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Abstract

Spaceborne Interferometric Synthetic Aperture Radar (InSAR) is the technique of using
two or more SAR images of the same scene to extract topography and deformation of
the Earth’s surface with high precision. The method has been considerably evolved in
the last decades into an operational tool, which has contributed to advancements in the
study of volcanoes, glaciers, forests and urban environments, to name a few examples.
Although multi-temporal and multi-baseline methods such as Persistent Scatterer Inter-
ferometry (PSI) and SAR Tomography (TomoSAR) have been developed to tackle main
shortcomings of conventional InSAR, they still suffer from the inherent limitations of
SAR side-looking imaging, including the one-dimensional (1-D) deformation retrieval
and the shadow phenomenon, as well as the relative nature of InSAR topographic and
displacement measurements.

In the recent years, the launch of the German TerraSAR-X (TSX) satellite, that is char-
acterized with high precision orbit determination and high spatial resolution, has led
to the rise of new SAR geodetic applications. By applying a meticulous correction
scheme to TSX timing measurements, SAR imaging geodesy allows the absolute two-
dimensional (2-D) localization of bright point targets in SAR images with centimeter
accuracy. The three-dimensional (3-D) absolute positioning has been also demonstrated
through using stereo SAR. Nevertheless, the difficulty of identical target detection from
multi-aspect data, which is the prerequisite for stereo SAR, and the fact that the preci-
sion of these methods are in general lower than phase-based methods due to the ex-
ploitation of amplitude information only, limit their ubiquitous applicability.

This thesis is dedicated to merging the capabilities of InSAR and SAR geodetic tech-
niques, a framework referred to as geodetic InSAR. The ultimate goal is to overcome the
pitfalls of both methods and produce detailed 3-D InSAR point clouds with absolute
coordinates, with a focus on urban infrastructure monitoring.

Three approaches based on fusion of multi-track PSI point clouds, high resolution op-
tical data and vector road network data are proposed for the detection of identical point
targets from multi-aspect SAR images. Although the first technique is suitable for targets
visible in a same-heading configuration, the latter two are able to detect targets visi-
ble in cross-heading configurations i.e., from orbits with opposite heading directions.
This enhances the precision of the retrieved absolute 3-D coordinates using stereo SAR
especially in the height component. With the aforementioned detection procedures
thousands of Persistent Scatterer (PS) can be absolutely localized in urban areas, which
has paved the way for automatic SAR-based Ground Control Point (GCP) generation. A
practical demonstration of the GCP extraction framework is shown in this work using
two pairs of cross-heading data over Oulu, Finland.
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Abstract

The absolute height of the SAR GCPs and the radar timing corrections provided by
the imaging geodesy method are exploited to introduce an approach for geocoding error
correction of InSAR point clouds. The proposed method is flexible in the sense that it can
be either used prior to the reference point selection in any InSAR stacking techniques
or it can be utilized as a post-processing step after the generation and the geocoding
of point clouds. Applications of this technique in both mentioned scenarios are shown
for high resolution spotlight PSI and TomoSAR, where the latter is termed geodetic SAR
tomography. Strategies have been also developed to evaluate the positioning accuracy
of the produced absolute InSAR point clouds with respect to high accuracy Digital Terrain
Model (DTM)s of urban areas. Horizontal and vertical accuracy of 20 cm and 10 cm has
been achieved using PSI and TomoSAR processing over Berlin, respectively.

Multi-aspect absolute InSAR point clouds are used for the first demonstration of
geodetic point cloud fusion, where no external positioning data is required for the coreg-
istration and tying the point clouds to a geodetic reference frame. As the final contri-
bution, an algorithm has been developed for the task of 1-D to 3-D motion decomposition
using fused TomoSAR point clouds. The technique is robust with respect to the high
number of outliers available in TomoSAR estimates and allows for highly detailed de-
formation monitoring of urban areas using high resolution SAR data.
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Zusammenfassung

Satellitengestütze Interferometriesches Synthetic Aperture Radar (InSAR) ist eine Tech-
nik die zwei oder mehr SAR Aufnahmen der selben Szene nutzt, um die Topographie
und Deformation der Erdoberfläche mit hoher Genauigkeit abzuleiten. Die Methode
wurde in den letzten Jahrzehnten zu einem operationellen Werkzeug weiterentwick-
elt und hat damit zu wissenschaftlichen Fortschritten in Feldern wie Vulkanologie,
Glaziologie sowie der Beobachtung von Wäldern und urbanisierten Räumen beige-
tragen. Um Schwächen der konventionellen Radarinterferometrie zu beheben, wur-
den mit Persistent Scatterer Interferometry (PSI) und SAR Tomographie (TomoSAR)
multi-temporale Methoden und Methoden mit mehreren Basislinien entwickelt. Diese
haben jedoch immer noch inhärente Einschränkungen die aus der seitlichen Aufnah-
megemoetrie des SAR Instruments stammen. Sie beinhalten die eindimensionale (1-D)
Deformationsbestimmung, Phänomene des Radar Schattens sowie die relative Natur
der InSAR Topographie und Deformationsmessungen.

Zuletzt hat die Inbetriebnahme des deutschen TerraSAR-X (TSX) Satelliten zu neuen
geodätischen SAR Applikationen geführt, da dessen Orbit mit hoher Genauigkeit
beschrieben werden kann und die Aufnahmen eine hohe räumliche Auflösung be-
sitzen. Durch die Anwendung einer akkuraten Korrektur der TSX Zeitmessungen ist es
möglich mit SAR gestützter Geodäsie, stark rückstreuende Punkte zwei-dimensional
(2-D) mit Zentimetergenauigkeit zu vermessen. Die absolute drei-dimensionale (3-
D) Lokalisierung kann durch die Benutzung der stereo SAR Technik erreicht werden.
Voraussetzung dafür ist jedoch die schwierige Identifizierung von geeigneten Punk-
ten aus mehreren Aufnahmen mit unterschiedlichen Winkeln. Das und die Erkennt-
nis, dass die Genauigkeit dieser amplitudengestützen Technik niedriger ist als die von
phasenbasierten Methoden schränken die Benutzbarkeit allerdings ein.

Diese Arbeit beschäftigt sich mit der Verschmelzung von InSAR und geodätischen
SAR Techniken, was wir folgend geodätische Radarinterferometrie nennen. Das Ziel ist
es, die Schwächen beider Methoden auszugleichen, um 3-D InSAR Punktwolken mit
absoluten Koordinaten zu generieren. Der Fokus liegt dabei auf der Beobachtung von
urbaner Infrastruktur.

Es werden drei Herangehensweisen für die Erkennung von identischen Punktzielen
aus mehreren Aufnahmen mit unterschiedlichen Winkeln vorgestellt. Diese basieren
auf der Fusion von multi-track PSI Punktwolken, hochauflösenden optischen Daten
und vektorisierten Daten des Straßennetzwerks. Dabei ist die erste Technik auf Ziele
anwendbar, die auf Aufnahmen aus gleicher Satellitenflugrichtung zu erkennen sind.
Mit den anderen zwei Methoden können Ziele in aufsteigender und absteigender Flu-
grichtung erkannt werden. So kann die Genauigkeit der mit stereo SAR abgeleit-
eten 3-D Koordinaten erhöht werden. Dabei wird speziell die Komponente der Höhe
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Zusammenfassung

verbessert. Mit den hier vorgestellten Erkennungstechniken können so tausende Per-
sistent Scatterer (PS) in urbanen Räumen absolut positioniert werden. Damit ist die Er-
stellung von SAR-basierten Punkten mit bekannten Koordinaten (sog. Ground Control Points
(GCP)) möglich. In dieser Arbeit wird als praktisches Beispiel die Erstellung eines GCP
Netzwerks in Oulu, Finnland gezeigt. Dazu wurden zwei Paare von SAR Aufnahmen
aus unterschiedlicher Flugrichtung benutzt.

Die absolute Höhe der SAR GCPs und die Korrektur der Radar Zeitmessungen aus
der SAR-gestützten Geodäsie werden benutzt um Fehler in der Georeferenzierung von In-
SAR Punktwolken zu korrigieren. Die vorgestellte Methode kann dabei bereits vor der In-
SAR Koregistrierung zur Bestimmung eines Referenzpunkts flexibel eingesetzt werden,
oder der Nachprozessierung der georeferenzierten Punktwolken dienen. Hier zeigen
wir die Anwendung dieser Technik in beiden Szenarien anhand hochauflösender spot-
light PSI Prozessierung und TomoSAR Aufnahmen von Berlin.

Geodätische Fusion von Punktwolken wird anhand von InSAR Punktwolken demon-
striert, die aus Szenen mit unterschiedlicher Aufnamegeometrie stammen. Dazu sind
weder für die Koregistrierung noch zur Einhängung in eine geodätische Referenz ex-
terne Positionierungsdaten notwendig. Zuletzt, wird ein Algorithmus vorgestellt, der
TomoSAR Punktwolken benutzt um 1-D in 3-D Bewegungen zu zerlegen. Diese Technik
ist stabil mit Bezug auf die hohe Anzahl von Ausreißern in den TomoSAR Schätzun-
gen und macht es somit möglich mit hochauflösenden SAR Daten eine detaillierte
Überwachung der Deformationen in urbanen Räumen durchzuführen.
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1 Introduction

1.1 Background and Motivation

Over the last three decades, Synthetic Aperture Radar (SAR) remote sensing has evolved
into a major Earth observation technique. As a result of its coherent imaging nature,
Interferometric SAR (InSAR) exploits the phase differences of two SAR images of the
same scene to approximate the surface of the Earth in three-dimensions (3-D) [1]–[4].
In its differential form, InSAR extracts ground deformation from at least two SAR im-
ages that are temporally separated [5]. The high achievable precision in displacement
retrieval, typically in the centimeter to millimeter regimes, as well as unique charac-
teristics, such as high spatial resolution and large coverage, distinguish InSAR from its
other remote sensing counterparts.

The launch of high resolution SAR sensors such as the German TerraSAR-X (TSX) and
the Italian COSMO-Skymed in the past decade and multi-temporal and multi-baseline
extensions of InSAR, such as the Persistent Scatterer Interferometry (PSI) [6], [7] and
the Tomographic SAR (TomoSAR) [8]–[10] techniques, have further advanced the in-
formation retrieval from SAR data into an unprecedented level. Using these methods,
it is nowadays possible to perform highly detailed 3-D mapping and to precisely track
deformation of individual buildings in an entire urban area [11], [12]. However, all
InSAR approaches are relative techniques, meaning that the height and the deforma-
tion parameters are evaluated with respect to an arbitrarily chosen reference point. For
many cases no information about the 3-D position and the stability of the reference
point is available. The systematic error caused due to the uncertainty of the coordi-
nates of the reference point degrades the geo-localization accuracy of InSAR products.
As a consequence the true source of deformation may not be correctly detected, which
results in the misinterpretation of InSAR deformation maps. This is in particular criti-
cal for monitoring small-scale displacements in urban areas using high resolution SAR
images for which the detailed structure of objects are acquired. Furthermore, InSAR
products with low localization accuracy cannot be easily compared to or integrated into
data from other sensors. Therefore, in order to obtain absolute coordinates and defor-
mations, external data are required to link the InSAR estimates to a reference geodetic
datum. Apart from the problem of relative estimates, single-aspect InSAR maps suf-
fer from the main shortcomings caused by the SAR side-looking geometry, such as the
retrieval of deformation in only one-dimension (1-D), the shadow effect and the lay-
over phenomenon. This issue can be tackled by accurate multi-aspect coregistration of
InSAR products from sufficiently separated viewing geometries.

It has been recently shown that aside from their imaging capabilities, modern SAR
sensors, in particular TSX and TanDEM-X, have great potentials for achieving extraor-
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dinary geometric accuracy [13], [14]. This can be partly attributed to the highly precise
orbit determination of these satellites [15], [16] and, more importantly, to a compre-
hensive and accurate correction methodology aiming at mitigating SAR timing errors.
For bright well-detectable point targets in a SAR image, the method, called SAR imaging
geodesy [13], [17], provides absolute pixel localization accuracy in two-dimensions (2-D)
within the centimeter and sub-centimeter regimes [18]. Additionally, the combination
of 2-D absolute timing measurements of an identical target visible in SAR images from
different viewing geometries leads to the target’s absolute 3-D position through stereo
SAR [19]. This has paved the way for SAR-based GCP generation. The tie-point selec-
tion step of stereo SAR is nevertheless a non-trivial task, especially when dealing with
images from opposite geometries (cross-heading tracks). This limits the applicability of
the method for localization of large number of scatterers.

In this thesis, strategies are proposed in order to overcome the aforementioned pit-
falls of the imaging and the localization aspects of SAR. The research objectives of the
thesis are introduced in Section 1.2 and finally the chapter is closed with outlining the
structure of this thesis in Section 1.3.

1.2 Research objectives

The primary objective of this thesis is to explore the possibilities of merging the capabil-
ities of both phase-based SAR techniques like conventional InSAR, PSI and TomoSAR
and SAR geodetic techniques such as imaging geodesy and stereo SAR. We therefore
aim at producing detailed multi-dimensional maps with absolute coordinates and iden-
tify applications, which can benefit from this improvement in the localization accuracy
of InSAR products. To this end, the objectives of this work can be categorized as fol-
lows:

• Automatic SAR GCP generation: A processing chain for automatic detection and
positioning of natural point scatterers to serve as SAR GCPs is desired. As the
detection of identical scatterers solely based on SAR data is highly difficult, aux-
iliary optical or Geographic Information System (GIS) data are to be used to aid
this process.

• Absolute positioning of InSAR point clouds: A framework should be proposed
to exploit the absolute coordinates of the SAR-based GCPs to assist the relative
InSAR-based methods. The methodology should be tested on the most common
InSAR approaches for urban monitoring such as PSI and TomoSAR. Strategies
should be introduced to evaluate the improvement in the localization accuracy of
InSAR point clouds with respect to more accurate Digital Surface Model (DSM)s
from other sensors like Light Detection and Ranging (LiDAR).

• Geodetic multi-aspect InSAR point cloud fusion: The availability of multiple
absolute InSAR point clouds reconstructed from multi-aspect SAR data i.e., im-
ages from different orbit tracks, leads to substantial increase in the density of the
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point clouds and will capture the entire extent of buildings if cross-heading tracks
are used. Therefore, geodetic InSAR point cloud fusion approaches should be
employed to make the coregistration of point clouds more accurate and objective
than the currently available geometric methods.

• 3-D InSAR deformation monitoring: A scheme should be designed to use fused
absolute point clouds to reconstruct the full 3-D displacement vector of each scat-
terer from its observed 1-D deformation measurement. The method should ro-
bustly do so by inclusion of observations from all the available viewing geome-
tries.

The objectives are defined in a way that the results of each step provide the input for
the succeeding step. Each of the mentioned items will be treated in detail in Chapter 4.

1.3 Thesis Outline

This is a cumulative thesis. The main contributions of the author have been summa-
rized in five peer-reviewed journal publications (three as the first-author and two as a
co-author), which can be found in the appendices.

The introduction and the motivation of the dissertation have been already addressed
in this chapter. Chapter 2 briefly reviews the basics of SAR and InSAR that are relevant
for understanding this thesis and discusses the specific limitations of both methods,
which are tackled in this work. Chapter 3 gives a comprehensive overview of the state-
of-the-art of the methods used in this work and the summary of the contributions of
the author is reported in Chapter 4. Finally, the conclusions as well as future research
directions are discussed in Chapter 5.
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2 Fundamentals

This chapter reviews the relevant basics of SAR and InSAR. Special emphasize is put
on the inherent limitations of these methods, which are intended to be tackled by this
thesis. The chapter also gives a quick recap on fundamentals of observation theory.
For an in depth treatment of SAR data processing and image generation the reader
is referred to [20]. The theoretical aspects of InSAR and its processing sequence are
described in detail in [2]–[4].

2.1 SAR Imaging and Localization

Spaceborne SAR sensors use a side-looking geometry to map the Earth’s surface by
the coherent transmission of microwave pulses and the reception of the backscattered
signals. The echoes are arranged in a 2-D matrix, where each echo is characterized
with a slant-range coordinate (two-way pulse travel time) and an azimuth coordinate
(the position along the sensor trajectory) [2]. The resolution in the slant-range direction
ρr is a function of the pulse bandwidth β [20], [21]:

ρr =
c

2β
, (2.1)

where c denotes the speed of light in vacuum. The azimuth resolution, for a stripmap
SAR, can be approximated as [21]:

ρa ≈
da

2
, (2.2)

which depends on the physical length of the radar antenna da. The aforementioned 2-D
matrix is a raw SAR image, which requires extensive signal processing, known as SAR
focusing, to achieve a more image-like product called a Single-Look Complex (SLC)
image [2], [4], [20]. After the focusing, the azimuth time of each target is registered to
a reference, commonly chosen as the time of the closest approach or the zero-Doppler
time [20]. This compressed azimuth time t and the travel time of the transmitted and
the received pulse τ denote the radar timing coordinates of each SLC pixel. In the SAR
image space, the ith pixel is marked with a pixel number pi in slant-range and with a
line number li in azimuth, which are related to the aforementioned timing coordinates
(ti,τi) as:

li = PRF · (ti − t0), (2.3)

pi = RSF · (τi − τ0), (2.4)
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2 Fundamentals

where t0 and τ0 are the timings of the first imaged pixels in azimuth and range di-
rections, and PRF and RSF denote the Pulse Repetition Frequency (PRF) and Range
Sampling Frequency (RSF), which govern the pixel spacing in azimuth and range, re-
spectively. The pixel located at (li,pi) has a complex value, which can be written as
[2]:

g(li, pi) = A · exp(jφi). (2.5)

In Equation 2.5, the variable A denotes the amplitude of the signal, which is related
to the intensity I = A2 and therefore contains information about the brightness of the
pixel. The term φi denotes the phase and includes contributions due to the distance of
the sensor to the target, scattering mechanism, atmospheric delays and noise [4], [21].

The SAR products used in this thesis are exclusively from the Very High Resolution
(VHR) spotlight mode of the TSX sensor [22]. As opposed to the conventional stripmap
mode and modes designed for large swath coverage such as scanSAR [20] and TOPS
[23], in the spotlight mode the antenna illumination time is increased to achieve high
azimuth resolution with the cost of small and discontinuous swath coverage. The TSX
spotlight images have a nominal spatial resolution of 1.1 m in azimuth and 0.6 m in
range, when operating with β = 300 MHz. This level of resolution makes the spotlight
images one of the most appropriate products for urban monitoring [24], which is the
main focus of this work.

