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ABSTRACT

The use of a spacecraft equipped with a robotic manipulator is recognised as a pro-

mising technology for on-orbit servicing missions. This can extend the lifetime of a
defunct satellite or accomplish a safe de-orbiting manoeuvre, thus, mitigating the

problem of space debris. Control algorithms for the spacecraft equipped with the
manipulator need to be validated on ground prior to the space mission. Hence, a

reliable simulator capable of reproducing the micro-gravity conditions on ground is

required. To this end, a state-of-the-art robotic facility, namely OOS-Sim was de-
veloped at the German Aerospace Center for experimental validation of space robot

control algorithms. The facility is composed of two admittance-controlled industrial
robots equipped with force-torque sensors to simulate model-based satellite dyna-

mics and one of the industrial robots is equipped with a light-weight robot. In such
kind of robotic simulators, delays in the control loop and discretization effects of the

signals can lead to an increase in energy, potentially rendering the system unstable.

In this thesis, the aforementioned factors violating the energy conservation prin-

ciple are identified, isolated and addressed through control strategies to ensure an
energy-consistent dynamics simulation while preserving system stability. In par-

ticular, energy-observers are designed to monitor the activity in the system and
passivity-based controllers are developed to correct the velocity or the force com-

manded to the robot. This approach is firstly implemented to compensate the
unstable effects caused by the time-delays inherent in the control loop. Secondly,

an explicit and passive discrete-integrator is designed to prevent the energy drift
caused by the integration process of the model-based dynamics, which the robot

motion relies on. Finally, a unified framework is designed to compensate both the
time-delay and discrete-time integration effects. As a result, the robotic simulator

is rendered stable and energy-consistent while simulating satellite dynamics as pro-
ved by experiments. Hence, the simulator serves as a reliable platform to validate

control algorithms for the space robot.

A further contribution of the thesis is the design and experimental validation of

different torque-based controllers for the space manipulator. In particular, a torque-
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controller for the manipulator mounted on the non-actuated satellite-base is firstly

designed. Later, driven by ESA space mission requirements, which impose a low
frequency control of the base actuation, a torque-controller is designed for the re-

gulation of the manipulator and of the actuated base. In particular, stability issues
due to the multi-rate controllers of the manipulator and base are analysed from an

energy perspective and a passivity-based stabilising controller is proposed. Finally,
the control strategy is extended to the tracking case for the manipulator considering

the multi-rate effects, which is a typical scenario for a space-robot performing ser-
vicing manoeuvres. The controllers are also validated through experiments on the

reliable robotic simulator.
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SOMMARIO

L’impiego di un satellite equipaggiato con un manipolatore robotico è riconosciuto
come una tecnologia promettente per future missioni spaziali inerenti alla manuten-

zione in orbita di satelliti difettosi. Questa tecnologia può estendere la vita operativa
di satellite mal-funzionanti o consentire una manovra di de-orbiting, mitigando l’au-

mento dei detriti spaziali. Tuttavia, gli algoritmi di controllo richiedono un’accurata
validazione prima della missione spaziale e un simulatore affidabile, in grado di ri-

produrre le condizioni di microgravità a terra, è di fondamentale importanza. In
questo contesto, OOS-Sim, una struttura robotica recentemente sviluppata presso

il centro aerospaziale tedesco, è impiegata per supportare la validazione sperimen-

tale degli algoritmi di controllo. Il simulatore è composto da due robot industriali
controllati in ammettenza che simulano la dinamica di un satellite sfruttando un

modello matematico. Entrambi sono dotati di sensori di coppia e di forza e uno dei
robot industriali è equipaggiato con un manipolatore leggero. In questo genere di

simulatori, il tempo di ritardo nel loop di controllo e la discretizzazione dei segnali
causano un incremento di energia rendendo il sistema potenzialmente instabile.

In questa tesi i fattori sopra menzionati, che violano il principio di conservazione
dell’energia, sono identificati e gestiti attraverso strategie di controllo che assicu-

rano una simulazione dinamica a consistenza energetica, garantendo stabilità. In
particolare, osservatori di energia sono stati sviluppati per monitorare l’attività nel

sistema e controllori passivi agiscono per correggere la velocità o la forza comandata
al robot. Questo approccio è inizialmente implementato per compensare gli effetti

instabili causati dal tempo di ritardo presente nel loop di controllo. Successivamen-

te, un integratore passivo ed esplicito è stato sviluppato per prevenire la deriva di
energia causata dall’integrazione delle dinamiche in tempo discreto, sulla quale il

moto del robot si basa. Infine, una struttura di controllo unificata è stata proget-
tata per compensare il ritardo nel loop di controllo e la deriva di energia causata

dall’integratore. Quindi, la strategia adottata garantisce la stabilità del robot in-
dustriale e consente di simulare dinamiche di satelliti assicurando una consistenza

energetica come dimostrato da esperimenti. Pertanto, il sistema robotico può es-
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sere utilizzato come piattaforma per validare gli algoritmi di controllo anche per il

satellite equipaggiato con il manipolatore spaziale.
Un ulteriore contributo della tesi è lo sviluppo e la validazione sperimentale di

controllori di coppia per il manipolatore spaziale. In particolare, un primo controllo
di impedenza è stato sviluppato per il manipolatore montato sulla base del satellite,

la quale non è attuata. Successivamente, un secondo controllore di impedenza è
stato progettato per regolare il manipolatore e la sua base considerando i requisiti

imposti in progetti ESA inerenti a questo genere di missione spaziali, che impongono
un controllo a bassa frequenza per l’attuazione della base. In particolare, i problemi

di stabilità dovuti al basso tempo di campionamento del controllore alla base sono
analizzati da un punto di vista energetico e viene quindi proposto un controllore

basato sulla passività. Inoltre, quest’ultimo viene esteso al caso di inseguimento
di traiettorie per il manipolatore considerando gli effetti causati dai diversi tempi

di campionamento dei controllori. Questo rappresenta uno scenario tipico per un

manipolatore spaziale che esegue un compito di manutenzione in orbita. A supporto
della tesi, i controllori sono stati validati tramite esperimenti sul sistema robotico

OOS-Sim.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Space exploration, the vanguard of humanity, has inspired researchers, artists and

authors since a long time. Isaac Asimov, Robert Heinlein and Arthur C. Clarke,

also known as the Big Three of science fiction, have stimulated the imagination of
exploiting robots to support the humans in discovering new galaxies. They also con-

veyed the feeling of floating in space considering the difficulties and risks associated
with the space environment, such as the collisions between orbiting platforms and

satellites. Although the concept of space robotics is introduced through science fic-
tion authors, a statement can be accepted for engineers and researchers: robots can

operate in harsh environment, such as the space, where collisions between orbiting
objects can generate drastic consequences.

Today, the technological progress requires the service of several satellites, which

have improved our life in terms of telecommunication, localization and remote sens-
ing. Statistical data reveal that from the launch of the first satellite, the Sputinik

1 in 1957, more than 100 satellites are launched every year in the last decade and
more than 29000 objects greater than 10 centimetre are orbiting the low Earth orbit

with an orbital velocity of 7 km/s [FAMPU14]. The objects in orbit include not
only satellites, but also space debris, a specific type of space object which is human-

made, non-functional and orbiting around the Earth. Examples of space debris are

the spent upper stages of launch vehicles, inactive satellites, fragments produced
by on-orbit exploration and collisions. The high density of space debris and the

high velocity associated with the low orbit, can generate mutual collisions leading
to a chain reaction. This cascade effect is defined in literature as Kessler syndrome

[KCP78]. One of the major examples is the unintentional space debris collisions
occurred in 2009 between the defunct Russian satellite, Kosmos 2251, and the op-

erational satellite, Iridium 33. The collision generated more than 200000 fragments
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greater than one centimetre and the number of debris around the Earth increased

drastically [Lio11]. Furthermore, in recent years on-orbit failures have exceeded the
launch failures leading to an increase in space debris and losses of billions of dollars

[SA01]. These failures are related to thrusters systems, star sensors, wrong orbit
location, problems in the apogee motors and deployment of solar arrays [EKS08].

Besides that, every satellite runs out of fuel and thus, must be decommissioned even
if is still functional.

Mitigation of space debris and resolution of satellites failures have driven the

main space agencies to define a recovery plan introducing the concept of on-orbit
servicing [RMD82]. The term On-Orbit Servicing (OOS) refers to the maintenance

in orbit, including assembly, refuelling and repair of a defective system. The goal of
an OOS mission is to extend the lifetime of satellites after failures and to actively

remove the space debris with a controlled re-entry in the Earth atmosphere. It

is notable that such tasks have motivated the development of new technologies in
space including unmanned missions. Among all, robotics emerges as a promising

technology to perform servicing tasks.

The assembly and maintenance in orbit using robotic technologies began in 1981,
when the space Shuttle manipulator, the Canadarm, was used for the first time.

Several manned missions have followed for the capture and repair of malfunctioning
satellites including the repair of the Hubble Telescope. Also the use of the ma-

nipulator on the International Space Station (ISS), the Canadarm 2, represented a
milestone for the support of the ISS extra vehicular activities. In addition to the

robotic servicing capabilities, that are bound to the now decommissioned Shuttle or
to the Canadarm 2, unmanned mission demonstrators were flown in orbit. The most

relevant missions and demonstrations are the following, ROTEX (the Robot Tech-

nology experiment) developed by the German Aerospace Center (DLR) [HBDH93],
the Japanese Engineering Test Satellite VII (ETS-VII) [OKY96, Yos03], the German

Robotic Component Verification experiment aboard the ISS (ROKVISS) [ASBR+06]
and the Demonstration of Autonomous Rendezvous Technology (DART) [HJBB04].

In particular, a milestone was the success of DARPA Orbital Express mission in 2007
[SW04]. The goal was the demonstration of autonomous rendezvous and docking

operations including maintenance activities like refuelling on a partially-cooperative
satellite. However, space debris and defective satellites are usually non-cooperative,

that means no support with respect to attitude and orbit control of the defunct
satellite is available. Further, the satellite does not have a docking port or retro

reflectors used for vision based navigation.

Recently, many projects focus on the capture of a non-cooperative spacecraft.

This represents a challenge for a control system due to the lack of information
about the states of the target. The German Orbital Servicing Mission (DEOS)

[SBS+10, RMNL11] aimed at grasping of a non-cooperative target by using a free-to-
float space robot. Several projects followed after DEOS, such as e.Deorbit [TAE+17]

and the ongoing project COMRADE [CBS+18], commissioned by the European
Space Agency (ESA). The goal of the latter two projects is to perform OOS tasks

using a manipulator arm, which operates on a controlled satellite-base. The most
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challenging task considered in e.Deorbit and COMRADE, is the removal of Envisat,

an eight-ton formerly Earth-monitoring satellite, that is defective and tumbling. It
is recognised as the biggest debris in low Earth orbit. The DEOS, e.Deorbit and

COMRADE projects consider the use of a three-meter redundant manipulator arm
for operating in the multiple phases of an OOS mission, which consist of approach-

ing the non-cooperative target satellite with the manipulation arm, grasping and
stabilisation of the target. Later, the docking manoeuvre follows and OOS tasks or

a de-orbiting manoeuvre can be performed on the combined structure.

Fig. 1.1 shows the scenario of the DEOS mission, where a servicer satellite, i.e.
the satellite equipped with a manipulator arm, approaches a non-cooperative and

tumbling satellite, the client (see Fig. 1.1a). After the grasping and stabilisation

phases, a docking manoeuvre is performed and the manipulation arm is used for
repairing the satellite (see Fig. 1.1b). The scenario of the e.Deorbit and COMRADE

projects can be seen in Fig. 1.2a, where the manipulation arm of the servicer satellite
grasps Envisat on the launch adapter ring and in Fig. 1.2b a representation of the

de-orbiting manoeuvre is shown.

(a) Servicer satellite equipped with a ma-
nipulator during the approach phase of a
target satellite c©DLR.

(b) Servicer satellite equipped with a ma-
nipulator in the docked configuration while
performing OOS task c©DLR.

Figure 1.1: Scenarios for the DEOS mission.

(a) Servicer satellite equipped with a ma-
nipulator during the grasping of Envisat
satellite c©ESA.

(b) Servicer satellite equipped with a ma-
nipulator during the de-orbiting of Envisat
satellite c©ESA.

Figure 1.2: Scenarios for the e.Deorbit and COMRADE project.
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During these phases, the manipulator arm needs to have a degree of compliance

in order to react in case of accidental contacts and during the grasping phase. This
factor can be achieved by using passive elements such as mechanical springs or with

an active compliance. Within this field, the most popular implemented method is the
impedance control, where a desired mass-spring-damper behaviour can be achieved

for the arm. Commonly, this type of controller is employed in human-robot interac-
tion, where safety and interaction with external force is required. Furthermore, the

controller of the space arm needs to take into account also the floating nature of the
satellite-base. This induces a challenge from the point of view of robot dynamics

and impedance control design, which is different from the common fixed-base robot
control. These factors motivate the need of having a platform which can repro-

duce microgravity conditions on ground in order to develop and validate impedance
controllers for the space manipulator.

1.2 On-ground Facilities for Simulation of Micro-
gravity Conditions

A key role for the success of an OOS space mission is played by the validation
of the algorithms and controls prior to the launch. Hence, the need of having a

reliable simulator, which can reproduce micro-gravity conditions on ground is of
utmost importance. Within this context, several technologies can be adopted to

recreate zero gravity (0-g) conditions on ground and these can be classified into:
air bearing systems, neutral buoyancy, 0-g parabolic flights, cable off-loaders and

hardware-in-the-loop simulators [SPH03]. The main capabilities and limitations
of these technologies are presented in this section. In particular, a review on the

facilities which exploit the simulation with hardware-in-the-loop is presented and
details are provided for a particular hardware-in-the-loop simulator, the OOS-Sim,

exploited for the validation of the controllers developed within this thesis.

Technologies based on air bearing systems include one or two platforms which can
float on a flat floor through air bearing pads. Pressurised air passes through small

holes of the platform and it establishes a thin film of compressed air with the flat
floor that supports the weight of the moving section [SPH03]. This technique allows

the simulation of 0-g condition in two dimensional (2-D) space, which includes one

rotation and two translations. Such a system has been used for testing the control
algorithms of the Japanese free-floating system [Yos03] and major companies and

research groups in academia exploit this kind of test-beds [RFS07]. However the
motion which can be simulated is limited to planar motion only [MBC+07] and this

represents a limitation for a complete on-ground simulation of an OOS mission.

An other technology for 0-g simulation exploits a water pool to achieve neutral
buoyancy, so that the submerged body has a tendency to float as it would be in

space. The method has the advantage of having a 6-D motion within the fluid and
without having time constrains [CA00]. However this technology suffers from drag

forces induced by the fluid, which generate hydrodynamics effects that distort the
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dynamics to be reproduced [FAMPU14].

Zero-g parabolic flights can achieve nearly zero gravity conditions. For this tech-

nique, an aircraft flying on a parabolic trajectory is exploited to achieve micro-
gravity conditions [MBC+07]. In [SUM+04] experiments were performed in a zero-g

parabolic flight for a four degree-of-freedom robot achieving 0.02g for 20 seconds.
This method has several drawbacks, two of which are short time duration in micro-

gravity (between 10 and 30 seconds) and limited workspace [FAMPU14].

In systems with cable off-loaders, the gravity force is compensated by a suspen-
sion system, usually composed of cables, which generate the same force amplitude

but in opposite direction of the gravity force vector. The main drawback of this
technology is the static balancing of the gravity force. Furthermore, the tensions

forces might also be applied in other directions which can significantly interfere with
the behaviour of the space element to be tested [FAMPU14].

The disadvantages of the aforementioned technologies can be covered when con-

sidering simulation techniques with Hardware-in-the-Loop (HIL).

1.2.1 Hardware-in-the-Loop Simulators

Simulations with hardware-in-the-loop are exploited in different fields, for example

in automotive, electronics and dynamics systems [SHH+12]. As the name suggests,
this technology involves both hardware and software simulation. The possibility

of linking a dynamic model to a real physical system provides benefits in term of

costs reduction, safety and testing the operational scenario under defined conditions
with real sensors. Regarding the recreation of microgravity simulation conditions on

ground, a computer-based dynamic model of the whole space system is considered
and a hardware system, capable of delivering a 6-D motion, is used to reproduce

the desired behaviour. Usually, the simulator which exploits this technology is a
robot(s) equipped with mock-ups of a spacecraft including the necessary hardware

for performing the capture or docking task. Furthermore, a force-torque sensor is
used for measuring the external interaction. The force and torque signals measured

by the sensor represent the input to the model-based dynamics whose output is
commanded to the robot that moves in Cartesian space.

This technique of simulation has the advantage of using a software simulation

of the desired dynamics, which for the satellite case is relatively simple to model.
Furthermore, it benefits from an accurate measurement of the contact forces acting

on the system, delivered by a force-torque sensor. Therefore real force measurements
are involved without the need of having a contact dynamics model, whose accuracy is

usually low [BM11]. However, HIL simulators have some limitations given mainly by

the inevitable time delay from a hardware contact to the corresponding simulation
driven reaction, which might lead to instability [FAMPU14].

In recent years, such kind of simulators have been employed in the aerospace

field and there are several facilities exploiting this technique available in literature.
The SPDM Task Verification facility developed by MD Robotics Ltd for the Cana-

dian Space Agency (CSA) is composed of two arms with a total of 15 degrees of
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freedom and it is employed for verification of robotic tasks performed on the inter-

national space station [MWSL03]. The Lockheed Martin SOCS (Space Operation
Simulation Center) facility is composed of two robots with six degree of freedom

each capable of simulating a full-scale spacecraft motion relative to an other object.
It is used for testing the NASA’s manned Orion rendezvous [MD12]. EPOS (Euro-

pean Proximity Operation Simulator) is composed of two industrial robots, which
can be used to simulate only rendezvous and docking [BWMT10]. INVERITAS

is a robotic facility used for the simulation of rendezvous and capture of satellites
[PDG+]. Recently, DLR (German Aerospace Center) developed the OOS-Sim, a

Hardware-in-the-loop facility which can be exploited for testing a complete on-orbit
servicing task on ground. A detailed description of the facility can be found in the

following subsection.

The OOS-Sim Facility

The OOS-Sim is a state-of-the-art robotic facility developed at the DLR and will be

used to validate the controllers developed within this thesis. This facility supports
the on-ground experimental validation of space robot control algorithms for on-orbit

servicing tasks [ADSR+15].

The facility is shown in Fig. 1.3 and comprises one industrial robot equipped
with a light-weight robot, namely the servicer robot, and a second industrial robot,

namely the client robot. The industrial robots perform the simulation of free floating
satellites dynamics while exploiting the HIL technology. The servicer robot, on

the left side of Fig. 1.3, is a six- degrees-of-freedom (dof) industrial robot (KR-
120), which can carry payloads up to 120Kg. The servicer end-effector mounts a

mockup, which integrates a docking interface and OOS-like elements such as a re-
fuelling interface. Furthermore, it is equipped with a force-torque sensor (FTS),

which is exploited for measuring external interaction forces and a seven dof Light-
Weight-Robot (LWR), which is the manipulator arm used for performing the OOS

tasks. The LWR has position and torque interface at joint level and it represents an

adequate robot to perform manipulation tasks. The manipulator is also equipped
with a three-fingers robotic gripper, used for the grasping of the target. The servicer

robot constitutes a hybrid system, where the industrial robot can be controlled
only by means of position commands and the LWR can be controller in position

and torque modes. A second industrial robot (KR-120) is exploited to simulate
the dynamics of a target satellite (see the robot on the right side in Fig. 1.3).

Similar to the servicer robot, the client robot has six dof and is equipped with a
forces and torques sensor at the end-effector to measured external interaction. The

computation of the model-based dynamics, later defined, are performed by a real-
time computer, which runs with a period of 4 ms. The LWR manipulation arm is

controlled by a second real-time operating system with a sampling time of 1 ms.
Both the systems are synchronised to respect real-time determinism1.

1More information about system communication and sensors of the OOS-Sim can be found in
Appendix A.1.1.
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Figure 1.3: The OOS-Sim facility: Servicer robot (left) and Client robot (right).

The facility is designed to operate in a common workspace given by the intersec-

tion of the three robots. Reachability and capability maps were used to assess the
OOS-Sim workspace. For this, the set-up is treated as two serial kinematic chains,

i.e. a 13-dof (KR120 servicer with LWR) and 6-dof (KR120 client). The volume of

the space environment which can be simulated with the OOS-Sim is approximately
23.28m3 (see Appendix A.1.1) and this workspace fulfils the requirements for testing

the main operation modes required for an OOS mission during the approach phase.

The control modes of the OOS-Sim resemble the ones of an OOS mission and

these can be divided mainly into semi-autonomy and telepresence modes. During
the semi-autonomous control, the manipulator motion follows a reference trajectory

provided by a motion planner [LH13]. The trajectory is computed on ground and

executed on the servicer manipulator with a local controller that takes into account
disturbances and prediction errors [LMO+18]. The second control mode considers

an operator in the loop to control the manipulator arm of the servicer satellite,
namely this control mode is defined as teleoperation [ARP10]. In this mode, the

operator uses a haptic device (for example a Light-Weight-robot) to control remotely
the servicer manipulator. Furthermore, force-feedback and vision information are

provided to the operator for increasing the feeling of being directly teleoperating
on the remote environment. Telepresence for OOS application presents the main

challenge of coping with communication channel characteristics, that is, to guarantee
a stable system in the presence of time delays [ABDS+16].

A relevant aspect which can be tested and validated on the OOS-Sim is the

performance of the impedance control for free-floating robots. Indeed, compliance
capability represents a key role in applications where external interaction is involved,

such as the grasping of a target satellite. In contrast to classical position control,
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Cartesian impedance control offers a more robust interaction. The described control

strategies can be tested on the OOS-Sim facility under realistic dynamics and robot
control behaviour, as well as with true sensor signals, e.g. using force measured at

the industrial robot end-effector.

1.3 Related Works

For a complete simulation of an OOS scenario on ground, the dynamics generated

by contact forces between satellites needs to be considered. Contact dynamics is
one of the most difficult areas in multi-body systems and it is still an active research

subject. The term contact describes the mechanical interaction between two bodies
whose boundaries share the same location [GS02]. Basically, two approaches are

considered for the contact dynamics simulation of a space scenario.

The first approach, exploits a full numerical simulation, where a software is
used to simulate the contact and the motion of the spacecraft [Ma95], [Yas14].

This approach is flexible, however it does depend on the contact models, which can
be classified into discrete and continuous. In discrete models, the contact occurs

in an extremely short period of time and thus all the forces can be regarded as
impulsive forces [Ray91]. This implies that the change in energy and momentum

will be discontinuous [Bra98]. These models characterise the impact through one
or several coefficients, typically the coefficient of restitution is used (i.e., the ratio

of the velocity after and before the contact). The most widely used models in this

category are Newton’s, Poisson’s, and Stronge’s models [MWX+18]. In continuous
models, the interaction forces act in a continuous manner during the contact and it

is described by physical forces [Kim99]. An example is the spring-dashpot model,
which considers the forces produced by a hypothetical spring and damper which

represent the compression-restitution and the energy dissipation. Other models are
the Hertz and non-linear damping models. In continuous contact, an accurate model

of forces is required and this is typically depending on the local deformation and
its derivative [GS02]. A review about the mathematical laws, which describe these

models can be found in Appendix B.

Regarding contact dynamics for space applications, [WW93] assumes a discrete
model for a point contact scenario. The main difficulties, however, arise when more

complex geometries are involved in the contact. [Ma95] and [MBR+97] developed
a continuous contact model to support the development of the Canadarm. The

computational efficiency, however, resulted to be low for an accurate contact dy-
namic simulation [MW07]. In [GS02] and [FDDR17] different models of contact are

presented and the authors conclude that each model requires the tuning of some
parameters, which is difficult to obtain.

The second approach is based on the direct measurement of the contact by us-

ing a force-torque sensor. The sensor signals are feed back to the model-based
dynamics whose output is sent to the robot, which moves emulating the motion

of the spacecraft. However, as mentioned in the Sec. 1.2.1, HIL robotic simula-
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tor equipped with force sensor are affected by the time delay in the control loop,

which is known to produce instability [DSARAS15]. If the delay value is time in-
variant, there are several compensation approaches. Usually, the measured force is

phase led [SIT+91, OKU10] in order to approximate it to the ideal force. The force
compensation adds a virtual force onto the measured force, which can achieve the

expected coefficient of restitution [ASJ+14a, ZBC13]. An other approach considers
the feed-forward position compensation [ATA96, CCYH07], which compensates the

command position of motion to the HIL simulator and makes the current position to
the desired position of spacecraft. In both cases, the correction is performed based

on a contact model.

Contact dynamics involved during the grasping task of the manipulator plays
also an important role [SIT+91]. The manipulation task is usually performed in the

operational space or known also as the Cartesian space of the robot end-effector

[Kha87]. To deal with the interaction, an impedance control is usually exploited.
Compared to the classical method in control, as pole placement [FW67] or backstep-

ping [KKK+95], an impedance controller is more intuitive to parametrise because
of the straight relationship of the parameters with the physical meaning. For the

impedance control of the space manipulator arm, it must be considered that the
manipulation motion is coupled with the floating motion of the satellite-base. A

resolved motion-rate control was developed to compensate for spacecraft motion by
introducing the concept of Generalized Jacobian [UY87], [UY89]. It was extended

in [YTY93] for multi-arm space robots. A sensory feedback control of space robot
manipulators was proposed in [MMA89]. In the direction of simultaneously control-

ling the base and manipulator (known also as coordinated control), the authors in
[Yos94] propose a momentum-based strategy using reaction wheels and [PD91] in-

troduces a coordinated controller scheme based on feedback linearisation. A survey
of impedance control for space robot can be found in [NP17] and more details are

provided in Chapter 6 and Chapter 7.

For the on-ground validation of OOS tasks using HIL robotic set-up, several

facilities are available and mainly are related to test the docking or the approach
phase between two satellites. For example, [SIT+91] considers a robotic system

for simulating 5 dof dynamics of a spacecraft subjected to external forces. The
rendezvous and capture of satellites is performed exploiting two industrial robots

as in INVERITAS [PDG+] or in [BM11] where the docking between satellites is
also performed. [AHLS96] proposes the use of two arms for simulating the servicer

and client satellites during approach, however no motion of the satellite-base was
considered. In [XLX11] two robots are also used and by combining the dynamic

emulation with the kinematic equivalence, it was possible to project the simulated
motion of the satellite-base onto the target under the assumption of non-contact.

[DDC+95] employed a PUMA robot mounted on a Stewart platform, whose motion

was simulated by a model exploiting the HIL technology. In [TIK+08] a hybrid
simulation by using dual arm robot including a 6 dof parallel robot was considered.

[WFH11] combines air-bearing technology with a HIL robotic simulation.

Further related works will be presented in each chapter for the respective topic.
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1.4 Problem Statement

The use of an industrial robot for dynamics simulation represents a challenging

task. The high-stiffness of the robot, the discretization of signals and the presence
of time-delay between measured data and commands to the robot are factors which

can generate instability in the system. Therefore, on one hand the stability of the
robot must be guaranteed during the dynamic simulation, on the other a faithful

dynamics simulation replicated by the robot needs to be achieved.

A key feature of this kind of simulator is the feed-back loop, which is closed with

real sensed force during the contact. As well known, time delay in the loop can
affect the stability of the system. Current state-of-works consider the modification

of the loop according to a contact model or a longer contact is considered in or-
der to mitigate the effects of the time delay in the control loop. These approaches

depend mainly on the contact model parameters, which makes the accurate estima-
tion difficult. Furthermore, existing frameworks cover only sub-domains related to

the discrete nature of the signals. However, during the dynamics simulation also
a passive discrete-integration technique is required in order to guarantee a stable

and energy consistent motion for the robot while simulating the satellite dynamics.
Therefore, a novel framework is needed, which should provide:

• a proper control action to avoid instability due to the time delay in the control
loop while respecting the energetic properties of the dynamics to be simulated,

• an energy consistent and explicit integration technique in order to command
to the robot a faithful set-point,

• a real-time implementation and experimental validation on an industrial robot.

Once the aforementioned points are fulfilled, control algorithms for the space

robot manipulator can be tested on ground. Several publications can be found in
robotics literature related to space robot control (see Sec. 1.3). However, a very lim-

ited number consider the on-ground validation of space robot. Usually these works
are limited only to validate a planar motion of the space manipulator, which often

lacks of torque interface. Hence, this also limits the validation of the impedance con-

trol for a space robot, which needs to operate in the complete workspace. Impedance
capabilities are often required in a situation where a contact is involved due to its

robustness. Furthermore, in some cases the control is designed in continuous-time
disregarding the effect of the discretization. However, requirements in space projects

impose a limitation on the frequency of the controller dictated by the actuation
power restrictions, e.g. thrusters. This plays an important role, especially while

considering the coordinated control of manipulator and satellite-base. Within this
context, the following points need to be fulfilled for the space robot control:

• an on-ground validation of impedance control for space robot is required,
• a coordinated control architecture for the space robot which can deal with low

frequencies control is necessary.
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1.5 Contribution and Overview

The points outlined in Sec. 1.4 can be addressed using the energy-based framework

developed within the thesis. The thesis contributes to both theory and experimental
validation in the research field of dynamics simulation using robotic facilities and

space robot impedance control. In this section, the contribution of the thesis with
an overview of the chapters is presented.

Chapter 2 introduces the reader to the stability problem, which can occur while

reproducing a satellite dynamics using a robotic facility. The fundamentals of the
passivity-based theory are introduced. Passivity represents one of the main tools

exploited in the controls developed within the thesis because it uses the concept
of energy, which is fundamental in interaction control. Besides introducing the

tools and the theory exploited in the thesis, the contribution of this chapter is the
comparison performed with different energy-based methods which can deal with

time-delay problems.

Chapter 3 explores the reasons for the increase in energy found in the control-loop
of a robot. Firstly, the robotic simulator is designed in electrical domain and the

time delay network is identified. Therefore, forces and energy observers are designed
together with a passivity controller, which profits from the passivity criteria. A

second contribution is the extension of the passivity control considering an optimal
criteria to maximise the performance while guaranteeing stability. The proposed

control concepts are validated on a real robot.

An other source of activity, which leads to an increase in energy during the
dynamic simulation is related to the way how the dynamics is discretized. The

discretized dynamics, indeed, generates the set-points in velocities, which move the
robot in Cartesian space. Therefore, the discrete-time integration needs to operate

in a passive way.

Hence, in Chapter 4 a passive and discrete-time integrator is developed, which pre-
serves the energy and dynamic properties of a physical body rendered on a robotic

simulator. The contribution is related to the identification of the energy generation
that results from the integration process. These sources of energy can lead to a non-

physical behaviour of the simulated dynamics, resulting in position drifts or stability
issues. The proposed method dissipates this energy using a variable damper regu-

lated by an energy observer. The passive integrator is validated with simulations
and tested on a real-time robotic simulator.

In Chapter 5, an overall architecture is designed to deal with both time delay

and discretization effects, which are analysed from an energetic perspective and
compensated through a passivity-based control strategy. Stability is guaranteed

during the dynamic simulation using position-controlled robots. The benefit of the
proposed methodology is validated with simulations and experiments.

The last two chapters of the thesis are related to the design and validation of

impedance controllers for the space robot. In Chapter 6, a review on the impedance
controllers for a space robot is given and an on-ground validation using the common

free-floating control is performed. Firstly, the space robot is considered to be free-
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to-float, i.e. the satellite-base where the manipulator is connected is not controlled.

The free-floating control was the baseline for the DEOS mission. The contribution
is related to the extension of the classical impedance controller for the free-flying

space robot, i.e. when the satellite-base is actuated by thrusters or reaction wheels.
The latter control was proposed also in the e.Deorbit space project.

In Chapter 7, a novel control strategy for a light weight robot arm mounted
on an actuated floating base is developed. In particular, the stability issues due

to the different rates of the control units are analysed. The first contribution is
the design of a non-linear regulation control for the base and the manipulator with

stability proof in continuous-time. Then, the feedback loop is modified by using a
passivity-based stabilising controller exploiting the time domain passivity approach.

The second contribution is the design of a tracking control for a space manipulator
and the regulation of its base, which is a typical scenario for an on-orbit servicing

mission. Besides guaranteeing trajectory tracking for the manipulator and regu-

lation for the base, the multi-rate nature of the controllers are analysed from an
energetic perspective. Therefore, both controllers are equipped with variable damp-

ing regulated by energy observers. The effectiveness of the proposed strategies is
validated on a base-manipulator multibody simulation and experimentally on the

OOS-Sim facility.
Hence, the main contributions of the thesis can be summarised as follows,

• A novel passivity-based control for dealing with time delay in robotic facilities
for simulation of dynamics.

• A novel discrete and passive integrator which can run in real time and therefore
can be used for dynamics simulation using robotic facility.

• A unified architecture which can deal with time delay and discrete sampling

in rendering dynamics.
• On-ground validation of impedance control for free-floating robot and devel-

opment of a free-flying impedance robot control.
• A novel approach with stability proof for the impedance control of a free-flying

space robot under multi-rate effects. In particular, the regulation and tracking
are tackled.

