank of the Chilia arm, is situated in Ukraine (Odessa Oblast). Its total surface is 4,152 km2. The waters of the Danube, which flow into the Black Sea, form the most pristine delta in Europe.

In the image processing literature there are not many studies treating the Danube Delta, especially for SAR data [2-4]. However, the monitoring of biodiversity from in-situ measurements has attracted more interest [5].

In this paper, we propose to use high-resolution Copernicus data in order to analyze the diversity of categories that can be extracted (using Sentinel-2 data) and to monitor the map-projected five-day evolution of the area within a period of seven months between November 2015 and May 2016 (using Sentinel-1 data with the advantage of being cloud free). For doing this, we propose and investigate three complementary methods: (1) Classification and change maps using active learning based on Support Vector Machine (SVM) [6]; (2) Coastline detection for change detection based on a correlation between polarimetric channels, the histogram, and the correlation map [7]; (3) Change detection based on Normalized Compression Distance (NCD) [8]. For each category, these classification results will be compared with reference ground truth data based on precision/recall metrics.

This work was supported by the H2020 ECOPOTENTIAL project (grant no. 641762) and by a Helmholtz Automated Scientific Discovery project.