2.1.1 Limitations and Errors of SAR

Since SAR images provide a 2-D projection of the real 3-D world, acquired with a side-
looking geometry, they introduce unpreventable geometrical distortions. These include
the well-known forshortening, layover and shadow effects. Layover causes multiple
scatterers, with equal slant-range coordinates, to be mapped into one resolution cell.
This phenomenon is quite prevalent in high rise urban areas where backscattered con-
tributions from the ground and the facade (sometimes also from the roof) of buildings
cannot be distinguished in one pixel. The shadow in SAR images occurs when an area
is not illuminated by the radar beam. Therefore no backscattered signal is received
and the area in the image appears to be completely dark. These distortions as well as
the fact that single SAR images cannot access the third dimension (the elevation angle)
limit the interpretation and usability of SAR in urban areas.

Apart from the aforementioned geometrical peculiarities, the 2-D localization of tar-
gets using SAR can be biased. This bias may originate from actual errors in SAR timing
measurements, such as a drift in SAR internal clock rate, or from indirect effects in-
cluding propagation delays and position offsets caused by geodynamic phenomena.
Hereafter both direct and indirect systematic effects on SAR measurements are referred
to as timing errors. The origin of these errors and their physical properties will be later
described in Section 3.1. For now it is important to mention that these timing errors are
translated into 2-D shifts, affecting both t and τ, and thus change the position of targets
within SAR images.
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2.2 Interferometric Synthetic Aperture Radar (InSAR)

2.1.2 Tackling SAR Limitations: an Outlook

It has been mentioned that SAR images can only localize targets in 2-D and they include
image distortions, such as layover and shadow, due to the side-looking nature of their
acquisition geometry. Furthermore, the timing errors bias the 2-D position of targets in
SAR images.

For 3-D reconstruction from SAR images, InSAR approaches can be employed (see
Section 2.2). To mitigate the timing errors and obtain absolute 2-D SAR measurements,
SAR imaging geodesy [13] can be used as will be described in Section 3.1. Layover
separation can be tackled by SAR tomographic methods [8], [9], [12] as will be touched
upon later in Section 3.4. In order to minimize shadowed areas, the combination of SAR
images from opposite viewing geometries is required. This includes the coregistration
of InSAR point clouds from different viewing geometries [25], [26], also known as point
cloud fusion, as will be discussed in Section 3.5.

2.2 Interferometric Synthetic Aperture Radar (InSAR)

The phase of only one SLC cannot be directly used to extract information from SAR
images. The interferometric phase ∆φ, as the phase difference between two complex-
valued SAR measurements from different orbit positions and/or from different times,
however, contains highly precise information about the topography and/or the de-
formation of the mapped area [3], [4]. Considering a repeat-pass scenario, assuming
the scattering phase contributions between the two acquisitions cancel out, and ignor-
ing the atmospheric, orbital and noise phase components, the wrapped interferometric
phase (−π < ∆φi ≤ π) at pixel (li, pi) is caused solely by the range difference between
the first and the second acquisitions and reads as [4]:

∆φi =
−4π

λ

(
− B‖i +

B⊥i
Ri sin θi

· hi + di

)
− ai · 2π, (2.6)

where λ is the radar wavelength. The three terms inside the parenthesis represent range
difference components caused by flat earth, topography above the reference ellipsoid,
and the displacement caused between the two acquisition times for the ith pixel, re-
spectively. The variables B‖i and B⊥i are the parallel and the perpendicular components
of the separation between the two satellite positions, known as baseline, Ri is the geo-
metric distance from the center of the pixel to the satellite antenna, θi denotes the local
incidence angle, hi is the topographic height, di is the deformation in the radar Line
of Sight (LOS) and ai · 2π represents the phase ambiguity term. For the derivation of
Equation 2.6 refer to [1].

If we consider a single-pass interferometric configuration for Equation 2.6 then di = 0.
If we further remove the flat earth phase, the term 4π

λ B‖i , by the knowledge of the satel-
lite orbit and a reference ellipsoid [3] and assume the integer number of phase cycles ai
has been recovered through phase-unwrapping [2], then hi is calculated through phase
to height conversion [4]:
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hi =
−λ

4π
· Ri sin θi

B⊥i
· ∆Φi, (2.7)

where ∆Φi = ∆φi + ai · 2π denotes the final absolute phase at the ith pixel. It is impor-
tant to note that the phase-unwrapping procedure is relative in nature, which means
∆Φi and consequently hi are relative quantities defined with respect to a reference point
selected by the user.

At this stage of InSAR processing, the ith pixel is defined within the 3-D radar datum
in (li, pi, hi) or in (ti, τi, hi), which still needs a coordinate transformation to be defined
in a common geodetic reference system. This is performed through geocoding, that is
explained in the following.

2.2.1 InSAR Geocoding

For the pixel at (li, pi) in the SAR image, geocoding is carried out by iterative solving of
the Doppler-Range-Ellipsoid equations to retrieve the 3-D Cartesian coordinates of the
target ~Ti =

(
Xi, Yi, Zi

)
from its radar timing and height coordinates (ti, τi, hi) [27]–[29]:

∥∥∥~̇S(ti) ·
(
~S(ti)−~Ti

)∥∥∥ = 0 (2.8)
∥∥∥~S(ti)−~Ti

∥∥∥− c · τi

2
= 0 (2.9)

Xi
2

(a + Hi)2 +
Yi

2

(a + Hi)2 +
Zi

2

(b + Hi)2 − 1 = 0, (2.10)

where ~S and ~̇S are the satellite state vector and its velocity vector, respectively. They
are both functions of ti. The first equation dictates the zero-Doppler condition. The
second equation relates the geometric distance between ~T and ~S to the fast time of the
target τi. The result from Equations 2.8 and 2.9 is intersected with a reference ellipsoid
with semi-major axis a and semi-minor axis b, and with an estimated height above the
ellipsoid Hi. Note that external height information, from at least one GCP or a Digital
Elevation Model (DEM), is required for connecting the relative interferometric height
hi (see Equation 2.7) to Hi [3]. For convenience of interpretation

(
Xi, Yi, Zi

)
are usu-

ally converted to the Universal Transverse Mercator (UTM) map projection (Ei,Ni,Hi),
where Ei and Ni denote the UTM Easting and Northing with Hi representing the height
above the, global or local, reference ellipsoid.

2.2.2 Limitations and Errors of InSAR

2.2.2.1 Signal Decorrelation

One of the most important conditions for interferometry to work properly is that an
imaged pixel stays coherent between the two acquisition times [4]. This condition how-
ever does not always hold due to the difference in the viewing geometries of the two
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acquisitions, which causes geometrical decorrelation, or due to the temporal separa-
tion between the two images, which leads to temporal decorrelation [30]. Both of these
issues cause a change in the scattering phase from the first to the second acquisitions
leading to random errors in the interferometric phase. The phase noise complicates
phase-unwrapping and consequently degrades the quality of the InSAR topographic
and deformation maps.

2.2.2.2 Atmospheric Heterogeneity

The difference in atmospheric states of the first acquired SAR image and the second
one is problematic for InSAR. This issue causes a systematic phase component, which
affects the interferometric phase [4]. The spatial correlation of the effect does not allow
a seamless separation of the atmospheric signal from the desired topography or de-
formation phase components using conventional InSAR [29] and thus leads to biased
estimates.

2.2.2.3 Geocoding Errors

The systematic errors in radar timings, briefly mentioned in Subsection 2.1.1, and the
fact that the InSAR height is relative in nature (see Section 2.2), manifest as position
shifts in the geocoded InSAR products. In the following, it is characterized how these
errors affect the final position of point targets in the UTM coordinate system. The radar
timing coordinates of the assumed point targets are represented as (taz,τrg) and their
final geocoded height as HT.

For taz the errors cause shifts only in the along track direction. If we consider a
straight satellite orbit trajectory and approximate the curved Earth geometry by a recti-
linear one [20], as is visualized in Figure 2.1a, the ground shift δlaz due to an erroneous
azimuth time t′az is calculated in meters as:

δlaz = vr
(
t′az − taz

)
, (2.11)

where taz is the true azimuth time and vr denotes the effective radar velocity of the satel-
lite. Note that for the curved Earth geometry, the beam velocity vg (vg < vr) should be
used in Equation 2.11 [20]. The error δlaz affects only the horizontal geocoded coordi-
nates and with the knowledge of the local heading angle of the satellite α, its effect can
be projected onto the local east δlE

az and north δlN
az components (See Figure 2.1b ):

δlE
az = δlaz sin α, (2.12)

δlN
az = δlaz cos α. (2.13)

Considering the near polar orbit of current SAR satellites, with heading angles close
to 180◦ or 360◦, Equations 2.12 and 2.13 show that error in taz mostly affects the north
component of the geocoded coordinates.
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Figure 2.1: Timing bias in azimuth and its effect on the geocoded coordinates. (a) Azimuth
timing error causing a displacement on the ground δlaz. (b) Projection of δlaz onto
the east δlE

az and north δlN
az components using satellite heading angle α.

Errors in τrg cause a delay in the received radar pulse that affects the geometrical dis-
tance between the satellite and the target in the slant range direction δlsr, which leads
to a displacement on the ground range δlgr depending on the the local incidence angle
θ (see also Figure 2.2a):

δlsr = c

(
τ′rg − τrg

)

2
(2.14)

δlgr =
δlsr

sin θ
(2.15)

where τrg and τ′rg are the true and the erroneous range time, respectively. Similar to δlaz,
δlgr is related to the east δlE

gr and the north δlN
gr components by a projection using α (see

also Figure 2.2b):

δlE
gr = δlgr cos α, (2.16)

δlN
gr = −δlgr sin α. (2.17)

It is evident from Figure 2.2a and Equation 2.15 that δlgr becomes larger with steeper
incidence angles. It is also worth mentioning that according to Equations 2.16 and 2.17,
the timing error in range manifests itself mostly in the east coordinate component.

Apart from the timing errors, the relativity of InSAR height estimates can be prob-
lematic for geocoding. The height value of each pixel in the interferogram is evaluated
with respect to a reference point. It was mentioned in Subsection 2.2.1 that the height
of the reference point is usually retrieved from an external source [3] or in modern In-
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Figure 2.2: Timing bias in range and its effect on the geocoded coordinates. (a) Range timing
error and its impact on geocoding in the ground range δlgr. (b) Projection of δlgr

onto the east δlE
gr and north δlN

gr components using satellite heading angle α.

𝛿𝐻 

𝐻𝑇  𝐻𝑇
′ = 𝐻𝑇 + 𝛿𝐻 

reference ellipsoid 

true DEM 

biased DEM 

gr

Hl

s

Hl

nadir 

𝜃 

Figure 2.3: Depiction of height error δH due to unknown DEM error at the reference point and
its effect on geocoded coordinates. It can be seen that this error causes a shift in the
cross-range direction δls

H , which is decomposed into an offset in ground range δlgr
H

and a vertical component δH.

SAR processing chains, such as the one for TanDEM-X, through radargrammetry [31].
The final absolute height accuracy of InSAR products thus depends on the height error
of this point, which is an overall unknown offset. This height error δH = H′T − HT is
almost constant for all pixels in the interferogram and has a significant effect on final
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Figure 2.4: Projection of the original displacement vector d with components (de, dn, du) onto
the radar LOS.

geocoded coordinates both in the horizontal and in the vertical components, as can be
seen in Figure 2.3. The variable δH causes a horizontal shift in the ground range δlgr

H as:

δlgr
H =

δH
tan θ

. (2.18)

Similar to the error in range timing (see Equations 2.16 and 2.17), δlgr
H can be projected

onto the east and the north components by the knowledge of α.

2.2.2.4 InSAR 1-D Deformation

The deformation measurement of InSAR techniques dLOS is the projection of the orig-
inal 3-D displacement vector d with components de, dn and du in east, north and up
direction, respectively, onto the LOS. Following previous definitions of the local inci-
dence angle θ and the local heading angle α, we can write [4]:

dLOS = du cos θ − dALD sin θ (2.19)

where dALD includes the projection of dn and de on the azimuth look direction (ALD),
which is perpendicular to the satellite flying direction and therefore is expressed as:

dALD = dn sin α− de cos α. (2.20)
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Figure 2.4 depicts the aforementioned projection in 3-D. If Equation 2.20 is substituted
in Equation 2.19, the explicit relation between dLOS and the displacement components
for a single pixel can be written as:

dD
LOS = du cos θ + de cos α sin θ − dn sin α sin θ, (2.21)

where the superscript D denotes the descending viewing geometry. For an ascending
observation, the second term in Equation 2.20 gets a positive sign, which means that
the LOS deformation becomes [32]:

dA
LOS = du cos θ − de cos α sin θ − dn sin α sin θ. (2.22)

Equations 2.21 and 2.22 indicate that the retrieval of the 3-D displacement components
is not possible using only observations from a single viewing geometry. The 1-D defor-
mation is ambiguous and depends on the satellite heading direction, which degrades
the interpretation of InSAR displacement maps.

2.2.3 Tackling InSAR Limitations: an Outlook

The relevant basics of InSAR, geo-referencing its products, and some of the main limi-
tations of the method have been discussed in this section. It was mentioned that Signal
decorrelation leads to random noise on interferometric phase while atmospheric differ-
ences between the time of acquisitions, radar timing errors and height error of the In-
SAR reference point cause systematic errors, which eventually affect the final geocoded
positions of InSAR products. The errors in range and azimuth measurements can be
mitigated by using the SAR imaging geodesy method (see Section 3.1). This leads to
correcting the horizontal geocoding errors of InSAR products. In order to compen-
sate for the height error of the reference point, SAR-based GCPs can be used. These
points are absolutely localized in 3-D by the stereo SAR method [19], that is explained
in section 3.2. Exploiting multiple SAR images of the same scene, InSAR time-series
approaches such as PSI [6], [7] can be used to overcome atmospheric disturbances and
signal decorrelation. PSI restricts the topographic and deformation parameter retrieval
to only point-like scatterers which remain coherent during the entire acquisition pe-
riod. This method will be explained in Section 3.3. Finally, the 1-D deformation mea-
surements of InSAR techniques can be, theoretically, decomposed into the original 3-D
motion components, if InSAR displacement observations from at least three viewing
geometries are available [4], [33], [34]. This requires the correct fusion of multi-aspect
InSAR products, which is addressed in Section 3.5.

2.3 Basics of Observation Theory

2.3.1 Accuracy versus Precision

In geodesy, a distinction is usually made between accuracy and precision. In order to
clarify these terms, let us assume a set of observations of the random variable x is avail-
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able from measuring the true value µx of a quantity. The observations are considered
accurate, or equivalently unbiased, if [35]:

E{x} = µx, (2.23)

where E{·} is the mathematical expectation operator. Therefore, the accuracy of a set
of observations is defined as their closeness to the true quantity. An inaccurate set of
observations may be formulated as E{x} = µx + ε, where ε denotes the magnitude of
the bias with the condition E{ε} 6= 0.

The precision is concerned with variance, which for the same assumptions as above
is defined as [35]:

σ2
x = E{(x− µx)

2}. (2.24)

According to Equation 2.24, the variance of x, symbolized as σ2
x , describes the degree

of dispersion of the observations with respect to µx. Therefore σ2
x depends on how

repeating the measurements generates consistent observation values. The lower values
for σ2

x indicate smaller dispersion, smaller variance and consequently higher precision.
In this thesis, the term accuracy is only used when an external reference data or a

ground truth is available for validation. Otherwise no conclusion about the accuracy of
the observations or estimates can be made and therefore the statistical analysis will be
restricted to precision only.

2.3.2 Parameter Estimation

Parameter estimation is at the core of many engineering problems. In the following,
two common approaches for estimating unknown parameters from an overdetermined
system of equations are briefly introduced. A distinction regarding their robustness
with respect to outliers is made, which will be later utilized in Section 4.4.

Let us assume that an estimate of an unknown vector xn×1 is desired. With the knowl-
edge of the design matrix Am×n and the observation vector ym×1, the functional model
of the problem is written as [35]:

y = Ax + v, (2.25)

where vm×1 = y− Ax is the vector of residuals. Assuming that A has full rank and
m ≥ n (overdetermined system), the estimation of unknowns is commonly carried out
by minimizing the (weighted) sum of the square of residuals known as the (weighted)
least squares or l2-norm minimization [36]:

x̂l2 = arg min
x

{
||y−Ax||l2W

}
(2.26)

with W being the weight matrix of observations. Equation 2.26 gives the unique solu-
tion of the problem, which guarantees unbiasedness and minimum variance when W
is chosen equal to the inverse of the covariance matrix of the observations [35]. How-
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ever, the aforementioned properties of the least squares method are only valid when
observations are only influenced by random errors following a normal distribution. If
multiple observations are affected by gross errors (outliers) to cause the errors follow a
non-Gaussian and heavily tailed distribution, parameter estimation based on l2-norm
minimization is far from optimal [37]. The reason lies on the objective function de-
scribed in Equation 2.26, which inherently gives more weight to outliers with large
residual values rather than normal observations in the minimization process. There-
fore, l2-norm minimization is not robust in such cases due to the high sensitivity of the
estimator toward outliers.

In order to ensure robustness from the system of equations outlined in Equation 2.25
an estimate of x can be obtained by minimizing the (weighted) sum of the absolute
residuals [37]:

x̂l1 = arg min
x

{
|y−Ax|l1w

}
(2.27)

where wm×1 contains the diagonal elements of W. Unlike least squares similar residual
weights are used while solving Equation 2.27. This means l1-norm adjustment does
not magnify the effect of outliers. Therefore, it facilitates less biased estimation of the
unknown parameters compared to least squares when there are gross errors in the ob-
servations, although the solution does not necessarily have the minimum variance [38].
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3 State-of-the-art

3.1 Absolute 2-D Positioning Using SAR

The imaging capability of spaceborne SAR sensors and their ability to provide high
precision relative measurements, using SAR interferometry, have been at the center of
interest of the SAR community for decades. The pixel localization accuracy of SAR
however, was not fully studied and exploited until a few years after the launch of high
resolution satellites: TSX and COSMO-Skymed. In 2011, the SAR imaging geodesy
method was introduced, which has enabled high precision 2-D absolute positioning of
SAR images by exploiting the highly precise orbit of TSX [15] and by using correction
techniques employed commonly in the field of geodesy [13].

In the following, the theoretical aspects as well as requirements and correction method-
ologies of imaging geodesy are treated along with summarizing the recent develop-
ments of the method.