All the aforementioned points are supported with theoretical analysis, numerical ex-
amples and experimental validations. The research finding reported in this thesis re-

sulted in two journals [DSMB+19, DSBS18] and eight conference papers [DSBG+18,
DSA17, DSAS17, DSBAS17, DSAS16, ADSR+15, DSAG+15, DSARAS15] presented

in main international robotics congresses. The main publications on which the the-

sis is based are summarised in Table 1.1. Furthermore, a graphical overview of the
chapters including the topics and the relation with the publications, can be found

in Fig. 1.4.
Moreover, two journal articles [LMO+18, JLR+18] and eleven conference papers,

which are related to the topic of controlling space and aerial manipulators, have been
co-authored, see [SADS+15, ABDS+16, GGDS+16, TEDS+17, TAE+17, PSL18,

MDSGO18, KBDS+18, CBS+18, MDSGO19, HCC+19]. However these works are
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Chapter 1
Introduction

Stability for Simulation of

Dynamics with Robotic Facilities

Chapter 2 Chapter 3

Energy- based Control for 

Time-Delay Compensation

Energy-based Control for 

Discrete-time integrator

Chapter 4 Chapter 5

Unified Control Architecture for 

Time-delay and Discrete 

Sampling effects

Impedance Controllers for

Space Robot

Chapter 6 Chapter 7

Impedance Controllers for 

Space Robot under multi-rate effects

Chapter 8
Concluding Remarks

Passivity − based Control [DSARAS15]

Optimized Control [DSAS16]

Stability and

Control architecture [DSA17]

Passive integrator [DSBAS17]

Passive integrator coupling [DSAS17] Unified passivity approach [DSBS18]

On ground validation [DSAG+15]

[ADSR+15]

Free− F lying control [TEDS+17]

Multi− rate regulation Ctrl. [DSBG+18]

Multi− rate tracking Ctrl. [DSMB+19]

Figure 1.4: General overview of the chapters with main topics and relation to the
publications.

not integrated in the thesis. The reader can refer to the List of Author Publications,

which includes the complete research contribution of the author.
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CHAPTER 2

STABILITY FOR SIMULATION OF DYNAMICS WITH

ROBOTIC FACILITIES

2.1 Introduction

A major problem in control theory is to achieve high performance while keeping
stability under all the operational conditions. There are basically two philosophies

for controlling a robot having non-linear and uncertain behaviours. One is adap-
tive and the other is robust control [SMO99], [ADDJ91]. In adaptive control, the

controller tries to learn the uncertain parameters of the system in order to achieve
the best performance [SL87, OS88]. On the other hand, robust controllers have

fixed structures that guarantee stability and performance in bounded uncertainties
[ADDJ91]. Robust controllers include passivity-based control which depends on the

passive nature of the rigid robot. Passivity-based controllers have better robustness
properties featuring robust stability with parameters variation [RKH04].

The controllers designed within this thesis will be based on the passivity proper-
ties of a system. In this chapter, the fundamentals of the passivity properties and

a background on energy-based control methods are discussed. Firstly, the chapter

introduces the control architecture exploited for simulating model-based dynamics
using robotic facility and presents the stability analysis for a reduced model of the

simulator. Furthermore, a review on passivity theory and a comparison on the com-
mon energy-based methods is introduced. In particular, the time-domain passivity

approach, the stabilising tool exploited along the thesis, will be presented in this
chapter. Furthermore, the network theory, that is needed for the energy treatment

tackled in this thesis, will be also introduced.
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2.2 Control Architecture for Simulating Satellite Dy-
namics

A suitable control strategy for simulation of desired dynamics on industrial robots is
the admittance control [SK16]. This strategy has been exploited in many different

fields, see e.g. [FPM+15] for a surgical application, [LFS+17] for a human-robot

interaction scenario and [ADSR+15] for robotic simulators for space applications.
While using admittance controlled robots, several factors must be taken into account

in order to guarantee stability. For example, the time delay between measured and
commanded data to the robot is one of those that can jeopardise the stability of the

system [DSARAS15]. In general, industrial robots can be controlled only by means
of position commands. This poses an added difficulty while rendering a virtual body

dynamics due to the absence of a torque interface. Therefore, this factor imposes
an admittance causality on the controller architecture.

For the OOS-Sim facility, two industrial robots are exploited to simulate the dy-
namics of a satellite. Both robots, namely Client and Servicer presented in Sec. 1.2.1,

are equipped with force-torque sensor at the end-effector. In the following sections,
the model-based dynamics simulated by the robots is introduced along with the

control architecture.

Client Robot

The representative dynamics of the client satellite, is based on the Newton-Euler
equations [Hug04]. The equations for the translational dynamics are defined as

follows:

v̇s = M−1fe, (2.1)

and the rotational dynamics is described by:

ω̇s = I−1(Iωs × ωs + τe) = I−1(S(Iωs)ωs + τe), (2.2)

where the following variables are defined as:

• M ∈ R
3×3 the simulated mass matrix,

• fe ∈ R
3 the Cartesian measured force,

• vs ∈ R
3 the Cartesian linear velocity,

• v̇s ∈ R
3 the Cartesian linear acceleration,

• I ∈ R
3×3 the inertia matrix of the body about the center of mass,

• ωs ∈ R
3 the angular velocity,

• ω̇s ∈ R
3 the angular acceleration,

• S(Iωs) ∈ R
3×3 the skew-symmetric matrix such that S(Iωs)ωs = Iωs × ωs,

• τ e ∈ R
3 the Cartesian measured torques.

The total wrench and twist are defined as:

• Fe = (fe, τe) ∈ R
6 the wrench,

16
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• Vs = (vs, ωs) ∈ R
6 the twist.

The dynamics in (2.1) and (2.2) is a function of external forces and torques Fe,

which can be measured by the force-torque sensor (FTS) placed at the end effector

of the client robot. Thus, forces and torques measured by the end effector sensor,
i.e. (fFS , τFS) need to be transformed in the satellite center of mass, as:

fe = REE,e fFS, (2.3)

τe = pEE,e × (REE,e fFS) +REE,e τFS, (2.4)

where REE,e is the rotation matrix between the end-effector and the center of mass

and pEE,e is the position vector from the end-effector to the center of mass.

The architecture implemented for controlling the client robot is shown in Fig. 2.1.

The input to the simulated dynamics (Sat.Dyn.) is the measured forces and torques

vector Fe. Thus, the satellite dynamics can be computed according to the external
physical interaction. The block L represents the integral process and the transforma-

tion required to compute a desired homogeneous matrix Hd commanded to the robot
through the inverse kinematics. In particular, by double integrating (2.1) a relative

position can be defined and by integration (2.2) and using the Euler-Rodrigues for-
mulation [SK08], a relative orientation matrix can be found. As a result, the robot

moves in Cartesian space simulating the satellite motion.

FTS

Fe

Sat. Dyn.
Vs Hd

inv.Kin.
KUKA

KUKA

Robot

dir.Kin.

Hm

L

Industrial Robot

Figure 2.1: Control architecture of the industrial robot for reproducing satellite
dynamics.

Servicer robot

The servicer robot is composed of an industrial robot similar to the client, but it

is equipped with a 7 dof Light Weight Robot (LWR) mounted on its end-effector.
The industrial robot, which simulates the servicer satellite, can be controlled only

in admittance mode with the same architecture shown in Fig. 2.1 and the LWR can
be controlled in torque or position mode. The industrial robot can replicate the

satellite dynamics in a decoupled manner, i.e. considering Fig. 2.1 and using the
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force-torque sensor at the LWR base to measure its reaction force or in a coupled

manner. For the latter, the dynamic model can be expressed as follows [Fea07]:

[
Hb Hbm

HT
bm Hm

][
ẍb

q̈

]

+

[
Cb Cbm

Cmb Cm

][
ẋb

q̇

]

=

[
Fb

τ

]

+

[
JT
b

JT
m

]

Fh, (2.5)

where the following are defined as:

• Hb ∈ R
6×6 inertia matrices of the whole system,

• Hm ∈ R
n×n inertia matrices of manipulator,

• Hbm ∈ R
6×n coupling matrix between the base and the manipulator,

• Cb ∈ R
6×6 non-linear Coriolis/centrifugal matrix of the base,

• Cbm ∈ R
6×n non-linear Coriolis/centrifugal matrix due to coupling between

base and manipulator,
• ẍb ∈ R

6 acceleration vector of the base (linear and angular),

• q̈ ∈ R
n acceleration vector of the robot joints,

• Fb ∈ R
6 force-torque wrench acting on the center of mass of the base-body,

• τ ∈ R
n input torque vector to the manipulator,

• Fh ∈ R
6 external force-torque on the end-points,

• Jb ∈ R
6×6 Jacobian of the base,

• Jm ∈ R
6×n Jacobian of the manipulator.

The motion of the servicer base can be either obtained from the integration of the

upper set of (2.5) or by integration of the total momentum of the system [ADSR+15],

defined as follows:

ẋb = −H−1
b (Hbmq̇ +

∫ t

0

Fbdt+

∫ t

0

JT
b Fhdt). (2.6)

The commanded input to the industrial robot is the velocity ẋb in (2.6) and the
control architecture is similar to the control scheme shown Fig. 2.1, where Sat. Dyn

receives as input the total forces, the joint state of the LWR and gives as output ẋb.

2.3 Stability Analysis

In this section the stability analysis is performed for a reduced model of the system

shown in Fig. 2.1. In particular the main focus is on the effect of the time delay
in the loop caused by the inverse kinematics computation, the actuation of the

industrial robot and the transmission of signals. Therefore, in the following analysis

the dashed box of Fig. 2.1, indicated as Industrial Robot, will be replaced with a
time delay block TD. The simplification is not restrictive because the industrial

robot can perfectly track the desired velocity, however the resulting velocity will be
affected by some time delay. It will be analytically shown which is the critical time

delay that affects the stability of the closed-loop system.
The reduced model, which represents the robotic simulator for satellite dynamics

simulation, is shown in Fig. 2.2. The satellite dynamics, Sat. Dyn, is represented by
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the integration of (2.1), which can be initialised with an initial velocity Vs(t0). The

time delay block, TD, is located in the control loop and it represents the robot, which
delays the velocity signal. Therefore, the velocity Vs is delayed by a quantity Td,

which is the time delay in continuous time. The block E represents the environment
with which the robot can interact producing a force, Fe, as input to the Sat. Dyn.

The environment is modelled as a spring-dashpot model, see Appendix B.

Industrial Robot

Fe Fe
Sat.Dyn. TD E

Vs(t0)

Vs(t) Vs(t− Td)

Figure 2.2: Reduced model of the robot simulator with time delay (TD) in the loop.

The corresponding transfer functions of the system shown in Fig. 2.2 are defined
as follows,

G(s)sat =
1

ms2
, (2.7)

G(s)TD = e−sTd, (2.8)

G(s)E = Kw +Dws, (2.9)

where G(s)sat, G(s)TD, G(s)E are the transfer functions of the satellite dynamics,

time delay and environment, respectively. The positive constants, Kw and Dw,

are the stiffness and damping of the environment and m is the mass of the rigid-
body. The stability boundaries can be exploited for guaranteeing stability of a

system, as it has been performed in literature for a similar case (see [OKU10],
[ASJ+14b], [QZG+16]). An analytical solution for the considered system was pro-

posed in [ZBC14] and it is reported here in explicit form. Later, a first-order Pade’
approximation for the time delay transfer function is considered. This allows one to

define a polynomial transfer function and to exploit classical stability tools, such as
root locus.

Analytical solution

The characteristic polynomial of the system, obtained from the total transfer func-

tion between the Sat. Dyn input to the output, results to be,

Υ1(s) = ms2 + e−sTd(Dws+Kw). (2.10)

The stability of the system is analysed by studying the behaviour of the roots, as
the time delay Td increases from zero value. The number of roots become infinitive

and some will cross the imaginary axis for a critical time-delay value, i.e Td0 . The
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condition for Υ1(s) to have the roots on jω is expressed considering Υ1(jω) = 0,

which results in the following set of equations,
∣
∣
∣
∣

Dws +Kw

ms2

∣
∣
∣
∣
= 1 (2.11)

arg
[Dws+Kw

ms2

]

= −ωTd ± 2πn, (2.12)

where n = (0, 1, 2, ...). Equations (2.11) and (2.12) remind the gain-phase margins

relation for a rational function [FPW98] and from these equations the following can
be found,

m2ω4 −D2
wω

2 −K2
w = 0 (2.13)

ωTd = arctan
(ωDw

Kw

)

± 2π

ω
n. (2.14)

By selecting the positive root for ω, the final system of equations result in:

ω =

√

Dw
2

2m2
+

√

D4
w

4m4
+
K2
w

m2
(2.15)

Tdn =
1

ω
arctan

(ωDw

Kw

)

± 2π

ω
n. (2.16)

Equations (2.15) and (2.16) provide the analytical solution of the frequency and the
time delay for which the closed-loop system becomes unstable. The critical value

for the time-delay can be found by setting the first value (n=0) in (2.16).
A limit case is represented when Dw = 0, indeed, the critical delay calculated in

(2.16) results to be zero and the associate crossing frequency results in the expected
value of ω =

√

Kw/m. In other words, an elastic impact with time-delay in the loop

destabilises the system. Furthermore, high value of the stiffness Kw affects also the
stability in presence of delay and the critical time delay Td → 0 (see (2.16)).

Solution via Pade’ approximation

In order to exploit classical stability tools, such as root locus, a polynomial transfer
function is required and the stability can be analysed while modifying indepen-

dently the parameters, m, Td, Kw, Dw. Therefore, a first-order Pade’ approximation
[FPEN09] can be considered for the transfer function of the time delay and it is

reported below,

G(s)TD = e−sTd ∼ 2− sTd
2 + sTd

. (2.17)

In this case, the total transfer function between the input to the Sat. Dyn and the
output (including the Pade’ approximation) results to be,

H(s) =
−s2DwKw + s(2Dw − TdKw) + 2Kw

s3mTd + s2(2m− TdDw) + s(2Dw − TdKw) + 2Kw

. (2.18)
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2. Stability for Simulation of Dynamics with Robotic Facilities

To evaluate the stability, the characteristic polynomial Υ2 from (2.18) is considered,

Υ2 = s3mTd + s2(2m− TdDw) + s(2Dw − TdFw) + 2Kw. (2.19)

Therefore, the Routh-Hurwitz criteria [JHea92] can be applied to evaluate stability
properties while exploiting the well know Def. 1.

Definition 1 A time-invariant system is stable if all the roots of the characteristic
polynomial have real part ℜe < 0.

The Routh-Hurwitz matrix RH is composed of coefficients calculated from the char-

acteristic polynomial as defined in [FPEN09]. For the considered case, the Routh-
Hurwitz matrix results to be:

RH =







an an-2

an-1 an-3

bn-1 bn-2

cn-2 cn-3






, (2.20)

where:

an = mTd

an-2 = 2Dw − TdKw

an-1 = 2m−DwTd

an-3 = 2Kw

bn-1 = −2mKwTd − 4mDw + 2Dw
2Td + 2mTdKw − Td

2KwDw

2m− TdDw

bn-2 = 0

cn-2 = 2Dw − TdKw

cn-3 = 0

(2.21)

As well known, stability conditions can be found by imposing the positiveness of
the coefficients of the first column, i.e. (an, an−1, bn−1, cn−2) > 0. Considering that

an = mTd, this coefficient is always greater than zero (being m > 0 and Td > 0).
Therefore, the remaining conditions can be found as follows,

m >
DwTd
2

, (2.22)

Dw(4m− 2DwTd + T 2
dKw)− 4mKwTd > 0 (2.23)

Dw >
TdKw

2
(2.24)

The analysis provides, therefore, three conditions to fulfil for achieving stability

and these are function of the parameters m, Td, Kw, Dw. Equations (2.22) and (2.24)
establish the conditions on the minimum mass and the minimum damping. The

condition given in (2.23) imposes an active constraint which can be exploited for
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2.3. Stability Analysis

finding the critical time delay. In particular, (2.23) can be rewritten as a quadratic

function and results in

T 2
d − 2

(Dw

Kw

+
2m

Dw

)

+
4m

Kw

> 0 (2.25)

Therefore, equation (2.25) can be solved to find the critical delay value, which results
in

Tdc =
(Dw

Kw

+
2m

Dw

)

−
√

(Dw

Kw

+
2m

Dw

)2

− 4m

Kw

. (2.26)

It is worth to note that (2.26) represents the critical delay calculated with the

approximated solution and it will results similar to (2.16), as it will be shown in the
following example.

Example 1 Considering a system with the following parameters: m = 100kg, Kw =

1000 N/m; Dw = 60 Ns/m; Td = 50 ms, which respect the condition given in (2.22),
(2.23) and (2.24).

As expected, the resulting poles for the Example 1 are p1 = −39.3027, p2 =

−0.0486+3.1898i , p3 = −0.0486− 3.1898i and accordingly with Def. 1, the system
results to be stable. Furthermore, the critical time delay for which the system might

go unstable and the respective frequency are calculated for the analytical solution
in (2.16) and the approximated solution in (2.26). The results are almost identical,

as can be seen from the values reported in Table 2.1.

Critical Time Delay [ms] Cross Frequency [rad/s]
Analytical Solution 59.3 3.1909
Approx. Solution 59.5 3.19

Table 2.1: Critical delay comparison between analytical and approximated solution.

The stability boundaries can be exploited for guaranteeing stability of a system,
however, it is clear the dependency from the contact parameters. In case of non-

perfect estimation of the contact parameters (Kw and Dw) the system might behave

differently. This factor can be seen in Fig. 2.3, which considers the same Example 1,
but with Dw = 0.0001Ns/m. The analysis shows the presence of two positive poles,

which cross the Real axis. This factor is in contrast with Def. 1 and instability in
the close-loop system occurs.

Discussion

As it was shown, the time delay in the closed loop might cause system instability.

Although, stability boundaries can be exploited for guaranteeing the stability and
perform theoretical analysis, the approach requires the knowledge of the contact

parameters (Kw and Dw) and the time delay Td, which for some applications is
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Figure 2.3: Root locus plot of Fig. 2.2 for elastic impact. Poles are p1 =
−40.4909, p2 = 0.2455 + 3.1334i, p3 = 0.2455− 3.1334i→ Unstable system.

not constant. For a complete model-based simulation, these parameters are known

directly from the implemented contact model. For a HIL simulation, these parame-
ters depend from the environment, which is not always known. Further, no contact

model is exploited in HIL because real forces are involved and measured by a sen-
sor. The dependency of contact parameters might limit the range of the simulation

which can be performed with the robotic simulator.

An other important factor for the stability of a HIL simulator, is the delay
associated with the hold, typical issue in digital control [FPW98]. As it was shown

in the analysis above, a delay in the system degrades the stability in continuous
time. The continuous time delay, Td can be seen equivalently in discrete time as

Td = kT , where k is the discrete-time step of sampling time T . For discrete systems,
a generic value u(t) consists in u(kT ) that, on average, lag by a quantity T/2, see

[FPW98]. This quantity translates into a phase decrease of

δφh −
ωhT

2
. (2.27)

Thus, the loss of margin can be estimated by invoking (2.27), with ωh being equal to
the frequency where the magnitude is equal to one, which is the gain cross frequency.

Discrete sampling effects were also analysed in [BC98b] and it was shown that the
physical damping in the system must be sufficient to dissipate the excess of energy

created by errors introduced by sampling of the discrete-time controller, commonly

referred as energy leaks.
To summarise, the time-delay and discrete signals affect the stability margins

[DNBS06]. Although the theoretical treatment discussed in this section is valid,
a more general and suitable solution, which does not depend on contact parame-

ters, must be sought. In the thesis, these stability issues will be tackled considering
passivity-based approaches. Indeed, the approach is based on input/output charac-

teristic of a system and does not rely on any contact model parameters.
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2.4. Passivity Theory

2.4 Passivity Theory

This section introduces the concept of passivity which is exploited in the design of

the controllers developed within this thesis.

Passivity and Stability

The concept of passivity is linked to the dissipative properties of a system [OPNSR98],
which is close to the intuitive phenomena of loss or dissipation of energy. A passive

system can not store more energy than the one supplied to it, with the difference
being the dissipated energy [SSF07]. This factor plays a central role in dynamic

system where energy with the environment is exchanged.
Considering a generic non-linear system, S, represented in Fig. 2.4 with input

u ∈ R
n and output y ∈ R

n. The system S is defined by the state space x ∈ R
n as,

S :

{

ẋ = f(x)+ g(x)u

y = h(x)
(2.28)

S
u y

Figure 2.4: System with input u and output y variables.

Definition 2 (Passivity) The system S is passive with respect to the supply rate

uTy if and only if there exists a lower bounded function of the state (storage func-

tion) V : Rn → R, such that at any time T ,

V̇ ≤ uTy ⇐⇒ V (x(T )) ≤ V (x(0)) +

∫ T

0

uT (t)y(t)dt. (2.29)

The passivity property given in (2.29) relies on the energy and the the physical
properties of the system. In particular, the passivity condition can be interpreted

as follows:

V (x(T ))
︸ ︷︷ ︸

current energy

≤ V (x(0))
︸ ︷︷ ︸

initial energy

+

∫ T

0

uT (t)y(t)dt

︸ ︷︷ ︸

external supplied energy

To correlate the passivity with stability, it is important to introduce the following
definitions.

Definition 3 (Output Strictly Passive (OSP)) The system S is Output Strictly
Passive if it is dissipative with supply rate such that

V̇ ≤ uTy − βyTy, with β > 0. (2.30)
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2. Stability for Simulation of Dynamics with Robotic Facilities

Definition 4 (Input Strictly Passive (ISP)) The system S is Input Strictly Pas-

sive if it is dissipative with supply rate such that

V̇ ≤ uTy − αuTu, with α > 0. (2.31)

The most important feature of passivity is the close relation with the stability of

dynamical system. In particular, passivity is related to L2-stability1 through OSP
and the following preposition holds true:

Proposition 1 (OSP implies L2-stability ) If S : u → y is Output Strictly
Passive, then it is L2-stable. A system is defined to be L2-stable, if there exists

a positive constant γ, such that for every initial condition x0, there exists a finite
constant δ(x0) > 0, such that

‖y‖ ≤ γ‖u‖+ δ. (2.32)

The reader can find the proof of Proposition 1 in [OPNSR98, §A Proposition A.5 ].
Moreover, the benefit of using passivity is also given by the properties achieved

when different passive systems are interconnected. This feature will be used in some
parts of the thesis, especially when different controllers are connected to a common

dynamic system. The properties are reported in the coming subsections.

Passivity Preservation for Interconnections

An important property of passivity is its preservation in term of interconnections

between systems. Considering two system S1 and S2 represented in state space as,

S1 :

{

ẋ1 = f(x1)+ g(x1)u1

y1 = h1(x1)
S2 :

{

ẋ2 = f(x2)+ g(x2)u2

y2 = h2(x2)
(2.33)

which are passive and therefore from Def. 2 results that V̇S1 ≤ uT
1 y1 and V̇S2 ≤

uT
2 y2. The systems can be interconnected with a power preserving interconnection.

Definition 5 (Power Preserving interconnection) An interconnection is power

preserving if it guarantees that the energy is neither produced nor dissipated but only
transferred between the connected systems.

For example, the passive systems S1 and S2, can be interconnected through the
inputs defined as {

u1 = −y2

u2 = y1

(2.34)

which will result in the following energy exchange:

uT
1 y1 = −yT

2 u2. (2.35)

1Sometimes this type of stability is referred as strong or stability with finite gain.
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2.4. Passivity Theory

Therefore, the energy is transferred between the two systems and according to Def. 5

the interconnection is power preserving.

A more general feedback interconnection for the system (2.33) is represented in
Fig. 2.5, where e1 and e2 are the new inputs for the interaction with the intercon-

nected system.

S1

S2

y1

y2

e1

e2

u1

u2

+

+

+

−

Figure 2.5: Interconnection of passive system S1 and S2.

Proposition 2 (Interconnection of passive systems) Considering two passive
systems (2.33) interconnected by a power preserving interconnection as in Fig. 2.5,

with {

u1 = −y2 + e1

u2 = y1 + e2

(2.36)

then the resulting interconnected system is passive with respect to the pair input-
output:

((
e1

e2

)

,

︸ ︷︷ ︸

input

(
y1

y2

)

︸ ︷︷ ︸

output

)

(2.37)

and the total storage function is V = VS1 + VS2.

Proof Considering the passivity of the two systems, the total variation of energy is
given as V̇ = V̇S1+ V̇S2 ≤ uT

1 y1 +uT
2 y2. For the given interconnection in (2.36), it

will result,

V̇ ≤ uT
1 y1 + uT

2 y2 = −yT
2 y1 + eT

1 y1 + yT
2 y1 + eT

2 y2. (2.38)

Then, it follows V̇ ≤ eT
1 y1 + eT

2 y2 and according to Def. 2 it results to be a passive

system with respect to the new input e1, e2 and output y1, y2.

To summarise this section, the passivity property represents the energetic be-
haviour of a dynamical system and it is related to stability (L2). This factor is

important especially in interaction control, where a physical behaviour depends on
the exchange of internal and external energy, as for the case of a robot simulating a

satellite dynamics. Passivity can be also easily linked to interconnection of passive
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2. Stability for Simulation of Dynamics with Robotic Facilities

systems, which result in a passive system. Therefore, the use of a passivity-based

framework is useful, when energy considerations are taken into account for a complex
system.

These fundamental properties motivate the choice of passivity as the basic con-

cept on which the controllers are developed within this thesis.

2.5 Power Port and Network Modelling

The interconnection of passive systems represents a key role for the controllers de-

veloped within the thesis. In this section the basic tools to represent a mechanical
system are explained in order to analyse its energetic behaviour. The tools are

borrowed from the electrical domain.

In each physical domain there is a pair of dual variables, called power conjugate
variables, whose duality product is power. These variables are abstractly defined as

flow and effort.

Definition 6 (Power Port) A power-port is represented by a pair of effort and

flow variables, e.g. (u, y), whose product uTy is the power traversing the port.

Power ports is a practical representation for interconnecting complex systems and

together with the passivity theory, they form a powerful tool [ARPH11]. The power
port for the system in (2.28) is shown in Fig. 2.6 (left) with input and output

variable u,y. The power ports for the system interconnected as in (2.33) are shown
in Fig. 2.6 (right) with input and output variables e1, e2 and y1,y2, respectively.

u

y S S1, S2

+++

−−−

e1

y1

e2

y2

Figure 2.6: One-port with power variables (u,y) (left) and two-port with power
variables (e1,y1) and (e2,y2) (right).

In particular, the system on the left of Fig. 2.6 is defined as one-port and the one

on the right as two-ports and the product of the variables at each port results to be
the power. The power ports can be interconnected between each other which will

result in a port-network.

Definition 7 (Power port-network) A network is composed of power ports which

can interact with external connectivity through one or more power-ports.

When a complex system is considered, it might be not easy to identify the re-

spective power ports [Art14]. A suitable approach is to exploit the electrical and
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2.5. Power Port and Network Modelling

mechanical analogy in order to build a network representation of the system. This

facilitates the identification of the power ports and the energy analysis.

The conventional mechanical-electrical analogy, namely velocity-current analogy,
maps forces into voltages and velocities into currents. A mechanical model can be

represented in electrical domain according to the analogy reported in Table 2.2.

Mechanical Electrical
Force [N ] V oltage [V ]
V elocity [m/s] Current [A]
Friction [Ns/m] Resistance [ohms]
Stiffness [N/m] 1/Capacitance [farad−1]
Mass [Kg] Inductance [H ]
Power [W ] Power [W ]

Table 2.2: Mechanical and electrical analogies.

The representation in electrical domain is an intermediate step between the com-
mon control block scheme used in control theory and the port-network representa-

tion. It is worth to point out that even while using the different domains, the
product of the power port variables is a power.

Here, a basic example is presented in order to introduce to the reader the

electrical-mechanical analogy and to build the relative port-network. For this, a
mass-spring-damper system is considered and it is shown in Fig. 2.7. The mechan-

ical model in Fig. 2.7 (left) is converted in the electrical domain (right) as per the
analogy described in Table 2.2. The force applied by the spring, kx results to be

proportional to the displacement x of the mass, m. The viscous damping force, ie.

−bẋ is proportional to the velocity of the mass, ẋ and F is an external force. The
total force FN acting on the mass-spring-damper system is given by:

FN = F (t)− (bẋ+ kx) = mẍ (2.39)

The mechanical model can be represented in the electrical domain where the effort V

correspond to the force F , the charge (integral of current i) corresponds to displace-
ment, x, the inductance L corresponds to mass m, the resistance R corresponds to

k

b

m
F

−
+V

C

Li

R

x

Figure 2.7: Mass-spring-damper system and relative electrical circuit.
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2. Stability for Simulation of Dynamics with Robotic Facilities

viscous damping b, and the inverse capacitance C corresponds to the spring stiffness,

k. Therefore the circuit on the right side of Fig. 2.7 is a single loop and the current
flowing is the same throughout the circuit at any given time, i(t). Therefore, from

Kirchhoff’s voltage law,

V (t)−Ri− 1

C

∫

idt = L
di

dt
. (2.40)

Note that the equation in the electrical domain has the same form of the mass-
spring-damper system. In particular, they are both second-order systems and the

state equation of the mechanical system can be written as follows:

[
ẋ
ẍ

]

=

[
0 1

− k
m

− b
m

][
x
ẋ

]

+

[
0
1
m

]

F (t), (2.41)

and for the corresponding RLC circuit as:

[
i
di
dt

]

=

[
0 1

− 1
LC

−R
L

][
q
i

]

+

[
0
1
L

]

V (t), (2.42)

where q is the charge given by q =
∫
idt. These analogies and others like them turn

out to be quite useful conceptually in understanding the behaviour of dynamical

systems.

Finally, the network representation can be derived from the electrical circuit and

it is shown in Fig. 2.8. The network is composed of three power ports:

• N1 with power correlated variable (F, ẋ), which is a one-port network

• N2 with power correlated variable (F, ẋ) and (FN , ẋ), which is a two-port
network

• N3 containing the inductance L, with power (FN , ẋ), which is one-port network

Therefore, once the power ports are defined, energy consideration related to the

passivity treatment discussed in Sec. 2.4 can be derived. In this thesis, the passivity
theory and the power-port network are exploited for applying methods based on

energy observation.

− −
−

++

+V

C

Li

R

N1

N1

N2

N2

N3

N3

ẋ ẋ

F FN

Figure 2.8: Network representation of the relative electrical circuit for the mass-
spring-damper system.
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2.6 Background on Energy-based Methods

In Sec. 2.3, it was shown that the stability of a robotic simulator can be affected

by the time delay between measured and commanded data. The passivity theory
(Sec. 2.4) provides information on the global energetic behaviour of a system, in

particular in relation to the power variables which can be derived by using the
treatment presented in Sec. 2.5.

The field of teleoperation has exploited approaches based on passivity to deal

with instabilities due to time delay in communication channels [HS06]. To deal with
that, the most common approaches implemented are [BAMR16]: wave variables,

port-Hamiltonian and energy tanks, energy bounding and the time domain passivity
approach. In this section the aforementioned approaches are summarised and a

numerical comparison is proposed for the reduced model of the robotic simulator.

Scattering Parameters and Wave Variables

Scattering and wave variables were discussed in [Nie04], [AS89] and extended for

teleoperation in [NS98]. Scattering parameters are used in a system affected by
time delay and they are a linear combination of voltage and current displayed at the

network ports whose resulting product is power. [AS89] shows that the passivity of

a network can be checked using the quadratic norm of its scattering operator S with
the condition |S|2 ≤ 1. It was proved that, if a network contains a delay, no matter

how small, the passivity condition can not be fulfilled [AS89] and a suitable control
action is therefore required.

The wave variables transformation contains information related to the energy
exchange that occurs on two sides of a system. In particular, the method is based

on a simplified transformation of the standard variables (Vs, Fe) to the wave variable
(u,v), where u is the forward wave, from master to environment, and v the returning

wave, from the environment to master [Nie96].

For the considered scenario, it is possible to augment the model shown in Fig. 2.2

with the wave variable transformation and it is reported in Fig. 2.9. Note that a low-
pass filter has been introduced in Fig. 2.9. Indeed, high-frequency noise characterises

the wave variable domain, as described in [NS97] and a common approach is given
by using a filter to improve the performance. The phase lag that the filter might

     

Fe(t)

Fe(t)

Sat.Dyn. TD E

Vs(0)

Vs(t) Vs(t− Td)

wvwv
filter

ul

urvl

vr

Figure 2.9: Reduced model of the robot simulator with time delay (TD) in the loop
and wave variable transformation.
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cause is considered in the wave variable transformation layer and therefore does

not influence the stability. The wave variable layers (wv) introduced in the scheme
compute the wave characteristics defined as follows:

ul =
bVs(t) + Fl(t)√

2b

vl =
Fl(t)− bVs(t)√

2b

ur =
Fe(t)− bVs(t− Td)√

2b

vr =
bVs(t− Td) + Fe(t)√

2b

(2.43)

where ul and ur are the input waves of the respective port and vl and vr are the
output waves. The parameter b ∈ R

+ in (2.43) is the characteristic impedance,

which is always positive and represents a critical role in determining the system
response because it represents a trade off between the velocity and the force.

Note that the set of equation given in (2.43) is commonly used in wave variable
formulation. However, for the analysed scenario the time delay is only in the forward

wave and not in the backwards. Therefore it is possible to set Fl(t) = Fe(t) in (2.43).
Although the passivity of a system endowed with wave variable can be proved to

be stable for a constant time delay [Nie96], this technique introduces a characteristic

impedance which might deteriorate the desired behaviour [SFF16]. Drawbacks in
applying this method are due to non-idealities in the communication channel like

time-varying delays and package loss which might lead to position and force mis-
match, see [SAF+09]. Furthermore, wave variables are affected by energy reflection

which needs to be matched resulting in an additional damping in the system.

Port-Hamiltonian and Energy Tanks

The port-Hamiltonian framework is a generalisation of the standard Hamiltonian
mechanics, where the energy exchange between subsystems are clearly identified. All

physical systems can be represented using the port-Hamiltonian formalism [FPM+15].
In interaction control, this framework allows the use of an energy tank (see [SSF06]

and [FSM+11]) to implement a desired control action. The tank is an element de-
signed for storing the dissipated energy and it allows one to utilise the (virtual)

energy circulating in the controlled system in a flexible way while preserving pas-
sivity. A generic port-Hamiltonian system endowed with an energy tank can be

described by the following set of equations:






ẋ = [J(x)−R(x)]∂H
∂x

+ g(x)u

ẋt =
σD(x)
xt

+
(σP in−Pout)

xt
+ ut

y1 = (y, yt)
T

(2.44)

where x ∈ R
n is the state vector and H(x) : Rn −→∈ R is the lower bounded Hamil-

tonian function representing the amount of energy stored in the system. J(x) =
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−J(x)T and R(x) ≥ 0 are the internal energetic interconnections and the dissi-

pation of the port-Hamiltonian system, respectively and g(x) is the input matrix
[FPM+15]. The input u and the output y are power correlated variables whose

product is the power. The values Pin and Pout are the incoming and outgoing power
flows of the tank, respectively. The value xt ∈ R is the state variable of the tank

T (xt) defined as follows

T (xt) =
1

2
xt

2. (2.45)

The benefit of this design is that energy can be injected or extracted from the tank

via a power port (ut, yt). However, some quota of energy must always be present in
the tank to avoid singularities in the solutions. Therefore a threshold ε > 0 should

be posed. It represents the minimum amount of energy that needs to be always
stored. Then, a parameter σ ∈ {0, 1} is used for bounding the amount of energy

that can be stored in the tank and it is set as follows:
{
σ = 1 if T (xt) ≤ T̄
σ = 0 otherwise,

where T̄ is an upper bound energy value that can be stored in the tank. The
energy stored can be used for implementing a desired input w ∈ R

n to the port-

Hamiltonian system. This can be done through the following power preserving port
interconnection: {

u = w yt
xt

= w xt
xt

= w

ut = −wT y

xt
.

Note that the energy extracted from the port-Hamiltonian system is exactly equal

to the energy supplied to the tank and vice-versa. This means that no energy is
generated and passivity is preserved as long as some energy is stored in the tank.

A generic system as the robotic simulator with time delay in the loop can be rep-
resented using the port-Hamiltonian framework endowed with energy tank. There-

fore, it is possible to augment the dynamic model (given in (2.1)) with an energy
storing element, the tank, whose role is to store the energy dissipated by the con-

trolled system. Formally, the augmented dynamics is given by the following,






Mv̇s − wxt = F e

ẋt = −wTvs
y = (vs

T , xt)
T

(2.46)

The term xt is the state associated with the tank and the corresponding stored
energy is given in (2.45). The method based on energy tank has the flexibility of

choosing any control input [SSF07]. The vector w is the control input through which
it is possible to control the exchange of energy between the main admittance model

(the satellite dynamics) and the tank. The control input w for the system (2.46) is
chosen to have a mass-spring-damper behaviour and it is defined as,

w(t) =

{
− 1
xt
(Kx̃+D ˙̃x) T (xt) > ε

0 else,
(2.47)
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where K ∈ R
n×n and D ∈ R

n×n are the stiffness and the damping matrix, respec-

tively. The vector ˙̃x is the variation of velocity between the non-delayed values
and the delayed one expressed as, ˙̃x = vs(t) − vs(t − Td). Therefore, the vector x̃

is the corresponding error in position. The value ε ∈ R
+ in (2.47) represents the

minimum value of the energy in the tank needed to implement the control input

and to avoid singularities in the solution. The tank needs to be initialised in a way
that T (xt(0)) ≥ ε and the energy extraction is not allowed if T (xt) ≤ ε. Thus, it is

necessary to set an upper bound on the amount of energy that can be stored in the
tank.

Note that the exchange of energy between the tank and the mechanical system

is power preserving, i.e. the energy injected (or extracted) in the tank is the same
as the one extracted (or injected) by the system, see proof in [FPM+15].

Energy Bounding Algorithms

The Energy Bounding Algorithm (EBA) was originally presented in [KR04] and
extended to the telemanipulation case in [SKK+08], [SKKR09]. The method is based

on a viscous friction model, which is exploited to dissipate the virtual energy due to
the communication channel. However, the stability of the system is affected by the

deviation of the friction model with respect to the real friction in the device. Thus
a lower bound of the friction parameters needs to be set and a physical coefficient

must be estimated to guarantee passivity.

Time Domain Passivity Approach

A different solution to deal with the instability due to time delay was proposed in
[HR01, HR02] where the Time Domain Passivity Control (TDPA) was introduced.

The approach is based on the energetic characteristic of the system and a passivity
observer is designed in order to monitor the energy at the power-port input. When

the passivity condition (reported in Def. 2) is violated, it means that some energy is
introduced into the system and a passivity controller is triggered to dissipate it. The

passivity controller is a variable damping, which can act in admittance or impedance
causality in order to ensure passivity of the system. It can be defined as

β(k) = − Vo(k)

u(k)Tu(k)T
, (2.48)

where Vo is the energy observed, u is the input (e.g. the force Fe) and T the

sampling time. More details about the passivity observer and passivity controller
will be provided in Sec. 2.7.

A potential limitation of TDPA, can be related to the over dissipation which

might saturate the actuators. However, a limit on the damping injection can be set
and the resulting excess of energy will be stored in the energy observer, which will

be dissipated in the next time-step.
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2.6.1 Comparison Between the Energy-based Methods

A numerical comparison between the energy-based methods is proposed for the

specific case of the reduced model of the robotic simulator shown in Fig. 2.2. The
aim is to evaluate the performance of each method in term of energy. In the analysis,

the energy bounding algorithms is not considered because of the dependency of a

friction model which is not easy to identify. In literature, solutions consider to have
a local damping [SKKR09] in case of inaccurate model. However, for the considered

case, this will affect the simulation of the free-floating dynamics rendered by the
robot. Therefore the analysis is restricted to TDPA, wave variable and energy tank.

A number of 50 simulations is considered for a simulated mass of 100Kg which

is subjected to elastic forces during its motion. The time delay in the loop changes
randomly between 5 and 50 ms in order to prove the robustness of the methods

against time delay variations. The comparison allows one to understand how each
method operates in comparison to the ideal case (no time delay in the loop). In order

to evaluate the performance between the methods, the mean value for the velocity
˙̄x and the energy Ē is calculated for each method with respect to the ideal velocity

and energy. Fig. 2.10 shows the mean value of energy calculated for all the methods
during 60 s of simulation. The ideal case represents the condition without time delay

in the control loop and its respective mean values results: Eideal = 0.435 J . The

time delay in the loop leads to an increase in energy with respect to the ideal case,
which results to be Etime delay = 0.576 ±0.0543 J . The three energy based methods

are applied and the respective mean values of energy are as follows: ETDPA =
0.435 J , Eenergy tank = 0.433 J , Ewave variable = 0.441 J . The corresponding values

of standard deviation for the velocity and energy are reported in Table 2.3.

For the considered application, the wave variable method results less robust
against the time delay variation, as shown in Fig. 2.10 where the energy value

increases with respect to the ideal case. This factor is due to the fixed value of the
impedance characteristic, b, whose tuning is not robust with respect the variation

of time delay.

Better performance can be achieved by using the energy tank or the TDPA

approach. However, for the energy tank, a suitable control action needs to be chosen,
for example in this case an impedance action composed of stiffness and damping.

Robustness
Mean Value Standard deviation

¯̄̇x [m/s] Ē [J ] σẋ σE
Ideal -0.0071 0.435 0 0
Tdpa -0.0071 0.435 0.00001 0.0002

Energy Tank -0.0070 0.433 0.00004 0.0003
Wave Variable -0.0079 0.441 0.0029 0.0076

Table 2.3: Robustness analysis for the considered energy-based methods.
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Figure 2.10: Numerical comparison between the energy-based methods for 50 sim-
ulation runs with random time delay between 5ms and 50ms: Eideal = 0.435 J ,
Etime delay = 0.576 J , ETDPA = 0.435 J , Eenergy tank = 0.433 J , Ewave variable =
0.441 J .

Furthermore, the minimum and maximum value of the energy stored in the tank,

needs also to be set. Then the method relies on some tuning of the controller and
can not be generalised to all the operative conditions of the robot simulator.

The TDPA method has the advantage that no tuning of parameters is required

because the passivity controller dissipates, through a variable damping, the exact
amount of active energy monitored by the passivity observer. This could be an

important advantage when the simulation parameters variate, e.g. time delay and
mass. Table 2.4 summarises the parameters needed for each of the method and the

corresponding control action.

TDPA Energy Tank Wave Variable
Parameters set. none K, D, xt, ǫ b, filter characteristic
Control Action damping any wave variable transformation

Table 2.4: Difference between the passive control methods.

The independence from parameters setting and the presence of an energy ob-

server, which can be easily linked with the passivity theory, makes the TDPA a
flexible method. This method can be exploited for solving problems related to the

time-delay in discrete sampled system, which is one of the goal of this thesis. There-
fore, the TDPA-based method will be exploited in the thesis as a tool to enforce

passivity and more details are provided in the following section.
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2.7. Enforcing Passivity Through Time Domain Passivity Approach

2.7 Enforcing Passivity Through Time Domain Pas-
sivity Approach

The Time Domain Passivity Approach is an effective control strategy for enforcing
passivity in one-port or two-port networks affected by energy leaks. The method

proposes the use of a Passivity Observer (PO) to monitor the energy of a port
network and a Passivity Controller (PC), which is added to the network to compen-

sate for the extra energy. The approach exploits the network representation, which

was introduced in Sec. 2.5 and the passivity theory discussed in Sec. 2.4. In this
section it will be shown how the method can be applied to one-port and two-port

networks, which will be considered in the thesis. The conjugate variables that define
the power ports are discrete-time values and the method assumes that no change in

values occurs between the discrete sampling time T [RKH04].
Considering the systems in Fig. 2.11, where the one-port network has power cor-

related variables force and velocity expressed as (f1(k), v1(k)) and the two-port
network has power correlated variables (f1(k), v1(k)) and (f2(k), v2(k)), respec-

tively to each port.
The passivity condition for power ports is given as follows [HR02, RHPH03],

Definition 8 (Passivity condition for one-port) The one port-network endowed
with a power port (f1(k), v1(k)) ∈ R

n×R
n by means of which it can interact (or be

interconnected) with external systems is passive if there is a lower bounded energy
function E(m) such that:

E(m) = E(0) +
m∑

k=0

fT
1 (k)v1(k)T ≥ 0, ∀m > 0 (2.49)

where E(0) represents the initial energy stored in the system.

Definition 9 (Passivity condition for two-port) The two-port network endowed

with a two-power ports (f1(k), v1(k)) ∈ R
n×R

n (f2(k), v2(k)) ∈ R
n×R

n is passive
if there is a lower bounded energy function E(m) such that:

E(m) = E(0) +
m∑

k=0

fT
1 (k)v1(k)T +

m∑

k=0

fT
2 (k)v2(k)T ≥ 0, ∀m > 0 (2.50)

v1

f1
N1

+++

−−−

v1

f1

v2

f2N2

Figure 2.11: One-port network (left) with power variables (f1, v1) and two-port
network with power variables (f1, v1),(f2, v2).
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2. Stability for Simulation of Dynamics with Robotic Facilities

where E(0) represents the initial energy stored in the system.

Loosely speaking, (2.49) (or the similar (2.50)) simply states that the energy supplied
to a passive network must be greater than negative E(0) for all the time [HR02],

[AH99]. To check the passivity properties, a monitoring block can be included in the
system, which is formally defined as Passivity Observer (PO) [HR01]. For one-port

network it is defined as:

EobsN1 = E(0) +

m∑

k=0

fT
1 (k)v1(k)T (2.51)

and similarly for the two-port, as

EobsN2 = E(0) +

m∑

k=0

fT
1 (k)v1(k)T +

m∑

k=0

fT
2 (k)v2(k)T. (2.52)

Independently of the ports configuration (one or two ports), the PO monitors the

energy flow. When EobsNi(k) > 0 for i = 1 or 2, at each time step k, it means that
the system dissipates energy. On the other hand, when EobsNi(k) < 0, this means

that the system generates energy and the amount of generated energy is −EobsNi(k),
which is defined to be active energy [Art14] and it may contribute to instability.

Moreover, the exact amount of active energy is known and a time-varying element

can be designed to dissipate it. This element is called Passivity Control (PC). The
PC takes the form of a dissipative element in a series or parallel configuration and

it will restore the energy balance guaranteeing the passivity of the port. Therefore,
if this port is connected with other passive ports, the final system results to be an

interconnection of passive system, which is passive (as discussed in Sec. 2.4).

2.7.1 Passivity Controller

The configuration of the PC depends on the input/output causality of the model
underlining the port. The action of the PC can be considered in admittance or

impedance causality. The description is provided first for one-port network and
later for the case of two-ports.

Admittance causality

In admittance causality the velocity through the port is modified in order to provide

a dissipative action and the force across the port is conserved. In the admittance

causality, a time-varying damping, namely β is placed in parallel to the power-
port as shown in Fig. 2.12 (left). The equivalent electrical element for the varying

damping is a variable resistor represented in Fig. 2.12 (right).
From the schematic it is easy to see that v

′

1 is the velocity correction given to

the network N. Therefore, considering the initial energy to be zero, the Passivity
Observer (PO) is designed as:

Eobsv(m) =
m∑

k=0

fT
1 (k)v

′

1(k)T +
m−1∑

k=0

β(k)f1(k)
Tf1(k). (2.53)
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NN

+ ++ +

− −− −
ββ f1f1 f1f1

v1v1 v
′

1v
′

1

Figure 2.12: One-port network representation with admittance causality PC. Net-
work representation on the left and electrical domain representation on the right.

The exact amount of energy to be dissipated is given when the PO has a negative
value, i.e. Eobsv < 0, therefore the time-varying β is activated when the passivity of

the port is violated and it is expressed as follows:

β(k) =

{

− Eobsv(k)
f1(k)T f1(k)T

Eobsv(k) < 0

0 Eobsv(k) ≥ 0
(2.54)

The correction can finally be applied in admittance causality as,

v
′

1(k) = v1(k)− β(k)f1(k). (2.55)

The active energy is dissipated with the PC in admittance causality and the sys-

tem results to be passive. The control action will preserve the passivity as can be
demonstrated considering that:

m∑

k=0

f1(k)
Tv1(k)T =

m∑

k=0

f1(k)
Tv

′

1(k)T +
m∑

k=0

βf1(k)
Tf1(k)T =

m∑

k=0

f1(k)
Tv

′

1(k)T +
m−1∑

k=0

βf1(k)
Tf1(k)T + βf1(k)

Tf1(k)T, (2.56)

and from (2.53), it will result to be:

m∑

k=0

f1(k)
Tv1(k)T = Eobsv + βf1(k)

Tf1(k)T. (2.57)

Substituting β from (2.54) in (2.57), it results

m∑

k=0

f1(k)
Tv1(k)T ≥ 0, (2.58)

which is the passivity condition given in Def. 8.

Impedance causality

In impedance causality, the force across the network is modified in order to produce

the dissipation and the velocity through the port is conserved. In this case, the
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Figure 2.13: One-port network representation with impedance causality PC. Net-
work representation on the left and electrical domain representation on the right.

varying damping α is placed in series with respect to the port as it is shown in

Fig. 2.13 (left). The equivalent electrical circuit is also shown on the right and the
the time-varying damping is represented with a variable resistor.

The variable f
′

1 is the force correction given to the network. Similar to the
previous case, the passivity observer at the network is

Eobsv(m) =
m∑

k=0

fT
1 (k)v1(k)T +

m−1∑

k=0

α(k)v1(k)
Tv1(k). (2.59)

The observer can monitor the exact amount of energy to be dissipated (Eobsv < 0),
therefore the time-varying α is activated when the passivity of the port is violated

and it is expressed as follows:

α(k) =

{

− Eobsv(k)
v1(k)T v1(k)T

Eobsv(k) < 0

0 Eobsv(k) ≥ 0
(2.60)

The correction can finally be applied with admittance causality through the port as,

f
′

1(k) = f1(k)− α(k)v1(k). (2.61)

The action of the PC in impedance causality expressed in (2.61) will restore the
passivity of the system. In particular, passivity can be demonstrated considering

that:

m∑

k=0

f1(k)
Tv1(k)T =

m∑

k=0

f
′

1(k)
Tv1(k)T +

m∑

k=0

αv1(k)
Tv1(k)T =

m∑

k=0

f
′

1(k)
Tv1(k)T +

m−1∑

k=0

αv1(k)
Tv1(k)T + αv1(k)

Tv1(k)T, (2.62)

and from (2.59), it will results to be:

m∑

k=0

f1(k)
Tv1(k)T = Eobsv(m) + αv1(k)

Tv1(k)
TT, (2.63)

substituting α from (2.60), it results to be,

m∑

k=0

f1(k)
Tv1(k)T ≥ 0, (2.64)
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which confirms the passivity condition given in Def. 8.

As discussed before, passivity is a sufficient condition for stability and, in partic-
ular, if a system is passive then it is also stable [vdS00]. Hence, enforcing passivity

with TDPA allows to enforce a stable behaviour of the network.

Passivity control for two-ports

The main difference for the two-ports network is given by the energy observer be-

cause the port has two gateways through which the energy can flow. However, the
architecture and the control action performed by the PC is similar to the one-port

case. It is proved that a single PC can be added to the network to regulate the en-
ergy production [HR02]. As for the one-port, the causality of correction (admittance

or impedance), is determined by the system architecture of the port. This implies
that the time-varying damper can be placed in series or parallel to the power-port.

An example of the PC applied to the two-ports network is shown in Fig. 2.14,

with admittance and impedance causalities. As stated before, placing the PC on
the first or second port is independent because any action will be seen by the energy

observer at any time k.

+

-

+

-

+

-

+

-

+

-

+

-

admittance causality impedance causality

v1 v2v2

f1 f2f1

v
′

1

β N2 N2

α
f1 f1

′ f2

v1 v1

Figure 2.14: Two port network equipped with PC in admittance causality (right)
and impedance causality (left).

Although the passivity control follows the approach described for the one-port,
for completeness the steps are reported below in a compact form.

For the admittance causality:

• The Passivity Observer at the port is

Eobsv(m) =
m∑

k=0

fT
1 (k)v

′

1(k)T +
m∑

k=0

fT
2 (k)v2(k)T +

m−1∑

k=0

β(k)f1(k)
Tf1(k).

• β is activated when the passivity of the port is violated and it is expressed as

follows:

β(k) =

{

− Eobsv(k)
f1(k)T f1(k)T

Eobsv(k) < 0

0 Eobsv(k) ≥ 0
(2.65)

• The correction can finally be applied with admittance causality through the

port as, v
′

1(k) = v1(k)− β(k)f1(k).
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For the impedance causality

• The Passivity Observer is defined as

Eobsv(m) =
m∑

k=0

fT
1 (k)v1(k)T +

m∑

k=0

fT
2 (k)v2(k)T +

m−1∑

k=0

α(k)v1(k)
Tv1(k).

• The time-varying damping is activated as follows,

α(k) =

{

− Eobsv(k)
v1(k)T v1(k)T

Eobsv(k) < 0

0 Eobsv(k) ≥ 0
(2.66)

• The passivity control correction is applied with impedance causality through
the port as,

f
′

1(k) = f1(k)− α(k)v1(k). (2.67)

Following the steps already described for the one-port case, passivity can be proved
for the PC acting in admittance (2.65) and impedance causalities (2.66) and the

following condition of passivity holds,

m∑

k=0

fT
1 (k)v1(k)T +

m∑

k=0

fT
2 (k)v2(k)T ≥ 0. (2.68)

As stated before, this ensures the passivity of the two-port network according to
Def. 9.

2.8 Discussion

The stability of the robotic simulator needs to be guaranteed under all the operating

conditions while simulating the satellite dynamics. In this chapter, the stability
issue caused by the time delay in the control loop has been analysed for a reduced

model of the simulator. Further, the passivity theory has been introduced together
with the network representation. Passivity uses the energy concept which can be

exploited in energy-based methods. A background on these methods was presented

and a comparison of the methods for a reduced model of the robot simulator was
performed. The results show that TDPA, compared to wave variables and energy

tank approaches, has better performance in dealing with time delay intrinsic in the
control loop.

The TDPA-based methods, the passivity concept and the power-port networks
will be exploited for the design and analysis of the controllers developed in this

thesis.
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CHAPTER 3

ENERGY-BASED CONTROL FOR TIME DELAY

COMPENSATION

3.1 Introduction

The control architecture of a complex system might have several algorithms running

on different CPUs. This factor can affect the low-level control, which results sensitive
to time delays caused by the transmission of the signals. As shown in Chapter 2,

the time delay in the control loop of a robotic simulator causes system instability
while reproducing the satellite dynamics.

In this chapter, the effects of the time delay are analysed from an energy perspec-
tive and a passivity-based control is developed to cope with its destabilising effects.

Firstly, the robotic system which simulates the satellite dynamics is designed in
electrical domain. This representation will reveal the network of the system and

the corresponding power-ports. The network analysis is used to identify and isolate
the energy leaks, that is, undesired sources of energy that can lead the system to

become unstable [ARPH11]. Once the network is identified, the extra energy can
be dissipated in order to counteract the damaging effects on the system stability.

Therefore, a designed passivity controller will act in an admittance causality and it
will exploit the time-domain passivity approach. Secondly, an optimal control is de-

veloped in order to guarantee performance in reproducing the dynamics with a robot
while keeping the stability properties. The methods are validated with simulations

and experiments.

Related works

Controller designs to compensate time delay in the robotic simulator have been
implemented over the past years [QZG+16], [ZLBC12]. These methods rely on the

modification of the contact parameters in order to achieve stable simulation. In
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[OKU10] and [ASJ+14b] a first order compensation model was introduced based on

the contact frequency and time delay knowledge. The drawback of these approaches
is the a priori knowledge of the contact parameters, which might be inaccurate and

therefore can limit the range of reproducibility of the dynamics simulated by the
robot.

On the other hand, approaches based on passivity have emerged as intuitive

and effective strategies for achieving stability independent of time delay. In fact,
ensuring the passivity of the overall system is a sufficient condition for having a

stable behaviour [SSF07]. The field of haptics and teleoperation has thoroughly ex-
ploited approaches based on passivity to deal with instabilities due to time delay (see

[HS06] for a survey). In [DNBS06], the time delay and zero-order-hold are shown
to be energy generating, resulting in an active system causing potential instability.

In [BC98b] a minimum virtual mass passivity value is found for a haptic device in
an impedance like configuration. The wave variables approach ([Nie04, SSvdSF05])

have been implemented for making a bilateral communication channel passive, how-
ever this technique introduces a characteristic impedance which might deteriorate

the desired behaviour [SFF16]. In [FSM+11] and [FPM+15] the concept of energy
tank has been exploited for dealing with the delay, but a suitable dissipative action

needs to be chosen. To compensate the time delay effects, the time domain pas-

sivity approach (TDPA, [HR01]) is also exploited. Within this context, [PHRH03]
proposed a geometric solution for haptic devices. In [HHK+10], delay has been com-

pensated using a time-varying damping weighted with the inertia matrix for a haptic
device that, unlike industrial robots, is backdrivable. In [OAP11], a technique for

dissipating the active energy in the null space of a redundant robot is suggested.
This solution is not applicable in the considered context since most of the facili-

ties for rendering satellite dynamics do not have redundancy (e.g., [BWMT10] and
[ADSR+15]).

The TDPA-based method was exploited for reliably simulating the satellite dy-

namics on a robot simulator, independently of the time delay. This approach will
be presented in this chapter, which refers to the author contribution published in

[DSARAS15] and [DSAS16].

3.2 Problem Statement

In Sec. 2.3, the stability analysis of the robotic simulator with time delay in the
close-loop was performed and the results have shown that the time delay might

cause system instability, especially when an elastic contact is involved. The time
delay introduces energy in the system and it causes damaging effects in reproducing

the dynamics with the robot. In particular, it results in an increase in velocity for
the simulated dynamics, which represents a non-physical behaviour.

The increase in energy and velocity represent the problem statement, which will

be better explained in this section. The model of the satellite dynamics was already
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presented in Sec. 2.2 and it is reported below for completeness,

v̇s = M−1fe, (3.1)

ω̇s = I−1(Iωs × ωs + τe).

The velocity V s = (vs, ωs) ∈ R
6 is the input to the robot, which can be obtained

by the integration of (3.1) in discrete-time.

It is worth pointing out that the energy associated with the simulated dynamics

in discrete-time will be affected by the time delay, in particular, for the discrete
system this can be defined as:

E(n) = E(0) +
n∑

k=0

Fe(k)
TVs(k− µ)T, (3.2)

where µ is the number of discrete-time steps of sampling time T and its analogy

with a continuous-time delay is that Td = µT . The vector Fe = (fe, τe) ∈ R
6 is the

total wrench.

The problem statement is introduced with a simple example, which considers a

rigid body with a defined virtual inertia, I. The body moves in an environment as
shown in Fig. 3.1 and it receives elastic forces during the contact with the environ-

ment.

I

ω

Figure 3.1: A rigid-body rotating and colliding against walls.

The energy of this system is calculated for the ideal case (without time delay)

and when time delay is involved in the control loop. Fig. 3.2 shows a comparison

of the calculated energy. Ei is the ideal energy calculated in continuous-time and
without time delay, which represents the ground truth of the motion. ETD is the

energy calculated in discrete-time with time delay, which represents the deviation
from the ideal behaviour. As can be seen, the time delay introduces negative energy

in the system, which violates the passivity condition given in (2.49).

Further, when an elastic contact occurs between the body and the environment,
the body should have the same velocity after the contact (or less in case of inelastic

contact). However, a divergence of the angular velocity, ωsTD, with respect to the
ideal velocity, ωsi, is found in the system, as it can be seen in the bottom plot of

Fig. 3.2. The system has an active behaviour, which is caused by the time delay in
the loop. The velocity will be transmitted to the robot for simulating the dynamics

and the corresponding motion results to be unstable.
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Figure 3.2: Energy for the ideal case without time delay (top), energy with time
delay in the loop (middle), comparison of the velocities (bottom).

In the next section, a network representation and a more detailed analysis is
proposed in order to identify the energy leaks. Furthermore, the TDPA will be

exploited to overcome this unstable phenomenon.

3.3 Network Representation

The modelling process is divided into two steps: first, the system is represented as a

block diagram. The block diagram is a straightforward representation of the system
as an interconnection of transfer functions and feedbacks. However, when energy

considerations are taken into account, this representation might not be well suited.
To that end, a second step which uses the mechanical-electrical analogies is exploited

and the corresponding networks can be found. As it will be seen, this facilitates the
passivity analysis and helps to identify the energy leaks, that is, undesired sources

of energy that appear due to the delay in the system.

Fig. 3.3 shows the block diagram of the complete robotic system which simulates

the full dynamics of a satellite. The satellite dynamics is represented by a single
block, whose output is the velocity vector Vs(k) and inputs are the forces and

torques Fe, measured by the sensor. The robot is represented in the gray area and
it is composed of an admittance R (that generates a velocity Vr) and C, which is

the controller of the robot and it is assumed to be known. The block TD represents
the time delay in the loop and E is the environment.

The second step is to design the electrical scheme of the block diagram using
the analogies described in Sec. 2.5. The corresponding electrical scheme for the

ideal case (no time delay in the loop) is shown in Fig. 3.4. The forces and torques
coming from the sensor are modelled as an ideal force generator Fe that acts on the

impedance Zm, which represents the virtual mass and its analogy is an inductance.
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Figure 3.3: Block diagram of the satellite dynamics (Sat.Dyn.) simulated by the
Robot (R). TD is the time delay in the loop, C, the robot controller and E, the
environment.
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Figure 3.4: Electrical analogy of the system in ideal case.

Through a dependent current source, the velocity through the mass is fed to the

controller Zc, which, in turn, moves the robot, represented by a general impedance,
Zr with voltage Πm. The vector Fo is the force of the controller which actuates the

robot. The environment is represented by an impedance Ze
1. Fig. 3.4 also defines

the ports of the system, where N0 is a one-port containing the sensor and N1 is a

two-port transmission. N3 is a network containing the robot and the controller.

The proposed electrical scheme with the time delay network, NT , is shown in

Fig. 3.5. The time delay is located between the networks N1 and N3 and it produces
a delayed velocity Vs(k − µ). NT represents an active network, with input Vs(k),

output Vs(k − µ) and voltage Fo. The two-ports network, NT , is responsible for

the leaks of energy. The passivity can be re-established by introducing a control
port, namely N2, where a time-varying damping will be activated by the passivity

controller, Zpc, later defined. This element will ensure the stability of the system
by dissipating the active energy due to the time delay, as it will be shown in the

following section.

1Note that the electrical analogy with the force across the controller (and the robot) given as,
Fo = Vs

ZcZre

Zc+Zre

, where Zre = Zr + Zr is the equivalent serial impedance of the robot and the
environment.
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Figure 3.5: Electrical analogy of the system with time delay and PC.

3.4 Passivity-based Controller

The passivity-based control will provide a correction in velocity Vc as input to the

robot network in Fig. 3.5. The controller is characterised by three main elements

defined as:

• Force Observer, which monitors the total forces in the system.
• Energy Observer, which monitors the energy in the system due to the time

delay.
• Passivity Controller in admittance causality, which will enforce the passivity

by correcting the velocity of the robot.

Forces Observer

A forces observer can monitor the forces acting on the system and it can be used

when the dynamic of the robot is available. The forces observer is based on the

dynamics model of the robot and it is described in Cartesian space as follows:

Λm(Vr)V̈r + η(Vr, V̇r)V̇r + g(Vr) = Πm, (3.3)

where Λm ∈ R
6×6 is the Cartesian mass matrix, η ∈ R

6×6 is the non-linear Corio-
lis/centrifugal Cartesian matrix, and g ∈ R

6 is the gravity vector. The Cartesian

mass matrix, Coriolis matrix and gravity vector are expressed as follows:

Λm = J−THmJ−1, (3.4)

ηV̇r = J−TCmq̇ −ΛmJ̇ q̇, (3.5)

g = J−TG. (3.6)

where Hm and Cm ∈ R
6×6 are the inertia and the Coriolis matrix available in

joints space. G ∈ R
6 is the gravity vector expressed in joints space and q̇ ∈ R

6

is the velocity of the joints [SK08]. It is assumed that the robot operates in a
free-of-singularity workspace, i.e. the Jacobian J ∈ R

6×6 has full row rank.

The vector Πm ∈ R
6 in (3.3) represents the contribution of the end-effector

forces due the the robot motion. When external forces are applied at the robot end-

effector, these can be measured by the force-torque sensor which provides measured
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3. Energy-based Control for Time Delay Compensation

values represented by the vector Fe ∈ R
6. Therefore, the equation of the forces

observer Fo is given by:

Fo = Fe +Πm. (3.7)

The analogy with the electrical system in Fig. 3.5 is given by the voltage Fo across

the network N3.

Passivity Observer (PO)

The network NT shown in Fig. 3.5 is the active network to be passivated. NT is a
two-port network where the net energy, which is the difference between the input

and output energies, can be calculated as:

Eobs(k) =
m∑

k=0

F T
o (k)(Vs(k)− Vs(k− µ))T. (3.8)

where the time delay is taken into account. To observe the energy, passivity is

handled for each degree of freedom, i, independently. The balance of energy holds
also if the components of the vectors are considered, i.e. each degree of freedom, i,

independently. In particular, (3.8) results in the following,

Eobs(k) =

m∑

k=0

n∑

i=1

Fo,i(k)(Vs,i(k)− Vs,i(k − µ))T =

n∑

i=i

Eobsi, (3.9)

where Vs,i(k) is the component of the velocity vector of the body, Fo,i(k) is the
component of the controller forces and torques and Vs,i(k−µ) is the delayed velocity.

In the design of the passivity observer, the corresponding energy introduced by the
passivity controller must be also considered. Therefore, the final equation for the

observer is given as follows,

Eobsi(k) = Eobsi(k − 1) + Fo,i(k)(Vs,i(k)− Vs,i(k − µ))T
︸ ︷︷ ︸

ENT

+F 2
o,i(k − 1)β(k − 1),

︸ ︷︷ ︸

Epc

(3.10)

where the second term on the right side is the energy due to the time delay of

the network NT and the last term, the energy due to the passivity controller, later
defined.

Passivity Controller (PC)

The Passivity Controller is based on an admittance causality and it acts through a
time-varying damping factor β, which is function of the observed energy flow (3.10).

In the admittance configuration, the velocity is modified to produce the dissipation.

Therefore, the PC will correct the velocity commanded to the robot as follows,

Vc,i(k) = Vs,i(k − µ)− βi(k − 1)Fo,i(k)

49



3.4. Passivity-based Controller

where βi(k− 1) is the time varying damping factor which corrects the velocity by a

quantity Vpci(k), given by:

Vpci(k) = −βi(k − 1)Fo,i(k). (3.11)

The passivity condition is taken into account in the design of the damping coefficient,

defined as,

βi(k) =

{

−Eobsi
(k)

F 2

o,i(k)T
Eobsi(k) < 0

0 Eobsi(k) ≥ 0.
(3.12)

Therefore, the final velocity sent to the robot, Vc,i, will be modified according to

the time-varying damping in (3.12) when the passivity condition is violated, i. e.
Eobsi(k) < 0. Thus, the network created by NT along with N2, i.e., the passivity

controller, is rendered to be passive.
Note that the coefficient βi is free of mathematical singularities because there

is always a value of force (Fo,i) available from (3.7). Indeed, the forces observer
guarantees the monitoring of the forces in free-motion (through the dynamics of the

robot described by the vector Πm,i) and in presence of external forces (through the

vector Fe). The only case when Fo,i = 0 is when the robot does not move and in
this case no loss of passivity is detected and no correction is required [DSAS16].

3.4.1 Results: Simulations and Experiments

In the first simulation, an initial angular velocity is given to the satellite in order to
simulate a spin around its body axis. The body moves in a workspace and external

forces are modelled using a spring-dashpot model in order to simulate the FTS sensor
(see Fig. 3.1). The contact model is therefore described by the following transfer

function:

H(z) = Kw +Dw

z − 1

∆Tz
, (3.13)

where Kw is a stiffness gain and Dw is a damping gain. In the case of an ideal

impact, the rotational velocity before and after should be maintained according to

the principle of conservation of energy for an elastic impact.
The angular velocity shown in Fig. 3.6a is simulated for a body with diag(I) =

0.9 Kgm2 with initial angular velocity 0.1 rad/s on the z− axis and it is compared
for the case of:

• ideal scenario: no time delay in the loop,

• real scenario: time delay in the loop and without PC,
• real scenario with proposed control: time delay in the loop with PC.