3.1.1 SAR Imaging Geodesy

Following the notations in Chapter 2, a point target located within the pixel (li,pi), in
a SLC, is characterized with the biased azimuth and range times denoted by t′i and
τ′i , respectively. Considering the most prominent factors causing systematic errors, the
timings can be written as:

t′i = ti + ∆tO
i + ∆tG

i + ∆tcal (3.1)

τ′i =
2Ri

c
+ ∆τO

i + ∆τ I
i + ∆τT

i + ∆τG
i + ∆τcal , (3.2)

where ti is the true zero-Doppler time of the scatterer in seconds and Ri is the abso-
lute geometric distance from the satellite to the center of the pixel in meters. The error
terms ∆tO

i and ∆τO
i denote the orbit inaccuracies and ∆tG

i and ∆τG
i include the geody-

namic effects on range and azimuth timings, respectively, while ∆τ I
i and ∆τT

i are the
ionospheric and the tropospheric delays on range timings. The geometrical calibration
constants in azimuth and range are denoted by ∆tcal and ∆τcal , respectively. The mag-
nitude of individual effects in Equations 3.1 and 3.2 can be scaled to units of length by
multiplying the range error terms with c/2 and the azimuth error terms with the beam
velocity of the satellite (for TSX ≈ 7050 m/s).

Assuming that the goal is to estimate and remove the error terms of the mentioned
point target, the imaging geodesy approach relies on the following requirements and
the procedures:
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• The accurate knowledge of the the SAR satellite’s orbit through high precision
orbit determination.

• High precision calibration of SAR instrument timings and accurate processing of
SAR images into zero-Doppler geometry.

• High precision sub-pixel extraction of the point target response from correspond-
ing SLC images through Point Target Analysis (PTA) and converting them to
radar timings.

• Correction of external geodetic and atmospheric errors using available auxiliary
data at the location and the time of the corresponding point target.

These items are linked with the limiting factors of Equations 3.1 and 3.2. In the follow-
ing the error sources and the correction methods are described in more detail. The PTA
procedure is not treated here and the interested reader is referred to [20] for the theory
and to [39] for the method used in this thesis.

3.1.1.1 Orbit Accuracy

The accurate knowledge of orbit is an important requirement for imaging geodesy. The
science orbit products of TSX have a 3-D accuracy of 4.2 cm as reported in [15]. This
level of accuracy has been further improved to 1-2 cm by inclusion of models taking
into account the solar radiation pressure and improved atmospheric density, and the
use of sophisticated gravity field models [40]. These orbit solutions have been also
enhanced by considering Global Navigation Satellite System (GNSS) ambiguity fixing
and modeling of non-gravitational forces, and were validated using satellite laser rang-
ing in [41] by analyzing a time-series of orbit solutions in a period of six years. If this
level of accuracy on orbit determination is achieved, then the orbit effects do not play a
significant role in degrading the accuracy of radar timings. In this thesis, since the en-
hanced orbit solutions were used, the orbit effects on 2-D and 3-D localization accuracy
are deemed negligible.

3.1.1.2 Atmospheric Delays

The variable τi in Equation 3.2 is delayed due to the propagation of the SAR signal
through different layers of atmosphere. The delay includes an ionospheric and a tropo-
spheric component. For the TSX sensor, these effects and their impact on geolocation
of Corner Reflector (CR)s were initially studied in [13], [14], [42], [43].

The frequency-dependent ionospheric delay at zenith is in the order of couple of cen-
timeters for X-band SAR systems, if typical ionospheric conditions are assumed, and
is inversely proportional to the cos θi, with θi denoting the local incidence angle of the
radar beam [13]. This effect is corrected on base of the global Total Electron Content
(TEC) maps [13] that use the single layer model as mapping function [44]. Using the
orbit information of the SAR satellite, the point at which the line of sight of the satellite
passes through the ionospheric layer to the point of interest is analytically localized.
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The zenith TEC value is then determined at the location of the aforementioned point
through spatial and temporal interpolation of the TEC maps [39], [45], [46] and is pro-
jected onto the radar LOS. At the final stage, an empirical weighting factor of 75% is
used to account for the fact that TSX signals travel only partly through the ionosphere
[18].

The tropospheric delay is considered the most prominent error source for TSX range
measurements. Its magnitude can reach to over 4 m depending on the weather con-
ditions, the target height and the steepness of θi [4], [13]. The effect of troposphere is
computed through the 4-D integration of numerical weather data from European Cen-
ter for Medium-Range Weather Forecasts (ECMWF). The method extracts the dataset
from a local database, converts it to a conventional geographic coordinate system, per-
forms a 3-D interpolation for defined integration points and eventually integrates the
refractivity index along the integration path in the slant-range direction from the point
of interest to the satellite [17], [47].

The ionospheric and tropospheric correction values are converted into timings ∆τ I
i

and ∆τT
i and are subtracted from the initial measurement τ′i in Equation 3.2.

3.1.1.3 Geodynamic E�ects and Plate Tectonics

The Geodynamic effects concern phenomena, which deform the surface of the earth
and as a result change the position of targets on the ground [48]. The main contribu-
tors to geodynamic effects, namely the solid earth tides (SET), ocean tidal loading and
pole tides were first considered for TSX range timings in [13]. The magnitude of SET
is around 40 cm for the radial component and several centimeter for the horizontal
components while the sum of other factors can affect the range measurements by sev-
eral centimeters [13]. In order to improve the localization precision into sub-centimeter
regimes, geodynamic effects with smaller magnitudes, such as atmospheric pressure
loading, ocean pole tides and atmospheric tidal loading were further modeled in [49].
All of the effects, except for atmospheric pressure loading, are calculated according to
the state-of-the-art models of the International Earth Rotation and Reference Systems
Service (IERS) 2010 convention [48].

Apart from these periodical effects, the impact of cumulative linear shifts caused by
plate tectonics, in the order of centimeters per year, are considered when aiming at cen-
timeter regime localization accuracy [14], [17], [39], [47]. The plate tectonics should be
considered because the reference frames within which the SAR images and the satellite
orbits have been defined are different [14].

The corrections mentioned above are all projected into the slant range and azimuth
coordinates and are subtracted from measured t′i and τ′i in Equations 3.1 and 3.2. For
more in depth treatment of the geodynamic effects the interested reader is referred to
[17], [48] and their references.

19



3 State-of-the-art

3.1.1.4 Satellite's Internal E�ects and Calibration Constants

Important requirements for achieving 2-D localization in the centimeter and millimeter
regimes are the accurate processing of SAR images to zero-Doppler geometry as well
as precise measurement and annotation of internal timings. These errors affect both t′i
and τ′i with magnitudes in the decimeter regimes [13]. The additional traveling time
of the radar pulse through internal cables of the instrument, both in transmission and
reception, influences τ′i [19]. For t′i, the coarse clock rate which is used for annotating the
raw acquisition time is one of the biggest limiting factors. In [50], the Instrument Fine
Time (IFT) correction approach has been described in order to improve the annotation
of the raw acquisition times. Another error source is the stop-go approximation, which
assumes a static sensor during radar pulse transmission and reception. This introduces
mainly azimuth timing errors with small secondary effects in range. The correction of
the approximation is performed during azimuth focusing as is explained in [51]. All the
mentioned factors are taken into account for TSX using the latest version of TerraSAR-X
multimode SAR processor (TMSP) [51].

The variables ∆tcal and ∆τcal compensate for the remaining effects that are not catego-
rized in the previous error classes. They are evaluated after mitigating all the external
errors and satisfying all the mentioned requirements regarding orbit accuracy and in-
ternal satellite dynamics. For this purpose, the difference between the radar timings
measured from the SAR image and the expected values, surveyed with GNSS or from
terrestrial surveys, yields the calibration constants. In this thesis, the used calibration
constants are the results from long-term CR campaigns reported in [18], [19], [46].

3.1.2 Recent Advances in Imaging Geodesy

Using TSX, the imaging geodesy technique is capable of retrieving absolute 2-D co-
ordinates of well-detectable point scatterers, like CRs, [13], [39] as well as providing
accurate relative measurements by employing incoherent correlation of multiple SAR
images [13]. The CR campaigns are useful for providing new geometrical calibration
constants as has been demonstrated in [18], [39], [46]. Absolute range measurement
ability of TSX and TanDEM-X has been exploited for maritime purposes in [52], [53].
The world-wide reproducibility of imaging geodesy was reported in [54] and the global
applicability of the method has been enhanced by introducing tropospheric correction
methods based on numerical weather data [17], [47], [55]. An operational processor,
called SAR Geodesy Processor (SGP), was introduced in [56], which delivers the de-
sired correction values on a coarse grid imposed on SAR images.

Geodynamic and atmospheric correction methods similar to the ones described in
this Section, were also tested on Sentinel-1 stripmap products during its commissioning
phase in [57] where the geolocation accuracy of SLCs was reported to be 6 cm in range
and 17 cm in azimuth, respectively. These studies are still ongoing on interferometric
wide swath (IW) products with preliminary results reported in [58]. The most recent
results of Sentinel-1 geolocation accuracy using an array of 40 CRs in Australia was
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reported in [59], which demonstrated measurements with precision of 6 cm in range
and of approximately 28 cm in azimuth for both Sentinel-1 A and B IW products.

Apart from the above-mentioned developments, which mainly depend on synthetic
bright scatterers, an approach similar to imaging geodesy was combined with single
stack PSI results in [60] and [61] for improving geocoding accuracy of natural Persistent
Scatterer (PS) and target association.

3.2 Absolute 3-D Positioning Using SAR

The SAR imaging geodesy technique, explained in Section 3.1, is a novel approach for
absolute localization of bright scatterers only in 2-D. In order to retrieve the 3-D position
of a point target, the visibility of the scatterer should be guaranteed in at least a second
SAR image that is acquired from a different viewing geometry. This is the fundamental
assumption that InSAR [2], radargrammetry [62] and stereo SAR [19] use for accessing
the height of the target.

Stereo SAR, similar to radargrammetry, exploits only the amplitude information of
the SAR images and therefore is not affected by the major difficulties in InSAR such as
coherence loss and the phase unwrapping procedure. Unlike radargrammetry, which
operates on homologous patches of the stereo image configuration for elevation recon-
struction, stereo SAR directly estimates the 3-D position of single PS. It is important
to note that unlike InSAR, stereo SAR and radargrammetry allow for the retrieval of
absolute 3D coordinates without the use of a reference point. However, the precision
of height estimation using these methods depends on the spatial resolution of the SAR
images and is often much lower than the precision of reconstructed heights using In-
SAR.

In the following, the mathematical formulation and the estimation procedure of stereo
SAR are described. The method used in this thesis is based on [19] and is called geodetic
stereo SAR because the timing coordinates of targets involved in the stereo processing
are a priori corrected using SAR imaging geodesy. For different approaches of tackling
the stereo SAR problem the reader is referred to [63]–[65].

3.2.1 Geodetic Stereo SAR

We assume that for the pixel (li,pi) in a SLC, the peak of the response of a dominating
point scatterer is extracted by PTA and is converted to radar timings t′i and τ′i . Further-
more, the unbiased timings of the target ti and τi are obtained by applying the correc-
tions outlined in Subsection 3.1.1. Note that at this stage, the timings of a particular
target are extracted from multiple SAR images separated in the temporal domain. The
relation between these 2-D radar time coordinates of the target xTi = (ti, τi) and their
corresponding 3-D Cartesian coordinates XTi =

(
Xi, Yi, Zi

)
is defined by the Range-

Doppler equation system [20]:

21



3 State-of-the-art

~̇S(ti) ·
(
~S(ti)−~Ti

)
∥∥∥~̇S(ti)

∥∥∥ ·
∥∥∥~S(ti)−~Ti

∥∥∥
= 0 (3.3)

∥∥∥~S(ti)−~Ti

∥∥∥− c · τi

2
= 0 (3.4)

with~S(ti) and ~̇S(ti) being the position and the velocity vector of the satellite relative to
taz, and τrg being the two-way traveled time from the satellite to the target. The variable
taz is implicitly included in Equation 3.3 relating the state-vector of the satellite to the
time of the acquisition via a polynomial model [19]. Equation 3.4 defines a sphere cen-
tered on ~S(ti) which reduces to a circle perpendicular to the satellite trajectory when
coupled with the zero-Doppler plane described in Equation 3.3. Therefore XTi can be
retrieved by including another set of timing observations from a different satellite po-
sition which evaluates the intersection point of the two circles, see Figure 3.1.

The estimation of the coordinates is carried out by means of least squares after lin-
earization of the observation equations [36]. No initial weights are allocated to the
timing observations [18], [19]. The estimation however is iterated and based on the
residuals of each iteration, variance component estimation [19] is performed to allocate
a common weight for all the range timings and a common weight for all the azimuth
timings of the same target extracted from all available SAR images. The result is the 3-D
coordinates of the target and a posterior covariance matrix of the estimates. The latter
can be transformed to any frame orientations, for instance local East, North, Height, to
be visualized as error ellipsoids [36]. The Precision of the estimated 3-D coordinates
depends on the Signal-to-Clutter-Ratio (SCR) of the target, the precision of the external
radar timing corrections, the separation in the viewing geometries and the number of
acquisitions.

3.2.2 Recent Advances in Stereo SAR

The first results on absolute 3-D localization of CRs by means of geodetic stereo SAR
was reported in [66], in which 3-D precision better than 4 cm and an absolute accuracy
of 2-3 cm were achieved using TSX very high resolution spotlight products. Although
3-D positioning using multi-aspect TSX images had been previously demonstrated in
[65], [67], [68], the results in [66] were unique in the sense that the stereo processing was
carried out on thoroughly calibrated range and azimuth timings. The method was also
used for 3-D positioning of multi-directional radar reflectors using both TSX high res-
olution and staring spotlight images in [69] and was extended to a differential form in
[70]. The applicability of geodetic stereo SAR not only on CRs but on opportunistic non-
ideal scatterers such as PS in an urban area was demonstrated in [19], with reported 3-D
precision values better than 10 cm. This paved the way for new geodetic applications
using SAR such as secular ground movement estimation using natural PS [71], [72],
high precision mapping of road networks (DriveMark) [73], and highly precise auto-
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(a) Cross-heading (b) Same-heading

Figure 3.1: Localization of a point target (red dot) from (a) cross-heading and (b) same-heading
satellite tracks using stereo SAR. The satellites are shown by black dots; their tra-
jectories are presented by dashed lines and the baselines are depicted by solid lines
between the satellite positions. The black circles are defined by the range-Doppler
equations and their intersection leads to the 3-D position of the target.

matic SAR GCP generation using TSX [74]–[77] and using COSMO-SkyMed [78]. A
combination of stereo SAR and InSAR for accurate DEM generation using TanDEM-X
spotlight data has been used in [79].

3.3 Persistent Scatterer Interferometry (PSI)

The PSI technique was proposed in [6] in the late 1990’s. It is a single-master multi-
temporal extension of conventional InSAR that extracts phase-stable scatterers, the so-
called PS, from a stack of SAR images and restricts the estimation of topography and
deformation parameters to only these targets [6], [7]. The usage of multiple images in-
stead of only two and considering only PS for the estimation allows PSI to overcome
the main limitations of InSAR, namely atmospheric disturbances [4] and geometric and
temporal decorrelation [30]. The PSI technique is highly effective in urban areas be-
cause of the availability of a high density of PS. In particular, coupling the technique
with high resolution images, such as the ones from the TSX spotlight mode, produces
on average between 40,000 to 100,000 PS per square kilometer [11], [80], which allows
for detailed infrastructure monitoring.

In the following more details about PSI and its developments relevant to urban mon-
itoring are given.

3.3.1 PSI Processing Sequence

Several implementations of PSI, suitable for different applications, are available. For a
full review of these techniques the reader is referred to [81]. In the following, the most
common processing steps of the method are listed and briefly explained.

1. Differential interferogram formation: From a stack of N + 1 coregistered SAR im-
ages, a master acquisition is selected. Subsequently N interferograms are com-
puted, while their topographic phase components are removed using a reference
digital elevation model (DEM).

23



3 State-of-the-art

2. Reference network construction: Scatterers presumed to be the most phase-stable
ones are selected. The detection can be carried out using various methods, such
as thresholding on the Amplitude Dispersion Index (ADI) [6] or on the signal-to-
clutter ratio (SCR) [82]. These PS candidates are connected to form a reference
network. Through the PS double-difference phase measurements, i.e., difference
in time and space, differential topography and differential motion parameters are
estimated on arcs.

3. Atmospheric phase estimation: The differential topography estimates are inte-
grated with respect to an arbitrarily chosen reference point so that the topographic
phase components are removed from the interferometric phases. The remaining
phase contributions include deformation, atmosphere, and noise. Then a low-
pass filtering in the spatial domain and a high-pass filtering in the temporal do-
main extracts the atmospheric component, which is interpolated over the entire
scene and is subtracted from the differential interferograms.

4. PS densification: Additional PS are computed from the corrected differential in-
terferograms. These PS are connected to the nearest point(s) in the reference net-
work and their modeled parameters are estimated.

5. PS geocoding: The DEM height of each PS is added to its differential height es-
timate. The radar timing of each PS and its updated height are geocoded using
satellite orbit and a reference ellipsoid to represent the PS coordinates in a com-
mon geodetic coordinate system.

3.3.2 Recent Advances in PSI

For each of the steps delineated above, numerous improvements have been suggested
in the literature. In [83], a geometry-based SAR image coregistration method was de-
veloped to match PS from different images and hence avoid cross-correlation in the
inteferogram generation part. In [84], [85], numerical weather data were used to simu-
late and mitigate tropospheric delay and provide aid in the master selection step. Apart
from the reference PS technique which uses ADI, PS detection has been carried out by
evaluation of target SCR [7], [82], by analyzing ADI plus spectral phase diversity [86]
and by using criteria based on both amplitude and phase, which proved to be effective
in non-urban areas [87]. In the reference network step, [7], [29] consider the geometry
of the connections among arcs to construct a redundant reference network, while dense
differential PS pairs were used in [88]. To improve the precision of the estimated pa-
rameters of PS in the reference network and define quality measures, the Least-Squares
AMBiguity Decorrelation Adjustment (LAMBDA) method [89] was adapted to be used
in PSI [90] which was further implemented in the STUN algorithm [7]. In terms of net-
work inversion, to robustly retrieve the topography and deformation estimates of the
PS in the reference network, a l1 norm outlier rejection scheme was proposed after the
LAMBDA estimation [91]. Apart from the default linear displacement model assumed
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in the reference PS technique [6], the inclusion and estimation of seasonal ground mo-
tion were investigated in [92] for medium resolution data and in [80] for high resolution
spotlight TSX images. For a detailed comparison of widely used PSI techniques, the in-
terested reader is referred to [29].