The dashed line displays the motion of the body in the ideal case (without time
delay) while rotating and colliding against the environment. If a time delay of 10 ms

is located in the loop without PC, the angular velocity increases after each impact
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3. Energy-based Control for Time Delay Compensation

(see the red line), resulting in an active behaviour in the system. This factor was

already presented as problem statement and it was visualised in Fig. 3.2. Now,
the proposed method is applied, the solid blue line in Fig. 3.6a shows the angular

velocity corrected with the PC. As it can be seen, it is maintained very close to the
ideal case. Therefore, the problem described in section Sec. 3.2 is solved using the

described approach. In particular, the energy behaviour can be seen in Fig. 3.6b.
The bottom plot of Fig. 3.6b, clearly shows the active behaviour of the network

without PC, leading to an increase of the angular velocity. The growing negative
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value in the energy shows that energy is injected into the system after each contact.

Fig. 3.6b (top) shows the passivity observer with the action of the PC. The positive
definiteness of the energy respects the passivity condition and the network results

to be passive.

The second simulation shows the dynamics interaction of a simulated mass of
50Kg with an initial velocity v1 = [0.1, 0.05, 0.1]m/s and a time delay of 10 ms.

The body collides against virtual walls that have been modelled with high stiffness
springs. The velocity in Fig. 3.7a shows the unstable behaviour given by the time

delay. The dashed line is the ideal motion of the satellite obtained in the ideal case
(without time delay). At each impact, the velocity increases along all the compo-

nents. Further, active energy is introduced as the Passivity Observer in Fig. 3.7b
bottom shows. By applying the method, the velocity of the simulated mass fol-

lows the one given by the ideal motion (dashed line). The network is then passive as

Fig. 3.7a shows. As it can be seen, the simulations prove the validity of the proposed
approach.

Experiments

Preliminary experiments are carried out on a 1 dof SensorDrive set-up equipped with
a torque sensor and a rigid bar attached to it (see Sec. A.2 for more details about

this set-up). This experiment is required to prove the robustness of the controller
with sensor characteristics such as noise. The bar is a mechanical interface which

makes contacts with the rigid walls on both sides. It can be seen as a 1 dof spinning
satellite where the inertial matrix is a scalar, the vectors Vs and Fo are composed

of only one component. The internal controller was parametrised for a maximum
performance assuming an ideal case, i.e. with high stiffness and nearly-null damping.

The initial angular velocity of the system is ωinit = 0.473 rad/s and the time delay
is 10 ms.
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Figure 3.8: Experiment results with the passivity control.
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The virtual inertia to be simulated is I = 0.009Kgm2. The choice of a small

value for inertia is made to minimise the contact time and it allows one to see the
influence of the time delay. Fig. 3.8a shows the measured torque and the velocity of

the simulated body during the experiment with the PC enabled. It can be seen that
through out the duration of the experiment, the magnitude of the angular velocity

remains constant after each impact. The generated energy due to the time delay is
damped making the network (and therefore the system) passive. The experimental

proof of the concept can be seen in Fig. 3.8b in which the top plot shows the energy
behaviour of the network and the bottom plot shows the velocity correction made

by the PC. As can be seen, the resulting energy of the network is always positive due
to the action of the PC. Furthermore, instability features are not detected proving

the validity of the proposed method considering also sensor noise.

3.5 Optimised Passivity-based Controller

As shown in the previous section, the passivity control can guarantee the stability
of the system. However, a possible limitation of the controller might be given by

the high frequency velocity modifications of the TDPA damping injection which can

create over-dissipation. This factor can affect the performance in simulating the
satellite dynamics.

In this section an optimised passivity-based control is developed to provide higher

accuracy for simulating the satellite dynamics on a robot. The method considers a
unique energy observer which monitors the energy due to the delay and an optimised

PC for ensuring passivity while maximising the performance.

Limitation of the passivity control

The strategy described in the preceding section enforces passivity of the overall

system, however the control action might be over conservative and it can lead to

a decrease in the performance. In fact, when the energy observer Eobs(m) ≥ 0 the
overall system is passive, however the passivity control might dissipate more than

the required energy. An optimal condition will be to dissipate exactly the amount of
energy required in order to have an overall balance of extra energy with Eobs(m) = 0.

The following example clarifies the problem.

Example 2 Considers a system with a time delay of 10 ms acting on the lin-

ear and angular velocities commanded from the simulated dynamics to the robot.
The simulated mass of the satellite is 60 Kg and the inertia parameters are Ixx =

18 Kgm2, Iyy = 20 Kgm2 and Izz = 22 Kgm2 and the initial conditions are defined
as follows: vinit = [0.1 0.05 0.1] m/s , ωinit = [2 − 3 3] deg/s.

Fig. 3.9 (top) shows the passivity observer when the passivity control is applied
without an optimal criteria. This results in a stable system (Eobs ≥ 0 ), however the

performance in tracking the simulated velocity is affected. This can be seen at the
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bottom of Fig. 3.9, which shows the comparison of the velocity with the ideal one

(dashed line). The high frequency velocity modifications affect the performance. In
order to avoid over-dissipation, an optimal time-varying damping can be designed

while respecting the energy constraints.

Optimised Passivity Controller

In Sec. 3.4 the energy flow was observed using different POs applied component-
wise and the produced energy was dissipated by having independent PCs. Here

a multi-dimensional PC is considered as a time-varying dissipative matrix. The

energy exchange corresponding to the active network is monitored through the PO
as described in (3.8) and the velocity correction provided to the robot is given as,

Vc(k) = Vs(k− µ)− β(k)Fo(k). (3.14)

The matrix β(k) represents now a time-varying diagonal matrix. The assumption to

choose a diagonal structure for the damping coefficient β(k) = diag(β1(k) . . . βn(k))
is not restrictive because by properly tuning the elements of β(k) it is possible to

act on all the Cartesian directions. In order to make the robotic simulator passive
while simultaneously maximising the tracking performance, β(k) is chosen in such

a way that the following conditions hold:

• Energy condition: If Eobs(k) < 0, then F T
o (k)β(k)Fo(k)T = −Eobs(k).

• Performance condition: The compensated velocity Vc(k) in (3.14) has to
be as close as possible to the target satellite velocity Vs(k).

The first condition guarantees the passivity of the system while the second one

ensures optimal performance. In order to meet these conditions, a minimization
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problem will be designed for tuning the PC. Fig. 3.10 shows the scheme of the

elements involved in the design of the optimal passivity control. The environmental
forces and torques (E) measured with the sensor are sent to the satellite dynamics

(3.1) which provides a vector Vs(k). TD is the time delay located in the loop that
is responsible for sending the delayed velocity Vs(k−µ) to the robot. This velocity

is corrected with the PC in (3.14) and it represents the input to the robot (R). Fo

is the dynamics forces estimator defined in (3.7). The PO is the energy observer

in (3.8) that provides a scalar, Eobs, to the minimization problem (MIN) in order
to compute the optimal coefficients β. Therefore, the PC commands the corrected

velocity, Vc in (3.14).

FeFe
Fo

Fo

Eobs(n)

Vs(k)

Vs(k)

Vs(k− µ) Vc(k)

βi Γ

PO

PC

FOMIN

R ETD

Sat.Dyn.

Figure 3.10: Scheme of the control elements

The coefficients of the damping matrix exploit the results of an optimization
problem, which is formulated as follows,

min
β(k)

‖Vs(k− µ)− β(k)Fo(k)− Vs(k)‖2, (3.15)

where the following equality constraint needs to be satisfied:

∑m

k=0Fo(k)
Tβ(k)Fo(k)T = Ēobs(m), (3.16)

where

Ēobs(m) =







0 if Eobs(m) ≥ 0

−Eobs(m) if Eobs(m) < 0.
(3.17)

The function to be minimised f(β(k)) = ‖Vs(k − µ) − β(k)Fo(k) − Vs(k)‖2 is

convex with respect to βi(k) (the variables to be optimised) and the Hessian of
f(β) is positive semi-definite. Thus (3.15) is a convex optimization problem and,

therefore, it is suitable to be solved in real-time. The minimization problem forces
a choice of β(k) such that the energy produced by the delay is dissipated and the

velocity transmitted to the robot is as close as possible to the ideal target velocity.

Notice that no constraint has been set on the sign of the elements on the diagonal
of β(k) because it will be a positive definite matrix (see the equality constraint).

Furthermore, the absence of positive constraint on the βi terms, provides a greater
flexibility in the choice of the multidimensional damper and, in principle, to a better

solution for the minimization problem. It is possible to reformulate (3.15) as a
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quadratic problem. For ease of notation, the velocity terms are grouped and the

time dependency is omitted by setting:

V := Vs(k− µ)− Vs(k),

β = diag(β1, . . . , βn) := β(k),

F := Fo(k).

(3.18)

Using the proposed notation, (3.15) can be written as:

(V − βF )T (V − βF ) = V TV − 2V TβF + F TβTβF , (3.19)

where the corresponding terms are:

2V TβF = 2Vs1β1F1 + · · ·+ 2VsnβnFn =

(
2Vs1F1 · · · 2VsnFn

)






β1
...
βn




 ,

F TβTβF = F 2
1 β

2
1 + · · ·+ F 2

nβ
2
n =

(
β1 · · · βn

)







F 2
1 0 · · · 0
0 F 2

2 · · · 0
· · · · · · · · · · · ·
0 0 · · · F 2

n












β1
...
βn




 .

(3.20)

The constraint in (3.16) can be rewritten as:

(
F 2
1 T · · · F 2

nT
)






β1
...
βn




 = Ēobs(m). (3.21)

Thus, by setting:

x =






β1
...
βn




 , P = 2









F 2
1 0 · · · 0
0 F 2

2 · · · 0
· · · · · · · · · · · ·
0 0 · · · F 2

n









,

qT =
(
2v1F1 · · · 2vnFn

)
, r = V TV ,

AT =
(
F 2
1 T · · · F 2

nT
)
, b = Ēobs(m),

(3.22)

the equation in (3.15) can be rewritten as a standard quadratic optimization problem
as follows,

min
x

1
2
xTPx+ qTx+ r,

ATx = b.

(3.23)
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For (3.23), the Karush-Kuhn-Tucker (KKT) conditions are both necessary and suf-

ficient [BV04] and they require that:

(
P A

AT 0

)(
x⋆

λ⋆

)

=

(
−q

b

)

, (3.24)

where x⋆ are the primal solutions, that is, the optimal solutions for the damping
coefficients required and λ⋆ is the dual solutions of (3.23). If A has full rank and

P is symmetric and positive definite, then (3.24) admits only one solution [BV04]
given by:

(
x⋆

λ⋆

)

=

(
P A

AT 0

)−1(−q

b

)

. (3.25)

This property is very appealing from a computational point of view but it is nec-
essary to verify if the required assumptions are always satisfied for the given case.

From (3.22), it can be seen that AT is a row matrix. The only case in which A

has not full rank is when all the components of the force Fo are zero. This can

happen only when the robot does not move since Fo considers also the dynamics
of the robot. In this case no energy can be produced and no damping is necessary.

From (3.22) we can see that P is a diagonal matrix. If all the components of the
control force are different from 0, then P > 0. In case Fi = 0 for some i = 1, . . . , n,

then the corresponding elements on the diagonal of P are zero and, consequently, P

becomes positive semi-definite. Nevertheless, if Fi = 0 no dissipation occurs along
the ith component and the corresponding term on the function to minimise is zero.

Thus, it is possible to safely set βi = 0. In order to determine the other components
of β a reduced minimization problem, where only the non-zero components of F are

considered, can be built out of (3.23). It is easy to see that the A and P matrices of
the reduced problem satisfy the assumptions required for having a unique solution.

To sum up, the vector x∗ represents the optimal solution for the minimization

problem and the values are the coefficients of the matrix β in (3.14). Simulations

and experiments are performed also with this approach to validate the method.

3.5.1 Results: Simulations and Experiments

Simulations

Considers the Example 2 where the passivity control without optimal damping cre-
ated over-dissipation as shown in Fig. 3.9. For the same example, the optimal pas-

sivity control is applied in order to avoid over-damping while keeping performance.

The optimal damping value of the PC acting on velocity, results in a velocity correc-
tion shown in Fig. 3.11b, where Vpc = βFo. This leads the velocity of the simulated

satellite closer to the ideal one as imposed by the minimization problem and shown
in Fig. 3.11a (bottom). In particular, the passivity proof which guarantees stability

with the proposed approach (i.e. the sum of the observed energy and the energy due
to the passivity control) is shown in Fig. 3.11a (top). It is worth to note that the

magnitude of energy shown in the passivity proof is in the order of 10−4 J respecting
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Figure 3.11: Passivity control with optimal damper avoids over-damping action.

the equality constraint imposed in the minimization problem. This means that the

active behaviour is now solved by virtue of the optimal damping that modulates the
PC in an optimal manner. It is worth also to compare the effect of using the opti-

mized passivity control in Fig. 3.11a with the passivity control without optimization
(see Fig. 3.9).

Experiments

In the experiments, a higher time delay of 20 ms is considered in order to prove the
effectiveness of the proposed method. Fig. 3.12a (top) shows the energy observed

in the network during the experiment which results to be negative. This energy
is corrected by the optimal PC providing the exact correction in energy (Epc). It

leads to a stable behaviour as the passivity proof shows at the bottom of Fig. 3.12a.
Fig. 3.12b shows the linear velocity correction due to the optimal damping and the

forces due to the forces estimator. Similarly, Fig. 3.12c shows the angular velocity
correction and the torque due to the forces estimator.

For completeness the velocity of robot, which simulates the satellite is reported in
Fig. 3.12d. The results prove the effectiveness of the proposed method in rendering

satellite dynamics on a position controlled robot with the proposed performance

oriented method. It can be also concluded that the method can deal with sensor
noise as shown by the experiments.

3.6 Discussion

In Chapter 3, the control strategy to achieve high fidelity dynamics simulation ren-
dered on admittance-controlled robotic facilities has been proposed. In particular,

stability issues and performance degradation due to intrinsic latencies found in robot
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Figure 3.12: Experiment results: Energy, velocity correction, forces estimator F0 =
(f0,τo) and motion of the satellite.

controllers have been analysed. The proposed method identifies the sources of intrin-

sic instability and counteracts the destabilising effects using the passivity criteria.
Furthermore, in order to implement the dynamics accurately, the damping process is

formulated as an optimization problem. The optimized approach guarantees stabil-
ity through passivity and preserves the performance through the use of an optimal

damping. Hence, over-dissipation can be avoided and the system becomes less con-
servative. Performance and effectiveness of the method are shown in simulation

and verified experimentally on different robotic facilities equipped with force-torque
sensor.
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CHAPTER 4

ENERGY-BASED CONTROL FOR DISCRETE-TIME

INTEGRATION

4.1 Introduction

A further issue tackled in the thesis is the methodology by which the dynamics

model is discretized. The states of motion are achieved by integrating a dynamics
model, which commands the set-points to the industrial robot during the satellite

motion simulation. The integration methods proposed in literature are not suit-
able for simulation with hardware-in-the-loop because they are implicit. Thus, they

require an iterative solution, which might be prohibitive for the real-time implemen-
tation required by the robot. Therefore, explicit integration techniques are exploited

(e.g. Euler integration) since these are simple, fast and suitable for a real-time im-

plementation. Nevertheless, it is known (see e.g. [SSF07]) that standard integration
techniques for implementing a dynamics subject to external forces, lead to a gener-

ation of energy and, therefore, to a non-physical behaviour causing position drifts.
This undesired behaviour becomes more evident for large sampling time, which is

common in industrial robots, where the control frequency is usually low.

In this chapter, the energy drift due to the Euler integration method is analysed

for a rigid body dynamics and an energy-based control is developed in order to
restore the passivity. The energy drift represents the deviation from the physical

behaviour and it is due to the discrete-time integration. Firstly, the energy which
causes the drift is identified and an analysis with its continuous-time counterpart is

performed. Secondly, an explicit and passive integrator is developed for meeting the
passivity constraint. The effectiveness of the proposed integrator is validated with

simulations and experiments.
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4.2. Problem Statement

Related Works

Standard discretization techniques destroy the geometric and energetic properties,
which characterise the physics of a body [BC98a]. The field of geometric integra-

tion tackles the development of numerical integration methods that preserve the
energetic properties and/or other geometric structures (e.g. symplectic form) of the

system to be integrated. Several methods have been developed over the years (see

e.g. [HWL06, BC16, OB08]). Energy-preserving integrators based on momentum
conservation [BU07] are also available in the literature. However, geometric integra-

tors concern mainly isolated systems (e.g. astronomical systems) or systems with
some dissipation [MS11] and the interaction with the environment is not consid-

ered. In [SSvdSF05], an implicit integrator based on port-Hamiltonian modelling,
and considering external interaction, has been proposed. In [LH08] a fast but im-

plicit and variable rate integration strategy for implementing a mass-spring-damper
systems is illustrated. The integration methods proposed in literature are implicit.

Thus, they require an iterative solution, which is prohibitive for the real-time im-
plementation. [BC98a] shows that standard and explicit integrators do not ensure

passivity, therefore, a more complex and harder to implement integration strategy
has to be sought.

Within this context, a fast and explicit passive integrator for simulating the
dynamics of a rigid body has been proposed by the author of this thesis and it

is presented in this chapter. The contribution refers to the author publications
[DSBAS17] and [DSAS17].

4.2 Problem Statement

The problem related to the discrete-time integration is analysed in this section. In
order to isolate the effects generated by the discrete-time integrator, further sources

of activity (e.g. time-delay in the control loop) are not considered. However, they
will be included in the unified architecture presented in the next chapter.

Fig. 4.1 shows the architecture of a generic robotic simulator with the model-
based satellite dynamics and it was presented already in Sec. 2.3. However, the focus

here is on the discrete time integration (dashed box in Fig. 4.1), which includes the
block T

∑
by means of discrete integration with sampling time T .

Fe(k)
Sat. Dyn. T

∑V̇s(k)
R

Vs(k)
E

Figure 4.1: Admittance architecture with the desired dynamic. R is the robot, E
is the environment, Sat. Dyn. is the force-acceleration model of the dynamics to
implement, TΣ is the discrete integrator with time step T .
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4. Energy-based Control for Discrete-time Integration

The total wrench Fe = (fe, τe) ∈ R
6 is the input to the desired dynamics (in

the dashed box) where the acceleration V̇s is computed and discretely integrated at
sampling time T . Thus, Vs = (vs, ωs) ∈ R

6 is the final twist velocity vector of the

model-based dynamics sent to the robot. The model-based dynamics was presented
in (2.1), (2.2) and it is reported also here for completeness, as follows:

v̇s = M−1fe, (4.1)

ω̇s = I−1(Iωs × ωs + τe) = I−1(S(Iωs)ωs + τe). (4.2)

The following analysis is performed considering the Euler integrator because

this method is usually exploited in applications with industrial robots. The reason
is given by the fact that the method is fast, explicit and it can be implemented on

a real-time operating system. The analysis is based on the energy characteristics
of the system, therefore, the total energy H(vs,ωs) of the rigid body dynamics is

introduced and defined as follows:

H(vs,ωs) = Ht(vs) +Hr(ωs), (4.3)

where

Ht =
1

2
vTs Mvs, (4.4)

Hr =
1

2
ωT

s Iωs, (4.5)

being Ht the translational kinetic energy and Hr the rotational energy.

In order to compute the discrete velocity set-point to be sent to the robot, the
dynamics needs to be integrated in discrete time using, for example, the standard

Euler method. Therefore, for the translational dynamics in (4.1) the following dis-
crete system is obtained:

vs(k) = vs(k− 1)+ TM−1fe(k− 1). (4.6)

An angular velocity set-point is also required to the robot in order to simulate a

complete spacecraft dynamics. Therefore, similarly to the translational dynamics,

(4.2) needs to be integrated and according to the Euler method will result:

I(ωs(k)− ωs(k− 1))T−1 = S(Iωs(k− 1))ωs(k− 1) + τe(k − 1), (4.7)

consequently, the angular velocity set-point to be commanded to the robot is:

ωs(k) = ωs(k − 1) + I−1TS(Iωs(k− 1))ωs(k− 1) + TI−1τe(k − 1). (4.8)

The energy variation for the translational and rotational dynamics is due to the
power exchanged with the environment and in case of free motion (i.e. fe = 0 and

τe = 0), the velocity of the system is constant over time. Thus, in this simple case,
standard Euler integration is energetically well posed since it allows the discretized

dynamics to behave in a physically consistent way independent of the sampling
time. However, this condition does not hold anymore in case of interaction with the

environment, as can be seen in the following example and later analytically analysed.
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4.2. Problem Statement

Example 3 A rigid body with massM = 30 kg and inertia I = diag(18, 20, 22)Kgm2

is subjected to external forces and torques. The force profile is shown at the top of
Fig. 4.2b and the torque profile is shown in Fig. 4.3b (top). Considers the integra-

tion of the rigid body dynamics in continuous time and discrete time with the Euler
integrator for sampling times: T1 = 0.1 s and T2 = 0.01 s.

Due to external interaction, the total energy of the system increases while using

the Euler integration method. In particular, the increase in energy with respect to
the continuous time integrator is shown in Fig. 4.2a, where Htc is the translational

energy calculated in continuous time (4.4), HtT1
and HtT2

are the same translational
energies but calculated at sampling time T1 and T2, respectively.

As it can be seen, the increase in energy depends on the sampling time and this
leads to position drifts. The drift due to the integration with T1 reaches 0.05 m

(when the force profile acts between 0 s and 32 s) and 0.15 m between 32 s and
50 s, (see Fig. 4.2b middle). Also for the case with T2, the drift appears. Since the

sampling time is smaller, it results in a drift 10 times lower, as shown in Fig. 4.2b
bottom. This drift shows that the interaction causes inconsistency in reproducing

the desired dynamics.
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Figure 4.2: Discrete integration causes drift in energy for the translational dynamics.

Unlike the translational dynamics, where the evolution is due only to the external

force, the integration of the rotational dynamics is function also of non-linear cou-
pling as evident from (4.8). This makes the numerical integration a more challenging

problem. Considering Example 3, a comparison of the angular energy calculated in
continuous time, (i.e. Hrc in (4.5)) and the respective energy calculated in discrete

times (HrT1
, HrT2

) is shown in Fig. 4.3a. As can be seen, the energy in discrete
time increases and this extra energy generates drift in orientation (see Fig. 4.3b) as

previously stated for the translational dynamics.
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Figure 4.3: Discrete integration causes drift in energy for the rotational dynamics.

Orientation and position drifts may lead the robot to interact with unforeseen
objects that produce further (drifted) behaviours leading to a deteriorated perfor-

mance of the dynamic simulation and even instabilities. Furthermore, energy drifts
will produce an energy inconsistent behaviour. In the next section, the analyti-

cal value which causes this energy drift will be identified and later exploited for
implementing a passive control action.

4.3 Energy Generated with the Discrete Integrator

The energetic properties of the simulated dynamics can be restored if the active

energy is identified. In this section, the active energy causing the drift is analytically

found. Firstly for the case of the translational dynamics and later for the rotational
dynamics, which is more challenging from an integration point of view.

Translational Dynamics

The kinetic energy can be calculated in discrete-time for the translational dynamics
discretized with the Euler method in (4.6). Therefore, substituting (4.6) in (4.4), it

will result in the following expression,

Ht(k) =
1

2
vs(k)

TMvs(k) = (4.9)

1

2
[vs(k− 1)+ TM−1fe(k− 1)]TM [vs(k− 1)+ TM−1fe(k− 1)].
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4.3. Energy Generated with the Discrete Integrator

Considering that the inertia matrix M is symmetric and positive definite, i.e.

(M−1)T = (MT )−1 = M−1, equation (4.9) can be rewritten as:

Ht(k) = Ht(k − 1) + Tvs(k− 1)Tfe(k− 1)+
1

2
T 2fe(k− 1)TM−1fe(k− 1).

︸ ︷︷ ︸

∆Ht(k)

(4.10)

Therefore, the discrete energy in (4.10) is composed of three terms, the first is the
integral part, the second is the power provided to the port (fe, vs) and the third one

(∆Ht) is the extra energy term generated by the Euler integration process, which
does not represent a physical and passive behaviour. Indeed, the variation of energy

should be due only to the power provided through the port, i.e. vs(k−1)Tfe(k−1)
and the extra energy term defined as

∆Ht(k) =
1

2
T 2fe(k− 1)TM−1fe(k− 1) (4.11)

is due to Euler integration process.

This extra energy causes energy-inconsistency and drift that make the repro-
duced dynamics diverge from the ideal behaviours as discussed in Sec. 4.2. Further,

as evident from (4.10), the discrete dynamics is not passive and, therefore, it may
happen that the system becomes unstable during interactions with the environment

[SSF07].

Rotational dynamics

The coupling due to the rotational dynamics renders the integration process more
challenging. This can be seen in the following expression where the discrete rota-

tional dynamics (4.8) is substituted in Hr(k) given in (4.5), which results in

Hr(k) =
1

2
{ωs(k− 1)TIωs(k− 1)+ Tωs(k− 1)TS(Iω(k− 1))ωs(k− 1)

+ Tωs(k− 1)Tτe(k− 1)+ Tωs(k− 1)TS(Iωs(k− 1))Tωs(k− 1)

+ T 2ωs(k− 1)TS(Iωs(k− 1))TI−1S(Iωs(k− 1))ωs(k− 1)

+ T 2ωs(k− 1)TS(Iωs(k− 1))TI−1τe(k− 1)

+ Tτe(k− 1)Tωs(k− 1)+ T 2τe(k− 1)TI−1S(Iωs(k− 1))ωs(k− 1)

+ T 2τe(k− 1)TI−1τe(k− 1)}, (4.12)
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4. Energy-based Control for Discrete-time Integration

where it has been considered that (I−1)T = (IT )−1 ≡ I−1. Furthermore, exploiting

the properties of the skew-symmetry of matrix S(·), (4.12) can be simplified as1,

Hr(k) = Hr(k − 1) + Tωs(k− 1)Tτe(k− 1)

+
1

2
T 2ωs(k− 1)TS(k)TI−1S(k)ωs(k− 1)

︸ ︷︷ ︸

∆Hr1(k)

+
1

2
T 2τe(k− 1)TI−1τe(k− 1)

︸ ︷︷ ︸

∆Hr2(k)

.

(4.13)

As for the translational case, the discretized rotational dynamics leads to a non-

physical behaviour. Indeed, extra energy terms are identified in (4.13), which are,

∆Hr(k) = ∆Hr1(k) + ∆Hr2(k) = (4.14)

1

2
T 2ωs(k− 1)TS(k)TI−1S(k)ωs(k− 1)+

1

2
T 2τe(k− 1)TI−1τe(k− 1).

In particular, the energy variation should be due only to the energy provided through

the power port, i.e. ωs(k− 1)Tτe(k− 1). However, unlike the translational case,
two quota of energy are found. ∆Hr1 which results from the integration of the

rotational coupled dynamics, and ∆Hr2 which results from the integration of the
external torque τe (similar to ∆Ht for the translational case).

The extra energy terms found for the translational and rotational dynamics,
namely ∆Ht(k) in (4.11) and ∆Hr(k) in (4.14), are responsible for the drifts dis-

cussed in Sec. 4.2. These terms can be computed in real time and can be used for

adjusting the output velocity of the Euler integrator.
In the following subsection, an analysis will reveal how close to the continuous

time energies are these identified values in discrete time.

4.3.1 Relation Between Continuous and Discrete Dynamics

The extra energy terms ∆Ht and ∆Hr represent the energy produced when a
continuous-time dynamics is discretized, namely it is the difference between the

discrete and the continuous energy. Notice that ∆Ht and ∆Hr have a similar struc-
ture, i.e. are functions of a force or torque. In this section, a numerical and graphical

analysis is performed considering ∆Ht in discrete and continuous time. However,

similar results can be derived for ∆Hr.
Firstly, a numerical analysis is performed for the system described in Example 3.

The body velocity is derived using both continuous and discrete time integration,
where Ec is the energy in continuous time and Ed in discrete time. The difference

between energy increments of the dynamic system in one sampling cycle between the
two integration methods is ∆E = Ed − Ec. The analytical value of the additional

energy due to discrete integration ∆Ht is also calculated in the numerical analysis.
Fig. 4.4 shows the difference between ∆E and ∆Ht for different sampling rates. It

can be seen that the difference is small and it tends to zero as the sampling time

1for the sake of brevity, the dependency of Iωs(k − 1) in S will be omitted.
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tends to zero. The difference in energy is due to the loss of information during the

discretization process and it can not be avoided.

The reason for the difference between ∆E and ∆Ht is analysed in a graphical rep-

resentation proposed in Fig. 4.5 where the power plots for both continuous (dashed
curve) and discrete (samples) dynamic systems are shown. This analysis can help to

analytically quantify the difference between ∆E and ∆Ht. The difference between
the energy increase per sampling cycle (in continuous and discrete) is analysed in

the lower part of Fig. 4.5 (positive, increasing power in A and negative, decreasing
power in B). In part A, the power of the continuous system varies linearly between

the samples k − 1 and k from P (t − T ) to P (t) since the input force fe(k − 1) is

constant during this time2. The area of the shaded regions (quadrilateral acde) is
the extra energy ∆E in the sampling time T produced by the discrete system with

respect to the continuous one. This area is the sum of the areas of the rectangle
abde and the triangle bcd. If Area(∗) function is defined as the area of the polygon

(∗), ∆E is given by:

∆E = Area(acde) = Area(abde) + Area(bcd)

= [P (k − 1)− P (t)]T +
1

2
T [P (t)− P (t− T )]

= fe(k − 1)T [vs(k − 1)− vs(t)] +
1

2
Tfe(k − 1)[vs(t)− vs(t− T )],

where [vs(t)− vs(t− T )] = fe(k−1)
m

T . Then, it is possible to write:

2the bold notation will be omitted in the analysis because it considers the component of the
vector.
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∆E = fe(k − 1)T [vs(k − 1)− vs(t)] +
1

2
Tfe(k − 1)

fe(k − 1)

m
T

= fe(k − 1)T [vs(k − 1)− vs(t)] +
T 2fe(k − 1)2

2m
︸ ︷︷ ︸

∆Ht,i

= fe(k − 1)T [vs(k − 1)− vs(t)] + ∆Ht,i,

(4.15)

which results in a difference:

∆E −∆Ht,i = fe(k − 1)T [vs(k − 1)− vs(t)]. (4.16)

Similarly, in part B of Fig. 4.5, ∆E is given by the sum of the areas of rectangle
abde and triangle bcd, which results in:

∆E −∆Ht,i = fe(k − 1)T [vs(k − 1)− vs(t− T )]. (4.17)

Equations (4.16) and (4.17) represent analytically the error between ∆E and ∆Ht

(shown in Fig. 4.4). The equations clearly show that as the sampling rate increases,
∆E gets closer to ∆Ht since vs(k − 1) gets closer to vs(t) and vs(t − T ). In the

graphical analysis, this turns to be a smaller area of rectangle abde.
The analysis shows that there is always a difference between what it is possible

to estimate in real time, namely ∆Ht or the equivalent ∆Hr, and the real difference
between the energetic behaviour in the discrete case and in the real case. The error

is described by (4.16) and (4.17) and it is due to the loss of information related
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to the discretization process, which can not be avoided. Such a difference gets

smaller as the sample time gets lower. However, the output velocity can be adjusted
for recovering the passivity of the discrete model and it brings several advantages.

First, a physical behaviour of the discrete dynamics is ensured. The evolution will
be close to the ideal one in the limits reported in (4.16). Second, a stable interactive

behaviour is achieved thanks to the passivity of the discrete dynamics.

4.4 Passivity-based Integration Method

The passive integrator is designed to re-establish the energy behaviour by dissipating

the extra energy terms, namely ∆Ht and ∆Hr, which have been identified. The
problem associate to the discrete-time integrator can be represented in a two-ports

network analogy proposed in Fig. 4.6, where Ec is the energy in continuous time
which, due to the discretization, will assume the value of Ed. The energy associated

to this two-port network can be monitored by introducing the following energy

observer,

Eobs(k) = Eobs(k − 1) + Ec(k)−Ed(k) = Eobs(k − 1)−∆E(k). (4.18)

DiscretizationEc Fe(t)

Vs(t)

EdFe(k)

Vs(k)

Figure 4.6: Two-port system with continuous energy (Ec) and discrete energy (Ed).

The energy observer, as defined above, relies on the knowledge of Ec (continuous
time energy), which is not available in a real-time operating system. Therefore, the

power-correlated variable at this port are not available to perform energy consider-

ations. However, the energy between continuous and discrete time (namely ∆Ht,
∆Hr) has been analytically identified with the limits described in (4.16), (4.17).

Hence, the two-ports network system can be seen as a one-port network, which pro-
duces the extra energy (∆Ht and ∆Hr) as shown in Fig. 4.7. The active energy will

Discrete Syst.
Fe(k)

Vs(k) Vc(k)

β(Eobs)

(∆Ht, ∆Hr)

Figure 4.7: One-port analogue discrete system of Fig. 4.6.
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be dissipated by the time-varying damping, β, later defined and it is represented as

a variable resistor.

Passive integration scheme for translational dynamics

The extra energy term produced by the integration and reported in (4.11) is always
positive and, therefore, it always corresponds to a production of energy. It is possible

to consider this term in a passivity observer in order to detect a loss of passivity.
Thus, it is possible to rewrite (4.18) as:

Eobs2(k) =Eobs2(k − 1)−∆Ht(k) + fe(k− 1)Tβ1(k− 1)fe(k− 1)T, (4.19)

where ∆E(k) has been approximated with ∆Ht(k), which represents the energy to

dissipate. The last term in (4.19) is the energy dissipated by the passivity controller,
which will act with a time-varying damping matrix β1, later defined and the relative

energy is monitored by the energy observer. The energy observer will measure active
energy as soon as there is an external force (which causes ∆Ht). Being the output

of the integrator a velocity, the passivity controller (PC) will act in admittance
causality as follows:

vpc(k) = β1(k)fe(k). (4.20)

Therefore, a correction to the output velocity of the admittance dynamics, i.e. the
velocity commanded to the robot, is given as follows:

vc(k) = vs(k)− vpc(k), (4.21)

where vs(k) is achieved from (4.6). The switching action of the passivity control is

given when the passivity condition (Eobs2(k) < 0) is violated and it is considered in
the matrix β1(k) ∈ R

3×3. This matrix is chosen to have a diagonal form such that

β1 = diag(β1,1, β1,2, β1,3). Thus, the coefficient of the damping matrix are defined
as:

β1,i(k) =

{

−Eobs2,i
(k)

f2e,i(k)T
Eobs2,i(k) < 0

0 else,
(4.22)

where i = 1, 2, 3 is the i−th component. The time-varying damping will provide the
exact amount of damping required to restore the energy behaviour of the system. It

is worth to note that (4.22) is free of singularity because, when the damping injection
is activate, i.e. Eobs2,i < 0, there is always a force available fe,i which causes the

generation of ∆Ht,i.

The value of energy Eobs2,i in (4.22), can be calculated from (4.19) and it results
in:

Eobs2,i(k) =Eobs2,i(k − 1)−∆H t,i(k) + β1,i(k − 1)f 2
e,i(k − 1)T, (4.23)
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where ∆Ht,i(k) =
T 2f2e,i
2Mi,i

. It can be proved that the energy balance of the energy

observer defined in (4.19) still holds. Indeed,

Eobs2(k) =

3∑

i=i

Eobs2,i(k) (4.24)

where,

Eobs2(k) = −∆H t,i(k) +

k∑

m=1

3∑

i=1

β1,i(m− 1)f 2
e,i(m− 1)T. (4.25)

Passive integration scheme for rotational dynamics

The coupling of the rotational dynamics renders the design of the passive integrator

more complex. The power port to be considered is given by the pair (τe(k),ωs(k)).
Similarly to (4.20), it would be possible to implement a dissipative action on this port

(i.e. β2(k)τe(k)) with a passivity controller (PC), as shown in Fig. 4.8a. However,
only when the robot interacts with the environment (i.e. τe(k) 6= 0), it will be

possible to dissipate the desired amount of energy (∆Hr2 and ∆Hr1). But, in case
of free motion, i.e. τe(k) = 0, the dissipation is not straightforward. In particular,

the value ∆Hr2 will result to be zero but some energy can be generated by the
coupling which generates ∆Hr1 and it can not be dissipated because τe(k) = 0.

Therefore, the natural port (τe,ωs) is not sufficient for dissipating all the en-
ergy produced by the discrete integration for the rotational case. To overcome this

problem, a fictitious port where to apply the PC can be designed in order to re-
established an energetic behaviour both during contacts and in free motion. The

fictitious port is represented in Fig. 4.8b and it defined as (χ,ωs), where

χ(k) = τe(k)+
1

2
T 2ωs(k)

T
S(Iωs(k))

TI−1S(Iωs(k))
︸ ︷︷ ︸

τf

. (4.26)

The torque χ ∈ R
3 is composed of the external torque τe and a fictitious torque

τf = f(ωs, I) which explicitly considers the contribution of ∆Hr1 at the port level.

Hence, χ can observe the real and fictitious torques and it can be used for performing
a passive control action. In particular, the term τe takes into account the presence

of ∆Hr2 while the term τf takes into account the presence of ∆Hr1. Therefore, the
PO/PC approach can be exploited for dissipating the energy produced by the Euler

integrator even during free motion. The energy observer monitors the port (χ,ωs)
and it is defined as:

Eobs3(k) = Eobs3(k − 1)− (∆Hr1(k) + ∆Hr2(k))

+ Tχ(k− 1)Tβ2(k − 1)χ(k− 1), (4.27)

which includes the energy to be dissipated (∆Hr1(k) + ∆Hr2(k)) and the energy of

the passivity control expressed in the last term of (4.27).
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ωs(k) ωc(k)

τe(k)

τe(k)τe(k)

E

Rot.Dyn.

R

PC

+
−

(a) Representation of the integrator with PC on the port (τe,ωs).

ωs(k) ωc(k)

τe(k)τe(k)

τf (k)
Rot.Dyn.

R

Eχ(k)

−
+

+
+

PCf(ωs, I)

(b) Representation of the integrator with PC and fictitious port (χ,ωs).

Figure 4.8: Representation of the integrator for the rotational dynamics, E is the
environment and R the robot.

Unlike the translational case where the dynamics is independent along its com-

ponents, the rotational dynamics is coupled. Therefore for the dissipative action a
single damping coefficient (β2) is designed in order to act along all the directions of

the angular velocity. Otherwise, compensating in different directions will lead to a
distortion of the reproduced dynamics. Then, when the active energy is detected, i.

e. Eobs3 < 0, the time-varying damper β2(k) acts as follows:

β2(k) =

{

− Eobs3(k)

T‖χ(k)‖2
if Eobs3 < 0

0 else,
(4.28)

where ‖χ(k)‖2 = χ(k)Tχ(k). The use of χ(k) guarantees a singularity-free damp-
ing action for the time-varying damping in (4.28). This is given by the fact that

χ(k) is always different than zero even in free-motion, i.e. τe = 0.
To modify the output of the integrator, i.e. the velocity ωs, a velocity modifica-

tion is provided by the passivity controller as follows:

ωpc(k) = β2(k)χ(k), (4.29)

which is used for correcting the output of the Euler integrator as:

ωc(k) = ωs(k)− ωpc(k), (4.30)

where ωc(k) represents the velocity commanded to the robot.
A schematic of the passive integrator is shown in Fig. 4.9. The corrected velocity

sent to the robot is given by Vc = (vc, ωc), where vc is obtained from (4.21) and
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Fe(k)

Fe(k)

Fe(k)
Sat. Dyn. T

∑V̇s(k)
R

Vs(k)
E

Eobs2,3

PC
Vc(k)

β1, β2

Figure 4.9: The passivity-based integration scheme.

ωc from (4.30). The time-varying damping coefficients, β1, β2 act accordingly to the

activity measured by the energy observers and the applied force (torque). Then, the
PC provides the corrected velocity to the robot.

4.5 Results: Simulations and Experiments

The method is firstly verified in simulation where the proposed integration scheme
is applied. Further, experiments are carried out on the client robot of the OOS-Sim

facility, where the force sensor at its end-effector is exploited to measure the external
interaction.

Simulations

The simulations consider the dynamics of a rigid body with the same conditions
introduced in Example 3. The passive discrete integrator is applied considering

sampling time T1 = 0.1s and T2 = 0.01s. The simulation results for the translational
dynamics using sampling time T1 and T2 are shown in Fig. 4.10a and Fig. 4.10b,

respectively. The plots at the top show the active energy observed in the system
without the action of the PC. The activity is compensated by the PC (see middle

plot) by introducing the correction velocity vpc. Thus, the passivity proof is provided
at the bottom of Fig. 4.10a and Fig. 4.10b which show that the observed energy has

always a non-negative value according to the passivity condition.

Also for the rotational dynamics the energy observer measures activity, as shown
in Fig. 4.11a and Fig. 4.11b considering the integration with sampling time T1 and

T2. The passivity is restore by the passivity control, which provides a correction
(ωpc). The passivity proof is given by Eobs w PC shown at the bottom of Fig. 4.11a

and Fig. 4.11b.

Energy properties

In order to verify that the energy properties are preserved, a comparison with the

continuous time integrator is performed and it is shown in Fig. 4.12 and Fig. 4.13
for the translational and rotational dynamics, respectively. Htc is the translational

energy and Hrc the rotational energy calculated in continuous time. HtT1, HtT2 is
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the energy calculated as results of the correction with the proposed method with

sampling time T1 and T2, respectively. The energy drift discussed in Sec. 4.2 are
here corrected as shown in Fig. 4.12 for the translational case and Fig. 4.13 for the

rotational case. The energy compensated with the proposed passive integrator is
close to the continuous-time energy. It is worth to compare Fig. 4.2a with Fig. 4.12

and Fig. 4.3a with Fig. 4.13 to understand the benefit of the method.
The results prove that the discrete dynamics behaves passively in discrete time

with the proposed integration method and it preserves the energy properties of the
simulated rigid body.
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Figure 4.10: Simulation results for the translational dynamics integrated with T1
and T2.
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Figure 4.11: Simulation results for the rotational dynamics integrated with T1 and
T2.
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Figure 4.13: Rotational energy corrected with the proposed integrator in continuous
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).

Experiments

The experiments are carried out on the OOS-Sim facility. Plant and torque-force
sensor run on a real-time system with a frequency of 250 Hz, thus the considered

sampling time of the integrator is 4 ms. The simulated mass considered for the
experiments is 250 kg with inertia diag(18, 20, 22)Kgm2, typical value of a satellite.

Fig. 4.14, Fig. 4.15, Fig. 4.16, show the data along the components (x, y, z)

measured during the experiment. Each figure shows the energy observed without
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(w/o) PC, the energy with (w) PC, the damping coefficient β1, the velocity corrected

by the PC, the measured force fe and the relative position of the robot, respectively.
As it can be seen, the Eobs w/o the PC results in a negative energy which can

produce an active behaviour. However, this active energy is corrected by the PC
which commands a velocity correction vpc as a function of the damping coefficient

β1 to preserve the passivity condition. Indeed, the passivity proof of the method
is described by the energy observed with the PC in each figure which results to be

positive, thus, passive. The difference in the observed energy (and consequently the
vpc) for each direction is due to the different magnitudes of applied forces, e.g. along

the z the force reaches 60 N , lower values for x and y, therefore, the extra energy
term ∆Ht will be different.

For the rotational dynamics, active energy is also measured by the observer as
shown at the top of Fig. 4.17. However, this energy is corrected by PC (see Fig. 4.18)

which provides the required correction in velocity according to β2, the time-varying

damping. Therefore, the implemented dynamics results to be passive and the body
preserves its energy consistency. As it can be seen, system passivity is evidenced

by the energy signal which results to be greater than or equal to zero (see Fig. 4.17
bottom). For reason of completeness, Fig. 4.19 shows the measured torques, the

velocity commanded to the robot and the measured and commanded roll, pitch and
yaw angles.

4.6 Discussion

An explicit and passive integrator has been designed for simulating the rigid body

dynamics of a satellite rendered by a hardware-in-the-loop simulator. Starting from
the standard Euler integrator, the energy generation that results from the integra-

tion process has been analytically identified and compared with its continuous time
counterpart. This active energy makes the discrete-time dynamics deviate from

the ideal one, resulting in position drifts or stability issues, as it was analysed in
this chapter. The proposed integration scheme modifies the velocity output of the

discrete-time integrator in order to preserve the energetic properties of the simu-
lated dynamics. This allows to have precise simulation of virtual bodies on robotic

facilities.
The effectiveness of the passive integrator is proved through simulations and it

has been validated experimentally on an industrial robot equipped with a force-
torque sensor. The experiment results prove that the integration method can deal

also with sensor noise and model uncertainties, typical issues intrinsic in the hard-

ware. The proposed passive discrete integrator does not depend on the robot dy-
namics model and therefore, it can be applied also in other domains.
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Figure 4.14: Experiment results - Energy observed (without and with PC), damping
factor β1x, velocity corrected by the PC, forces measured fex and motion of the robot
in x.
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Figure 4.15: Experiment results - Energy observed (without and with PC), damping
factor β1y, velocity corrected by the PC, forces measured fey and motion of the robot
in y.
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Figure 4.16: Experiment results - Energy observed (without and with PC), damping
factor β1z, velocity corrected by the PC, forces measured fez and motion of the robot
in z.
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CHAPTER 5

UNIFIED CONTROL ARCHITECTURE FOR TIME DELAY

AND DISCRETE SAMPLING EFFECTS

5.1 Introduction

In Chapter 3, a passivity-based control was designed to deal with the time delay

intrinsic in the control loop of the robotic simulator. Furthermore, in Chapter 4 a
passive integrator was proposed in order to compensate the energy drift caused by

the Euler integration method. The aim of this chapter is to have a unified passivity-
based control for dealing with both, the time delay and discrete integration effects.

Firstly, the delay compensation strategy presented in Chapter 3 is extended
in order to reduce the dependency from the robot dynamics. Indeed, when the

dynamic model of a robot or the access to the low-level control is not available, a
force estimator as the one described in Sec. 3.4 can not be implemented. This is the

case of some industrial robots, where the dynamics model or the inertia parameters
are not provided. Moreover, the lack of a torque interface at the joints of the

industrial robot reduces also the possibility of a dynamics identification. Therefore,
the method described in Chapter 3 needs to be adapted and generalised for all the

applicable cases.

Secondly, the work performed in Chapter 4 is merged in a unified passive integra-

tor for computing the dynamics of a satellite. Then, a unified control architecture is
obtained, which is able to deal both with the effects of time delay and of real-time

discrete integration. The discrete-time integration effects are therefore compensated
using a passive control in admittance causality and the time delay is compensated

with a second passive control, which acts in impedance causality. Finally, the de-
signed control structure is validated on the robotic simulator, the OOS-Sim. This

chapter refers to the author publication [DSBS18].
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5.2 Network Modelling

The benefit of using industrial robots for simulation of dynamics is given by the

high tracking capability of a given velocity or position set-point. Furthermore, the
possibility of connecting a forces-torques sensor with the plant improves the range of

simulations in case of external interaction. The resulting unstable effects, caused by
the time-delays inherent in the control loop, can be compensated with the designed

passivity-based control.

Although the industrial robot can precisely track the desired set-point, when

this is used for simulating satellite dynamics, its computation might require several
sampling steps. Mainly, this is due to the inverse kinematics calculation, internal

control of the robot and the transfer of measured data (e.g. force-torque sensor sig-
nals). Therefore the desired set-point which the robot will track is affected by delay.

This aspect was already tackled in Sec. 2.3, however only for a reduced model of the

simulator and without considering the discrete time integration effects. The discrete
integration of the simulated dynamics (4.1) and (4.2) can lead to erroneous desired

velocities while using standard integration techniques as discussed in Chapter 4. As
a result, the accuracy of the simulation can drastically decrease causing position

drifts and energy inconsistencies.

In this section the passivity controllers are unified in order to obtain stability

during the simulation of the satellite dynamics using industrial robot and an energy
consistent behaviour. Therefore, two networks are considered. One network is re-

lated to the discrete integrator and a second one to the time delay in the loop. A
preliminary block diagram is shown in Fig. 5.1 where now the location of the discrete

integrator and the time delay are both explicit in the loop. Notice that the robot
has been represented with a time-delay block TD. This is due to the assumption

discussed above, which considers the latency between the computed desired point
and the measured one though the industrial robot can precisely track the set-points.

Therefore the robot will move with a delayed velocity Vs(k− µ).

A multi-dimensional network of the system can be defined exploiting the con-

ventional mechanical-electrical analogy that maps forces into voltages and velocities
into currents (see Chapter 2 for more details). The resulting network is shown

in Fig. 5.2 where the robot is represented by the impedance Zr and the pas-
sive environment with impedance Ze. The interaction with the environment pro-

Fe(k) Sat. Dyn. T
∑V̇s(k) V s(k) Vs(k− µ)

TD E

discrete integrator time delay

Figure 5.1: Admittance architecture where TΣ is the discrete integrator with time
step T and TD the time delay location.
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Fe(k)Fe(k)

Vs(k)

Vs(k)

Zr

H Ze

discr. integr. time delay

Zc

TD

Vs(k− µ)

Figure 5.2: Modelling in electrical domain and networks.

duces a force Fe which is measured by the force-torque sensor placed on the robot.
This is transmitted with an ideal voltage source, Fe, that acts on the inductance

H = (M , 03×3; 03×3, I) ∈ R
6×6, which represents the total mass matrix (i.e. the

admittance dynamics).

Through the dependent current source Vs, the velocity of the mass is commanded

to the internal controller of the robot (modelled as impedance Zc) which will finally
move the robot. As stated before, if access to the internal controller of the industrial

is limited, it will lead to have a missing variable. Specifically, the control force
vector that is the voltage across Zc. Nevertheless, this force and the force across the

robot impedance, Zr, can be associated, as represented in Fig. 5.2 by the gray box.
However, it must be considered that the velocity tracked by the robot is affected by

some time delay. This factor can be represented in the network representation using
a time delay port, TD. The time delay port will replace the gray box of Fig. 5.2 in

the following analysis.

Therefore, two one-port networks can be identified in the electrical diagram and
these are represented by the two dashed boxes in Fig. 5.2. One network outputs

the discrete dynamics integration Vs and the second network considers the time-
delay and a passive environment. Hence, energy considerations of the system can

be performed from the interaction port, which power conjugated variables are Vs

and Fe.

5.3 Passivity-based Control in Impedance Causality

In this section the passivity controller, which is used to compensate the time delay
in the loop, is extended with an impedance causality. This allows to render passive

the sub-network containing the robot and time delay without the knowledge of the
robot dynamics. The main different with the method proposed in Chapter 3 is given

by the impedance causality, which is required because of two main factors. Firstly,

to remove the dependency from the robot dynamics and secondly to act together
with the passive integrator which operates already in admittance causality.

Fig. 5.3 shows the one-port network with power-correlated variables (Fe,Vs)
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Fe(k) Fe(k)
Vs(k)

Vs(k)

Fpc(k)

Fc(k) TDH

time delay

Ze

Vs(k− µ)

Figure 5.3: Modelling in electrical domain for the time delay: the output is a variable
force.

represented in the dashed box, which includes the time-delay and a passive envi-
ronment. The impedance causality of the PC will modify the output force Fe(k)

by a quantity Fpc(k) with a time-varying damping. Therefore the wrench on the
inductance H is the corrected force Fc(k), later defined.

The effect of the time delay is included in the force signals as can be seen in the

following analysis. For the ideal case the energy at one-port results to be,

m∑

k=0

F T
e (k)Vs(k)T =

m∑

k=0

V T
s (k)ZeVs(k)T. (5.1)

However, when the delay is considered, the previous balance does not hold because
the robot during the interaction with the environment has a delayed velocity, i.e.

Vs(k−µ). Therefore it will produce a force given by V T
s (k−µ)Ze and the balance

of energy at port level will be different, more specifically it results,

m∑

k=0

F T
e (k)Vs(k)T =

m∑

k=0

V T
s (k− µ)Ze

︸ ︷︷ ︸

FT
e (k)

Vs(k)T. (5.2)

This energy difference causes a discrepancy in velocity during the contact with the
environment and the measured force will be function of it.

However, the energy at the port (Fe, Vs) can be monitored at each time-step

with an energy observer to ensure passivity. If the passivity condition given in
(2.49) is violated, a time varying damping will be introduced into the system in an

impedance causality. Therefore, the energy observer can be written as:

Eobs1(k) = Eobs1(k− 1)−F T
e (k)Vs(k)T +V T

s (k− 1)α(k− 1)Vs(k− 1)T, (5.3)

where α(k) ∈ R
6×6 is a positive definite matrix which represents the time-varying

damping matrix. The variable damping matrix will regulate the action of the pas-

sivity controller, which can be defined in impedance causality as:

Fpc(k) = α(k)Vs(k). (5.4)
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The energy observer monitors also the energy associated to the passive control action

and it is expressed by the last term in (5.3). Therefore, the force correction provided
to the admittance model in Fig. 5.3 is given by Fc,

Fc(k) = Fe(k)− Fpc(k). (5.5)

The time-varying damping matrix α(k) = diag(α1, .., α6) can be choose to have
a diagonal structure and the following energy exchange from (5.3) holds:

Eobs1(k) = −
k∑

m=0

6∑

i=1

Fe,i(m)Vs,i(m)T +
k∑

m=1

6∑

i=1

αi(m− 1)V 2
s,i(m− 1)T, (5.6)

where i is the i− th component of the vector. This leads to have that:

Eobs1(k) =

6∑

i=i

Eobs1,i(k), (5.7)

where

Eobs1,i(k) = Eobs1,i(k − 1)− Fe,i(k)Vs,i(k)T + αi(k − 1)V 2
s,i(k − 1)T. (5.8)

The control term in (5.4), which dissipates at each time step the active energy, is
function of the variable damping matrix, whose components are:

αi(k) =

{

−Eobs1,i
(k)

V 2

s,i(k)T
if Eobs1,i < 0

0 else.
(5.9)

In order to avoid singularities in (5.9), a small threshold should be considered if the
velocity Vs,i crosses the zero value.

Note that the optimal solution for the time-varying damping matrix presented
in Sec. 3.5 can not be applied in case of impedance causality. Indeed, the designed

minimization problem in (3.15) was function of a velocity difference, namely the
velocity Vs(k) and Vs(k − µ), both available data. Then the resulting solution

of the minimization problem (min
β(k)

‖Vs(k − µ) − β(k)Fo(k) − Vs(k)‖2) was the

optimal time-varying damping β.

Similarly, the minimization problem can be written in impedance causality as
follows,

min
α(k)

‖Fe(k− µ)−α(k)Vs(k)− Fe(k)‖2 (5.10)

and in general it is possible to find an optimal solution for α following the steps in

Sec. 3.5. However, for the considered case the difference in force is not available,
due to the lack of knowledge in the delayed force vector, Fe(k− µ).

Nevertheless, the energy observer takes into account the update of energy of
the passivity controller (see the last term in (5.8)), therefore, the conservatism of

the damping injection is reduced and passivity can be achieved. The only possible
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limitation might be the high frequency force modifications given by the PC. This

effect can be minimised by using passive filters in the force signal, as shown in
[KH01].

Fig. 5.4 shows the new schematic with the PC in impedance causality, where
the corrected force Fc(k) is achieved by (5.5) and it is the input to the desired

dynamics. Thus, if the one-port system behaves passively, the force correction is
zero, i.e. Fpc = 0 and the measured force Fe is sent as an input to the admittance

dynamics without modification. If some energy is produced, the damping factor is
set such that the extra energy is dissipated and passivity is restored. The damping

coefficients, αi, will make the Eobs1,i > 0, ∀i. Therefore the overall energy in (5.7)
will be Eobs1(k) > 0 achieving passivity of the system.

E

Fe(k)

V s(k)V̇s(k) Vs(k− µ)
TD

PC
Fc(k)

Sat. Dyn. T
∑

time delay

Figure 5.4: Scheme with impedance causality PC for time-delay compensation.

5.4 Passivity-based Control in Admittance Causal-
ity

This section summarises the algorithm of the passive integrator, which will be used

together with the passive control acting in impedance causality for compensating the
time delay in the loop. The network representation in Fig. 5.5 shows the location of

the integrator (dashed box) which acts on the inductance H and after the integration
process it provides a velocity Vs. This network has been endowed with a variable

resistor which provide the dissipation of the extra energy by using a passivity control.
The admittance causality of the passive integrator will modify the output velocity

of the integrator with a quantity Vpc(k) = (vpc, ωpc) (i.e. the variable resistor in
Fig. 5.5). Therefore, the velocity sent to the robot is a corrected velocity Vc(k) =

(vc, ωc). As discussed in Sec. 4.4, the integration process will generate some extra
active energy, namely ∆Ht and ∆Hr, which can be dissipated. The dissipation is

handled by the time-varying damping β1(k) defined in (4.22) and β2(k) defined in

(4.28). The algorithmic for the passive and explicit discrete integrator is summarised
in Alg. 1 and it uses the approach presented in Sec. 4.4.

The algorithm computes the extra energy produced during the integration pro-
cess and it builds the fictitious variable χ. Once everything is set-up, it observes if

there is a violation of passivity and then it computes the time-varying damping gains
of the passivity controllers (that will be zero if passivity is not violated). Finally the

dissipative actions of the PCs are exploited for updating the velocities commanded
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Fe(k) Fe(k) Fe(k)

Vs(k) Vc(k)

Vc(k)
TDH Ze

disc.integr.

Vpc(k)

Figure 5.5: Modeling in electrical domain for discretization: the output is a variable
velocity.

Algorithm 1 Passive Integrator for satellite dynamics

Input: vs(k− 1),ωs(k− 1), fe(k), τe(k),M , I, T
Output: vc(k), ωc(k)

Compute ∆Ht using (4.11)
Compute ∆Hr using (4.14)
Build the χ(k) variable using (4.26)
Compute Eobs2(k) using (4.23)
Compute Eobs3(k) using (4.27)
Set the damping β1(k) using (4.22)
Set the damping β2(k) using (4.28)
Compute vc(k) = vs(k)− β1(k)fe(k)
Compute ωc(k) = ωs(k)− β2(k)χ(k)
Output: Vc(k) = (vc(k),ωc(k))

to the robot. The presented pseudo-code can be easily executed in real-time on

industrial robots.

5.5 The Overall Architecture

In this section, the overall architecture which combines both passivity controllers is

presented. As shown in Fig. 5.6, the networks endowed with the passivity controllers
developed in the previous sections have been connected. The network N1 deals with

the discrete integrator, where the variable resistor has resulting current V u
pc and N2

deals with the passivity control for the time delay, where the voltage drop is F u
pc

1.

The networks N1 and N2 are rendered passive by the passivity controllers.

As discussed in Sec. 2.4, a system resulting from two passive systems which are
connected through a power preserving interconnection, is also passive (see Proposi-

tion 2). Therefore, the flows and efforts in the new system variate accordingly to
the new input-output causality when the networks N1 and N2 are connected.

In particular, in the network N1, the corrected wrench F u
c is obtained by (5.5),

where Fpc in (5.4), Eobs1,i in (5.8) and αi in (5.9) are recalculated considering the

1 The index u stands for unified velocity or force, later defined.
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Fe Fe

Vs

F u
c

V u
c

V u
c

TDH

N1

F u
pc

V u
pc

N2

Ze

Figure 5.6: Interconnection of passive networks. N1 is the network of the passive
integrator and N2 the network of the passive controller for the time delay compen-
sation.

corrected velocity V u
c (later defined) instead of Vs. Similarly, the corrected twist

in network N2, namely, V u
c = (vu

c ,ω
u
c ) is obtained by the corrected velocity (4.21)

and the corrected angular velocity (4.30), where vpc in (4.20), Eobs2,i in (4.23),

β1,i in (4.22), and ∆Ht in (4.11) are recalculated considering the corrected force
F u

c = (fu
c , τ

u
c ) instead of Fe = (fe, τe). Similarly Eobs3, ∆Hr1(k), ∆Hr2(k), χ(k)

are recalculated from (4.14), (4.26) with the corrected values τu
c and ωu

c to re-
compute ωpc from (4.29). The unified force and velocity correction is summarised

in the following subsections.

Unified force correction

The unified force correction F u
c = (fu

c , τ
u
c ) is the input to the discrete dynamics

and by defining F u
c its generic component, it results

F u
c (k) = Fe(k)− F u

pc(k), (5.11)

where the term F u
pc(k) = αu(k)V u

c (k) is the force modification due to the passivity
control. The time-varying damping factor αu(k) is defined as:

αu(k) =

{

− Eobsu
1
(k)

V u
c (k)2∆T

if Eobsu
1
< 0

0 else
(5.12)

where the energy observer is:

Eobsu
1
(k) = Eobsu

1
(k − 1) + F u

c (k)V
u
c (k)T + Epcu

1
(k − 1),

being Epcu
1
(k) = V u

c
2(k)αu(k)T , the energy dissipated by the PC. The previous

equations are functions of the corrected velocity V u
c which is the output of the

passive integrator, defined in the following subsection.

Unified velocity correction

The corrected velocity sent to the robot is the vector V u
c composed of V u

c = (vu
c ,ω

u
c )

where vu
c is the corrected velocity for the translational dynamics and ωu

c the cor-

rected velocity for the rotational dynamics.
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For the translational dynamics, it is possible to consider the individual compo-

nents of the vectors vu
c and fu

c (because the dynamics is decoupled), therefore:

vuc (k) = vs(k)− βu1 (k)f
u
c (k). (5.13)

The velocity correction provided by the PC is vupc(k) = βu1 (k)f
u
c (k) and the time-

varying damping is:

βu1 (k) =

{

−Eu
obs2

(k)

fuc (k)2T
if Eu

obs2(k) < 0

0 else.
(5.14)

The energy observer is rewritten as:

Eu
obs2

(k) = Eu
obs2

(k − 1)−∆Hu
t (k) + βu1 (k − 1)fuc (k − 1)2T, (5.15)

where ∆Hu
t (k) is recalculated from (4.10) with the corrected values of the force fuc .

For the angular velocity commanded to the robot will result:

ωu
c (k) = ωs(k)− ωu

pc(k), (5.16)

where ωu
pc(k) = βu2 (k)τ

u
c (k) is the correction provided by the passivity controller

where the variable damper is:

βu2 (k) =

{

− Eu
obs3

(k)

T‖χu(k)‖2
if Eu

obs3 < 0

0 else
(5.17)

and the energy observer is written as:

Eu
obs3(k) = Eu

obs3(k − 1)− (∆Hu
r1(k) + ∆Hu

r2(k))

+ Tχu(k− 1)Tβu2 (k − 1)χu(k− 1), (5.18)

where ∆Hu
r1(k), ∆H

u
r2(k), χ

u(k) are recalculated from (4.13), (4.26) with the cor-
rected values τu

c and ωu
c .

Overall passivity

The variables of the controllers, V u
pc = (vu

pc, ω
u
pc) and F u

pc, will render the respective

networks passive. Hence, the overall system is composed of an interconnection of two
passive networks (N1, N2) which lead to an overall passive system that has no energy

production [Kha02b]. Being the overall system passive, a 2-ports network can be
isolated from Fig. 5.6 and it is possible to combine the two passivity control variables,

namely F u
pc and V u

pc. As can be seen in Fig. 5.7a, the 2-ports network, named

passivity ctrl, acts as a passivity transformation or layer from the simulated discrete
dynamics network to the robot with sensor network. The passivity transformation

is summarised in Fig. 5.7b considering the input-output variables.
The transformation considers the passivity controllers acting in admittance and

impedance causality. Therefore, the robot receives a modified twist V u
c to correct

the effects of the discrete integration and the simulated dynamics receives as input

a modified wrench F u
c to correct the effects of the time delay.
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(a) The passivity control architecture represented in electrical domain.
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(b) Network representation of the overall architecture with the passivity transformation
layer.

Figure 5.7: The overall architecture for simulating satellite dynamics on a robot in
presence of time delay and discrete integration effects.

5.6 Results: Simulations and Experiments

Simulations

The overall architecture has been tested firstly in a simulation study. The simulated
mass of the satellite is M = 280 Kg with inertia I = diag(18, 20, 22)Kgm2 (i.e.

client satellite for the DEOS mission [DS]). The considered sampling time is 4
ms and the time delay in the loop 40 ms. Forces-torques are simulated with a

spring-dashpot model and the contacts occur a defined positions. The behaviour of
the system affected by the time delay can be seen in Fig. 5.11a where the velocity

with the time delay in the loop (solid line) is compared with the ideal case velocity
(dashed line) without delay. As it can be seen, the velocity of the simulated rigid

body increases after each collision and the system becomes unstable.

The proposed method is applied and the results related to the translational

dynamics are shown in Fig. 5.8. The first column shows the passivity control for
time delay compensation where the correction is provided in impedance mode with

the forces fu
pc. The second column shows the results for the passivity control which

compensate the effects of discrete integration by providing an admittance correction

vu
pc. The corrections provided by the passivity controller, (fu

pc and vu
pc) act in
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order to remove the activities measured by the energy observer which is shown in

the second row of Fig. 5.8. As it can be seen, the energies observed without the
passivity controllers, (Eu

obs1 w/o PC and Eu
obs2 w/o PC) become negative indicating

activity in the system. The passivity proof is shown in the third row (Eu
obs1 w PC

and Eu
obs2 w PC), where the positive semi-definiteness of these energies indicate the

passivity of the system for translational dynamics.
Similarly, the first column in Fig. 5.9 shows the corresponding results for the

rotational dynamics where τu
pc is the torque correction related to the passivity control

for the time delay. The second column is related to the passivity control which

provides an angular velocity correction ωu
pc to avoid the discretization effects. Also

for the rotation dynamics, the energies with the passivity control (Eu
obs1 w PC and

Eu
obs3 w PC) shown in the last row of Fig. 5.9 are positive semi-definite and therefore,

all the activity has been dissipated. As a result, the diverging behaviour is resolved

and the motion of the rigid body behaves stable and energetically consistent. It can

be seen in Fig. 5.11b where the translational and rotational velocities of the rigid
body are shown and compared with the velocity in the ideal case.
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Figure 5.8: Translational dynamics: force correction fu
pc and velocity correction vu

pc,
energy observers without and with PC. Last row (Eu

obs w PC) indicates the passivity
of the system.
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Figure 5.9: Rotational dynamics: torque correction τu
pc, angular velocity correction

ωu
pc energy observers without and with PC. Last row (Eu

obs w PC) indicates the
passivity of the system.

Experiments

The experiment is conducted on the client robot of the OOS-Sim facility shown
in Fig. 1.3. The considered rigid body has a mass of 700 Kg and inertia I =

diag(116, 160, 160) Kgm2 (i.e. chaser satellite in the DEOS mission [DS]). The
intrinsic time-delay of the facility is considered during the experiment. The motion

of the satellite is initialised with an initial linear velocity of [0, 0, 0.02] m/s and
interacts with a passive environment in both the direction of the motion (z-axis).

The robot motion and the corresponding energies in reproducing the dynamics are
analysed in the following subsections.