There have been also major developments regarding applications exploiting the PSI
method. Using medium resolution SAR data, accurate urban DEMs were generated in
[93] and their sub-metric height accuracy was validated in [94]. The localization of PS
and associating targets to real objects have been investigated in [61], [95], [96]. This
aspect has been also studied extensively using high resolution spotlight TSX data in
[11], [97], which demonstrated the concept of single-building deformation monitoring
using PSI, and in [98] to evaluate PS localization accuracy at building facades.

3.4 Tomographic SAR Inversion (TomoSAR)

TomoSAR can be considered as one of the most advanced InSAR stacking techniques,
especially for urban monitoring. Similar to PSI, it is a single-master method. How-
ever, the main difference with PSI is that, instead of only two complex SAR images for
phase-difference exploitation, TomoSAR uses multiple SAR images to reconstruct the
full reflectivity profile of each pixel along the cross-range direction [8]. Therefore, To-
moSAR is capable of resolving the layover issue (see Subsection 2.1.1) and leads to the
separation of different scattering mechanisms within a single pixel [9].

Since our focus in this thesis is on urban areas, in the following the point scatterer-
based TomoSAR method is explained, for which the problem can be formulated with
a deterministic model. For tomographic SAR inversion of volumetric and distributed
scatterers with applications mostly in forest mapping, the interested reader is referred
to [8], [99]–[101], to name a few examples.

In the following the imaging model of differential TomoSAR and the workflow for re-
trieving the elevation and deformation estimates of multiple scatterers using the method
are described. The section is concluded with reviewing the most recent advances in To-
moSAR for urban area mapping.

3.4.1 TomoSAR Imaging Model and Work�ow

The TomoSAR imaging model for a case in which, three scattering contributions from
the ground, the building facade and the building roof are mapped within one azimuth-
range pixel, is visualized in Figure 3.2. We assume a stack of coregistered SLCs ac-
quired in a repeat-pass configuration is available. Within the far-field approximation,
the complex-valued measurement gn at the pixel (li,pi) is essentially the Fourier trans-
form of the elevation s-dependent reflectivity profile γ of that pixel sampled at the
corresponding elevation frequency ζn which, considering the temporal progression of
the scatterers, for the nth acquisition at the time tn (n = 1, · · · , N), is written as [10],
[102]:
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Figure 3.2: Imaging geometry of TomoSAR. The input images are acquired from different satel-
lite positions with a total aperture length of ∆b in elevation. Three backscatter-
ing contributions from the ground, the building facade and the building roof are
mapped within one azimuth-range pixel and are visualized with small blue rectan-
gles. TomoSAR estimates the reflectivity profile of the mapped pixel along s for a
dicretized elevation extent ∆s and subsequently separates the layovered scatterers.

gn =
∫

∆s

γ(s) exp
(
− j2π

(
ζns +

2d(s, tn)

λ

))
ds, (3.5)

where ∆s is the elevation extent of the object, λ is the wavelength, and ζn = −2bn
λR where

R is the slant range and bn denotes the perpendicular baseline. The variable d(s, tn) is
the relative LOS motion as a function of elevation and time, which can be modeled by
a linear combination of M base functions qm(tn) as [102], [103]:

d(s, tn) =
M

∑
m=1

cm(s)qm(tn), (3.6)
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where cm(s) is the corresponding motion coefficient to be retrieved by differential To-
moSAR. The relevant motion models to be considered in urban areas are linear and sea-
sonal (thermal) deformation (M = 2) which, by defining the mth temporal frequency
component at tn as ηm,n = 2qm(tn)

λ , are characterized as follows [102]:

• linear motion with η1,n = 2tn
λ and the coefficient c1(s), which stands for the LOS

velocity v as a function of s.

• seasonal motion with η2,n = 2 sin(2π(tn−t0))
λ and the coefficient p2(s), which stands

for the amplitude of the periodic motion a while t0 is the initial phase offset. Note
that tn and t0 should be specified in year. Alternatively, a temperature-dependent
motion can be considered.

The differential TomoSAR imaging model described in Equation 3.5 is further dis-
cretized along s and the motion parameters space (c1,c2). The discrete system model
with the presence of noise ε is written as [103]:

g = Rγ + ε (3.7)

where g is the measurement vector with N elements, γ is the reflectivity function to
be reconstructed and R is an irregularly sampled mapping matrix. Since the dimen-
sion of γ is larger than g, Equation 3.7 represents an underdetermined system of equa-
tions, which is solved through regularization. The TomoSAR results of this thesis have
been obtained through l2-norm regularization of γ, using Singular Value Decomposi-
tion (SVD) with Wiener filtering on R [12]:

γ̂ = arg min
γ

{
‖g−Rγ‖2

2 + αl2 ‖γ‖2
2

}
, (3.8)

where αl2 is the regularization parameter. For a list of more advanced spectral estima-
tors commonly used to invert Equation 3.7, the reader is referred to [103].

With the theoretical background of differential TomoSAR already explained, the work-
flow of the method can be described in the following three steps:

1. Differential inteferograms are generated with respect to a single master similar to
PSI. The atmospheric phase is mitigated from each SLC. Both the amplitude and
the differential phase data are the input for TomoSAR processing.

2. The reflectivity profile γ of each pixel is reconstructed using Equation 3.8 or more
advanced techniques if super resolution in elevation is desired.

3. The recovered γ̂ of the previous step is used for the estimation of elevation and
the deformation parameters of multiple scatterers within each pixel through the
detection of peaks of the reflectivty profile.

In the following, the recent advances on spaceborne differential TomoSAR, mostly rel-
evant to the utilization of different spectral estimation techniques (Step 2), is summa-
rized.
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3.4.2 Recent Advances in TomoSAR

The first tomographic experiments on real SAR data of an L-Band airborne system was
reported in [8] in which an application of the method for forest height mapping was
demonstrated. The problem of retrieving the radar reflectivity of multiple overlaid
phase centers, taking into account the statistics of speckle, was addressed in [104]. The
3-D focusing of multipass SAR data was treated in [9] where the authors employed a
truncated SVD approach for reconstructing γ.

The differential form of SAR tomography was introduced in [10] by taking into ac-
count the linear motion of multiple scatterers within a pixel. Practical demonstration
of multiple scatterer detection using medium resolution ERS data and tracking their
linear deformation were shown in [105]. The differential TomoSAR system model was
extended in [102] to accomodate nonlinear motion models.

With the launch of high resolution SAR systems like TSX, the monitoring of urban
areas became increasingly on focus. The usage of SVD with Wiener filtering was first
shown in [12] using TSX spotlight products. This has been followed by introducing the
compressive sensing based algorithm, SL1MMER, in [106] which retrieves γ by l1-norm
regularization. The robustness and the super resolution capabilities of SL1MMER have
been studied in [107]–[109] and a fast algorithm for performing the inversion has been
proposed in [110]. The SL1MMER algorithm has been also extended to exploit group
sparsity in urban areas (M-SL1MMER), which produces similar results to SL1MMER
with significant smaller number of data takes [111].

As these methods and in general TomoSAR algorithms are computationally expen-
sive, the combination of PSI and TomoSAR has been also proposed in [88], [112].

3.5 Coregistration of Multi-Aspect InSAR Data

In the SAR community, the coregistration of multi-aspect InSAR data to produce a sin-
gle detailed 3-D product is referred to as point cloud fusion. The fused result has a few
advantages compared to single-aspect point clouds such as increase in the number of
scatterers, recovering the radar shadow segments of each individual point cloud and
enabling decomposing the inherent 1-D deformation of InSAR products into 3-D. For
the latter two points, the availability of SAR images of cross-heading tracks is necessary.

In the following a short review on advances of point cloud fusion and motion de-
composition based on multi-aspect data is provided. The review does not address the
topic of multi-aspect InSAR DEM fusion [113]–[115] or multi-aspect SAR interferogram
fusion [116] and treats the motion decomposition problem only for the case that SAR
images from at least three nonplanar acquisition geometries are available. For a full re-
view on different methods to generate 3-D InSAR deformation maps, using amplitude
tracking techniques or a combination of InSAR and GNSS, the reader is referred to [34],
[117].
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3.5.1 InSAR Point Cloud Fusion

Relevant to PSI, one of the first fusion results on ERS data was presented in [118], which
was based on the cross-correlation of binary images of multi-aspect geocoded PSI point
clouds over Milan, Italy. Due to the usage of medium resolution data and the simple
method to find a coarse 2-D shift between the point clouds, the precision of the method
has been reported to be 5-10 m [118].

Another notable approach was reported in [119], where the authors transformed
multi-track PSI point clouds to a common datum defined by a reference track. They
used the radar position of PS fields as well as their multi-image amplitude maps to
estimate the datum parameters and avoided geocoding each PSI stack separately. Al-
though the method is suitable for medium resolution data over flat areas, it is not us-
able for PSI results of high resolution products and also does not remove the vertical
and horizontal bias of PS locations caused by the unknown height of the reference point
of the reference track [97].

The fusion method described in [25] resolves the aforementioned problem of the ref-
erence point and has been used on multi-aspect PSI point clouds reconstructed from
TSX high resolution spotlight images. It is based on a least-squares matching scheme
that minimizes the distances between assumed identical points of two or more point
clouds, from either adjacent or opposite viewing geometries [25], [97]. This method
will be later explained in more detail in Subsection 4.2.1.

In [26], an alternative feature-based fusion algorithm is proposed, which is based on
automatic detection and matching the so-called L-shapes of high rise buildings from
InSAR point clouds. This method is computationally more efficient than the one intro-
duced in [25] due to the reduced number of points in the matching step and is highly
suitable for TomoSAR point clouds as the density of facade points are high.

In the airborne SAR domain, a radargrammetric approach using a quadruple CR as
a single GCP for coregistration of two pair of cross-heading data sets were used in
[120] and a method similar to the one described in [116] was proposed for multi-aspect
multi-baseline InSAR over urban areas in [121].

3.5.2 1-D to 3-D Motion Decomposition

The availability of a fused InSAR product from multi-aspect data stacks enables tack-
ling one of the major problems in InSAR namely decomposing the 1-D deformation
into their original 3-D displacement vector. The theoretical aspects of the problem have
been discussed in [122], [123].

In [124], two right-looking cross-heading pair of interferograms were used to recover
the vertical and the East-West deformation, caused by an earthquake, while ignoring
the North-South deformation.

For a special case, in regions with latitudes greater than 80◦, the full 3-D deformation
of a glacier, considering also the North-South component, was reconstructed using two
pairs of cross-heading data stacks of RADARSAT in [33].
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3 State-of-the-art

The first result on small-scale deformation monitoring of single buildings was re-
ported in [11], where the analysis was performed on a detailed fused TSX PSI point
cloud over Berlin, Germany. In this study both the linear displacement rate and the
seasonal deformation were decomposed to vertical and horizontal components while
neglecting the deformation in the North-South direction.
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4 Summary of the Contributions

The research objectives of this thesis, outlined in Section 1.2, have been addressed in
five peer-reviewed journal papers that are found in the appendices. In this chapter, a
summary of the articles is provided. The main addressed contributions are:

A) The proposal of a framework for automatic extraction of GCPs from multi-aspect
high resolution SAR data.

B) The first demonstration of geocoding error correction of InSAR point clouds with-
out the use of auxiliary positioning data.

C) The production of absolute 3-D point clouds and performing geodetic point cloud
fusion by combining SAR geodetic techniques and InSAR-based approaches.

D) The first attempt for 1-D to 3-D motion decomposition exploiting multi-aspect
TomoSAR point clouds.

This chapter continues with an introduction to the test sites as well as the SAR data
used in this thesis in Section 4.1. Regarding the contributions, A) is summarized in
Section 4.2 and is treated in detail in Appendix A.1. A summary of B) and C) is re-
ported in Section 4.3 and in Appendix A.5 with demonstrations on PSI and TomoSAR
point clouds in Appendices A.2 and A.3, respectively. Finally, the work related to D) is
explained in Section 4.4, which is a summary of the article presented in Appendix A.4.

4.1 Data Set and Test Sites

The developments of this thesis have been tested on three data sets over Berlin, Ger-
many and over Oulu located in Finland. The used SAR images are all from the high
resolution spotlight mode of TSX with a range bandwidth of 300 MHz. The acquisition
parameters of the SAR images are summarized in Table 4.1.

The Oulu data set includes a total of 177 images in four stacks, two acquired from
ascending orbit tracks and two acquired from descending ones. The coverage of each
stack is marked with colored rectangles in Figure 4.1. Four PSI point clouds were gener-
ated from the Oulu data using the PSI-GENESIS [85] of the German Aerospace Center
(DLR). The point clouds were used in Section 4.2 for automatic GCP generation and in
Subsection 4.3.2 for the demonstration of geodetic point cloud fusion.

The Berlin data set also includes four stacks of SAR images acquired from two pairs
of cross-heading orbits similar to the ones from Oulu. The extent of Berlin data stacks
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Figure 4.1: Optical image of Oulu taken from Bing images. The mean scene coverage of the TSX
images are marked with colored rectangles.

Table 4.1: Acquisition parameters of the processed stacks of TSX high resolution spotlight im-
ages of Berlin and Oulu.

Processing Scenario Beam Number Period Center θ Average α Orbit Direction Number of Images

Berlin TomoSAR

42 2008−2013 36.1◦ 190.6◦ Descending 109
57 2008−2013 41.9◦ 350.3◦ Ascending 102
85 2008−2013 51.1◦ 352◦ Ascending 111
99 2008−2013 54.7◦ 187.2◦ Descending 138

Berlin PSI 42 2010−2015 36.1◦ 190.6◦ Descending 107
57 2010−2015 41.9◦ 350.3◦ Ascending 102

Oulu PSI

30 2014−2016 30.9◦ 346.1◦ Ascending 44
54 2014−2016 41.1◦ 191.4◦ Descending 44
69 2014−2016 46.2◦ 350◦ Ascending 38
94 2014−2016 53.4◦ 187.5◦ Descending 51

and the underlying optical image of the city is shown in Figure 4.2. The data is cate-
gorized in two groups with two different time spans. The first group includes a total
of 460 images from all stacks, which were used to produce four TomoSAR point clouds
using the Tomo-GENESIS [125] of DLR. The TomoSAR point clouds are the basis of the
work carried out in Sections 4.3 and 4.4. The second group consists of 214 images from
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4.2 Automatic GCP Extraction from SAR Data

Figure 4.2: Optical image of Berlin taken from Bing images. The mean scene coverage of the
TSX images as well as the extent of the reference LiDAR data is visualized. The test
site used for localization accuracy analysis in Section 4.3 is also marked.

Beam42 and Beam57, acquired from 2010 to 2015, which were generated using the latest
version of the TSX SAR processor and were processed to obtain two PSI point clouds.
These products were used in Section 4.3.

In addition to SAR data, an aerial optical image with pixel ground spacing of seven
centimeters is also available for Berlin as well as an accurate LiDAR point cloud. The
latter serves as reference for 3-D localization accuracy analysis of InSAR point clouds.
For Oulu, a GIS road network data of the city is available that is used for GCP candidate
detection in Section 4.2. Furthermore, four frames of ortho-photo aerial images of Oulu
are available for visualization purposes.

4.2 Automatic GCP Extraction from SAR Data

A framework for automatic identification and positioning of SAR-based GCPs from
urban areas has been introduced in [77], which can be found in Appendix A.1. The pro-
cessing chain requires multi-aspect SLC SAR images of the investigated scene and their
corresponding product annotation files as input. It delivers absolute 3-D coordinates
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of the GCPs as well as their posterior standard deviations as output. The algorithm
consists of five major parts (for detailed flowchart refer to Appendix A.1):

1. Identification of identical scatterers visible in multi-aspect SAR images.

2. Precise extraction of scatterers’ azimuth and range positions from SAR images at
sub-pixel level.

3. Scatterer visibility check and initial removal of outliers from time series of phase
noise.

4. Correction of radar timings for all the perturbing signals using the SAR imaging
geodesy method.

5. Estimation of the 3-D absolute coordinates of the scatterers using stereo SAR.

The innovations of the framework are mostly related to the first and the third steps,
which are briefly described in the following in Subsections 4.2.1 and 4.2.2. Further-
more, a practical demonstration of the positioning of large number of GCPs is given in
Subsection 4.2.3.

4.2.1 Detection of Identical PS in Multi-Aspect SAR Images

There are two types of PS in urban areas, which can be considered as suitable GCP can-
didates. One includes the cluster of facade PS, which are assumed to originate as triple
bounces from window corners of buildings, see Figure 4.3a. These PS are available
in large numbers and form the basis of GCP generation using SAR images of same-
heading orbit tracks. The other type of PS includes the isolated focused points such
as lamp poles, traffic lights and targets alike, see Figure 4.3b. These targets are valu-
able in GCP generation, as they can be recognized in SAR images from cross-heading
viewing geometries thanks to their simple reflection properties. GCPs localized from
cross-heading orbits are always preferred because theoretically their 3-D position is re-
trieved with higher precision compared to the same-heading targets.

In any of the same- or cross-heading scenarios, the task of identical scatterer detection
is challenging, and it is of course the essential prerequisite of SAR-based GCP gener-
ation. As reported in Appendix A.1, the candidate detection step is facilitated by se-
lecting identical PS from same-heading orbits relying on fusion of multi-track PSI point
clouds and from cross-heading orbits based on lamp pole detection using high reso-
lution optical data or utilizing vector road network data. These techniques are more
efficient in multi-aspect single PS matching than methods using Scale Invariant Feature
Transform (SIFT) algorithm [126] or its modifications for SAR [127], [128]. The SIFT-
based approaches are only applicable to SAR images taken from same-heading orbits
with small difference of incidence angles.
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4.2 Automatic GCP Extraction from SAR Data

(a)

(b)

Figure 4.3: Suitable candidates for SAR-based GCP generation in urban areas. (a) shows exam-
ples of facade PS marked with yellow rectangles. (b) shows examples of lamp poles
visible as bright focused isolated points within yellow circles.