Robot Motion During the Experiment

When the proposed architecture is not active, the velocity of the satellite, simulated

with the robot during its interaction with the environment increases, as shown in
Fig. 5.10. It can be seen that the velocity diverges after each contact leading to an

unstable behaviour. Now the proposed passivity-based approach is applied for the
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Figure 5.10: Experiment: increase in the robot velocity due to the time delay and
discretization without passivity control.

same mass and the same initial conditions. The forces and torques are measured
by the sensor during the contact with the environment as shown in Fig. 5.12a and

the active energy is observed and dissipated during the experiment. Therefore the
velocity of the robot does not increase as shown in Fig. 5.12b, resulting in a stable

behaviour. The following subsection analyses the results recorded during the exper-
iment related to the passivity controllers. The passivity of the system is proved for

the translational and rotational dynamics, see Fig. 5.13 and Fig. 5.14.

Passivity of the Dynamics Rendered by the Robot

The data in Fig. 5.13a show the impedance correction, fu
pc, to avoid the activity due

to the time delay which is observed with the Eu
obs1 w/o pc. The activity due to the

discretization is shown in Fig. 5.13b (middle) which is corrected with the passivity

controller in order to provide a correction vu
pc (see Fig. 5.13b top) to restore the

passivity. Passivity proof is given by the positive semi-definiteness of Eu
obs w pc

in Fig. 5.13a and Fig. 5.13b. The action of the passivity control dealing with the

time delay for the rotational dynamics is shown in Fig. 5.14a. In particular, τ upc is
the passivity correction due to the energy generated by the time delay (measured

in Fig. 5.14a middle). Also for the rotational dynamics, the activity due to the
discretization is corrected by the admittance passivity control which provides a

velocity correction ωu
pc shown in Fig. 5.14b top. This allows to restore the passivity

properties of the system as proved in Fig. 5.14a and Fig. 5.14b bottom. The positive

semi-definiteness of the energy indicates the passivity of the system.

5.7 Discussion

In this chapter, a unified architecture is proposed to faithfully reproduce rigid-body
dynamics with an industrial robot. The architecture is based on two passivity con-

trollers. On one side, the force is modulated as input to the simulated dynamics.
On the other side, the velocity is modulated as output to the discrete integrator.

Therefore, the robot will receive a corrected velocity in order to preserve the en-
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ergetic properties of the dynamics during the simulation. The obtained results are

promising in both, simulations and experiments. The experiments proved that the
developed method can run on a real-time robot and can deal also with sensor noise,

which is intrinsic in measured data.
The reader should note that the extra energies introduced by the Euler integra-

tion as reported in (4.11) and (4.14) are calculated in discrete-time. These values
might be slightly different with respect to the real energetic disparity between dis-

crete and continuous-time cases as it was extensively discussed in Sec. 4.3.1. This
error is given by the loss of information due to discretization and can not be avoided.

However, this difference becomes smaller as the sampling time decreases. In the case
of the experiment the sampling time is 0.004 s and therefore the relative difference

in energy can be neglected.
Regarding the action of the passivity control, it is worth to notice that high

frequency force and velocity modifications can represent a limitation of the TDPA

damping injection [KH01]. The high frequency damping generates an effect which
might modify the natural dynamic behaviour of the system. However, this effect

can be minimised by using passive filters in the force and velocity signals to remove
the chattering effects.
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Figure 5.11: Time delay causes system instability (top). The passivity control
restores the passivity of the system (bottom).
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Figure 5.12: Experiment: force and torque measured and velocity of the robot.

96



5. Unified Control Architecture for Time Delay and Discrete Sampling Effects

0 5 10 15 20 25 30 35 40 45 50 55

−20

−10

0

10

20

 

 

0 5 10 15 20 25 30 35 40 45 50 55

−2

−1

0

 

 

0 5 10 15 20 25 30 35 40 45 50 55
−0.2

−0.1

0

0.1

0.2

 

 

T ime [s]

E
u o
bs
1
w
/o

pc
[J
]

E
u o
bs
1
w
pc

[J
]

f
u p
c
[N

] fx fy fz

Ex

Ex

Ey

Ey

Ez

Ez

(a) Force corrected by the PC, energy observer without the PC and energy with PC.

0 5 10 15 20 25 30 35 40 45 50 55
−4

−2

0

2
x 10

−4

 

 

0 5 10 15 20 25 30 35 40 45 50 55

−0.02

−0.01

0

0.01

0.02

 

 

0 5 10 15 20 25 30 35 40 45 50 55
−1

−0.5

0

0.5

1
x 10

−6

 

 

T ime [s]

T ime [s]

v
u p
c
[m
/s
]

E
u o
bs
2
w
/o

pc
[J
]

E
u o
bs
2
w
pc

[J
]

Ex Ey Ez

vx vy vz

Ex Ey Ez

(b) Linear velocity corrected by the PC, energy observer without PC and energy with PC.

Figure 5.13: Experiment: Passivity controller for compensating time delay (a) and
discretization effects (b) for the translational dynamics. Last rows in (a) and (b)
indicate the passivity of the system.
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Figure 5.14: Experiment: Passivity controller for compensating time delay (a) and
discretization effects (b) for the rotational dynamics. Last rows in (a) and (b)
indicate the passivity of the system.
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CHAPTER 6

IMPEDANCE CONTROLLERS FOR SPACE ROBOTS

6.1 Introduction

The previous chapters have tackled the stability issues which occur while simulating

a dynamics with a robotic facility and controllers were develop to achieve a stable

and faithful simulation during the robot motion. The aim, therefore, was to obtain
a reliable platform for testing the control algorithms for OOS missions. Such kind of

missions consider the use of a satellite equipped with a robotic manipulator, which
performs the servicing tasks on a defective target satellite.

In general, there are two established modes to control the manipulator while

performing these tasks, which can be divided in position or torque mode. In posi-
tion control mode, the manipulator maintains a strict deterministic position and in

doing so uses all available torques. This behaviour is mostly useful in industrial ap-
plications, where the environment is known and high position accuracy is required.

However, the position control lacks of compliance that is required in uncertain envi-
ronment. Using impedance control, the torque itself is controlled and can be shaped

to exhibit both stiff and compliance behaviour. Impedance capabilities represent
an important factor for a space scenario, especially during the stabilisation and the

approach phase where the manipulator might interact with a floating target satellite
pushing it away and compromising the mission [ABDS+16]. Impedance control for

the manipulator and the dynamic coupling with the floating base, (i.e the satellite

where the manipulator is connected), induce many challenges for the dynamic, plan-
ning and control. Mainly two approaches are considered in literature for the control

of the manipulator arm connected to a satellite-base. In free-floating robot control,
the actuation of the base is not considered. Therefore, the base reacts accordingly

to the motion of the controlled manipulator. When the control of the satellite base
is required, then the base needs to be actuated and, in this case, the approach is

defined as free-flying robot control [NP17].
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6.1. Introduction

In this chapter, impedance controllers for a space robot are developed and vali-

dated on ground with the OOS-Sim robotic facility. Firstly, torque controllers for the
free-floating manipulator are proposed. In particular, two approaches are described,

a passivity-based controller which exploits the so-called generalized Jacobian, later
defined, and a second one based on the computed torque using feedback linearisa-

tion. The controller based on the generalized Jacobian was used as the baseline for
the DEOS mission [DSAG+15]. Furthermore, it was also exploited for performing

teleoperation experiment, as described in [ABDS+16] and the main features are also
presented in this chapter.

Secondly, an other impedance controller is designed for the free-flying space

robot, i.e. when the satellite base is actuated by thrusters or reaction wheels. The
free-flying control presented here was proposed by the author in e.Deorbit ESA space

project [TEDS+17, JLR+18]. Furthermore, an impedance control, which can be used
during the stabilisation phase is also presented and analysed through Motecarlo

simulations.

Related Works

The presence of a floating base for a space manipulator induces many challenges from

the point of view of robot dynamics, planning and control. Indeed, the manipulator
motion is coupled with the floating motion of the satellite, inducing translations and

rotations of the base together with interferences on the desired motion of the end
effector. One important consequence of such coupling is the presence of dynamic

singularities [PD93, DP93] that are path-dependent, unlike for the fixed-base case.
The presence of dynamic singularities further complicates the task of the trajectory

planning algorithms [LH13]. In [UY87] the kinematic problem for a free floating
robot was addressed and the generalized Jacobian was presented. This relates the

end effector velocities to the joint velocities, taking into account the conservation
of momentum, which characterises the motion of the free-floating robot in absence

of external forces. Based on this concept, a kinematics-based control was then
presented in [UY89]. The dynamics problem was treated in [MMA89], where a gen-

eralized transposed Jacobian approach was presented for the end effector regulation
control and the stability was proved. In [PD90] the generalized Jacobian was shown

to be the natural extension of the classic Jacobian for free-floating systems, allowing

to address most of the control problems using classical approaches for fixed-base
manipulators. The effectiveness of the transpose Jacobian control was further inves-

tigated for free-flying systems in [DP93]. The problem of the impedance control of a
free-floating robot was also treated in [NP17] and the control for a free-flying robot

was developed in [NY06]. Both authors consider an approach based on feedback
linearisation.

The author contribution to the research field is the design and validation of non

linear impedance controls for a space robot. The reader can refer to [DSAG+15], for
on-ground validation, [ABDS+16] for the teleoperation application, [TEDS+17] for

the free-flying robot control and [CBS+18] for the stabilisation control.
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6.2 Dynamics Model

This section introduces the dynamics model of the space robot, which is considered
for the design of the controllers and for the validation on the OOS-Sim. The general

equations of motion for a satellite equipped with a manipulator with n−joints, can
be defined as follows [Fea07]:

[
Hb Hbm

HT
bm Hm

][
ẍb

q̈

]

+

[
cb
cm

]

=

[
Fb

τ

]

, (6.1)

where Hb ∈ R
6×6, Hm ∈ R

n×n, Hbm ∈ R
6×n are the inertia matrices of the base and

manipulator and the coupling inertia matrix between the base and the manipulator,

respectively. The vectors ẍb ∈ R
6 and q̈ ∈ R

n are the acceleration of the base and
the acceleration of the robot joints; cb ∈ R

6 and cm ∈ R
6 are the non-linear velocity

dependent terms on the base and on the manipulator, respectively. Fb ∈ R
6 is the

force torque wrenches acting on the center of mass of the base-body and τ ∈ R
n is

the internal torque vector of the manipulator.

The reader should note that in (6.1), Fb refers to the actuation force of the base.
Usually two control approaches are available in the literature, the free-floating robot

control, which considers no actuation at the base and the free-flying controller where
actuation at the base is available. The controllers developed within this thesis will

deal with both cases. Therefore, the reader can refer to the following

Remark 1 Difference between the space robot controllers

• Control for a free-floating robot: The satellite-base is not actuated, i.e
Fb = 0, therefore only the manipulator arm is controlled.

• Control for a free-flying robot: The satellite-base is actuated, i.e Fb 6= 0
and also the manipulator arm is controlled.

Generalized space robot dynamics

A common way in literature to deal with the control problem for a free-floating robot

is to exploit the generalized equation of the multi-body dynamics [UY89], [SK08].
This allows to express (6.1) in a fixed-base like dynamic function, which includes

however the nature coupling of the floating base. Therefore, from the upper and
lower sets of equation (6.1), the dependency from ẍb can be eliminated to obtain

the following expression:

H∗q̈ +C∗ = τ + J∗TFe, (6.2)

where H∗ ∈ R
6×6, C∗ ∈ R

6, J∗ ∈ R
6×n are the so-called generalized inertia matrix,

generalized Coriolis/centrifugal forces and generalized Jacobian of a space robot,
respectively [UY87]. Equation (6.2) resembles the dynamic equation of a fixed-based

robot, however the dynamic interaction of the base is included in the generalized
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matrix. In particular the matrix H∗ represents the inertia properties of the system

in the joint space and it is defined as follows:

H∗ = Hm −HT
bmH−1

b Hbm. (6.3)

This can be mapped onto the Cartesian space using the generalized Jacobian matrix

defined as:
J∗ = Jm − JbH

−1
b Hbm, (6.4)

where Jb ∈ R
6×6 and Jm ∈ R

6×n are the Jacobian matrices of the base and manip-

ulator, respectively. The generalized Jacobian is an useful concept because contains

kinematics information of the base and it can be exploited to solve the control
problem for the free-floating robot control [SK08].

6.2.1 Kinematics Model and Error Definition

The goal of the controllers is to minimise the error between the current pose to
the target pose, or otherwise, to follow a reference trajectory. Fig. 6.1 shows the

main frames which are considered in the design of the controllers. In particular, E
represents the end-effector frame of the space robot, T the target frame and I the

inertial frame. In the simulation case, the inertia frame is assumed to be the same
as the base frame at the initial instant (t0 = 0). The controllers will be validated

on the OOS-Sim simulator, therefore the corresponding frames are reported as in

Fig. 6.2. The main difference between Fig. 6.1 and Fig. 6.2 is given by the inertial
frame I, located at the base of the industrial robot for the OOS-Sim. However, this

will not affect the design of the controllers.

B = I(t0)

T

E

x

y

z

Figure 6.1: Frames for the free-flying space robot. B is the base frame and E is the
end-effector frame, the inertial frame I is the same as B at the time t0 = 0.

The velocity of the manipulator end-effector, ẋm ∈ R
6, relates the kinematics

between the operational space and the joint space and it is give as follows,

ẋm = Jbẋb + Jmq̇. (6.5)
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Free-Flying space robot

s

B

E

T T

B

I

E

x

x

x

y

y

y

z

z

z

Figure 6.2: Frames in the OOS-Sim facility and in free-flying space robot. I is the
inertial frame, B the base frame and E is the end-effector frame.

The pose-error between two frames can be written as a trivial concatenation of

the position and orientation error. The position error between the end-effector and
target position is expressed in the inertial frame as follows,

∆pm = pt − pm, (6.6)

where pm is the position of the end effector and pt is the target position, both
expressed in the inertial frame. The orientation error exploits the quaternions

representation calculated from a relative error matrix. In particular, considering

Re,i ∈ R
3×3 the rotational matrix of the end effector with respect to the inertial

frame and Rt,i ∈ R
3×3 the desired rotational matrix, expressed in the same frame.

Then, the error matrix can be defined as Rφ = Rt,iR
T
e,i. Therefore, by exploiting

the quaternion representation, a scalar η and a vector ǫ̂ ∈ R
3 can be found, see

[SK08]. Considering the matrix E = I3η− ǫ̃ ∈ R
3×3, where ǫ̃ is the skew-symmetric

matrix of quaternion vector ǫ̂, the orientation error ∆φ ∈ R
3 is defined as,

∆φm = 2ET ǫ̂. (6.7)

The total vector of the error, ∆xm ∈ R
6, concatenates the position and orientation

of the manipulator end-effector and it is given as,

∆xm = [∆pm; ∆φm]. (6.8)

The vector (6.8) will be used for the design of the Cartesian impedance controller,

later defined.
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6.3. Impedance Control for Free-floating Space Robot

For the free-flying robot control, see Remark 1, the control of the actuators at the

base requires also a definition of the error. This can be derived analogously to the
concatenation of the error in position and orientation presented in (6.6) and (6.7).

However, the respective position and orientation of the base must be considered.
Therefore the definition of the error for the base results to be,

∆xb = [∆pb; ∆φb], (6.9)

where ∆pb = ptb − pb is the position error between the desired base position
(ptb) and the measured one (pb). The orientation error for the base, ∆φb, can be

calculated from (6.7) with ǫ̂ built from the matrix error Rφb = Rtb,iR
T
b,i, being Rtb,i

the desired base orientation matrix and Rb,i the measured one.

The representation of the Cartesian errors reported in (6.8) and (6.9) is used in

the design of the impedance controllers (next section) and also in the next chapter.

6.3 Impedance Control for Free-floating Space Robot

One of the most important phases during the capture of a satellite by a space robot is

the approach phase towards a target satellite, afterwards the grasp and stabilisation
phases follow. During these phases the forces interaction between manipulator and

target is unavoidable. Therefore, an impedance control can be considered in order

to obtain compliance capabilities between end-effector and target.

In this section, impedance control available in the literature are implemented
and validated for the free-floating case. In particular, two torque-based control al-

gorithms acting in Cartesian space are designed for a free-floating robot. The first is
a non-linear control, which uses the generalized Jacobian transpose, while the second

is based on a complete feedback linearisation of the free floating robot dynamics.
The analysed task is the tracking of a desired trajectory (e.g. provided by a mo-

tion planner) and the controllers must satisfy predefined compliance and impedance
conditions for the manipulator end-effector. Both controllers are evaluated firstly

in simulation. Furthermore, the control based on the generalized Jacobian matrix,
which exploits the passivity of a classical PD control, is validated on the hardware.

The latter, was used as baseline controller for the DEOS mission for its robustness.
Moreover, it was also successfully utilised in teleoperation for the grasping of the

target satellite using the OOS-Sim facility [ABDS+16].

6.3.1 Torque Controller Using the Generalized Transposed

Jacobian

A simple controller which guarantees compliance behaviour between the end-effector
and the target point is given by using the generalized Jacobian transposed (6.4), in

this way, the end effector position is not disturbed by the reactive motion of the base.
Thus, the manipulator can operate under a resolved motion control. If a redundant

robot is considered as in this case, the motion in the null space of the manipulator is
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enabled and it must be taken into account in the control law. Therefore, the torque

control law which guarantees regulation towards the grasping point and control of
the null space can be defined as follows:

τ = J∗TF
︸ ︷︷ ︸

τ1

+ (I − J∗TJ
∗T
)τn

︸ ︷︷ ︸

τ2

. (6.10)

where τ ∈ R
7 is the input torques to the multibody dynamics (6.1). The control

law in (6.10) is composed of two torque-vector terms. In particular,

• τ1 is the torque contribution which controls the Cartesian pose of the end-
effector. This is function of a Cartesian virtual force F , later defined, which

allows compliance between the end effector and the grasping point.

• τ2 is the torque contribution to control the null space motion where a gener-
alized joint torque vector τn is considered.

The torque vector τ1 is function of J∗T , the transposed of the generalized Jaco-

bian matrix in (6.4) and F ∈ R
6×1, the virtual control forces vector applied at

the end-effector. The compliance during the approaching phase is provided by the

virtual Cartesian forces vector F at the end-effector and it is modelled like a PD
(Proportional Derivative) behaviour. Therefore, F is defined as:

F = Kpm∆xm +Kdm∆ẋm. (6.11)

The matrices Kpm and Kdm ∈ R
6×6 are positive definite and they represent the

stiffness and damping gains of the controller. The vectors ∆xm is the position error

defined in (6.8) and ∆ẋm is the velocity error.
For the redundant manipulator (such as the LWR) the null space motion requires

particular attention. In (6.10), the torque τ2 is function of a J
∗ ∈ R

7×6, being the
dynamically consistent generalized inverse matrix [RK92]. Indeed, the generalized

Jacobian does not have a square structure and its inverse is not unique. Using
dynamically consistent generalized inverse provides decoupling of Cartesian and null-

space motion [Kha95]. The Jacobian J
∗

is therefore exploited and it is defined as:

J
∗
= H∗−1J∗TΛ, (6.12)

where Λ ∈ R
6×6 is the inertia matrix in the Cartesian space defined as in [UY87]

and reported below,
Λ = (J∗H∗−1J∗T )−1. (6.13)

Therefore, a generalized torque can be applied in (6.10) to control the null space

motion and it is defined as τn = −Dnq̇, where Dn ∈ R
7×7 is a damping matrix. It

is worth to note that τn acts in the null space of the robot and it will not interfere

with the end effector Cartesian motion.
The benefit of using the controller in (6.10) is that does not require a priory the

knowledge of the system dynamic. The stability of this controller has been presented
in [XS91] and it exploits the generalized dynamics of the system introduced in the

previous session.
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6.3.2 Torque Controller Using Inverse-Dynamics and Feed-

back Linearisation

A second approach is the torque controller based on computed torque using feedback
linearisation. This approach leads to an exact linearisation of system dynamics

obtained by means of a non-linear state feedback. The authors in [ALH06] define
the equations of motion of a space robot in the operational space, as a function of

the end effector acceleration and joint torques. Then, a controller based on feedback
linearisation of the manipulator dynamics is employed.

The equation of motion for the system dynamics expressed in (6.2), can be also

derived in Cartesian space. Then, the Cartesian end effector acceleration ẍm can
be found as shown in [ALH06] and reported as follows,

ẍm = J∗H∗−1τ + (Λ−1 +Λ−1
b )Fe + η, (6.14)

where η ∈ R
6 is the Coriolis and centrifugal forces vector in Cartesian space and

Λb = (J∗

bH
∗−1
b J∗T

b )−1 ∈ R
6×6 is the inertia matrix of the base [UY89].

The approach considers to find a control vector u, as a function of the system
state, which realises an input/output relationship of linear type such that ẍm = u,

where u is a desired control input behaviour. Therefore the torque τ which linearises
the system in (6.14) results to be,

τ = H∗J
∗
u+H∗J

∗
[−η − (Λ−1 +Λ−1

b )Fe]. (6.15)

Considering the case where the external force are Fe = 0, the torque controller

in (6.15) can be substituted in (6.14) and considering (6.12), it is easy to see that
the controller will linearise the dynamic. The output will result in the end effector

acceleration expressed as:

ẍm = u. (6.16)

The system under control (6.15) is linear and decoupled with respect to the new
input u. The control u can be chosen to have an impedance behaviour as,

u = ẍmd −Kdm∆ẋm −Kpm∆xm, (6.17)

where ẍmd is the desired acceleration, Kpm and Kdm ∈ R
6×6 are positive-definite

diagonal matrices representing the stiffness and damping gains.

From the above consideration, asymptotic stability is guaranteed and the error
dynamics will result:

∆ẍ+Kdm∆ẋ+Kpm∆x = 0. (6.18)

Note that the implementation of this controller is based on the computation

of the inverse dynamic and therefore it requires an accurate model of the system
dynamics. This condition might be difficult to verify in practice and it might be

also prohibitive to compute the inverse dynamics in real-time.

106



6. Impedance Controllers for Space Robots

6.3.3 Torque Controller for Free-Floating Robot During Sta-

bilisation

The controllers described above are generally used for the approach phase of the

manipulator in Cartesian space towards the client. Once the end-effector of the
manipulator reaches the grasping point within a given tolerance, the capture of the

client can be performed and the stabilisation phase follows.
This section covers the design of an impedance control, which can be used during

the stabilisation phase. The goal of this phase is to bring the joints velocity of

the manipulator to zero [CBS+18]. In this way, the manipulator has a quasi-rigid
connection between the servicer and the client. The design of the torque-based

control, which can be used during the stabilisation phase, needs to fulfil two points
listed as follows,

• the joint velocities have to decrease to zero in a stable manner,
• the commanded torque signals should not exceed the actuators maximum

torque.

The first condition can be achieved by using a proportional derivative control
architecture, similar to the PD structure for the approach phase, but in joint space.

The second condition is dictated by the fact that during the stabilisation phase
the manipulator is coupled with the client and extreme torques can be required by

the joint actuators, which, however, have power supply limitation. Therefore, the
controller during the stabilisation phase needs to take into account the maximum

torque available for the actuators.
A saturation on the commanded torques could be applied. However, the use of a

linear saturation to limit the torques does not ensure globally the achievement of the
regulation objective and it might lead to undesirable effect in the closed-loop system

[ZRS06a]. Then, a generalized saturation function, later defined, can be exploited

to ensure stability as discussed in [ZRS06b].
The designed control law for the stabilisation phase has the following expression,

τ = −s(Kdqq̇ +Kpq∆q) = s(τ ) (6.19)

where Kpq,Kdq ∈ R
7×7 are positive definite diagonal matrix representing stiffness

and damping. The vector ∆q = q−qd ∈ R
7 is the error between the measured joints

position, q and the desired one, qd. The terms in parenthesis in (6.19) represent the

classical PD control at joints level. Furthermore, the function s(τ ) is a saturation
function, which takes into account the torque limits of the joint actuators.

Stability of PD control with bounded input saturation has been proved in [ZRS06b].
The bounded input considers a special form of the natural saturation and the sta-

bility is proved under the condition that the saturation function for the PD torque
controller must be a strictly increasing linear saturation function with bounded val-

ues1.
1The reader can refer to Appendix C.1 for definition of generalized function and linear satura-

tion.
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Therefore, considering τi the i-th component of the torque vector expressed in

(6.19), the strictly increasing linear saturation function is defined as,

s(τi) =







−Gi + (Zi −Gi) tanh
τi+Gi

Zi−Gi
if τi < −Gi

τi if |τi| ≤ Gi

Gi + (Zi −Gi) tanh
τi−Gi

Zi−Gi
if τi > −Gi

(6.20)

where Zi is a positive constant and it represents the joint torque limit that the i-th

actuator can supply and Gi is a positive constant, where Gi ≤ Zi.

Therefore, the closed-loop dynamics with the controller (6.19) and the strictly

increasing linear saturation function (6.20) results to be stable as proved in [ZRS06b]
for PD control with input saturation.

6.3.4 Results: Simulations and Experiments

The Cartesian impedance controllers defined in Sec. 6.3.1 and Sec. 6.3.2 for the

approach phase are firstly compared in a simulation study. Later, the non-linear
controller will be validated on the hardware. The mass and inertia parameters of the

simulated servicer satellite can be found in Table 6.1. The considered manipulation
arm for the servicer satellite is a 7 dof light-weight-robot, whose mass and inertia

parameter were identified and are reported in Table 6.2.

For the analysis, the error in orientation (shown in the following plots) is rep-
resented with the yaw, pitch and roll angles [ψ, θ, φ]. This representation is more

intuitive than the quaternions representation exploited by the respective controller.

Mb [kg] Ix [kgm2] Iy [kgm2] Iz [kgm
2]

150 38 20 23

Table 6.1: Mass and inertia properties of the servicer satellite (base of the LWR).

Mlink [kg] Ix [kgm2] Iy [kgm2] Iz [kgm
2]

2.71 0.023 0.023 0.005
2.71 0.024 0.005 0.024
2.54 0.013 0.013 0.005
2.50 0.023 0.005 0.002
1.30 0.023 0.022 0.003
1.57 0.003 0.003 0.003
4.1 0.024 0.002 0.024

Table 6.2: Mass and inertia properties of the LWR servicer arm
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Simulations

The task is to approach the target while considering a Cartesian trajectory for the
end effector, which is shown in Fig. 6.3. Usually, in the autonomous mode, the

trajectory can be provided by a motion planner in order to guarantee feasibility
with respect to motion constraints, such as singularities, collision avoidance and

end-effector camera field of view [LH13].

The considered impedance is described by the stiffness and damping gains. For
the first Jabobian-based controller, a stiffness and damping of Kpm = diag[600,

600, 600, 80, 80, 80], Kdm = diag[25, 25, 25 , 4, 4, 4] has been implemented. For the

second linearisation-based controller, optimal gains were derived from the case of
a unitary mass with a damping ratio ξ = 0.7 and frequency f = 10Hz, resulting

in Kpm = diag[40, 40, 40, 40, 40, 40] and damping Kdm = diag[13, 13, 13, 13, 13, 13].
Both simulations were performed for the same reference trajectory.
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Figure 6.3: Input end effector trajectory referred to the inertial frame. pm is the
position of the manipulator and φm the orientation.

Torque controller using the generalized transposed Jacobian

The behaviour of the torque control law given in (6.10) is here analysed. The error
detected during the tracking is shown at the top of Fig. 6.4. The maximum error

detected is 0.007m in position and 0.01 deg in orientation during the tracking phase.
The plot at the bottom of Fig. 6.4, is the measured state of the base in position and

orientation, due to the reaction motion of the LWR. Despite the controller solves
only a regulation problem, the tracking performance are satisfactory for the given

trajectory.

Torque controller using the inverse dynamics linearisation

The simulation considers the torque input as reported in (6.15) for the same servicer

manipulator and trajectory. Since the manipulator is a redundant robot, the null
space motion is damped by adding the generalized torque τ2 reported in (6.10),

which will not affect the motion in Cartesian space. The error detected during the
tracking is shown in Fig. 6.5 (top). During the tracking phase the maximum error is

found to be 0.004 m for the position and 0.003 deg for the orientation. In the steady
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Figure 6.4: End effector error with the torque control using the transpose of the
generalized Jacobian (top) and motion of the base (bottom).
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Figure 6.5: Error of the manipulator with the torque control base on the inverse
dynamics linearisation (top) and relative motion of the base (bottom).

state it is 10−6 m in position and 0.001 deg in orientation. The state of the base
due to the LWR motion are shown in Fig. 6.5 (bottom). The simulation shows that

the controller based on inverse dynamics has good performance (even using lower
gains) in case of a rigid joints robot. However, if unmodeled dynamics are not taken

into account, the linearisation will not be perfect and the controller might behaves
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differently, see [ASOH07] for a complete treatment.

Furthermore the control law based on feedback linearisation results to be com-

putationally heavy. For this reason, in the experiment only the torque controller
based on the generalized Jacobian transpose is considered. Indeed, this control law

is not function of dynamic model and therefore it can provide higher robustness to
the unmodelled dynamics [ASOH07].

Experiment

The experiment is performed on the servicer robot of the OOS-Sim facility with the

torque control law described in (6.10). The torque gravity vector g has been added
to compensate the gravity effects on ground. The gains Kpm and Kdm are the same

as those used in the simulation.

The initial error is of the manipulator is [−0.05 0.10 0.2] m in position and

[0 20 0] deg in orientation and a linear trajectory is provided. The end effector
follows the defined trajectory and it motions is shown in Fig. 6.6. The data show a

maximum error of 0.008 m in position and 0.8 deg in orientation during the tracking
phase. Furthermore, after the manoeuvre, the maximum error found experimentally

is 0.004 m in position and 0.4 deg in orientation at steady state. The difference with
the analysed case in simulation is given by the presence of joints friction and not

perfect gravity compensation which is intrinsic in the hardware. Moreover, the
measured motion of the base due to the reaction of the LWR motion, is shown in

Fig. 6.6 (bottom).
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Figure 6.6: Experimental results: Tracking error in position and orientation
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A second experiment has been performed and snapshots are shown in Fig. 6.7.

The first snapshot shown the initial position of the end-effector and the second
snapshot shows the final position. The reader can clearly see the dynamic nature of

the free-floating control by seen the motion of the base, which results as dynamic
reaction of the light-weight-robot motion.

The results shown above represent the experimental proof that satisfactory per-
formance can be achieved using the free-floating robot control with the generalized

Jacobian matrix. Since the robot is controlled in torque mode, uncertainties given
by the gravity compensation and by the joints friction are intrinsic in the system.

Nevertheless, the controller is able to deal with them adequately. Therefore, this
controller was considered also for performing experiment in teleoperation, as it will

be presented in the following subsection.

Figure 6.7: Snapshots of the experiment for the free-floating control using the Gener-
alized Jacobian transpose. The base of the servicer satellite (left) moves accordingly
to the LWR motion.
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6.3.5 Experiment with the ASTRA Geostationary Satellite

The free-floating impedance control using the generalized Jacobian was validated

also in a complete teleoperation scenario. Teleoperation represents indeed an other
mode to control the space manipulator, namely the slave, while using a haptic

interface, namely the master.
For an on-orbit servicing mission the target satellite is considered to be in a Low

Earth Orbit (LEO) and the master interface is located on ground. An user interface
(master) is placed at the on ground station and it is composed of the following

hardware components:

1. Master device: a Light-Weight Robot (LWR) is employed as the master device.

This choice is motivated by the fact that the LWR can offer large workspaces
and high levels of force interactions, therefore, the human operator can in-

tuitively manipulate the slave robot. A six dof forces and torques sensor is
also mounted on its end effector in order to capture the human forces applied

during the telemanipulation.

2. Data-Glove: In order to control the gripper attached to the end-effector of the
slave robot, the operator wears a data-glove, which provides local measurement

of the finger positions. These measurements are mapped into the gripper

kinematics for remote control.

3. Visual display/Mission Control panel: In order to provide visual feedback from
the slave environment to the operator, a display station is posed at the user

interface.

The teleoperation experiment is performed with a real communication link between
master and slave. Common communication links between Low Earth Orbit satellite

and on-ground station are based on a Geostationary Earth Orbit (GEO) relay in-

frastructure. With this structure the data are sent from ground to a LEO satellite
through a GEO satellite. As a results, the total communication interval with LEO

increases, but it comes at the cost of more time delay.
During the mission, the operator commands through the master a position to

the slave using a communication link accordingly to the GEO relay structure, as
shown in Fig. 6.9a. The operator receives visual and force feedback from the slave.

The slave considered in the experiment is the space robot of the OOS-Sim facility,
which was physically located in DLR Oberpfaffenhofen (Germay), but its signals are

linked with the ASTRA satellite. The links with the ASTRA satellite is provided

by LRT (Garching, Germany) and a standard UDP segment connects DLR and
the LRT. In the experiment the master device is located on-ground in DLR and

it is connected to the OOS-Sim facility through the satellite communication link
described above, the final implemented scenario is summarised in Fig. 6.9b. The

measured mean value which characterises the delay in the signals was 269.72 ms
with a standard deviation of 3.11 ms for each channel in forward direction. More

details about the the communication link are reported in Table 6.3.
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Delay Mean [ms] jitter[ms] Pack.lost Packet out of order

269.72 3.11 2.12 24.54

Table 6.3: Communication link properties of the ASTRA satellite

To deal with the time delay due to the communication, approaches based on
time domain passivity are employed. In particular energy observer and passivity

controller can be designed exploiting the methods presented in Chapter 3. The
teleoperation control used for the experiment was composed of a 4-Channel archi-

tecture. It is defined by two forward channels carrying master position and force
signals, and two feedback channels, carrying slave computed and measured force sig-

nals. The reason for choosing this architecture instead of the symmetric 4-Channels,
with position and force in both directions, is to reduce the spring-like characteristic

caused by the delayed position closed loop, which can be disturbing, specially for
substantial or varying delays (more details are provided in [ABDS+16]).