4.2.1.1 Multi-Track PSI Point Cloud Fusion

In [25], a method for geometrical fusion of multi-track PSI point clouds has been pro-
posed. The fusion algorithm, which is based on the geocoded PSI point cloud solu-
tions of each geometry consists of three major parts, namely: 1) generation of initial
point correspondences, 2) restricted least squares adjustment to minimize the distance
between assumed identical points visible from different viewing geometries, and 3)
adding a range-dependent shift to all PS using the result of the previous step for the fi-
nal registration. For our task, which includes the detection of PS correspondences from
same-heading tracks the following steps have been carried out:

1. Full PSI processing and geocoding of each SAR image stack separately, which has
been performed by the PSI-GENESIS of DLR [84].
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2. Coregistration of the geocoded PSI point clouds from different viewing geome-
tries using the above-mentioned fusion algorithm. The result for two descending
stacks of Oulu, colorized with different shades of gray, is shown in Figure 4.4a in-
cluding 32000 PS correspondences visualized in yellow. The Euclidean distances
between the matched pairs vary from 1.5 m to 5 m.

3. Reduction of point correspondences to the ones with high quality and closer dis-
tance by imposing a 10 m × 10 m grid on the point cloud. Within each grid cell
only the PS pairs closer than 3 m and an ADI value lower than 0.25 [6] are chosen.
In this way the homogeneity of the distribution of GCP candidates is also guar-
anteed. The results before and after reduction for the descending stacks of Oulu
can be seen in a small area in Figure 4.4b and Figure 4.4c, respectively.

4. Radar-coding of the PS pairs obtained in the previous step to the corresponding
non-coregistered SAR images.

The result of these steps is the coarse azimuth and range coordinates of detected PS
pairs in SAR images from same-heading orbit tracks.

4.2.1.2 Template Matching on Optical Data

This method aims at the detection of identical PS from SAR images of cross-heading
orbit tracks based on the available ortho-rectified high resolution optical image of the
scene [74], [76]. It includes:

1. Preprocessing of the optical image such as smoothing, histogram equalization
and simple sharpening [129].

2. Extraction of the template image based on the shadow of an arbitrary lamp pole
visible in the optical image. The template is then correlated with the reference
image to calculate the following similarity measure for each pixel (u, v) in the
reference image [130]:

ρ(u, v) =
Σx,y

[
I(x, y)− Īu,v

][
T(x− u, y− v)− T̄

]
√

Σx,y
[
I(x, y)− Īu,v

]2 Σx,y
[
T(x− u, y− v)− T̄

]2
, (4.1)

where I(x, y) and T(x, y) denote pixel values of the reference and the template
image at (x, y), respectively, and Σx,y stands for ΣN1

x=1ΣN2
y=1 with N1× N2 being the

size of the template. The variables Īu,v and T̄ denote the mean intensity values of
the original image and the template, respectively. Equation 4.1 allows for calcula-
tion of the Normalized Cross-Correlation (NCC) value ρ(u, v), which leads to the
detection of the template location in the reference image after proper threshold-
ing.
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(a)

(b) (c)

Figure 4.4: Depiction of PS correspondence detection from SAR images of same-heading orbit
tracks of Oulu using the multi-track PSI fusion algorithm proposed in [25]. (a) shows
the geocoded descending PSI point clouds of Oulu as light and dark gray points as
well as the detected PS correspondences in yellow. (b) and (c) show a zoom-in area
of (a) marked by the red rectangle before and after imposing a 10 m grid in which
the pairs with closest distance are chosen.

3. The pixels with NCC value higher than 0.6 are selected and geo-referenced to rep-
resent the lamp poles. A nonparametric clustering using the mean shift concept
is then carried out [131]:

37



4 Summary of the Contributions

M(pi) =
Σn

j=1 pj g
(
‖pi−pj

h ‖2
)

Σn
j=1 g

(
‖pi−pj

h ‖2
) − pi, (4.2)

where pi denotes a 3-D point for which the shift vector M(pi) is calculated. pj rep-
resents the points in a neighborhood of pi, g is a kernel function with the band-
width h and ‖·‖ is the Euclidean distance operator. The process is carried out
iteratively until the length of M(pi) becomes equal or close to zero. For our ap-
plication, since in any case there will be a mismatch between the detected points
on optical data and the corresponding bright points in the SAR image, utilizing
a flat kernel in Equation 4.2 suffices. This means the algorithm is simplified by
calculating the sample mean in a specified radius of pi and shifting the desired
point towards the estimated center.

4. Radar-coding the cluster centroids, assumed to be the base of lamp poles, ob-
tained in the previous step to the corresponding non-coregistered SAR images.

5. Matching the detected lamp poles to their corresponding bright points in the SAR
images by employing the iterative closest point (ICP) algorithm [132].

An example of applying the aforementioned algorithm is shown in Figure 4.5 where 44
candidate GCPs were detected using an ascending and a descending stack of Berlin.

4.2.1.3 Vector Road Network Data

In urban areas, the cylindrical objects of our interest (lamp poles, road signs, traffic
lights, etc.) are typically located along the roads. Therefore, with the availability of
geospatial road data, either obtained from OpenStreetMap [133] or country-specific
geoportals, and the projection of such maps on SAR images, one can search for PS in
the neighborhood of the road data points. The method is applied to coregistered stacks
of SAR images and consists of the following workflow:

1. Radar-coding the road data, which is usually delivered in the UTM coordinate
system, based on the master orbit information of each stack. If no height informa-
tion is available for the road data, a constant mean DEM height can be assumed
for radar-coding.

2. Within a circular neighborhood around each road data point on the SAR image,
the amplitude dispersion index (ADI) is evaluated:

Da ≈
σa

ā
, (4.3)

where σa and ā are the temporal standard deviation and the temporal mean of
calibrated amplitude values of the pixel, respectively, and Da is a proxy for the
phase dispersion.
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Figure 4.5: Demonstration of PS correspondence detection in Berlin based on high resolution
optical data. (a) shows the preprocessed optical image and the extracted template.
(b) is the calculated NCC map after correlating the extracted lamp pole template
with the reference image in which the detected objects are marked by yellow rectan-
gles. (c) shows the 44 detected objects in the UTM coordinate system after cluster-
ing. (d) and (e) show the results of matching after using the ICP algorithm on the
descending and the ascending image, respectively. In the last two subfigures, it can
be seen that the detected objects from the optical image (green circles) coincide with
the visible bright points in the SAR images.

3. The pixel with the lowest value of Da, i.e. the one with the highest phase stability
is chosen as potential PS candidate. Since at this point, it is possible that many
false pixels with relatively low Da values in the neighborhoods are categorized
as potential GCP candidates, a further thresholding on Da is performed in SAR
images from all available viewing geometries.

4. Geocoding of the presumable identical PS using the respective master orbit infor-
mation and selecting the pairs, which have a distance less than a couple of meters
as the final correspondences
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(a) (b)

(c) (d)

Figure 4.6: PS correspondence detection from four different viewing geometries. For each im-
age, the respective averaged heading angle α and the averaged incidence angle θinc
are stated.

This method is quite straightforward to implement and delivers an acceptable number
of candidates visible in SAR images of cross-heading orbits. An example of the de-
tected PS correspondences from four different viewing geometries (two ascending, two
descending) is shown in Figure 4.6 for a highway in Oulu.

4.2.2 Robust Outlier Removal

The PS correspondence detection approaches, described in subsection 4.2.1, allow for
the retrieval of approximate radar coordinates of the targets. These pixel positions are
refined using PTA to obtain the sub-pixel location of the scatterers [20], [39]. After
employing PTA for each scatterer in all the available non-coregistered SAR images, the
following steps are carried out for removing outliers and performing a PS visibility
check:

1. Based on PTA, the SCR of each PS is computed. For a PS in the ith SAR image, its
SCRi is related to its phase noise σφi in radians as [82]:

σφi ≈
1√

2 SCRi
. (4.4)
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2. The time-series of phase noise σφ is analyzed for each GCP candidate. The values
of σφ are non-negative and follow a right-skewed distribution. Therefore we use
a method called adjusted boxplot for outlier removal [134]. The method modifies
the original boxplot, described in [135], to include information about the skew-
ness of the data. Thus, instead of classifying an observation as outlier if it lies
outside of the interval defined by the boxplot method [135]:

[
Q1 − 1.5 IQR; Q3 + 1.5 IQR

]
, (4.5)

adjusted boxplot declares an observation as outlier if its value exceeds the follow-
ing interval [134]:

[
Q1 − 1.5 e(−4MC) IQR; Q3 + 1.5 e(3MC) IQR

]
. (4.6)

In Equation 4.5, Q1 and Q3 are the first and the third quartiles of the data, re-
spectively and IQR = Q3 − Q1 denotes the interquartile range. In Equation 4.6,
MC is the medcouple, a robust measure of the skewness of a univariate sample
which for right-skewed distributions is always non-negative [136]. The exponen-
tial functions in Equation 4.6, which depend on the MC as well as the included
coefficients, are chosen experimentally based on some well-known skewed distri-
butions [134].

3. After the removal of outliers in the previous step, as a target visibility check, all
acquisitions within which the σφ value of the PS are higher than 0.5 radians (≈
30◦) are excluded.

The result of this step includes the outlier-free sub-pixel position of each candidate
GCP, which is converted to radar timings. This provides the input for the last two
remaining parts of the GCP extraction algorithm, i.e. usage of imaging geodesy for cor-
rection of timings and the eventual stereo SAR processing for estimating the absolute
3-D coordinates.

4.2.3 Positioning of GCPs

In the following, the applicability of the proposed automatic GCP extraction chain is
demonstrated using the TSX data introduced in Section 4.1.

4.2.3.1 Berlin

After the detection of the initial GCP candidates using a high resolution optical image
of Berlin, depicted in Figure 4.5, the absolute position of the 44 selected PS is calculated
by performing steps two to five of the algorithm described in the beginning of Sec-
tion 4.2. Only nine PS out of 44 were proved to be of high quality to be considered as
the final GCP candidates. The reason is explained in detail in Appendix A.1. However,
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Figure 4.7: The standard deviations of the best nine GCP candidates estimated posterior to the
geodetic stereo SAR processing. These values are defined in the local coordinate
system of Berlin in North, East and Height (SN , SE, SH) and are scaled to 95% confi-
dence level.

considering the small spatial extent of the test site, nine high quality GCP will certainly
suffice for any geodetic applications.

In Figure 4.7, the precision of the estimated coordinates is reported for the best nine
GCPs. The standard deviations are defined in the local coordinate system of Berlin in
the North, East, and Height (SN , SE, SH) in the confidence level of 95%. The mean
values of SN , SE and SH are 2.7 cm, 2.8 cm and 2.2 cm, respectively. The cross-heading
geometry has a significant impact on the precision of height components as it was ex-
pected.

Apart from the analysis of the posterior standard deviations of the GCPs, their height
values were compared with the reference LiDAR data set of Berlin. We assume the
phase centers of the detected GCPs are at the base of the lamp poles on the ground.
Therefore, the cross-comparison includes finding the nearest neighbors of the GCP can-
didate in the LiDAR point cloud within the radius of 1 m, excluding the LiDAR points
with large height values which originate from the top of the lamp pole, estimating the
mode of the LiDAR heights to represent the reference height and evaluating the differ-
ence between the ellipsoidal height of stereo SAR results with respect to the reference
height. The results of the cross-comparison are reported in Table 4.2. The estimated
stereo SAR and approximated LiDAR reference heights are denoted by hS and hL, re-
spectively, while their offset is represented by ho. It is seen that for all except for one
of the GCPs the height offset is below 20 cm. The results report a bias of 13 cm and a
precision of 5 cm overall with respect to the LiDAR data. The bias roughly implies the
absolute accuracy of the height estimation using the stereo SAR method.
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Table 4.2: The result of cross-comparison between the estimated heights of stereo SAR hS and
their corresponding LiDAR heights hL. The offset ho is an indicator for the absolute
accuracy of hS.

GCP index hL [m] hS [m] ho = hS − hL [m]
PS1 74.64 74.80 0.16
PS7 74.45 74.54 0.09
PS11 74.83 74.99 0.16
PS13 75.40 75.62 0.22
PS14 73.87 73.96 0.09
PS18 73.87 73.95 0.08
PS19 75.59 75.76 0.17
PS20 75.02 75.18 0.16
PS43 79.78 79.85 0.07

Mean 0.13
Standard deviation 0.05

4.2.3.2 Oulu

The identical PS detection step for Oulu has been carried out using the PSI fusion algo-
rithm for same-heading tracks and utilizing road network data for cross-heading tracks,
as demonstrated in Figure 4.4 and Figure 4.6, respectively. By applying the remaining
steps of the GCP generation algorithm, the absolute 3-D coordinates of the candidates
are obtained.

The average coordinate statistics of the high quality GCPs in Oulu are reported in
Table 4.3. The scatterers are categorized based on the geometry configuration used for
their positioning. The results are all expressed in centimeter and are defined in the local
east, north and vertical coordinates within 95% confidence interval. From Table 4.3, it
is seen that the averaged standard deviations are smaller than two decimeter for all
the cases. As it was expected, the localization quality boosts as the difference in the
viewing geometries becomes larger, which is the case when changing from Ascending-
Ascending (AA) or Descending-Descending (DD) to the Ascending-Descending (AD)
and eventually the quad geometry (ADAD) configurations. It is also evident that for
cross-heading geometries the retrieval of the height component is the most precise one
while for the same-heading cases, the precision in the north component is the highest.
The only remaining concern regarding localization using cross-heading tracks is the
diameter of the lamp poles, which may worsen the accuracy in the east coordinate
component. This bias can be estimated and removed if the scatterer is also visible from
same-heading tracks or if the diameter of the lamp pole is known a priori.

The distribution of the total 2049 generated GCPs is visualized on the optical image of
Oulu in Google Earth in Figure 4.8. The scatterers are color-coded based on the under-
lying geometry configuration used for their localization. It is seen that almost the entire
area of Oulu is covered with the generated GCPs. The ones from the same-heading ge-
ometries cover the built areas while the ones from cross-heading configuration include
the base of lamp poles, street lights and traffic lights.
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Figure 4.8: Total number of 2049 GCPs in Oulu color-coded based on the geometry configura-
tion used for their positioning. The underlying optical image is taken from Google
Earth.

Table 4.3: Averaged statistics based on the posterior 3-D coordinate standard deviations in
Oulu. The letters A and D stand for ascending and descending geometries, respec-
tively. The sample mean and standard deviation are denoted by µ and σ and S[ENH]
represents the local coordinates standard deviations within a 95% confidence level.

Geometry Number of
Scatterers µsE [cm] µsN [cm] µsH [cm] σsE [cm] σsN [cm] σsH [cm]

AA 565 17.73 5.04 15.87 11.98 2.63 11.09
DD 1417 15.08 3.80 16.71 10.38 2.10 11.30
AD 24 2.26 2.50 1.75 0.99 1.11 0.83

ADAD 43 1.17 1.40 1.12 0.42 0.55 0.37

4.3 Geodetic InSAR

The concept of geodetic InSAR involves the utilization of SAR geodetic techniques in
the framework of InSAR methods. This topic has been discussed in Appendix A.2 for
correction of geocoding errors of PSI point clouds, in Appendix A.3 for absolute posi-
tioning of TomoSAR point clouds and for the demonstration of geodetic point cloud fu-
sion, and also as a summary of the both aforementioned contributions in Appendix A.5.

4.3.1 Geocoding Error Correction for InSAR Point Clouds

The geocoding error correction methodology, proposed in Appendix A.2, mitigates the
systematic effects caused by SAR timing errors, and estimates the unknown height of
InSAR reference point (see Subsections 2.2.2 and 3.1.1). The flowchart of the approach
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Figure 4.9: Workflow of the proposed geocoding error correction method. The processing steps,
included in the big rectangles, are carried out independently and their results are
shown by the parallelograms. The double shapes indicate that each processing is
carried out for two or more SAR image stacks, which is the necessary condition for
GCP generation.

is shown in Figure 4.9. Each block describes a separate processing, which produces
an intermediary result shown as a parallelogram. The PSI processing in the first block
[7], [83], results in the 3-D UTM coordinates of point clouds, for which the geodetic
and atmospheric corrections, at the time of the master scene acquisitions, are calculated
in the second block using the imaging geodesy approach [13], [56]. The third block
includes the extraction of SAR-based GCPs for which either the explained method in
Section 4.2 is used or the GCPs are generated using the SGP of DLR [75]. The results of
the three previous steps, gathered in the dashed rectangle, are the input for the fourth
step called updated geocoding, which produces the final 3-D absolute PSI point clouds.
Note that the input for our approach includes a minimum of two SAR image stacks,
indicated in Figure 4.9 as double shapes, acquired from different viewing geometries,
i.e., from separate orbits. This is required for the extraction of highly precise 3-D GCPs.
Since the first three blocks of the algorithm have been already explained, we focus
here on briefly describing the processes of the fourth block. Starting from the extracted
GCPs, the algorithm performs the following:

1. Filtering the GCPs based on their estimated posterior coordinate standard devia-
tions. We impose a threshold of 10 cm for each coordinate component and further
select the GCPs, which lie close to the road network data of the scene. This usu-
ally results in around 1000 high quality GCPs if the GCP extraction is performed
using the method described in [75].
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2. Radar-coding the GCPs onto the master scenes of each SAR image stack taking
into account the full geodetic and atmospheric corrections. We then select the
nearest neighbor of the GCP in the PSI point that has an ADI value lower than
0.4. The result is the correspondence of each GCP to its closest PS that most likely
represents the base of lamp poles or traffic lights.

3. Removing wrong matched pairs from the previous step based on range and az-
imuth coordinate differences of the GCPs and their corresponding PS. Points with
large coordinate differences are discarded based on the 2σ rule where the stan-
dard deviation is robustly estimated using Median Absolute Deviation (MAD)
[137]:

σ̂MAD = 1.4826 median
(
|δ−median(δ)|

)
, (4.7)

where δ denotes the vector of coordinate differences and 1.4826 is a correction
factor making σ̂MAD consistent at Gaussian distributions.

4. Forming the ellipsoidal height difference histogram among GCPs and their corre-
sponding PS, smoothing the histogram and detecting its peak as the approximate
estimate of the DEM error. This process is carried out for each image stack sepa-
rately.

5. Subtraction of the previously estimated DEM error from the ellipsoidal heights of
the geocoded PSI point clouds to obtain absolute heights.

6. Finally, the absolute heights as well as the corrected range and azimuth timings
of the scatterers and the orbit information of the master scenes are used for an up-
dated geocoding, which produces the absolute 3-D PSI point clouds in the Carte-
sian coordinate system or in the UTM.

In the following, the applicability of the method is demonstrated using the Berlin TSX
data introduced in Section 4.1. The generated absolute PSI point clouds are then com-
pared to the reference LiDAR DSM of Berlin, which demonstrates the improvement in
the geocoding accuracy of the PSI results.

4.3.1.1 Practical Demonstration in Berlin

The two stacks of Berlin, see Table 4.1, have undergone InSAR and PSI processing using
the PSI-GENESIS of the DLR [82], [84], [85]. The PSI parameters of interest include DEM
error, linear and periodic motion. The latter is modeled since we are analyzing an urban
area with the acquisition time spanning over a few years. The geocoded topographic
map generated from Beam42 is shown in Figure 4.10. It consists of approximately 1.4
million PS. A high density of PS is observed along the railways and also on building
facades while white parts with no detected PS cover mostly vegetated areas.

At the next step, the geodetic and the atmospheric corrections are estimated and
are subtracted from the SAR timings of all the PS using SGP [56]. The sum of all the
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Figure 4.10: Geocoded descending PSI point cloud of Berlin in UTM coordinates. The ellip-
soidal height is colorcoded. The x- and y-axis correspond to the UTM East and
North, respectively.

corrections are reported in Figure 4.11 for the master acquisitions of each stack. The
corrections are in the radar coordinate system where, the y-axis represents the azimuth
coordinate and the x-axis depicts the range coordinate. The conversion to the unit of
length is performed using Equation 2.14 for range errors and Equation 2.11 for azimuth
errors, where 7050m/s is assumed for the average beam velocity of the TSX satellite.
It is seen that the magnitude of range errors is close to 3 m for Beam57 and approxi-
mately 2.75 m for Beam42, whereas the difference of maximum and minimum range
errors over the scene is only 4 cm for both beams. The main contributions to the range
errors come from the troposhperic error followed by geodynamic effects and finally
the ionospheric delays. The azimuth errors are far less significant than range errors
and manifest in sub-decimeter regimes, with millimeter variations across the scenes for
both beams. The main source for azimuth errors is geodynamic effects followed by er-
rors due to satellite dynamics. It is important to note that given the small squint angle
of the TSX high resolution spotlight products and their operation in X-band, the tropo-
spheric and ionospheric delays are negligible for azimuth timings and therefore are not
considered in the SAR imaging geodesy method [18].
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(a) Range error Beam57 (b) Azimuth error Beam57

(c) Range error Beam42 (d) Azimuth error Beam42

Figure 4.11: Range and azimuth error in the radar coordinate system (x-axis: range, y-axis: az-
imuth) of the master scenes of both investigated beams, which were acquired on
24.12.2011 (Beam57) and on 07.03.2012 (Beam42). Note that the scale of the color-
bars for range error is in meter while the one for azimuth errors is in centimeter.

For GCP generation, 27 images from both beams are selected, which have been ac-
quired within a period of 12 months, in 2014 and at the beginning of 2015. The reason
for the time restriction is avoiding the impact of plate tectonics on the final GCP co-
ordinates. The images are processed using SGP [75]. In total 17673 GCPs have been
localized with precision of each GCP coordinate components being better than 1 m.
The histogram of GCP precision values in local East σE, North σN and height σH is re-
ported in Figure 4.12, where the vertical line at 10 cm denotes the applied threshold on
the posterior coordinate standard deviations. The final GCPs are obtained after choos-
ing only the ones close to the road network data of Berlin, which can be seen as purple
dots overlaid on the geocoded PSI point clouds of both beams (in gray) in Figure 4.13.
It is seen that the GCPs almost cover the full area within both PSI point clouds.

The matching of the GCPs to their corresponding PS in the PSI point clouds is car-
ried out before evaluation of the DEM error of the reference point of each stack. This
procedure is summarized in Figure 4.14. The left and the right subfigures correspond
to results from Beam57 and Beam42, respectively. The 2-D scatterer plots show the
distribution of range and azimuth coordinate differences among GCPs and their cor-
responding identified PS. In Figure 4.14a,b, the differences are plotted before outlier
removal. It can be seen that very large deviations still occur after the correspondence
detection step. Average deviations in the centimeter regime are observed in the range
component while for the azimuth differences of Beam57, the mean deviation is close
to 12 cm. The sample standard deviations, annotated in the subfigures, also show the
large spread of the differences in both coordinate components in the meter regime. The
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Figure 4.12: Histogram of GCP precision values in East σE, North σN and height σH .

Figure 4.13: Distribution of the GCPs within the PSI point clouds of both beams.

second row of the subfigures, Figure 4.14c,d, depict the scatter plots after discarding
outliers both in range and azimuth based on the 2σ rule. Note that the standard de-
viations for the outlier removal purpose are robustly estimated using MAD, as was
explained in Subsection 4.3.1, while the annotated values in the subfigures are sam-
ple standard deviations, that are sensitive to outliers. From Figure 4.14c,d, it is clearly
observed that the mean deviations decrease and now are close to 2 cm and 3 cm for
range coordinate differences and approximately 2 cm and 1 cm for azimuth coordinate
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differences of Beam57 and Beam42, respectively. It is important to note that the radar
coordinate differences have been compensated for the continental drift which occurred
between the master acquisition times of each beam, in 2011 and 2012, and the epoch
with respect to which the GCPs have been localized, in 2015. This coordinate shift has
been computed utilizing the average East, North, Up velocities from the nearest Inter-
national GNSS Service (IGS) permanent station, in Potsdam approximately 45 km away
from Berlin, and have been projected into the line-of-sight and the azimuth directions of
each beam. Eventually, the third row, Figure 4.14e,f shows the histogram of height dif-
ferences among GCP-PS pairs after discarding observations based on the 2σ rule. The
peaks of the smoothed version of the height difference histograms provide the robust
estimates of the DEM errors which are −4.06 m and −6.27 m for Beam57 and Beam42,
respectively. It is expected that the DEM errors have different values because of non-
identical PSI reference points. The estimated height shifts are subtracted from the final
height estimates of PSI and along with the fully corrected range and azimuth timings,
using SGP, an updated geocoding is carried out for each beam separately.

4.3.1.2 Cross-Comparison with LiDAR

The geocoded PSI point clouds before and after applying the aforementioned correc-
tions are compared with the reference LiDAR data. It is important to note that, since
an objective comparison is difficult to perform, due to the inherent differences between
LiDAR and PSI point clouds, we avoid using the term validation and therefore reside
with the word cross-comparison.

The cross-comparison for the 2-D horizontal coordinates is based on the extraction
of facade PS from non-corrected and corrected PSI point clouds and evaluating their
closeness to the corresponding building footprint in the LiDAR data. The facade ex-
traction is performed by considering a neighborhood of 4 m around each PS, calculat-
ing the height variance in the neighborhood and considering a PS as facade point if the
height variance is higher than 1.5 m [97]. For the 1-D vertical analysis, the facade points
are excluded from the PSI point clouds and the LiDAR DSM, the histograms of ellip-
soidal heights are formed containing two peaks which respectively represent ground
and building roofs. The difference between the height values for which the ground
peaks, in the PSI point clouds and in the LiDAR data occur, indicates the vertical accu-
racy.

The results of horizontal accuracy analysis for three selected test sites in Berlin is
visualized in Figure 4.15. The green and red dots display the PS from ascending and
descending point clouds, respectively, while the white dots show the extracted building
footprints from LiDAR. All data points are presented in the UTM projection. The first
and second rows correspond to the non-corrected and corrected results, respectively.
Note that the subfigures have different scales. It is clearly seen that, before applying
the geodetic corrections and DEM error compensation, red dots are located far away
from the building footprints. This 2-D shift is largely compensated after applying the
corrections in all the three cases. Moreover, the endpoint of each facade in the corrected
point clouds matches with the endpoint of the facade from the point cloud from the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Restriction of the DEM error estimation to the true correspondences among GCPs
and PS. (a,b) demonstrate the scatterplots of GCP-PS pairs before outlier removal,
for Beam57 and Beam42, respectively; (c,d) show the scatterplots of the GCP-PS
pairs after outlier removal. This causes a decrease in the bias and the standard de-
viation of the coordinate differences; (e,f) depict the robust height offset estimation
after removal of the height differences in accordance with the 2σ rule. The peak
of the smoothed histogram indicates the DEM error for each beam. Note that, for
all the figures, the coordinate differences are defined as the GCP coordinates sub-
tracted from their corresponding PS coordinates.

opposing geometry. This is not the case for non-corrected point clouds. Another ob-
servation is related to the ascending point clouds. The 2-D shift imposed on the green
point cloud after correction is much smaller than the red point cloud. One of the rea-
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(a) (b) (c)

(d) (e) (f)

Figure 4.15: 2-D horizontal localization accuracy analysis of PSI point clouds of three selected
test sites. (top: non-corrected, bottom: corrected). The x- and y-axes correspond
to the Easting and Northing in UTM. Green and red dots show the ascending and
descending point clouds while white dots show the extracted LiDAR footprints.
The scale of figures is not identical meaning that the degree of zoom-in is higher in
subfigures (c,f).

sons is that the DEM error of the ascending point cloud is approximately two meters
smaller than the descending point cloud. Another explanation for this is that the center
incidence angle is smaller for the descending point cloud compared to the ascending
one (see Table 4.1). Therefore, according to Equations 2.15 and 2.18, the horizontal shifts
are larger for the descending point cloud as has been expected.

In terms of a quantitative analysis, the mean value of the distances for the corrected
point clouds and the non-corrected point clouds are calculated to be 0.4 m and 2.44 m,
respectively. This proves that applying the corrections has certainly improved the over-
all geocoding accuracy of the PSI point clouds in the horizontal plane as the corrected
point clouds are located closer to the LiDAR footprints compared to the non-corrected
ones. It is important to note that a deviation equal to zero does not necessarily mean
that the PSI point cloud is absolutely without any errors. The reason is that facade PS
originate as triple-bounces from window corners of buildings which are not perfectly
aligned with footprints extracted from LiDAR. Therefore, the difference in viewing ge-
ometries of both sensors does not allow a flawless comparison.
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For the 1-D vertical accuracy analysis, we first visually inspect the vertical cross-
section of corrected and non-corrected PSI point clouds overlaid onto their correspond-
ing LiDAR point cloud for a test site. Figure 4.16 visualizes this cross-section. In the
subfigures, the x- and y-axes correspond to the UTM Easting and ellipsoidal heights,
respectively. The red and green colors represent the PSI point clouds of Beam42 and
Beam57 while the reference LiDAR point clouds are in white. In the LiDAR data, the
ground line and the building roofs are easily distinguishable as they contain the major-
ity of the points and are seen as very bright lines in the figures. By looking at Figure
4.16a,c, a clear height offset between the ground lines in the non-corrected PSI point
clouds of both beams and the ground line in the LiDAR data is observed. Moreover,
in the non-corrected point clouds, the PS on buildings are not seamlessly aligned with
building roofs of the LiDAR point clouds. The non-identical height shifts are compen-
sated by employing the height offset estimation method, relying on SAR GCPs, as it
can be seen in Figure 4.16b,d.

In order to quantify the degree of improvement in the absolute height of PSI point
clouds with respect to the LiDAR heights, the façade PS are excluded and height his-
tograms are formed. This procedure is carried out for a subset of the PSI point clouds
and their corresponding LiDAR data marked with yellow rectangle in Figure 4.2. The
ellipsoidal height histograms are reported in Figure 4.17 where the top and bottom sub-
figures correspond to Beam57 and Beam42, respectively. The red, green and blue colors
describe the height histograms of the LiDAR, non-corrected PSI and corrected PSI point
clouds. The first peak of the histograms relates to the ground points. It is observed that,
after the DEM error of the reference point is estimated with the use of SAR-GCPs, the
height histograms of the corrected PSI point clouds move toward the height histograms
of the LiDAR data. Within each histogram, the height of the ground peaks are reported.
The absolute differences in the height at the peaks of the non-corrected point clouds
with respect to the peak of the LiDAR data are approximately 3.96 m and 6.43 m for
Beam57 and Beam42, respectively. The differences reduce to 0.21 m and 0.11 m after
the proposed height offset compensation method has been applied.

4.3.2 Geodetic Point Cloud Fusion

The idea behind point cloud fusion and its benefits have been discussed in Subsec-
tion 3.5.1. The Geodetic point cloud fusion approach is superior to its geometric coun-
terparts [25], [26], [47] as it improves the geo-location accuracy of the scatterers while,
similar to the geometric techniques, produces shadow-free point clouds. The fusion
can be carried out either using a single stereo SAR-based GCP or with the availability
of multiple GCPs as will be addressed in the following.

4.3.2.1 Fusion Using One GCP

In Appendix A.3 an approach, different from the one explained in Subsection 4.3.1, has
been proposed for the production of absolute 3-D InSAR point clouds. The technique
was the first attempt for merging the capabilities of geodetic SAR and InSAR-based
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LiDAR
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LiDAR
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(b)
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LiDAR
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Figure 4.16: 1-D vertical localization accuracy analysis of PSI point clouds, before and after ap-
plying geodetic corrections and height offset compensation, in comparison with Li-
DAR. The x- and y-axes correspond to the Easting in UTM and ellipsoidal height,
respectively. Green and red dots show the ascending (Beam57) and descending
(Beam42) point clouds while white dots show the LiDAR data. (a,c) depict the non-
corrected point clouds while (b,d) correspond to the corrected ones. The height
shifts, caused by the unknown DEM error of the reference points are easily rec-
ognizable in non-corrected point clouds while the offsets are compensated for in
the corrected results. Note that the Easting and the height are differently scaled in
order to emphasize the vertical effect.
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(a)

(b)

Figure 4.17: Ellipsoidal height histograms of non-façade points in LiDAR (red), non-corrected
PSI (green) and corrected PSI point clouds (blue) corresponding to the yellow
bounding box in Figure 4.2. (a,b) show the results for Beam57 and Beam42, re-
spectively. For both beams, the height shifts are compensated for after correction,
using SAR-GCPs, as the ground peaks of PSI point clouds and LiDAR data become
aligned.

methods. It was tested on two pair of cross-heading TomoSAR point clouds recon-
structed from the data introduced in Table 4.1. The individual steps of the framework,
called geodetic SAR tomography, along with a practical demonstration in Berlin are
reported in here.

1. Absolute 3-D localization of a PS with high SCR by stereo SAR (see Section 3.2),
which is visible in all the available multi-aspect SAR image stacks. As was men-
tioned in Subsection 4.2.1, in urban areas lamp poles and traffic signs are some
of the few examples that can satisfy the above-mentioned condition. The selected
target for our Berlin experiment is marked in one ascending and one descending
mean amplitude image in Figure 4.18.

2. TomoSAR processing of the available stacks following the workflow described in
Subsection 3.4.1. The extracted GCP in the previous step is selected as the refer-
ence point during the TomoSAR processing of all the stacks. In our study, the to-
mographic inversion is carried out by the Maximum Detection (MD) algorithm of
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Figure 4.18: The selected identical PS, which is visible through a pair of cross-heading data
stacks of Berlin. The scatterer is chosen as the reference point for the follow-on
TomoSAR processing.

the Tomo-GENESIS [12], [125], which includes SVD-Wiener for the reconstruction
of the reflectivity profile followed by peak detection, model order selection and
final refinement of the amplitude and the phase of each scatterer to approximate
the elevation [12]. The motion parameters include the linear deformation rate and
the amplitude of seasonal deformation and are estimated using the Time-Warp
method [102]. The geocoded topographic map of a descending stack of Berlin ob-
tained from TomoSAR is visualized in Figure 4.19. By comparing the TomoSAR
point cloud of Figure 4.19 to the PSI result of Figure 4.10, it is clearly seen that
the TomoSAR approach is capable of 3-D mapping in much higher detail than PSI
due to the layover separation capability.

3. Performing geodetic point cloud fusion for the generation of an absolute shadow-
free dense 3-D point cloud. If the selected reference point has been localized using
same-heading tracks, the geodetic point cloud fusion is carried out by shifting
all of the geocoded point clouds toward the coordinates of the absolute refer-
ence point. If the selected reference point has been localized using cross-heading
tracks, the bias, occurred due to the non-identical phase-centers of the reference
point visible in multi-aspect SAR images, should be first resolved. Since the most
probable candidate for reference points visible in cross-heading geometries are
poles, the mentioned bias depends on the diameter of the pole, which can be con-
sidered to be in the order of 20 cm. The problem is sketched in Figure 4.20. The
red dot PSS, marking the location of the GCP obtained by stereo SAR, should be
shifted to the green dots PGAsc and PGDsc , which denote the true geocoded loca-
tion of the reference point in each stack. This requires the evaluation of the shift
vectors dsAsc and dsDsc for the ascending and the descending point clouds, re-
spectively. Assuming the local incidence angles (θAsc, θDsc) and heading angles
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Figure 4.19: Geocoded descending TomoSAR point cloud of Berlin in UTM coordinates. The
ellipsoidal height is colorcoded. The x- and y-axis correspond to the UTM East and
North, respectively.

(αAsc, αDsc) of each beam are available, and the diameter of the pole D is known,
each component of the shift vectors is calculated as follows:

dz =
D tan θAsc tan θDsc

tan θAsc + tan θDsc
(4.8)

dxAsc = dxyAsc cos αAsc (4.9)
dyAsc = −dxyAsc sin αAsc (4.10)
dxDsc = dxyDsc cos αDsc (4.11)
dyDsc = −dxyDsc sin αDsc, (4.12)

where dxyAsc = dz cot θAsc and dxyDsc = dz cot θDsc. The variable dz is equal for
all the stacks and is estimated using least squares adjustment based on differ-
ent combinations of the ascending and descending tracks. Afterward dxyAsc and
dxyDsc are calculated and further projected onto the East and North components,
which finally results in the three components of dsAsc and dsDsc:
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Figure 4.20: Illustration of the bias caused due to the non-identical phase centers of assumed
common targets visible in cross-heading point clouds. The drawing is in the east-
up plane where ascending and descending satellites fly perpendicular to the plane
far away and toward the reader, respectively. For successful point cloud fusion, the
coordinates resulted from stereo SAR PSS should be shifted toward the expected
true position of the reference point in each ascending and descending stack (PGAsc ,
PGDsc ). In order to do so, the corresponding shift vector in the elevation direction
(dsAsc, dsDsc) should be evaluated for each stack based on the known (θAsc, θDsc)
and (αAsc, αDsc).

dsAsc =
(
dxAsc, dyAsc, dzAsc

)T (4.13)

dsDsc =
(
dxDsc, dyDsc, dzDsc

)T. (4.14)

Subsequently, PSS is shifted to the position of PGAsc and PGDsc . The remaining er-
rors of the geocoding are compensated by evaluating the difference between the
geocoded reference point coordinates of each stack and the corresponding PGAsc

and PGDsc . Finally, for each stack, the unique difference vector is added to the co-
ordinates of all the scatterers to produce multiple absolutely localized TomoSAR
point clouds.