Therefore the control law in (6.10) augmented with the passivity control was

implemented as input to the slave robot. Results of the experiment are shown in
Fig. 6.8. The dense points visualise the position of the desired final state (almost

zero relative motion of the satellites). The phase during which there is a mismatch
between the positions of slave and target corresponds to the time that the fingers

of the gripper approach the target satellite. It can be observed that grasping and
stabilisation of a free-floating target using a free-floating manipulator was feasible

using the controller based on the generalized Jacobian.
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(a) Targeted scenario in space: The space robot controlled from the on-ground station.
.................................

(b) Implemented scenario: The OOS-Sim (space robot) controlled from the on-ground
station with the user interface and ASTRA satellite link.

Figure 6.9: Teleoperation experiment using the ASTRA satellite as GEO-relay.
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6.4 Impedance Control for Free-flying Space Robot

In free-flying control mode, the base of the space robot is actuated and controlled

together with the manipulator arm. In this section the torque control based on the
generalized Jacobian is extended and validated in a simulation study. In particular,

the considered phases are the approach and stabilisation of a defective satellite,

Envisat, as a part of the e.Deorbit and COMRADE projects [TAE+17], [CBS+18].
The aim of the approach phase is to control the manipulator end-effector to the

grasping point, which is located at the Target’s launch adapter ring (LAR) while
controlling the base. During the approach phase of the manipulator to the grasping

point, the arm movement introduces disturbance forces and torques on the base.

In the design of the controller for the approach phase, a coupled control strategy

has been considered as interface of two systems, i.e. the base and the manipulator.
The manipulator controller regulates the pose of the end-effector and it runs with

a frequency of 1 KHz. This controller uses the impedance control law reported in

(6.10) and experimentally validated. The control at the base controls the attitude
of the chaser and it operates relative to the target. Both controllers will exchange

data. Position and orientation data between the chaser and the target are provided
by the chaser to the manipulator controller. On the other hand, the robot controller

will exchange data with the base by means of forces and torque computed at the
robot base, calculated as,

Frb = −Hbmq̈ − cb, (6.21)

where Frb ∈ R
6 is the reaction force of the manipulator to the base. The actuation

of the base exploits a PD (Proportional-Derivative) behaviour and it receives as
input the disturbance force due to the manipulator motion, Frb in (6.21). The base

controller provides a control force Fb ∈ R
6 as input to the system dynamics defined

in (6.1).

The controller acting at the base is therefore defined as follows,

Fb = −Frb +Kpb∆xb +Kdb∆ẋb, (6.22)

the matrices Kpb and Kdb ∈ R
6×6 are positive definite and they represent the

stiffness and damping gains of the controller at the base. ∆xb is the error at the

base defined in (6.9) and ∆ẋb the velocity error. The controller at the base usually
runs between 1Hz and 10Hz, which is standard in such kind of scenario [TEDS+17].

The controller of the manipulator exploits the torque law τ presented in (6.10),

however a saturation on the virtual Cartesian force F was imposed to control the
end-effector acceleration. The force Fb and the torque τ are the control input

to the space robot dynamics in (6.1). The robustness of this controller strategy
has been validated in a Montecarlo simulation study considering the approach and

grasping/stabilisation of the target satellite Envisat.
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Approach phase

The control for the approach phase has been validated in simulation where the base
controller operates at 10Hz and the manipulator control runs at 1kHz. The motion

of the target, Envisat satellite, is initialised considering the worst case scenario
described in the e.Deorbit project, i.e. a spinning of of 5 deg/s along its inertial

x-axis. The aim is to analyse the accuracy of the gripper positioning with respect
to the grasping point, while the base controller is actively stabilising the relative

pose of the spacecraft. Further details can also be found in [TEDS+17] and in
[TAE+17]. The gains of the manipulator controller are set as Kpm = diag(350, 350,

350, 50, 50, 50), Kdm = diag(25, 25, 25, 15, 15, 15) and for the null space motion the

damping matrix is set as Dn = diag(2, 2, 2, 2, 2, 2, 2).

Fig. 6.10a (top) shows the error of the manipulator with respect to the LAR

in position and orientation, respectively. Fig. 6.10a (bottom) shows the error in
position and orientation of the controller acting at the base. Fig. 6.10b (top) shows

the commanded robot joint torques of the controller in (6.10). The actuation forces
of the controller at the base are shown in Fig. 6.10b (bottom). The robustness of

this controller was proved with more than 100 Montecarlo simulations considering
variation in mass parameters, initial conditions and variation of the Envisat motion.

The final error in position was bounded to 0.005 m and 0.5 deg, see Fig. 6.11b. The

final position was reached within the requirements of 0.01 m and 2 deg, as it was
reported for the e.Deorbit project in [TEDS+17, JLR+18].

Stabilisation phase

After the approach phase, the stabilisation phase begins. During this phase the
thrusters of the servicer are turned-off and the system is in a free-floating mode.

Therefore, the control of the manipulator developed in Sec. 6.3.3, (see the control
law (6.19)) for the free-floating case can be applied during this phase. The goal of

the stabilisation control is to reduce the joint velocities towards zero.

A Montecarlo analysis has been performed considering variations in the inertial
parameters of Envisat mass, center of mass, inertia and including also sloshing ef-

fects and flexibility. The results of the statistical analysis are reported in Fig. 6.12a
where the mean value of the residual joint velocity results to be 0.08 deg/s, which

might results from the tumbling of the combined system. During the stabilisation
phase, the maximum torque value (measured along the joints actuation axis) was

53.08 N/m in the 4th axis. The results of all the joint maximum torques are re-
ported in Fig. 6.12b. It can be concluded that the stabilisation control respects the

torque limits of the actuators, which were considered in the design of the controller.

Snapshots of the manoeuvre simulated in this section are shown in Fig. 6.11a.

The servicer manipulator follows the Envisat motion using the developed free-flying
controller and it reaches the launch adapter ring, after that the grasping is performed

and the stabilisation control acts.
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6.5 Discussion

Impedance controllers offer a compliance behaviour needed during the grasping and

stabilisation of a target satellite. In the first part of this chapter, a comparison
between two torque-based control algorithms for a free-floating robot has been per-

formed. The first controller exploits the generalized Jacobian transpose, while the
second is based on a complete feedback linearization of the free floating robot dy-

namics. The analysed task was to follow a desired trajectory and the controllers need
to satisfy predefined compliance and impedance conditions for the manipulator end

effector. The torque controller based on the generalized Jacobian transpose results
less sensitive to model uncertainties and it has been tested on the OOS-Sim facil-

ity. Further, the same controller resulted effective also for a teleoperation scenario,

where the OOS-Sim servicer robot was controlled with a master device through the
ASTRA satellite communication link.

In the last part of the chapter, the impedance controller was extended to the free-
flying case. Manipulator and base were controlled in a coupled manner to perform

the approach of a client satellite, Envisat. The validation was performed within
the e.Deorbit and COMRADE space projects and the end-effector accuracy adhered

to the imposed requirements. Furthermore, the impedance control developed for
the stabilisation phase of the client was also validated and it respected the torque

limits imposed by the actuators. The robustness of the impedance control for the
free-flying case was proved by Montecarlo simulations.

In the next chapter, the theoretical treatment with stability proofs for the free-
flying robot control will be introduced and validate with experiments. In particular,

the potential stability issues of the base and manipulator controllers will be tackled.
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(a) Error of the manipulator (top) and of the base (bottom).
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Figure 6.10: Approach control during the Envisat motion. Error of the manipulator
and the base with corresponding joint torques and forces at the base.
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(a) Snapshots of the simulation environment: free-flying control during the approach and
stabilisation of Envisat.

(b) Montecarlo analysis for the developed impedance control. Position error (top) and
orientation error (bottom).

Figure 6.11: Viewer of the manoeuvre (top) and Montecarlo analysis for the final
stage of the approach control (bottom).
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Figure 6.12: Statistical analysis for the joint velocities and torques during the sta-
bilisation phase.
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CHAPTER 7

IMPEDANCE CONTROLLERS FOR SPACE ROBOTS UNDER

MULTI-RATE EFFECTS

7.1 Introduction

The controller of a robot is usually designed to operate on a single control unit with

high-enough rate in order to disregard the effects caused by discrete signals. In
this case, the controller can be designed in continuous-time and the discrete-time

effects can be neglected. In some applications, a robotic system can be composed of
multiple sub-systems, which are physically coupled and controlled. Each sub-system

might be controlled with different control units, which might run at different rate.
For example, some humanoid robots belong to this group [ON08]. Therefore, the

continuous-time control assumption considered in the design of the controller is not
valid anymore.

As shown in the previous chapter, the control architecture of a free-flying robot is

characterized by two systems. One is the controller at the base of the manipulator,
which can be used to enable coarse positioning and the second one is the control

of the manipulator, which enables fine dexterous control for complex tasks (e.g.
satellites recovery). In particular, the control system of the base, namely the GNC

(Guide Navigation and Control), runs at a low rate, between 1 Hz and 10 Hz, while
the controller of the manipulator runs at a much higher rate (usually 1000 Hz), see

[TEDS+17] and [TAE+17] for details about GNC and control requirements. The
different rates of the controllers, possible delays in the communication between the

control units and the presence of zero order holds can jeopardise the stability of the
overall system, if not properly taken into account.

In this chapter, the stability issues due to the different rates of the two controllers

are analysed from an energetic perspective. First, an impedance control which
resolves a regulation problem for the base and the manipulator is proposed. The

designed controller is firstly proved to be stable in continuous-time. Later, the
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feedback in the control loop of the base is modified to maintain stability properties

which are broken when the controller at the base runs at low rate.

Secondly, the impedance controller is extended to the tracking case for the ma-
nipulator which is a typical scenario in space while approaching a moving target. In

particular, besides guaranteeing trajectory tracking for the manipulator and regula-
tion for the base, two passivity controllers are designed. One acts on the base and

the second acts on the manipulator in order to maintain the passivity of the overall
system, independently of the sampling time. Rigorous stability proofs are provided

for the designed controllers, which are also experimentally validate on the OOS-Sim

servicer robot.

Related Work

The interaction between satellite-base control and manipulator control has been
firstly studied in the context of the Shuttle Remote Manipulator [LLZ87]. A cen-

tralised control strategy for base attitude, base position and arm end-tip control has

been studied in [SA90], resolving the redundancy of the whole system at velocity
level.

For the free-floating control, a strategy was proposed in [MMA89] to reduce fuel

consumption. The approach was based on a transposed Jacobian algorithm, where
no contacts and zero momentum was assumed. The problem of the impedance

control of a free-floating robot was treated in [NY06] and [NP17] using feedback lin-
earisation. In [UY89], a control based on a generalized Jacobian matrix is proposed

and [GGDS+16] extends this approach to the nonzero momentum case. However in
these works the base of the manipulator was not controlled.

In the direction of simultaneously control the base and manipulator (known
also as coordinated control), [Yos94] proposes a momentum-based strategy using

reaction wheels and [PD91] introduces a coordinated controller scheme based on
feedback linearisation. For the tracking control, [PP88] proposes a passivity-based

tracking controller, however only for a fixed-base robot and the tracking control
was performed in joint space. A trajectory tracking control for a space robot was

proposed in [LMO+18], but considering an unactuated base.

Although the regulation and tracking control of a free-flying space robot has been

tackled previously in literature (see [NP17], [GGDS+16], [Yos94], [PD91], [SA90],
[LLZ87]), the specific issue related to the multi-rate control was not addressed. From

a mission perspective point of view, the problem associated with the different rates
controller between the base and robotic arm (for the approach and capture phase)

has been underlined as an important factor for a space mission, see for example
[ESA15, §3.2.2] and [TEDS+17]. Indeed, due to the GNC system constraints, the

control of the base needs to run at low rate and the controller of the manipulator
at higher rate [TEDS+17]. Therefore, the discrete nature of the controllers and the

multi-rate effects must be taken into account during the design of the controllers
because they can jeopardise the stability of the system [DNBS06].

Within this context, a first approach which deals with the multi-rate effect for a
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7. Impedance Controllers for Space Robots Under Multi-rate Effects

space robot is presented in this chapter. Firstly, an impedance control is proposed

for the manipulator and base which resolves the regulation problem. In particular
the effects of the multi-rate are analysed from an energetic perspective and passive

control are proposed. The reader can refers to the work published by the author
in [DSBG+18]. Secondly, the impedance controller is extended to the trajectory-

tracking for the manipulator while regulating the base, which is needed in the ap-
proach phase of an OOS mission. The reader can refer to the work published by

the author in [DSMB+19]. The controllers, which will presented in this chapter,
exploit the time-domain passivity approach extensively presented in Chapter 3 and

Chapter 4.

7.2 Multi-rate Regulation Control for a Free Flying
robot

In this section an impedance controller is proposed for the regulation of the base and
the manipulator of a space robot. Firstly, the design is performed in continuous-

time and stability of the controller is proved. Second, the effects of the multi-rate
are discussed and presented in the problem statement section. The controllers are

designed for the free-flying robot dynamics system of the manipulator mounted on
the satellite base, which is reported in (6.1).

The Cartesian motion of the manipulator is controlled in torque mode with a
simple transposed Jacobian law, which is defined as,

τ = JT
mFm. (7.1)

The vector Fm ∈ R
6 is the virtual control force applied at the end-effector, which

can be modelled as a PD (Proportional Derivative) behaviour, defined as,

Fm = Kpm∆xm −Kdmẋm, (7.2)

where Kpm and Kdm ∈ R
6×6 are positive definite matrices, representing stiffness

and damping gains of the manipulator controller. The vector ∆xm is the Cartesian

error of the end-effector defined in (6.8) and ẋm is the velocity of the manipulator
end-effector expressed in (6.5).

The controller for the satellite-base is described by the following control law,

Fb = Kpb∆xb −Kdbẋb + JT
b Fm, (7.3)

where Kpb and Kdb ∈ R
6×6 are positive definite matrices, representing stiffness

and damping gains of the base controller. The vector ∆xb is the Cartesian error
of the base defined in (6.9) and ẋb is the velocity vector of the base. The term

JT
b Fm in (7.3) is a coupling term between manipulator and base, which is needed

to the controller for keeping stability properties, as will be proved in the coming

proposition.
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7.2. Multi-rate Regulation Control for a Free Flying robot

In case of a non-redundant manipulator which operates in a workspace free of

singularity (i.e. non-singular Jm), it can be proven that the velocity error of the
base and manipulator and the respective position errors converge to zero. Therefore,

the following vector is an equilibrium point:

[ẋb, ẋm,∆xb,∆xm] = 0 (7.4)

and the system is asymptotically stable using the following energetic argument.

Proposition 3 The equilibrium point (7.4) for the free-flying robot dynamics ex-

pressed in (6.1) is asymptotically stable using the control laws given in (7.2) and
(7.3).

Proof Considering the following candidate Lyapunov function V , as the total posi-
tive definite energy of the system,

V = 1
2

[
ẋTb q̇T

]
[
Hb Hbm

HT
bm Hm

]

︸ ︷︷ ︸

H

[
ẋb

q̇

]

+ 1
2
∆xm

TKpm∆xm + 1
2
∆xTbKpb∆xb,

(7.5)

when computing the derivative V̇ , the well-known passivity property of the Euler
Lagrange systems expressed as follows is considered,

1

2

[
ẋTb q̇T

]
Ḣ

[
ẋb

q̇

]

−
[
ẋTb q̇T

]
[
cb
cm

]

= 0. (7.6)

Therefore, it is possible to obtain:

V̇ = ẋTbFb + q̇Tτ − ẋTmKpm∆xm − ẋTbKpb∆xb. (7.7)

Considering, the transpose of the end-effector velocity vector expressed as follows,

ẋTm = ẋTbJ
T
b + q̇TJT

m (7.8)

and substituting the control law for the base (i.e. Fb from (7.3)) and for the manip-
ulator (i.e. τ from (7.1)-(7.2)) in (7.7), the following balance results:

V̇ = −ẋTbKdbẋb + ẋTbJ
T
b Fm − q̇TJT

mKdmẋm − ẋTbJ
T
b Kpm∆xm. (7.9)

In (7.9) the value q̇TJT
m is equal to q̇TJT

m = ẋTm − ẋTbJ
T
b and by substitution, the

derivative of Lyapunov function results:

V̇ = −ẋTbKdbẋb − ẋTmKdmẋm ≤ 0. (7.10)

Using standard LaSalle arguments (see Lemma C.2.1), the statement of the propo-

sition is proven.
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7. Impedance Controllers for Space Robots Under Multi-rate Effects

Therefore, in continuous-time the system behaves in a dissipative way and sta-

bility can be achieved by using the control laws (7.2) and (7.3). In particular, the
term JT

b Fm in (7.3) is required to the base control to achieve (7.10).

A simulation example for the controllers running in continuous-time is performed
considering the following.

Example 4 Considers a satellite-base with a mass of 150 kg and inertia Hbx =

38kgm2, Hby = 20kgm2, Hbz = 23kgm2. Considers the manipulator whose mass
and inertia parameters are reported in Table 6.2. The manipulator has an initial

error of (0, 0, -0.1) m in position and (0, 20, 0) deg in orientation and the base an
initial error of (0 0 0.1) m and (20, 0, 0) deg.

The regulation error dynamics for the manipulator end-effector and the satellite
is shown in Fig. 7.1. As can be seen in the plots the error for the base (top) and the

manipulator (bottom) converge in continuous time. However, when the difference
between the rate of the controller is high, the stability is not guaranteed as will be

discussed in the coming subsection.
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Figure 7.1: Stable system with continuous-time controllers: Error of the base in po-
sition and orientation (top) and error of the manipulator in position and orientation
(bottom). Orientation error is represented by ψ, θ, φ (yaw, pitch and roll) angles.

7.2.1 Problem Statement: Regulation with Multi-rate

This section shows how the stability properties are broken when the control laws
for the base and the manipulator are computed in discrete-time and run at different

sampling rates. The sampling time for the manipulator control and the base will be
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7.2. Multi-rate Regulation Control for a Free Flying robot

indicated with Tm and Tb, respectively. The sampling time of the slow rate controller

can be expressed as an integer multiple, n, of the rate of the fast controller, i.e.
Tb = nTm. Therefore, it will results that a discrete time k = kmTm = kbTb, where

km and kb are the discrete steps in each of the controllers. Then, the control law
expressed in (7.2) and (7.3) can be rewritten in a discrete form considering the

respective sampling time, as follows:

Fm(km) = Kpm∆xm(km)−Kdmẋm(km), (7.11)

Fb(kb) = Kpb∆xb(kb)−Kdbẋb(kb)+ JT
b (kb)Fm(kb). (7.12)

The discrete nature of the controllers leads to creation of virtual energy, which
might lead to instability. From an analytical point of view, it can be easily seen

when (7.11) and (7.12) are substituted in the total Lyapunov function in (7.7), the
energy balance will not hold anymore. This is due to the fact that the discrete values

computed at kb or km are different with respect to the continuous-time values. In
particular, these discrepancies result to be large when the sampling time is larger.

The following numerical example clarifies this aspect. The simulation considers

the discrete laws (7.11) and (7.12), with the same conditions of Example 4 simulated
for the continuous case. The controllers run with a sampling time of Tm = 0.001s

and Tb = 0.5s, which are common control frequencies used in the free-flying sce-

nario, see [TEDS+17]. The results in Fig. 7.2 shown that the error in position ∆p
and in orientation ∆φ of both controllers diverge. It is worth comparing Fig. 7.1
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Figure 7.2: Unstable system with different-rate controllers: Error of the base in po-
sition and orientation (top) and error of the end-effector in position and orientation
(bottom).

128



7. Impedance Controllers for Space Robots Under Multi-rate Effects

(continuous-time control) and Fig. 7.2 (different rate control) to see the differences

while using controllers at different rates.
The presence of different-rate controllers destroys the dissipative effect discussed

in Proposition 3 and, therefore, some energy is produced. This implies that the
passivity of the system is lost. Indeed, the interaction between two controllers

running at different rates is equivalent of having delays and packet losses between
the systems. Delays and packet losses in the communication channel introduce

energy in the system and make the system active [AS89]. In the next section, an
energy observer will be designed in order to monitor the produced energy, which is

dissipated using a passivity controller.

7.3 Energy-based Coordinated Control for Regula-
tion

This section introduces the network representation for the regulation control of the

free-flying space robot in order to perform an energy analysis. In particular, the
energy produced by the interaction of the controllers will be identified and it is

passivated using a passivity controller.
The methods exploits the time domain passivity approach because it provides

flexibility and it does not depend on system dynamics modeling [HR01]. The reader

can refer to Sec. 2.7 where this approach was extensively discussed. For completeness
the general passivity condition is reported below

m∑

k=0

(F (k)Tv(k)T ) + E(0) ≥ 0, (7.13)

where (F, v) and E(0) are the power correlated variable and the initial energy stor-

age of the system respectively. If condition (7.13) holds, the system is passive. The
extra energy generated in the port that violates the passivity condition is dissipated

with a time-varying damper, the Passivity Controller (PC). This is done in order to
ensure that the system is an interconnection of passive ports. This condition will be

used for the design of the controller.

7.3.1 Passive Regulation Control

The network representation of the system is shown in Fig. 7.3, where S denotes

the dynamic system represented by the left hand side of the free-flying dynamics

equation expressed in (6.1), Cb is the controller at the base reported in (7.12) and
Cm is the controller of the manipulator in (7.11).

The controller Cb is represented by electrical elements with impedance Zcb and
a dependent voltage source which represents the coupling term of the manipulator,

i.e. JT
b Fm. The control rate of the manipulator Cm is usually assumed to be high

(1000 Hz) and, therefore, its behaviour is similar to that of an equivalent system

controlled by a spring-damper controller (7.2) in continuous time. Therefore, the
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ẋb ẋm

Fb
Fm Cm

Cb

Zcb

JT
b Fm

S

Tb

Tm

Figure 7.3: Regulation case: network representation for the satellite-base control
and manipulator.

small amount of energy which could introduce, can be neglected. However, the main

source of energy is given by the low rate control which acts on the base (dashed box

in Fig. 7.3). The possible energy injections is observed through the port (Fb, ẋb).

An energy observer (PO) is designed to monitor the energy flowing in and out

of this port using (7.13) with power variables (Fb, ẋb). The observer runs with the
faster rate, Tm, in order to obtain a greater accuracy. If the controller at the base

is rendered to be passive at this port, then the overall controlled system will be an

interconnection of passive systems and, consequently, will be passive [SSF07]. Then
all the regenerative and destabilising effects would be compensated.

The PO-PC implementation is applied for each dof separately and it can be
mathematically shown that if passivity can be guaranteed for all the dof separately,

the overall multi-dof system is also passive. Therefore, for a n-dof system with initial

energy storage E(0) = 0, the passivity condition for each dof separately leads to:

m∑

k=0

(F (k)Tv(k)T ) =
m∑

k=0

n∑

i=1

Fi(k)vi(k)T, (7.14)

which proves that (7.13) can be split into a sum of the n-dof components. Therefore,
if the passivity condition holds for each component, then the overall system would

be passive. The bold notation will be then omitted in the coming analysis because
the components of the vectors are considered.

The flow of energy is monitored with an energy observer, defined as follows

Eobsb(km) = Eobsb(km − 1) + Fb(km)ẋb(km)Tm + β(km − 1)ẋb(km − 1)2Tm, (7.15)

where the satellite-base velocity ẋb needs to be available at sampling rate Tm (eg.,

using a high-rate position sensor or a velocity observer as developed in [MDSGO19]).

Although the controller of the base runs at low rate Tb, the energy observer is
implemented considering the high sampling rate Tm, therefore, the energy flowing

through the port is updated at each Tm. Then, it is considered that between two
values of Fb, the observer holds the last received value. Thus, the second term

in (7.15) computes the energy flow of the slow-rate controller and the last term
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considers the effect of the PC which is function of a variable damper β defined as:

β(km) =

{

− Eobsb(km)
ẋb(km)2Tm

Eobsb(km) < −E(0)
0 else.

(7.16)

The impedance correction due to the PC is given by the following quantity:

Fpc(km) = −β(km)ẋb(km). (7.17)

It has to be noted that although the calculation for the PO and PC are imple-
mented at fast rate with a sampling period Tm, the calculated values of the passiv-

ity controller Fpc(km) are sent to the base controller which runs at Tb and it will
modify the output force Fb(kb). Hence, when passivity condition is violated (e.g.

Eobsb(km) < −E(0)), the force commanded to the base will be corrected as follows:

F ′
b(kb) = Fb(kb) + Fpc(kb). (7.18)

As a result, the energy will be restored and the observer will be Eobs(k) ≥ −E(0)
making the network passive. The network representation modified with the passivity

controller can be seen in Fig. 7.4. The benefit of the method is that the control forces
depend only on the correlated variables at the port (Fb, ẋb).

ẋb
ẋb ẋm

Fb Fm Cm

Cb

Tb

Tm

F ′

b
PC

Zcb

JT
b Fm

S

Figure 7.4: Regulation case: network representation scheme modified with PC.

7.3.2 Results

This section shows simulation results performed with the passive coordinated control

for the base and the manipulator. The simulation considers the system described in
Example 4 where the sampling time for the manipulator is Tm = 0.001 s and for the

base Tb = 0.5 s. The problem described in Sec. 7.2.1 is here resolved by applying
the proposed method. Indeed, the destabilising effects described in Fig. 7.2 are due

to the active observed energy which is shown in Fig. 7.5a for the linear and angular

components. The negative trend of energy shows the activity of the system as the
violation of (7.13) confirms.

The passivity control is then applied and it will provide the variable force-torque
as shown in Fig. 7.6a. This will lead to a passive system as shown by the energy plots

in Fig. 7.5b. The positive trend indicates that no active energy is pushed into the
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system. Therefore the error for both systems, i.e. manipulator and base, converges

(see Fig. 7.6b) and the system results to be passive. It is worth comparing Fig. 7.2
(before applying the method) with Fig. 7.6b (proposed method). The results prove

the validity of the method.
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Figure 7.6: Force and torque of the passivity controller and error of the manipulator
and base.
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7.4 Multi-rate Tracking Control for a Free Flying
Robot

In Sec. 7.2 the regulation control problem for a free-flying space robot was resolved

for both the base and end-effector. The effects due to the difference of the sampling
rate have shown to produce activity and a passivity controller was designed to restore

the overall energy. However, when the end-effector of the manipulator has to perform
a tracking task, a simple regulation control (as the one presented in Sec. 7.2) might

not be sufficient. Trajectory tracking is particularly required for a space robot in
order to avoid singularities and/or minimize a designed cost function. Therefore,

the tracking of a trajectory provided by a motion planner is a common approach
required in space missions [LMO+18].

In this section the tracking problem for the end-effector of a free-flying robot and

the regulation of its base will be tackled. To achieve stability of the controllers, the
controller at the base will be function of the end-effector desired trajectory. This is

due to the coupled dynamics between base and end-effector motions and must be
taken into account in the design of the control laws. The controllers are presented

firstly in continuous-time with stability proofs, later, the effects of the controllers
running at different sampling rates are discussed.

In order to facilitate the analysis, the free-flying robot dynamics expressed in

(6.1) will be transformed in Cartesian space with a proper change of coordinates
from ξq to ξm, where:

ξq =

[
ẋb

q̇

]

, ξm =

[
ẋb

ẋm

]

. (7.19)

The relationship between the new coordinate ξm with ξq are given by the Jacobian

J̃ defined as follows:

ξm =

[
I 0
Jb Jm

]

︸ ︷︷ ︸

J̃

ξq. (7.20)

In case of a not redundant manipulator operating in a singularity-free configurations

e.g. achieved by a motion planner [LMO+18], the Jacobian J̃ can be inverted as

follows:

J̃−T =

[
I −JT

b J
−T
m

0 J−T
m

]

. (7.21)

Therefore, using the relationship in (7.20), the general dynamics equation (6.1) can
be re-written in Cartesian space as:

[
Mb Mbm

MT
bm Mm

]

︸ ︷︷ ︸

M

[
ẍb

ẍm

]

+

[
Γb Γbm

Γmb Γm

]

︸ ︷︷ ︸

Γ

[
ẋb

ẋm

]

=

= J̃−T

[
Fb

τ

]

=

[
Fb − JT

b Fm

Fm

]

, (7.22)
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where M ∈ R
12×12 and Γ ∈ R

12×12 are the inertia and Coriolis/centrifugal matrices

in the new coordinate system ξm. Fm ∈ R
6 is the Cartesian wrench at the end-

effector defined as Fm = J−T
m τ . The system in (7.22) results to be a fully actuated

Euler-Lagrange system, see e.g. [SL91] and therefore it is passive with respect to
the generalized force-velocity pair, which are ((ẋT

b , ẋ
T
m)T , ((Fb − JT

b Fm)T ,F T
m)T ).

Coordinated tracking control in continuous time

The tracking control for the end-effector is designed for the system (7.22), firstly in

continuous-time. For a given trajectory composed of a desired acceleration ẍmd(t) ∈
R

6, a desired velocity ẋmd(t) ∈ R
6 and a desired position xmd(t) ∈ R

6 expressed

in the inertial frame, the tracking law for the manipulator can be defined as follows:

Fm = Mmẍmd + Γmẋmd −Kpm∆xm −Kdm∆ẋm, (7.23)

where Kpm,Kdm ∈ R
6×6 are stiffness and damping matrices, respectively. The

vector ∆xm = (xm−xmd) ∈ R
6 is the error between the measured and desired poses

(position and orientation) of the manipulator end-effector. Similarly, the vector

∆ẋm = (ẋm − ẋmd) is the error between the measured and desired end-effector
velocities. The controller in (7.23) can be projected into the joints space to have a

torque command to the manipulator, which is τ = JT
mFm.

The regulation control at the base is designed as follows:

Fb = Mbmẍmd + Γbmẋmd −Kpb∆xb −Kdbẋb + JT
b Fm. (7.24)

The matrix Kpb,Kdb ∈ R
6×6 are stiffness and damping matrices of the regulation

control of the base, respectively. The vector ∆xb = (xb − xbd) ∈ R
6 is the error

between the measured and the desired pose of the base.

As can be seen from (7.24), although the controller of the base resolves a reg-
ulation problem, the control law is a function of the desired tracking end-effector

velocity and acceleration. This is due to the inertial coupling between the base and
end-effector tracking motions. Therefore, the regulation control law proposed in

(7.3) for the base controller is not suitable when the end-effector performs a track-
ing task. Otherwise the system might results to be unstable during the tracking.

In the following, the closed-loop stability of the tracking controller and regulation
of the base is proved. The closed-loop behaviour of the system resembles the one

of a PD+ controller and its asymptotic stability can be proved by using a strict
Lyapunov function, see for example [SK97, Proposition 4 ]. However, the strict

Lyapunov function (as reported in [SK97]) includes extra cross terms bilinear in

position and velocity, which affect the meaning of total energy. The connection
with the passivity control action, which is part of the next section, will be based

on mechanical energy observed at the port. Therefore, an alternative Lyapunov
function which resemble the total energy for the system in (7.22) with the controller

(7.23) and (7.24) must be chosen to prove stability.
Then, defining

[ẋb,∆ẋm,∆xb,∆xm] = 0 (7.25)
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an equilibrium point of (7.22) using (7.23) and (7.24), the following proposition

holds true.

Proposition 4 Considers the system (7.22), with the tracking control law (7.23)
for the end-effector and the regulation control law (7.24) for the base. Then, the

equilibrium point in (7.25) is asymptotically stable.

Proof Considering the following candidate Lyapunov function V , as the total posi-

tive definite energy of the system,

V = 1
2

[
ẋT
b ∆ẋT

m

]
M

[
ẋb

∆ẋm

]

+ 1
2

[
∆xTb ∆xTm

]
[
Kpb 0
0 KPm

]

︸ ︷︷ ︸

K

[
∆xb

∆xm

]

︸ ︷︷ ︸

∆x

,

(7.26)
Since M and K are positive definite matrices, the following bounds given holds,

V ≥ 1

2

(

σ(M)||
[
ẋTb ∆ẋTm

]T ||2 + σ(K)||∆x||2
)

V ≤ 1

2

(

σ(M)||
[
ẋTb ∆ẋTm

]T ||2 + σ(K)||∆x||2
) (7.27)

where σ(∗) and σ(∗) are the lowest and highest values of the symmetric matrices

(∗), respectively. Computing the time-derivative of (7.26), it is possible to obtain
the following balance:

V̇ =
[
ẋT
b ∆ẋT

m

]
[

M

[
ẍb

ẍm − ẍmd

]

+ 1
2
Ṁ

[
ẋb

∆ẋm

]

︸ ︷︷ ︸

∆ẋ

+K

[
∆xb

∆xm

] ]

.
(7.28)

Substituting the values M [ẍT
b ẍT

m]T from (7.22), it is possible to get:

V̇ =
[
ẋT
b ∆ẋT

m

]
[

−Γ

[
ẋb

ẋm

]

+

[
Fb − JT

mFm

Fm

]

− M

[
0

ẍmd

]

+
1

2
Ṁ

[
ẋb

∆ẋm

]

+

Γ

[
0

ẋmd

]

− Γ

[
0

ẋmd

]

+K

[
∆xb

∆xm

]]

(7.29)

and considering the skew-symmetric property of the Euler-Lagrange system, where:

[
ẋT
b ∆ẋT

m

] 1

2
(Ṁ − 2Γ)

[
ẋb

∆ẋm

]

= 0, (7.30)

equation (7.29) can be simplified and rewritten as:

V̇ = ẋTbFb − ẋTbJ
T
b Fm +∆ẋTmFm − ẋTbMbmẍmd −∆ẋTmMmẍmd − ẋTbΓbmẋmd

−∆ẋTmΓmẋmd + ẋTbKPb∆xb +∆ẋTmKPm∆xm. (7.31)

Substituting the control laws (7.23)-(7.24) in (7.31), the time-derivative of Lyapunov

function results to be:

V̇ = −ẋTbKdbẋb −∆ẋTmKdm∆ẋm ≤ 0. (7.32)
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As a result of negative semi-definiteness of the time-derivative Lyapunov function in

(7.32), stability is proved. From (7.32), it is standard to invoke Barbalat’s Lemma
(C.2.2) for non-autonomous systems to conclude that ẋb,∆ẋm → 0 for a trajectory

which is bounded in ẍmd, ẋmd,xmd, see [LPPT05]. Furthermore, for establishing
asymptotic stability, the Matrosov theorem, which has been exploited in literature

for tracking problem can be used, see [PP88]. Usually an auxiliary function of the
states, W , is chosen such that Ẇ 6= 0 when V̇ = 0. In particular, the auxiliary

function can be chosen as follows:

W = ∆xTM∆ẋ (7.33)

Therefore in the considered case, by computing Ẇ and substituting the values
M [ẍT

b ẍT
m]T from (7.22) with the control laws (7.23) and (7.24), it results

Ẇ = ∆ẋTM∆ẋ+∆xT
(

−K∆x−KD∆ẋ+ (Ṁ − Γ)∆ẋ
)

(7.34)

where KD is the total damping matrix of the base and manipulator expressed in a

compact form as:

KD =

[
Kdb 06×6

06×6 Kdm

]

. (7.35)

Considering that the trajectory is bounded (for example, enforced by the motion
planner) and the states are bounded (from Barbalat’s lemma applied in (7.32)), it

can be concluded that Ẇ is bounded. In particular, it can be seen that when V̇ → 0,

it means that ∆ẋ → 0, and therefore, Ẇ results to be:

Ẇ = −∆xTK∆x, (7.36)

which is sign-definite (negative) and non-zero for non-zero error ||∆x||. Therefore,
with this result, the conditions of Matrosov’s theorem (C.2.3) are satisfied to establish

asymptotic stability of the state in (7.25).