Figure 4.21 shows the four absolutely localized TomoSAR point clouds, in different
shades of gray, as well as the location of the reference point marked by the red asterisk.
The total number of scatterers is approximately 63 million. A 3-D view of the point
cloud obtained after the geodetic fusion is visualized in Figure 4.22, which shows the
great level of details captured from the TomoSAR processing and the subsequent fusion
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Figure 4.21: Geodetic fusion of four TomoSAR point clouds (in gray) with respect to the identi-
cal reference point marked by the red asterisk.

algorithm. The horizontal accuracy of the generated point cloud is approximately 20
cm, when compared to the reference LiDAR DSM (see Appendix A.3).

4.3.2.2 Fusion Using Multiple GCPs

Geodetic point cloud fusion can be also carried out as a post processing step when a
network of GCPs, obtained from stereo SAR, is available. From the methodological
point of view, the approach follows the same procedure of geocoding error correction
explained in Subsection 4.3.1. In the following an example of such method fusing four
PSI point clouds of Oulu, generated from the data of Table 4.1, is given.

The used GCPs include a subset of the same-heading candidates of Oulu (see Fig-
ure 4.8 and Table 4.3), which are filtered based on their posterior azimuth standard
deviations. The total number of the utilized GCPs is 519 with their average statistics re-
ported in Table 4.4. The GCPs correct for the height error of the reference point of each
PSI stack while geodetic corrections are applied on the master scenes for mitigating the
horizontal coordinate errors (see Subsection 4.3.1). A 2-D top view of the absolutely
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Figure 4.22: Absolute 3-D fused TomoSAR point cloud of the central area in Berlin. The ellip-
soidal height values are colorcoded and range between 70 m to 110 m. The fusion
of multitrack point clouds allow for a very detailed representation of the city where
most structures can be easily recognized.

localized fused point cloud is shown in Figure 4.23. It includes approximately 7 million
point scatterers covering an area of 50 km2.

Table 4.4: Average statistics of Oulu GCPs with posterior azimuth standard deviation lower
than 10 cm. These GCPs are used for geodetic fusion of four PSI stacks of Oulu.

σN [cm] σE [cm] σH [cm]
Ascending GCPs 2.6± 0.83 8.03± 3.46 6.99± 3.17
Descending GCPs 1.99± 0.61 7.57± 2.24 8.41± 2.45

A small portion of the fused point cloud is overlaid onto the LiDAR data of Oulu in
Figure 4.24 to show the approximate fit of the point clouds to the LiDAR data. Since no
information about the absolute accuracy of the LiDAR data was available at the time
of the study, no quantitative analysis for evaluating the height accuracy of the fused
point cloud was performed. Therefore, the LiDAR DSM is used only for visualization
purposes.
As the final showcase, for a test site, the 2-D alignment of one ascending and one de-
scending point cloud of Oulu is checked in Figure 4.25 and in Figure 4.26. The ascend-
ing and descending point clouds are visualized as green and red dots, respectively. It
is clear that in Figure 4.25a the end point of buildings captured from opposite sides do
not match. This horizontal offset, which on average is approximately 4.7 m in East and
almost 1.8 m in North, is largely mitigated after performing geodetic point cloud fusion
in Figure 4.25b. This indicates the relative correctness of the fusion algorithm.
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Figure 4.23: Geodetic fusion of four PSI point clouds of Oulu. The ellipsoidal height of the point
clouds is colorcoded.

Figure 4.26a and Figure 4.26b show an overlay of the non-corrected and the corrected
PSI point clouds of a test site in Oulu, respectively. It is observed that after the geodetic
point cloud fusion, the point clouds are aligned with the corresponding side of the
buildings seen in the aerial ortho-photos.

4.4 1-D to 3-D Motion Decomposition

The geodetic fusion of multi-aspect InSAR point clouds of urban areas allows to obtain
a detailed shadow-free 3-D representation of the investigated scene, as was demon-
strated in Subsection 4.3.2. Apart from this cartographic application, the fused point
cloud facilitates the decomposition of 1-D InSAR deformation estimates into their orig-
inal 3-D displacement vectors. Inspired from [11], [97], a 3-D motion decomposition
algorithm has been proposed in [138] and applied to four TomoSAR point clouds of
Berlin, which can be found in Appendix A.4. The method consists of the following
steps:
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Figure 4.24: A 2-D view on the fusion of four PSI point cloud of Oulu. The LiDAR data is plotted
in gray and serves as a reference for visualization purposes only. The height of the
point clouds are colorcoded with green showing low heights while read shows high
height values.

(a) (b)

Figure 4.25: A 2-D view on the ascending and the descending PSI point clouds of Oulu (a) before
and (b) after the geodetic point cloud fusion.

1. Geodetic fusion of multiaspect point clouds (see Subsections 4.3.2). The geodetic
approach results in a more accurate and objective point cloud coregistration than
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(a) (b)

Figure 4.26: Ascending and descending point clouds of Oulu overlaid on the corresponding
aerial ortho-photo of Oulu (a) before and (b) after the geodetic point cloud fusion.
The results reported in (b) allow the assignment of the PS to building parts.

the geometric techniques reported in [25] and [26]. The fused absolute TomoSAR
point cloud of Berlin can be observed in Figure 4.22, which is the basis for the
motion decomposition algorithm.

2. Estimation of the 3-D motion components of each scatterer in local spatial cubes
by minimizing the weighted sum of the absolute residuals of the functional model
described in Equation 2.21 (see Subsection 2.3.2). The utilization of l1-norm min-
imization instead of the more popular l2-norm minimization is related to the ex-
istence of large number of outliers in the elevation and deformation estimates of
TomoSAR point clouds [12], [107], [139].

Inside each cube, the unknowns include the three motion components of the cen-
tral point, the observations consist of the linear or seasonal deformation parame-
ters of the scatterers surrounding the central point and the design matrix is eval-
uated based on the local heading angle and the local incidence angle attributed
to each scatterer. The weight vector is proportional to the inverse of the squared
distance of each scatterer to the central point i.e., the points closer to the central
point have higher weights in the estimation.

It is important to note that the size of the cube is chosen based on the spatial
resolution of the SAR data and the inherent scale of the investigated objects. After
an empirical study, for TSX high resolution spotlight data over European cities,
we recommend to choose a cube dimension of 5 m in each coordinate direction.
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In the following, the proposed motion decomposition algorithm is validated using sim-
ulated and real data. Furthermore, the effect of viewing geometries of the available data
sets (see Table 4.1) on the retrieval of 3-D motion components is discussed.

4.4.1 E�ect of Viewing Geometry

The quality of motion decomposition depends highly on the difference in the viewing
geometry of the acquisitions [33]. If a point target is hypothetically visible in the four
TomoSAR point clouds of Berlin summarized in Table 4.1, and we assume that LOS
deformation measurements are uncorrelated and have equal standard deviations sym-
bolized by σ, then the posterior covariance matrix of the target’s displacement estimates
QX̂ is equal to its dilution of precision (DOP) matrix [44], [124] if we set σ = 1:

QX̂ =




σ2
u σue σun

σeu σ2
e σen

σnu σne σ2
n


 = (ATA)−1 =




43.3 −0.8 277.8
−0.8 0.51 −5.4
277.8 −5.4 1801.7


 (4.15)

where subscripts u, e and n stand for up, east and north, respectively and A denotes
the design matrix that is evaluated based on the functional model described in Equa-
tion 2.21. A low diagonal value in the DOP matrix indicates the goodness of the ge-
ometry configuration for retrieving the corresponding component. The diagonal el-
ements of Equation 4.15 show the strength of the current situation for retrieving the
east-west motion and its weakness for retrieving the north-south displacement com-
ponent. This has been expected due to the inherent near-polar orbit of TSX satellites.
The off-diagonal elements of the DOP matrix show the covariance between the rela-
tive errors in motion components. The values show that although the sensitivity of the
current geometry configuration is low with respect to the north-south component, it
should not be omitted from the functional model of Equation 2.21. Not including the
term related to dn leads to the bias ∆de in the motion decomposition:

∆de = dn tan α, (4.16)

which can reach up to 18% of the deformation in the north-south direction with typical
TSX azimuth values. Apart from this issue, the extremely high covariance value of
277.8 for north and up components shows that precise unambiguous retrieval of the
north-south component is not possible with the available viewing geometries and also
with currently operational SAR satellites [123].

4.4.2 Motion Decomposition on Simulated data

Motion decomposition is performed on simulated data solely for the purpose of com-
paring the results obtained from the l1-norm and from the l2-norm minimization. We
assume a true deformation vector of dt =

[
dt

u dt
e dt

n
]T

=
[
−10 1 2

]T mm/year for
the target. We further assume that the target is visible in data from the four viewing
geometries of Berlin TomoSAR scenario. This results in four dLOS calculated from Equa-
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4.4 1-D to 3-D Motion Decomposition

(a) (b)

Figure 4.27: The simulated LOS deformation values for 30 points assumed to be inside an arbi-
trary spatial cube shown in a. In b, the histograms of residuals evaluated after the
motion decomposition performed with l2- and l1-norm minimization are reported.

tion 2.21, which are used to realize LOS deformations of 30 point targets surrounding
the central point in the cube in four groups differing in the associated incidence and
heading angles. The 30 LOS observations are randomly realized following a Gaussian
PDF with mean equal to the LOS deformation calculated using the mentioned forward
model and the variance σ2

v apprxoimated by the Cramer-Rao bound of LOS linear de-
formation rate obtained from interferometric measurements [6]:

σ2
v =

( λ

4π

)2 1
2 N SNR σ2

t
, (4.17)

where N is the number of acquisition in a stack of SAR images, the variable SNR de-
notes the signal-to-noise ratio and σ2

t is the variance of the temporal baseline distribu-
tion. Considering a TSX data stack with average acquisition parameters taken from
Table 4.1 with λ = 31 mm, and assuming that the SNR = 10 dB, N = 115 and σt =
1.6 years, then σ ≈ 0.03 mm/year. With taking into account the atmospheric distur-
bances we assume a value of σv = 1 mm/year. At the final stage, we add 20% outliers,
with magnitudes of 10 mm/year, to the 30 LOS observations. The scatter plot of the
observations is visualized in Figure 4.27a. The 3-D motion components of the desired
point has been retrieved by l2-norm and l1-norm minimization using Equation 2.26 and
Equation 2.27, respectively. The histogram of residuals and the results of the estima-
tions are reported in Figure 4.27b and Table 4.5. It is seen that the outliers have less
effect on the results of the l1-norm minimization rather than the least squares method.
This fact is confirmed based on the more logical distribution of errors in the residual
histogram of l1-norm minimization as well as the higher degree of closeness of all the
retrieved motion components with respect to the true ones compared to the results of
l2-norm minimization.
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4 Summary of the Contributions

Table 4.5: Comparison of the results from the l1- and the l2-norm minimization applied to mo-
tion decompistion using the simulated case study. The vectors dl2 and dl1 denote the
retrieved motion vectors from least squares and the l1-norm minimization, respec-
tively.

Components dt [mm/year] dl2 [mm/year] dl1 [mm/year] dl2 − dt dl1 − dt

du -10 -5.57 -10.06 4.43 -0.06
de 1 2.21 0.88 1.21 -0.12
dn 2 20.56 -4.08 18.56 -6.08

4.4.3 Motion Decomposition on Real data

The motion decomposition strategy has been applied to the data set of the Berlin To-
moSAR scenario (see Table 4.1), which were used to generate an absolute fused point
cloud visualized in Figure 4.22. The LOS linear and seasonal deformation maps of the
entire city of Berlin have been previously produced and analyzed in [11], [97], [140].
Here the motion decomposition is only applied to the two test cases, marked in Fig-
ure 4.28, which previously showed remarkable deformation patterns.
Figure 4.29 shows the TomoSAR LOS seasonal deformation maps of the central of Berlin
station available from each orbit (Figure 4.29a–d) as well as the decomposed motion
maps in the vertical (Figure 4.29g) and in the east-west directions (Figure 4.29h). The
vertical and east-west motion components evaluated by l2-norm minimization are also
shown in Figure 4.29e and Figure 4.29f. From the LOS maps, seasonal deformation with
magnitudes up to 12 mm is visible. This is mainly due to the thermal-dilation-induced
deformation of the railway station, which is made of steel. Figure 4.29g shows that the
main parts of the station and also the bridge in the east of the station undergo vertical
seasonal deformation with magnitudes up to 6 mm. The east hallway also shows mag-
nitudes of 5 mm of vertical seasonal deformation (yellow part). The most interesting
pattern is observed in Figure 4.29h. The right hallway undergoes heavy seasonal de-
formation in the east-west direction, with magnitudes equal to 12 mm (24 mm between
summer and winter). By comparing the estimated components from l1- and l2-norm
minimization another important observation is that in the results of l2-norm minimiza-
tion, most of the scatterers are filtered out because of low precision values. This is most
apparent in Figure 4.29e, where the deforming hallway in the east direction of the sta-
tion is not visible. On the contrary, l1-norm minimization preserves the deformation
pattern and hence demonstrates its robustness against outliers. Furthermore, to give
a rough estimate on the noise level of the estimates obtained from the two mentioned
estimators, the empirical standard deviation of the deformation values in the vertical
direction was evaluated for both cases (see Figure 4.29e and Figure 4.29g). The calcu-
lated values are equal to 2.64 and 3.25 mm for l1 and l2, respectively.
Figure 4.30 shows the TomoSAR LOS linear deformation maps of the central station
available from each orbit (Figure 4.30a–d) as well as the decomposed motion map in
the vertical direction (Figure 4.30e). In general, the building and the rail tracks are not
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Figure 4.28: The mean calibrated amplitude image of Berlin from a descending orbit track and
the test sites used in motion decomposition.

influenced by significant linear deformation as it is observed from the LOS maps. There
are some parts at the left side of the station in red color which show a construction
site and therefore cannot be interpreted as deforming areas. Furthermore, the main
building parts of the station show LOS subsidence not higher than 4 mm/year. The
decomposed linear vertical map (see Figure 4.30e) shows that the internal sections of
the two main parts undergo vertical subsidence on the order of 2 to 4 mm/year, while
the rail tracks and other parts of the station are stable.
For the second test site, the railway bridge, motion decomposition is only performed on
the seasonal deformation map since there is no significant linear ground deformation
visible in the area. The result is shown in Figure 4.31. From the seasonal LOS maps,
it can be observed that the two sections on the railway bridge undergo seasonal defor-
mation with magnitudes up to 7 mm. Another prominent pattern can be seen on the
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Figure 4.29: Motion decomposition of Berlin central railway station. LOS amplitudes of sea-
sonal motion of (a) Beam42, (b) Beam57, (c) Beam85, and (d) Beam99. Decomposed
seasonal deformation in (e) the vertical direction and in (f) the east-west direction
by l2-norm minimization. Decomposed seasonal deformation in (g) the vertical di-
rection and in (h) the east-west direction by l1-norm minimization. Deformation
maps are in millimeters.

Figure 4.30: Motion decomposition of Berlin central railway station. LOS linear motion of (a)
Beam42, (b) Beam57, (c) Beam85, and (d) Beam99. (e) shows the decomposed linear
deformation rate in the vertical direction. Deformation maps are in mm/year.

building at the top left of each subfigure. From Figure 4.31e, it is seen that not much of
the LOS seasonal deformation can be attributed to the motion in the vertical direction
as, for most of the area in the scene, magnitudes not higher than 4 mm are visible. On
the other hand, the rail tracks and the building located at the top left are highly influ-
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Figure 4.31: Motion decomposition of the railway bridge in Berlin. LOS amplitudes of seasonal
motion of (a) Beam42, (b) Beam57, (c) Beam85, and (d) Beam99. Decomposed sea-
sonal deformation in the vertical direction and in the east-west direction are shown
in (e) and (f). Deformation maps are in millimeters.

enced by the seasonal deformation in the east-west direction with amplitudes as high
as 12 mm.
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5.1 Summary and Conclusion

This dissertation discussed possibilities and methodologies for merging the capabili-
ties of relative InSAR-based techniques and absolute SAR geodetic approaches. The
research objectives delineated in Chapter 1 have been addressed with the focus on the
generation of highly detailed absolute InSAR point clouds for the task of urban area moni-
toring. In this regard, the following conclusions can be drawn:

• Automatic extraction and positioning of GCPs is possible using multi-aspect high
resolution SAR images of urban areas. The tedious task of detection of identical
natural scatterers from SAR images of different viewing geometries can be aided
by using auxiliary geospatial data or based on the geometric fusion of multiple
PSI point clouds. It was concluded that the spatial resolution of the optical data
used for detection of candidates should be high enough so that the proposed tem-
plate matching scheme can reliably detect the desired targets. For the same task,
it was seen that the localization accuracy of the input road network data does not
necessarily need to be high.

• A quite flexible framework has been proposed for the generation of GCPs, where
the user is able to limit or extend the number of GCP candidates either at the
beginning of the procedure by selecting different distance thresholds for initial
detection, or by trimming the data based on analyzing the phase noise time series,
or at the final step of the processing based on the posterior quality indicators of
stereo SAR.

• The precision of the coordinates of the stereo SAR GCPs depends highly on the
angular difference of the used SAR images. In our experiments, candidate GCPs
from same-heading tracks, which include mostly facade PS, had been localized
with precision values better than 20 cm in East and Height and around 5 cm in
North. Using data from cross-heading tracks, the candidates, which usually in-
clude lamp poles or traffic lights in cities, could be positioned with almost ten
times lower standard deviations in East and Height and twice lower values in
North. Therefore, it is recommended to use cross-heading tracks, upon availabil-
ity, for GCP retrieval.

• The first demonstration of geocoding error correction and absolute InSAR point
cloud production without the use of external positioning data has been provided.
The coordinate shifts due to the unknown height of the InSAR reference points
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can be largely compensated by the proposed calibration procedure using SAR-
based GCPs. The correction method can be readily applied to previously gener-
ated point clouds as a post-processing step and does not require any modification
in PSI or TomoSAR algorithmic steps. The InSAR products with enhanced local-
ization accuracy allow the association of scatterers to their true positions, which
is in particular important when dealing with high resolution SAR products. This
leads to the correct detection of source of deformation in InSAR displacement
maps.