From a physical point of view, the sign-definiteness of Ẇ found in the proof and
the fact that W = 0, on the set of V̇ = 0, implies that the system trajectory can

not remain trapped in the set (∆ẋ = 0, ∆x ∈ R
12) unless they go to zero. As

validation, a simulation with the control laws in (7.23) and (7.24) is performed in
continuous time considering the following,

Example 5 Considers a satellite with a mass of 150 kg and inertia Inertia Hbx =
38kgm2, Hby = 20kgm2, Hbz = 23kgm2. Considers the manipulator whose mass

and inertia parameters are reported in Table 6.2. Considers a desired trajectory
commanded to the end-effector as shown in Fig. 7.7 for a position x and orientation

θ.

The tracking error of the manipulator for the considered Example 5 is shown

at the top of Fig. 7.8 and it is expressed in position and orientation as: ∆xm =
(∆pm,∆Φm). In the second row of Fig. 7.8, the error ∆xb = (∆pb,∆Φb) in position

and orientation of the base is shown. As it can be seen, both the errors converge in
continuous time. The tracking error is in the order of 10−4 m for the end-effector

and the base regulates about the given set-point.
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Figure 7.8: Stable system with continuous-time controllers. Tracking error of the
end-effector (top) and error of the base (bottom).

7.4.1 Problem Statement: Tracking with Multi-rate

As discussed already for the regulation case, in real space applications the control

at the base is usually actuated with a low rate controller with respect to the manip-
ulator control rate [TEDS+17]. This section summarises the control in discrete time

which generates instability and this aspect will be recovered in the coming section.
Considering Tm the sampling time of the controller for the manipulator and Tb

the sampling time of the controller for the base , where Tb = nTm.
The control law (7.23) and (7.24) can be rewritten accordingly to the sampling time

for the discrete case as follows:

Fm(km) = Mm(km)ẍmd(km)+ Γm(km)ẋmd(km) (7.37)

−Kpm∆xm(km)−Kdm∆ẋm(km),
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Fb(kb) = Mbm(kb)ẍmd(kb)+ Γbm(kb)ẋmd(kb) (7.38)

−Kpb∆xb(kb)−Kdbẋb(kb)+ JT
b (kb)Fm(kb).

During inter-sampling period (km and kb), the discrete control law might not

cancel the respective power terms as can be seen by substituting Fm(km) from
(7.37) and Fb(kb) from (7.38) into (7.32). Therefore, the discrete nature of the

controllers leads to creation of virtual energy which destroys the passivity of the

system and it might lead to instability [SSvdSF05].

In particular, this effect can be seen in the following simulation considering

the Example 5, but using the discrete controllers (7.37) and (7.38) and assuming
sampling time Tm = 0.001s and Tb = 0.3s (typical sampling-times for controllers

in space scenarios [TEDS+17]). The behaviour of the system is shown in Fig. 7.9.
Both the tracking error of the end-effector (top) as well as the error at the base

increase (see ∆φb) and the system results to be unstable.

In the following section, it will be shown how to remove the destabilising effects

of the multi-rate controllers.
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Figure 7.9: Unstable system with discrete-time controllers. Tracking error (top) and
error of the base (bottom).

7.5 Energy-based Coordinated Control for Tracking

A passive control action similar to the one discussed for the regulation case in

Sec. 7.3 is needed to cope with these destabilising effects. However, in Sec. 7.3, the
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passivity controller was applied only on the controller at the base. In this section,

the use of two passivity controllers (one each for manipulator and base controllers)
is considered. Indeed, computational constrains might impose also a low rate for the

manipulator control and it can introduce some activity in the system. Therefore, it
is advisable to render passive the entire system. The energy condition introduced

in (7.13) will be exploited to prove the passivity, which is a sufficient condition for
stability [vdS00].

Network representation for the manipulator and base controllers

In order to perform the energy analysis, the network representation presented for the

case of the regulation in Sec. 7.3 needs to be augmented with the tracking terms.
Therefore, the network of the system with the proposed controllers is shown in

Fig. 7.10. The block S represents the dynamics of the manipulator on the actuated
base as per equation (7.22) and it receives, from the left side, the controller force

of the base FB(kb), i.e. FB = Fb − JT
b Fm and from the right side the controller

forces of the manipulator Fm(km) as in (7.37).

ẋb ẋm

FB Fm

CmCb

Zcb

F ∗

b

S

Tb TmB M

Zcm

F ∗

m

Figure 7.10: Tracking case: network representation of the satellite-manipulator sys-
tem (S) with tracking controller Cm for the manipulator and regulation controller
for the base Cb.

The network of the controller at the base is represented with Cb, which contains
the dependent terms F ∗

b = Mbmẍmd +Γbmẋmd and the impedance of the stiffness

and damping terms, Zcb. Similarly, the network for the manipulator controller is
represented with Cm, which contains the dependent term F ∗

m = Mmẍmd+Γmẋmd

and the impedance of the stiffness and damping terms, Zcm.
In this case, both controllers are represented within dashed boxes in Fig. 7.10

because they run in discrete-time. In particular, Cb runs at a low rate Tb and Cm at

a higher rate Tm. This difference in rates while connecting the discrete-controllers
to the system dynamics through the ports B and M leads to an unstable system.

In the design of the controller in continuous-time, (7.28) represents the energy
function of the controlled system (interpreting the proportional and the derivative

actions of the controllers as springs and dampers). The control actions compensate
the coupling between the base and the manipulator which can achieve tracking

by dissipating all the energy of the controlled system, as evident from (7.31) and
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(7.32) which prove the stability of the system. However, since the controllers run

at different rates, the compensation of the coupling is not perfect and, therefore it
creates virtual energy which destroys the energy balance of the system.

Since the system S is passive, the passivity of the controllers can be enforced and
the overall controlled system in Fig. 7.10, given by the interconnection of passive

systems, can be rendered passive. Therefore, the fact that the overall internal energy
does not increase, it will enforce stability through passivity [vdS00]. This can be

achieved by monitoring the energy flows at the ports B and M and, then using
passivity controllers it is possible to ensure the passivity of the overall system. In

particular, the power correlated variables at the ports B and M of Fig. 7.10 need to
be identified. These can be expressed as (input,output) variables as: (FB, ẋb) and

(Fm, ẋm), respectively. Then, passivity analysis of these ports will be performed in
the following subsections by exploiting the TDPA approach.

7.5.1 Passive Tracking Control

The passivity controllers for the base and manipulator are characterised by an energy

observer and a controller which acts in impedance causality. The passivity observers
are designed to monitor the energy of the ports using (7.13) and will be applied to

each degree-of-freedom (dof) independently. Enforcing passivity component-wise on
the variables composing a port is sufficient for enforcing the passivity of the overall

port. In fact, considering (7.13) and neglecting E(0), the energy can be split to the
n components as follows:

m∑

k=0

(F (k)Tv(k)T ) =
m∑

k=0

n∑

i=1

Fi(k)vi(k)T, (7.39)

where it follows to say that if
∑n

i=1 Fi(k)vi(k)T > 0 for each i = 1, . . . , n then
∑m

k=0

(F (k)Tv(k)T ) > 0.

PO-PC for the manipulator controller

A first PO-PC architecture is implemented on the port (Fm, ẋm) to monitor the

activity of the manipulator on the port M . Therefore, the passivity observer is
defined as:

Eobsm(km) = Eobsm(km − 1) + Fm(km)ẋm(km)Tm + βm(km − 1)ẋm(km − 1)2Tm,
(7.40)

where βm is the variable damper calculated as:

βm(km) =

{

−Eobsm (km)+Em(0)

ẋm(km)2Tm
Eobs(km) < −Em(0)

0 else
(7.41)

and Em(0) is the initial energy of the manipulator. The second term on the right

side of (7.40) is the input energy at the port M and the last term is the update of
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energy which is dissipated by the passivity controller whose force is given by:

Fpcm(km) = −βm(km)ẋm(km). (7.42)

Therefore, if passivity condition is violated, the correction in force will be provided
to the manipulator as follows:

F
′

m(km) = Fm(km) + Fpcm(km). (7.43)

PO-PC for the base controller

A second PO-PC monitors the port (FB, ẋb) at the base. In order to have higher
accuracy, the passivity observer for this port is implemented in the system running

at faster rate (Tm) and it is defined as:

Eobsb(km) = Eobsb(km− 1) + FB(km)ẋb(km)Tm + βb(km − 1)ẋb(km− 1)2Tm, (7.44)

where the velocity of the base ẋb can be measured at sampling rate Tm. The total

energy Eobsb(km) is updated at each sampling time Tm and the values of FB change
at each time step Tb and between two values, the observer holds the previously

received value. Similar to the energy observer for the manipulator, the second term

on the right side of (7.44) is the energy of the port B and the last one is the update
of the passivity controller. The variable damper βb is derived as:

βb(km) =

{

−Eobsb
(km)+Eb(0)

ẋb(km)2Tm
Eobsb(km) < −Eb(0)

0 else,
(7.45)

where Eb(0) is the initial energy of the base. Then the force of the passivity controller

at the base is calculated as:

Fpcb(km) = −βm(km)ẋb(km). (7.46)

Although the passivity controller is calculated at high rate, its force correction

is provided at the sampling step Tb. Therefore, when passivity condition is violated,
the force provided to the system through the base controller is:

F
′

B(kb) = Fb(kb) + Fpcb(kb). (7.47)

The network with the PCs placed on the manipulator and base controller is

shown in Fig. 7.11. As can be seen, F
′

B is the force vectors modified by the PO/PC
architecture for the base controller and F

′

m for the manipulator controller. Therefore,

both the controllers in the dashed-boxes endowed with the PCs are rendered passive.
Consequently, the overall system is passive since it is an interconnection of passive

networks.
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Figure 7.11: Tracking case: network representation scheme with tracking control
Cm and controller at the base Cb endowed with the two PCs.

7.5.2 Results: Simulations and Experiments

The first part of this section shows the simulation results performed with the pro-
posed controllers. The manipulator control runs at Tm = 0.001s and the base control

runs at Tb = 0.3s and the same condition described in Example 5 (including the
trajectory) are considered. Fig. 7.12 shows the error of the manipulator during the

tracking and the error of the base for the regulation, respectively. As can be seen
the error converges. In particular it gets really close to the continuous case scenario.

To understand the benefit of the controller, it is worth to compare the error shown
in Fig. 7.9, where the passivity controller was not applied with Fig. 7.12 which uses

the proposed controller.
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Figure 7.12: Tracking error of manipulator (top) and regulation error of the base
(bottom).
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Regarding the passivity, Fig. 7.13a shows the energy observed in the system for

the base (top) and manipulator (bottom) without the action of the passivity control.
The negative trend indicates activity in the system and it caused the instability

showed in Fig. 7.9. The energy observers with the actions of the PCs are shown in
Fig. 7.13b where the positive semi-definiteness indicates the passivity of the system.

It can be seen that all the activity has been removed and the errors converge.

Experiments

The passive tracking control architecture has been validated on the servicer robot of

the OOS-Sim facility, where the control of the base runs at 250Hz and manipulator
at 1000 Hz. The mass and inertial parameters of the space robot are the same as

reported in Example 5. A linear trajectory of 20 cm is commanded to the Light-
Weight-Robot arm along the −z axis in the inertial frame (see Fig. 6.2) for 10 seconds

and the base is regulated about a set-point in a relative position of [0.04, 0, 0.08] m

and [10, 0, 0] deg in orientation with respect to the inertial frame. Fig. 7.14a (top)
shows the tracking error of the manipulator in position and orientation and the

applied forces (Fm) are shown at the bottom, respectively. As it can be seen,
during the tracking (first 10s) the maximum error is 0.008 m in position and 1.1 deg

in orientation.
The regulation error for the base is shown in Fig. 7.14b (top) and the respective

applied force are shown at the bottom of Fig. 7.14b. The residual error in posi-
tion and orientation for the base is 0.012 m in position and −2 deg in orientation.

The main reason is given by the residual forces Fm applied by the manipulator
to overcome its own disturbances and it is transmitted to the base as defined in

(7.38). During the experiment, the energy observers measured activity given by the
multi-rate controllers as shown in Fig. 7.15a. The extra energy is compensated with

the passivity controllers to render the system passive. The energy observers with
the action of the passivity controllers are shown in Fig. 7.15b. As can be seen, the

energy is greater than zero respecting the passivity condition.

A second experiment has been performed. A trajectory was commanded to the
manipulator in order to reach the grasping point located on the client and the control

at the base regulates its motion about its initial pose. The snapshots of the phases
of the experiment are shown in Fig. 7.16.
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instability shown in Fig. 7.9
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Figure 7.13: Energy observer without and with PC during tracking.
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Figure 7.14: Experiment results: Error and forces of the manipulator during tracking
Fig. 7.14a and error and forces of the base during regulation Fig. 7.14b.
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(a) Experiment results: Energy observers without PC for the manipulator (top) and base
(bottom). Negative trend indicates activity.
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Figure 7.15: Experiment results: Energy observers for manipulator and base.
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7.6 Discussion

Space missions requirements impose hard constraints on the on-board power and

the relative frequencies that can be used for the control. This factor can affect the
stability of a designed controller.

In this chapter, it has been shown how different sampling rates between two
controllers operating on the free-flying robot can deteriorate the performances and

lead to instability. Therefore, two impedance controller have been designed firstly in
continuous time with rigorous stability analysis and then adapted for the multi-rate

case. The first controller resolves a regulation problem for the base and the manip-
ulator, the second one deals with a more challenging problem, which is the tracking

of a trajectory with the manipulator and the regulation of its base. It has been

shown that the controller architecture endowed with passivity observers and passiv-
ity controllers can fulfil the tasks of regulation and tracking a desired end-effector

trajectory while ensuring stability. The passivity observers have been designed to
monitor the activities of the base and manipulator and passivity-based controllers

have been used for removing the activities. As a result, the overall system is stable.
The proposed controllers have been validated in simulations and verified experimen-

tally on the OOS-Sim facility.

Fig. 7.17 shows the snapshots of an experiment, which resembles the phases of
an on-orbit servicing mission. These phases include the tracking control for the

space manipulator with the impedance control developed in Sec. 7.4, the grasping
of the target satellite and the relative stabilisation with the controller developed in

Sec. 6.3.3. All these phases, including the stability of the simulator, profit from the
passivity-based controllers developed in this thesis.
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7. Impedance Controllers for Space Robots Under Multi-rate Effects

Figure 7.16: Snapshots of the experiment during tracking and base regulation. The
control at the base holds the initial pose and the manipulator tracks a trajectory to
reach the grasping point on the client.
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(a) Impedance tracking control of a moving target.

(b) Approach to the grasping point of the moving target.

(c) Grasping and stabilisation of the moving target.

Figure 7.17: Snapshots of the experiment for an OOS-like manoeuvre: tracking,
grasping and stabilisation of a moving target. All these phases, including the sta-
bility of the simulator, profit from the passivity controllers developed in this thesis.
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CHAPTER 8

CONCLUDING REMARKS

The persistent progress witnessed in the field of robotics has pervaded into several

domains resulting in development of advanced control algorithms. A robotic sys-
tem can be complementary in tasks which are considered hazardous for human e.g.,

in extra vehicular activities in space. Consequently, the research community has
identified this possibility and therefore an urgent need has arisen for faithful simu-

lation of space scenarios on ground. Robotic facilities provide a solution to simulate
micro-gravity conditions and to test the control algorithms for space applications.

The goal of this thesis was to design controllers for efficiently simulating, on

ground, a model-based dynamics, e.g. satellite using admittance-controlled robots
and for controlling a space robot in impedance mode. The control strategies and the

methods proposed in the thesis focused on the stability and passivity of a robotic
system where energy characteristics are exploited.

To address the problem of time-delay between the measured forces and the data

commanded to the robot, a novel passivity-based control strategy was proposed and
optimized while taking performance into account. The optimized approach guaran-

tees stability through passivity and preserves the performance through the use of
an optimal damping. Energy drifts caused by the discrete integration process were

tackled with a novel discrete and passive integration method, which is able to run
in real time and, therefore, can be easily implemented on a real robot. Further, the

proposed unified architecture developed in the thesis can deal with time-delay, and

discrete-time integration for rendering dynamics while using a robotic platform.
This architecture contributes also to the state of the art in various fields, such as

control design and stability theory. Apart from the theoretical contributions in
the aforementioned topics, the proposed methods were also proved to be effective

through validation on a robotic facility, namely the OOS-Sim. In particular, ex-
periments were performed in Chapter 3 for the the passivity-based control, which

deals with the time-delay problem, in Chapter 4 for the passive integration and in
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Chapter 5, for the unified approach.

A further contribution of the thesis was the development of impedance controllers
for the space manipulator arm. The advantage of using impedance control is the

compliance which can be achieved and it allows robust task execution and a safe
interaction with an uncertain environment. This factor is important in different

fields such as human-robot interaction, where safety of the operator needs to be
guaranteed or in on-orbit servicing, where impact forces generated by the arm during

the grasping of a target satellite needs to be controlled.

In particular, an on-ground validation of the impedance control for a free-floating

robot arm was presented in Chapter 6, with applications in the area of teleoperation
and space robotic projects. In Chapter 7, a novel approach with stability proofs for

the impedance control of a manipulator mounted on an actuated base was designed
for resolving the regulation and tracking problems. The theoretical contribution was

related to the energy analysis performed while considering the multi-rate controllers
operating on a multi-body systems. Indeed, when hard constraints for the con-

trollers’ frequencies are imposed, the passivity properties are lost thereby negatively
affecting the closed-loop stability. The proposed approach modifies the feedback

loop exploiting the passivity criteria, which guarantees a stable behaviour. The

impedance controllers were successfully validated on the on-ground robotic facility
for a space mission scenario, where the space manipulator arm approaches a target

satellite.

The controllers developed within this thesis, can be generalised for a wide range

of applications in industrial, household and even underwater scenarios. In particular,
mounting and controlling light-weight manipulators on mobile platforms improves

the mobility and flexibility during the operations. These properties make the manip-
ulator especially useful in hazardous environment and area with limited accessibility

e.g., nuclear power plants, disaster-stricken sites or for underwater maintenance op-
erations. A sketch of the general domains of applications is shown in Fig. 8.1.

Oil and gas refineries are also classified as dangerous sites. Usually, specialised
technicians operate on pipelines located at high level from ground to perform point-

Space and aerial Industry Underwater

Figure 8.1: General domains of applications: space and aerial, industrial and un-
derwater scenario.
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8. Concluding Remarks

contact measurements, maintenance and sensors installation.

Within this context, aerial platforms equipped with robotic arm(s) are recognised
by industries and researchers as a promising technology because they can increase

the safety and reduce the costs, see e.g. the EU AEROARMS project [OHF+18].
An aerial manipulation system, indeed, can operate in such dangerous sites and can

deploy a magnetic-wheeled robotic crawlers on pipelines in order to perform point-
contact measurements. Recently, DLR has developed a helicopter equipped with

a manipulator to support inspection operations and deployment of the magnetic-
wheels robotic crawler on the pipelines, see Fig. 8.2a [LHK16]. The release of the

crawler on the pipe involves force interaction and a passive impedance control for
the manipulator is required also in this case. An impedance controller, similar to the

one presented in Chapter 7, was also applied for the aerial scenario (see [KBDS+18])
and it was possible to achieve a stable interaction with the environment.

Furthermore, in order to allow repeatability of the flight experiments under
desired conditions, a solution based on hardware-in-the-loop simulation can be

adopted. This solution follows the one proposed in the thesis for the space sce-
nario. Therefore, the industrial robot equipped with a force-torque sensor can be

exploited to simulate the helicopter dynamics, as shown in Fig. 8.2b. The light-
weight robot arm is identical to the one mounted on the helicopter and it is used for

manipulation tasks. Fig. 8.2b shows a hardware-in-the-loop simulation where the
manipulator arm performs a peg-in-hole task and interactions forces are generated.

Effects of time-delay in the control loop, during the simulation of dynamics using

robotic facilities, has been thoroughly investigated in the thesis. Currently, the sta-
bility of this robotic simulator is achieved also with the passivity controls developed

within the thesis to mitigate the effects of the time-delay and discretization.

(a) DLR Helicopter equipped with a light-
weight-robot during flying experiment.

(b) Industrial robot equipped with a light-
weight-robot simulating an aerial task.

Figure 8.2: Aerial manipulation scenario. Helicopter equipped with a light-weight-
robot (left) and on-ground test of an aerial task (right). The industrial robot sim-
ulates the helicopter dynamics and the light-weight-robot performs the task of ap-
proaching, grasping and lifting an object. The energy framework developed within
this thesis is considered also for the aerial scenario within the AEROARMS project.
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At the beginning of this thesis, the concept of exploiting robots to support the

humans in space was abstractly introduced through science fiction authors. With
the current development in the field of robotics in all the aforementioned domains,

it is a matter of time before robots will complement actual orbital missions. Dur-
ing the course of this thesis, this abstract concept was de-constructed into concrete

mathematical and physical formulations addressing practical issues like time delay,
physical consistency of on-ground simulators and requirement of impedance control,

all of which are required before proving mission readiness for such a venture.
Moreover, the topics developed in this thesis are relevant to all the scenarios men-

tioned above and therefore this thesis provides an overarching analysis of the chal-
lenges and solutions.
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APPENDIX A

TECHNICAL DATA

A.1 OOS-Sim Facility: Technical Data

A.1.1 Communication and Sensors

The main hardware elements of the OOS-Sim facility are summarized in Table A.1
with the respective interface, sampling time and input-output (I/O) characteristics.

The OOS-Sim facility allows also to validate the interaction between these elements.
For instance, visual servoing can be tested along with impedance control in a free-

floating setup. The sensors involved in the facility are summarized in Table A.2
with the respective interface and functional description.

A schematic of the communication between hardware and sensor is show in

Fig. A.1. A real-time computer (RT-C1) performs the computation of the model-
based dynamics for the servicer and client. This computer runs at a sampling of 4

ms. A second real-time computer (RT-C2) runs at 1 ms and controls the manip-
ulation arm (LWR) with a Sercos interface which allows real time communication.

The two real-time computer communicate through udp-protocol and consequentially

Robot DoF Interface, T Input/Output
Servicer KR120 6 Ethernet, 4ms X/X
Manipulator KR4+ 7 Sercos, 1ms X,F/X,F
Client KR120 6 Ethernet, 4ms X/X
Gripper Robotiq 3f 4+8 Ethercat, 1ms X, I/X, I
Haptic M. KR4+ 7 Sercos, 1ms X/X

Table A.1: Hardware components of the OOS-Sim facility. X=position; F=force;
I=current; T=sampling time.
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A.1. OOS-Sim Facility: Technical Data

Sensor Interface, T Function
Client FTS FTS160 Ethernet, 4ms Physical interaction
Servicer FTS FTS160 Sercos, 1ms Physical interaction
Haptic FTS FTS78 Ethernet, 4ms Dynamics compens.
Cameras GigE Ethercat, 1ms Visual servoing
IMU Xsense MTI Sercos, 1ms Star field simulation

Table A.2: Sensors and interface of the OOS-Sim facility. FTS=Force-Torque Sen-
sor; IMU=Inertial Measurement Unit.

udp

udp

udp sercos

ethercat

ethercat

RSI

RSI LWR

FTS

FTS

RT-C1 RT-C2

KR120-1

KR120-2

Client

Servicer Manipulator

On-ground
station

Figure A.1: Overview of the system communication. The dashed line divides simu-
lated and mission-like elements

with the Robot Sensor Interface (RSI), which communicate with the robot KR120-1,

the servicer and KR120-2, the client. Furthermore, the RSI interface is synchronized
to RT-C1 in order to preserve real time determinism. Thus, RT-C2 delivers both

desired position and orientation commands to the RT-C1. The RT-C1 delivers cur-
rent position and orientation signals to the RT-C2 to allow controller and dynamics

computations. The sensor data from both FTS are fed to the RT-C2 using the real
time clock of the RT-C2. The schematic highlights the simulated elements which

are those corresponding to the space environment with respect to those that do not
need to be simulated and can be taken as in the real mission. Thus, on-ground

station and main control CPU are regarded as mission-like hardware.

A.1.2 Workspace

For the workspace evaluation, the facility is treated as a two serial kinematic chains,
i.e. a 13-dof (KR120 servicer with LWR) and 6-dof (KR120 client). The capability

maps are shown in Fig. A.2, where reachable discretized directions are indicated by
the voxel ranging from red (close to 0%) to blue (close to 100%). The underlying

voxel grids can be merged into a new map to obtain the common workspace volume
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A. Technical Data

including the direction information (more information about the methods for gen-

erating such maps are described in [PSCR13]). The resulting volume of the space
environment which can be simulated with the OOS-Sim is approximately 23.28 m3.

Figure A.2: Workspace of OOS-Sim: servicer robot(left) and Client robot (right).

A.2 Further Experimental Set-up

The methods presented in this thesis are sustained by a set of experiments, which

include the OOS-Sim facility, LWR and a 1 dof set-up. The 1 dof set-up is shown
in Fig. A.3, which is composed of motor-gear-unit developed by Sensor-drive GmbH

and it is equipped with a torque sensor. The motor is based on brushless technology
with a nominal torque of 0.7 Nm and torque peak of 2 Nm. The system runs

on a QNX real-time operating system at 1 ms sampling rate. Technical data are
summarized in Table A.3.

Figure A.3: 1 dof Sensor drive set-up equipped with a torque sensor.

Operational Frequency 1 kHz
Bus Interface CAN or ethercat
Intrinsic Delay 2 ms
Nominal torque 0.7 Nm
Pick torque 2 Nm
Motor type Brushless DC motor

Table A.3: Technical data of the 1 dof system.
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APPENDIX B

CONTACT MODELING

The term contact indicates a mechanical interaction between two bodies which
boundaries share the same location. An impact on the other hand, is typically

regarded as a contact involving large accelerations and changes in the energy of the
two bodies. It is important to note that while a contact can be continuous, an im-

pact is typically of very short duration. This section aims to shortly review the most
widely used contact models, as well as the conditions for their use. These models

can be typically classified in two types, impulse-momentum or discrete models, and
force based or continuous models [GS02].

B.1 Discrete models

Discrete contact models assume that the contact happens during an extremely short

period of time and thus all the forces can be regarded as impulsive. This implies that
changes in energy and momentum will be discontinuous, and that in this context con-

tact and impact are synonyms. These models characterize the impact through one
or several coefficients. The most widely used models in this category are Newton’s,

Poisson’s, and Stronge’s models. Given an initial velocity and angular momentum,
vi0 and hi0, the models aim to determine the final velocities vi and the linear and

angular impulses P and M , respectively. Therefore, given the masses of the bodies
mi (with i = 1,2) and the distance between the impact point and the center of mass

of each body di, it results,

m1(v1 − v10) = P ,
m2(v2 − v20) = −P ,

h1 − h10 = d1 × P +M ,
h2 − h20 = d2 × P −M .

(B.1)

The three aforementioned models aim to impose conditions upon the system
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B.2. Continuous models

from equation (B.1) so that they can be solved. Usually, the expression use the

coefficient of restitution. Such coefficient of restitution is defined as the ratio of
the relative tangential velocity before and after the contact. This definition is quite

extensively used throughout the literature, see [NUY10, ZLBC12, UNNY12].

The discrete models do have a series of disadvantages though, since they produce
inconsistent results under certain conditions and they disagree on the amount of

energy that has been dissipated [FDDR17]. Also the use of Coulomb’s law of
friction give raise to inconsistencies as well, producing none or many solutions for

the problem in certain cases.

B.2 Continuous models

Continuous models analyse the contact at every point of time by considering the

forces and interactions also during the contact. This requires an accurate modelling
of such forces, which typically are considered to depend on the local deformation δ

and its derivative, δ̇. For a normal component of the contact force Fn, the general
formulation will be

Fn = Fn(δ, δ̇) = Fδ(δ) + Fδ̇(δ̇) (B.2)

The models used more often are, the spring-dashpot model, the Hertz’s model

and the nonlinear damping model, which is a combination of the two previous ones.

Spring-dashpot model: This model considers the forces produced by a hypothet-
ical spring and damper which represent the compression-restitution and the

energy dissipation, respectively. This model is widely used due to its simplic-
ity, despite it has some weaknesses regarding its realism. These weaknesses are

the presence of discontinuities in the contact force, the appearance of a nega-
tive contact force toward the end of the contact, and a coefficient of restitution

which does not depend on impact velocity [GS02]. The model is expressed by
the following equation,

Fn = kδ + dδ̇, (B.3)

where k and d is the stiffens and damping of the contact.

Hertz’s model: This model considers a nonlinear spring between the impacting

bodies, which can be characterised using elastostatic theory. The Hertz’s
model does not consider energy dissipation, which makes it adequate only

for low speed contacts of hard surfaces, although for this case it is a more re-
alistic model than the spring-dashpot model. The model is usually expressed

as,

Fn = kδn, (B.4)
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B. Contact Modeling

where k and n are the parameters to determine.

Non-linear damping: This model, also known as Hunt-Crossley model, aims to

combine the two aforementioned ones, retaining the advantages of Hertz’s
model thus providing a more realistic description than the spring-dashpot

model. The force model has a non-linear damping term and it is expressed as,

Fn = dδpδ̇q + kδn (B.5)

where k and d are stiffness an damping coefficient and n, p and q are positive

real number describing the non-linearity and hysteresis behaviour.

Empirical model: This model is employed when geometry of contact are not axis-
symmetric and when the value of k or n are difficult to find. The empirical

model is function of the penetration depth and area, A. It is described as,

Fn = k(A)d (B.6)

where k(A) is a stiffness coefficient that is function of A, the contact parameters

and geometry.

Methods related to finite-element are also available in literature, such as the La-

grange multipliers. However, finite-element methods are more complex and compu-
tationally expensive when multi-body dynamics are involved [ZLL14].
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APPENDIX C

LEMMAS AND THEOREMS

C.1 Definitions

Definition 10 Generalised saturation
Given a positive constant Z, a function s : R → R : τ → s(τ) is said to be a

generalized saturation function with bound Z, if it is locally Lipschitz, non-decreasing
and satisfies the following:

τs(τ) > 0 ∀ τ 6= 0

|s(τi)| ≤ Z ∀ τ ∈ R
n

Definition 11 Linear saturation

Given a positive constant G and Z with G ≤ Z, a function s : R → R : τ → s(τ) is
said to be a linear saturation for (G,Z) if it is locally Lipschitz, non-decreasing and

satisfies the following

s(τ) = τ when |τi| ≤ G
|s(τi)| < Z ∀ τ ∈ R

n

C.2 Lemmas and Theorems

• LaSalle’s invariance principle. The theorem is reported from [Kha02a] in
a compact form.

Theorem C.2.1 (LaSalle’s invariance principle) If there exists a con-

tinuously differential, positive definite and radially unbounded function V (x) :
R
n → R such that V̇ ≤ 0, ∀x ∈ R

n, then every solution of the system ẋ = f(x)

converges to the last invariant set M contained in Z = {x ∈ R
n, V̇ (x) = 0}.

Furthermore, if M = 0, the origin of the system ẋ = f(x) is globally asymp-

totically stable.
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C.2. Lemmas and Theorems

• Barbalat’s Lemma. The Lemma is reported from [SL91] in a form of corol-

lary

Lemma C.2.2 (Barbalat’s Lemma) If a differentiable function f(t) has a

finite limit as t→ ∞ and its second derivative f̈ exists and it is bounded, then
ḟ(t) → 0 as t→ 0.

• Matrosov’s Theorem. The theorem is reported from [LN97] in a compact
form.

Theorem C.2.3 (Matrosov’s Theorem) Consider the system ẋ = f(t, x)
with f(t, 0) = 0, ∀t ≤ 0. Let Ω ∈ R

n be an open connected region in R
n

containing the origin. if there exist two C1 functions V ∈ R : [0,∞) × Ω →
R,W ∈ R : [0,∞)× Ω → R. A C0 function V ∗ : Ω → R; three function a,b,c

such that such that for every (x, t) ∈ Ω× [0,∞):

1. a(‖x‖) ≤ V (t, x) ≤ b(‖x‖)
2. V̇ (t, x) ≤ V ∗(x) ≤ 0

3. |W (t, x)| is bounded

4. |Ẇ (t, x)| ≥ c‖x‖
5. ‖f(t, x)‖ is bounded

then when t→ ∞, uniformly x(t) → 0 and the origin is uniformly asymptoti-

cally stable.
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