• Geodetic multi-aspect fusion of InSAR point clouds paves the way for the gen-
eration of shadow-free products with high localization accuracy. The proposed
fusion approach can be either carried out with a single SAR-based GCP or by
using a GCP network. Apart from resolving the shadow phenomena using cross-
heading data, the fusion of same-heading tracks leads to the substantial increase
in the scatterer density of InSAR point clouds. Examples using TomoSAR and PSI
point cloud fusion of entire urban areas were reported in this work with scatterer
densities of 1,260,000 and 140,000 points per squared kilometers, respectively.

• The accuracy of the generated GCPs and the produced absolute PSI and To-
moSAR point clouds were analyzed with respect to a reference LiDAR point
cloud. For several GCPs an average height bias of 13 cm was reported. The hori-
zontal accuracy of the point clouds were evaluated based on extraction of facade
PS and comparing them with 2-D footprints from LiDAR, which resulted in accu-
racy of 20 cm and 40 cm for TomoSAR and PSI, respectively. For vertical accuracy
analysis, the ground points of both InSAR and LiDAR point clouds were com-
pared, which showed biases close to 10 cm. This level of accuracy is in line with
the previously reported accuracy of the GCPs.

• The first demonstration of motion decomposition using multi-aspect TomoSAR
point clouds has been given. The 3-D deformation components of scatterers were
reconstructed based on the input of fused point clouds with absolute coordinates.
By evaluating the effect of available viewing geometries, it was concluded that the
reliable retrieval of the deformation in the North-South direction is not possible.
This is the case in general with current SAR satellites operating in near-polar or-
bits. However, this component should not be omitted from the functional model
in order to prevent biased deformation estimates in the remaining motion com-
ponents.

• It has been shown that the utilization of l1-norm minimization instead of least
squares dramatically reduces the effect of outliers on the final displacement es-
timates using the proposed motion decomposition algorithm. Therefore, more
accurate deformation mapping in higher level of details is possible by exploiting
robust estimators. Motion decomposition allows for easier interpretation of de-
formation patterns rather using the 1-D LOS displacement observations of InSAR.
However, it should be noted that l1-norm regression requires certain number of

72



5.2 Outlook

iterations, which makes the minimization procedure more computationally ex-
pensive than least squares.

5.2 Outlook

The findings of this thesis are initial steps toward reducing the gap between phase-
based InSAR and geodetic SAR techniques. Several improvements can be made in
different aspects of this work, which are briefly introduced in the following.

5.2.1 Alternative Remotely-Sensed GCP Generation

The detection of candidates based on high resolution optical data can be improved by
employing more advanced object detection techniques instead of template matching.
For instance, the usage of Histogram of Oriented Gradients (HoG) descriptors for this
purpose have showed encouraging results [141]. For discarding unreliable candidates,
in cases where a few point targets are located in close proximity of each other, analyzing
PTA-based metrics such as Integrated Sidelobe Ratio (ISLR) can be helpful.
Apart from SAR-based generation of GCPs, methods based on SAR-Optical stere-
ogrammetry can be used [142], [143]. However, it has to be mentioned that these ap-
proaches work only on data takes with small angular differences and therefore the accu-
racy of the extracted GCPs are lower than the proposed exclusively SAR-based method.
The ongoing studies of matching optical and SAR imagery [144]–[146] can help in iden-
tifying more suitable GCP candidates and will deepen our understanding of the nature
of these targets.

5.2.2 Employing GNSS Measurements

GNSS measurements can be used to validate the 3-D positioning accuracy of GCPs lo-
calized from stereo SAR. This can be performed by carrying out GNSS measurements
on some selected lamp poles as has been demonstrated in [75]. This approach is more
reliable than analyzing the absolute accuracy with respect to LiDAR DSMs. Further-
more, GNSS deformation observations can be considered as ground truth for the vali-
dation of InSAR displacement results obtained from motion decomposition. As GNSS
measurements report the absolute deformation, they can be used to link the InSAR
relative estimates into absolute reference frames. This has been recently done by aug-
menting a GNSS receiver on a radar transponder used as the reference point for PSI
results in [147].

5.2.3 Alternative Validation Procedures

The cross-comparison between InSAR point clouds or GCPs and LiDAR DSMs should
be improved by designing more sophisticated and objective comparison strategies.
They should also be able to perform validation for an entire urban area and not just
for selected test sites. Good examples of such approaches can follow the validation
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techniques used in [94], [148], [149]. Also different ground truth data may be utilized
for validation. For example, the 3-D position of GCPs or PS can be compared with the
output of SAR simulation techniques [150] to improve target association and correct
phase center detection.

5.2.4 Enhanced Parameter Estimation

In various parts of this research unknown parameters had to be estimated using redun-
dant measurements. For the estimation of 3-D coordinates of GCPs using stereo SAR,
no prior weights were assigned to the timing observations. A weighting based on the
targets SCR or ADI can improve the results and decrease the effect of non-suitable ob-
servations. Similarly for compensating the DEM error of InSAR reference point, which
is a critical step in improving the geocoding accuracy, a combination of weights using
the posterior coherence estimates of PSI and the stereo SAR standard deviations, may
improve the height offset estimation.
To exclude the effects of outliers in final estimates, parameter estimation using l1-norm
minimization was used for motion decomposition. Instead, a combined use of l1 and
l2-norm minimization can be used in order to obtain posterior quality indicators for
the deformation results. The usage of robust M-Estimators [151] is also recommended.
These type of estimators may be also useful for stereo SAR processing in order to limit
manual outlier rejection.

5.2.5 Extension to Medium Resolution SAR Data

As the final possible direction for future research, exploitation of the geodetic InSAR
framework using SAR data with medium resolution, like Sentinel-1, is recommended.
In this regard, the detection of identical targets from cross-heading tracks is a difficult
task that has to be initially addressed. Alternatively, matching of PS detected in TSX
and Sentinel-1 images of the same scene might be interesting. This can be used in stereo
SAR to localize targets using timing measurements from TSX and Sentinel-1. Another
possibility is to detect identical PS in both sensors to study the nature of the Sentinel-1
PS by analyzing its constituents in TSX. If the problem of matching is solved, then TSX
images could be used for improving the 2-D geo-location of Sentinel-1 images.
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Abstract— Geodetic stereo synthetic aperture radar (SAR) is
capable of absolute 3-D localization of natural persistent scat-
terers, which allows for ground control point (GCP) generation
using only SAR data. The prerequisite for the method to achieve
high-precision results is the correct detection of common scatter-
ers in SAR images acquired from different viewing geometries.
In this contribution, we describe three strategies for automatic
detection of identical targets in SAR images of urban areas
taken from different orbit tracks. Moreover, a complete workflow
for automatic generation of large number of GCPs using SAR
data is presented and its applicability is shown by exploiting
TerraSAR-X high-resolution spotlight images over the city of
Oulu, Finland, and a test site in Berlin, Germany.

Index Terms— Geodetic stereo synthetic aperture radar (SAR),
ground control point, positioning, SAR, TerraSAR-X (TS-X).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) imaging geodesy and
geodetic stereo SAR are relatively new techniques, which

aim at high-precision absolute positioning of point targets in
SAR images in two-dimensions (2-D) and three-dimensions
(3-D), respectively [1]–[3]. The accuracy of both meth-
ods, when coupled with data from TerraSAR-X (TS-X) and
TanDEM-X, is in the centimeter regime for targets with
accurately known phase centers such as corner reflectors [3].
This level of accuracy is achievable due to the precise orbit
determination [4] and instrument calibration of the aforemen-
tioned satellites followed by a thorough correction scheme

which quantifies and removes the most prominent error sources
affecting radar timing measurements. This paves the way for
remotely sensed generation of ground control points (GCPs)
using only SAR data.

The essential prerequisite for applying the geodetic stereo
SAR method is the correct detection of identical scatterers
in SAR images acquired from different geometries. In this
regard, a target can be visible only from same-heading orbits,
i.e., exclusively ascending or descending orbits, or also from
cross-heading orbits, which include combinations of ascending
and descending orbits. Conceptually, a target localized from
the latter is favorable because of the more robust intersec-
tion geometry when compared with the former. This fact is
demonstrated in Fig. 1(a) where the intersection angle occurs
at almost 90° because of the large baseline between the
satellites from cross-heading tracks. In Fig. 1(b), the target
is localized with satellites from same-heading tracks, which
force the baseline to be smaller and consequently the system of
equations to solve for the 3-D coordinates to be less sensitive
for the perpendicular height direction. However, the rare
occurrence of identical scatterers visible from cross-heading
configurations as well as the challenging task of automatically
detecting such targets, either from same- or cross-heading
tracks, currently limit the applicability of geodetic stereo SAR
for localization of large number of Persistent Scatterer (PS)s.

To overcome the limitation to some extent, this paper
describes an automatic algorithm for detection and absolute
positioning of large number of natural PSs in SAR images
of urban areas. The candidates are selected from both same-
heading and cross-heading geometries based on the meth-
ods relying on fusion of multitrack PS interferometry (PSI)
point clouds, correspondence detection with optical data, and
utilizing vectorized road network data. The candidates are
mainly chosen from the same-heading configuration because
of the fact that for many PSs the phase centers are assumed
to remain unchanged in SAR images. On the other hand,
additional candidates are chosen from cross-heading geome-
tries, although in a small number, because conceptually they
can be localized more precisely compared to the candidates
from same-heading geometries. Coupled with the subsequent
geodetic stereo SAR, the proposed processing chain delivers
sets of absolutely localized PSs in an investigated area.

The remainder of this paper is organized as follows.
Section II reviews the theoretical background of the



techniques utilized in this study and gives an overview of the
recent advances and the motivation for this paper. Section III
describes the three methods for detecting identical Persis-
tent Scatterer (PS)s visible in SAR images from same- and
cross-heading tracks. In Section IV, the complete workflow
for generating high-precision absolute GCPs is explained.
In Section V, the applicability of the algorithm is demonstrated
by exploiting TS-X high-resolution spotlight images over the
city of Oulu, Finland, and a test site in Berlin, Germany, and
finally, the conclusion is drawn in Section VI.

II. HIGH-PRECISION ABSOLUTE 2-D AND

3-D POSITIONING WITH TS-X

At the core of high-precision absolute positioning of can-
didate GCPs using SAR data are the imaging geodesy and
the stereo SAR methods. These methods are described in
this section followed by the recent advances and applications
which rely on absolute localization capability of TS-X. It is
important to note that the complete explanation of the theory
of the methods and their practical implementations are not
in the scope of this paper. For full treatment of these topics,
the interested reader is referred to [1]–[7].

A. Background

The SAR imaging geodesy technique aims at achieving 2-D
absolute pixel localization [1]. Based on the SAR measurement
principle, a single pixel in a focused complex SAR image,
processed to zero-Doppler coordinates, is characterized with
two time tags: in the along-track direction, the time relative to
the time of the closest approach defines the azimuth coordinate
taz and in the across-track direction, the difference in the
time travel of the transmitted and the received chirp at taz
describes the range coordinate τrg [8]. If we measure the radar
timing coordinates (taz, τrg) for a point target located within
the mentioned pixel, the following equations hold:

τrg = 2R

c
+ δτSD + δτO + δτF + δτI + δτT + δτG (1)

taz = t + δtSD + δtO + δtF + δtG (2)

where R is the geometric distance from the satellite to the cen-
ter of the pixel in meters and c is the speed of light in vacuum
in m/s, while all the other terms are expressed in seconds. t is
the raw acquisition time, δτSD and δtSD are delays caused by
satellite dynamics and electronics, δτO and δtO are the orbit
inaccuracies, δτF and δtF are the feature localization errors,
and δτG and δtG include the geodynamic effects on all range
and azimuth timings, respectively, while δτI and δτT are the
ionospheric and the tropospheric delays considered only for
range timings. The magnitude of the individual effects can be
scaled to units of length by multiplying the range error terms
with (c/2) and the azimuth error terms with the platform’s
velocity. The outcomes vary from a couple of centimeters
for the ionospheric effect, if the satellite operates in X-band,
followed by decimeter regimes for satellite electronic delays
and geodynamic effects for both components, to up to 4 m for
the tropospheric effect depending on the average incidence
angle of the acquired TS-X images.

Imaging geodesy corrects for all the error terms
in (1) and (2) thus obtaining absolute range and azimuth
timings. In this regard, the technique reduces the effects in
satellite dynamics by avoiding the stop–go approximation
in the TS-X multimode SAR processor and by taking into
account the nonzero duration of the pulses and the internal
delay caused by the instrument cables [9]. The propagation
errors are estimated based on the path delays derived from the
nearby global navigation satellite system (GNSS) stations or
3-D integration through weather models followed by appro-
priate mapping functions [2], [3], [10]. For the geodynamic
effects such as solid earth tides, plate tectonics, ocean load-
ing, and atmospheric loading, which change the position of
a target on the ground, the corrections are applied based
on models issued by the International Earth Rotation and
Reference Systems Service (IERS) [11]. Taking into account
all the mentioned factors, SAR imaging geodesy is currently
capable of providing range and azimuth measurements with
1.16 and 1.85 cm standard deviations, respectively [12].

If a target is visible in SAR images acquired from
two or more different viewing geometries, then stereo
SAR retrieves the 3-D position of the target by combining
the extracted timing information of the target from each
SAR image. Furthermore, if the timing coordinates have
been a priori corrected for the error sources expressed
in (1) and (2), the method is called geodetic stereo SAR,
which allows for absolute 3-D localization [3]. The relation
between the 2-D radar time coordinates of a specific target
in the SAR image xT = (taz, τrg) and its corresponding
3-D coordinates on the ground XT = (X, Y, Z) is defined by
the range-Doppler equation system [8]

|XS−XT | − c · τrg = 0 (3)

ẊS(XT − XS)

|ẊS||XT − XS| = 0 (4)

with XS and ẊS being the position and velocity vector of
the satellite relative to taz, and τrg being the calibrated two-
way traveled time from the satellite to the target. taz is
implicitly included in (4) relating the state vector of the
satellite to the time of the acquisition via a polynomial
model [3]. Equation (3) defines a sphere centered on XS , which
reduces to a circle perpendicular to the satellite trajectory
when coupled with the zero-Doppler plane described in (4).
Therefore, XT can be retrieved by including another set of
timing observations from a different satellite position, which
evaluates the intersection point of the two circles (see Fig. 1).
The estimation of the coordinates is carried out by means
of least squares plus the stochastic modeling of range and
azimuth using the variance component estimation (VCE) [3].
Precision of the estimated 3-D coordinates depends on the
signal-to-clutter-ratio (SCR) of the target, the precision of
the external radar timing corrections, the separation in the
viewing geometries, and the number of acquisitions. Geodetic
stereo SAR has been proven to be able to localize corner
reflectors with 3-D precision better than 4 cm and an absolute
accuracy of 2–3 cm when compared to independently surveyed
reference positions [3].



Fig. 1. Localization of a point target (red dot) from (a) cross-heading and
(b) same-heading satellite tracks. The satellites are shown by black dots; their
trajectories are presented by dashed lines and the baselines are depicted by
solid lines between the satellite positions. The black circles are defined by
the range-Doppler equations and their intersection leads to the 3-D position
of the target.

B. Recent Advances and Motivation

In our previous research, geodetic stereo SAR has been also
applied to a small number of natural PSs in urban areas where
it could localize targets in 3-D with a precision better than
1 dm using TS-X high-resolution spotlight products [3]. The
PSs were manually extracted from SAR images and originated
from building facades for candidates visible in same-heading
tracks or from the base of street lights for candidates visible
from cross-heading tracks.

In [13], the first attempt for automatic timing extraction
and matching of limited number of PSs originated from a
building facade visible in TS-X images from two same-
heading tracks was reported. In this paper, the geodetic stereo
SAR method was extended to include the secular movement of
the PSs as well as their 3-D absolute positions. The averaged
3-D precision was reported to be below 1 dm with encouraging
results for estimating the plate tectonics using SAR data.

In [14], the concepts of imaging geodesy and stereo SAR
were used to transform the relative estimates of SAR tomog-
raphy into absolute 3-D point clouds by absolutely localizing
the manually extracted reference point. The method, termed
geodetic SAR tomography, allows for the generation of dense
point clouds with an absolute localization accuracy in the order
of 20 cm and is the basis for geodetic fusion of multiaspect
interferometric SAR (InSAR) point clouds. The latter enables
the decomposition of deformation estimates from SAR tomog-
raphy into highly detailed 3-D displacement maps [15].

Automatic extraction of Ground Control Point (GCP)s from
SAR products has been carried out for TS-X and COSMO-
SkyMed in [16] and [17], respectively. Both methods focus on
the detection of stereo candidates that presumably originate
from street lights or traffic signs and are visible in SAR
images as bright isolated points. Therefore, the majority of PSs
in urban areas which stem from building corners or facades
are not considered as potential candidates in these methods
due to complex radar reflection properties in such scenarios.
Furthermore, in [16], the 3-D positioning is done only with
same-heading geometry configurations, and therefore, the error
ellipsoid of the scatterers’ coordinates is highly skewed in
the cross-range direction [3], [18]. Nevertheless, the retrieved
3-D coordinates of several candidates were compared to
their true positions observed with GNSS which confirmed
an absolute accuracy better than 20 cm in each coordinate
component [16].

Based on the above-mentioned studies, the motivation for
carrying out this paper is fourfold.

1) The manual detection, extraction, and matching of PS
candidates from SAR images acquired from different
geometries are cumbersome and should be replaced by
an automatic process.

2) The algorithm should be able to automatically detect
and match identical PSs visible from cross-heading
geometries in order to boost the precision of the retrieved
3-D coordinates.

3) The total number of high-quality PS candidates to be
localized as GCPs should be as large as possible. This
indicates that the majority of PSs in urban areas which
stem from buildings should also be considered as can-
didates for 3-D absolute localization from the same-
heading tracks.

4) The distribution of the GCPs should be as homogeneous
as possible in the entire investigated area. This allows
for the generation of an absolute reference network to
be integrated into relative InSAR techniques.

III. DETECTION OF IDENTICAL PSS

IN MULTIASPECT SAR IMAGES

Detection of identical PSs from SAR images acquired with
different viewing geometries is a challenging task. This is
because of the geometrical distortions of SAR images due
to the oblique viewing geometry and less importantly the
presence of speckle. Moreover, in urban areas captured by
SAR sensors, which is the focus of this paper, the backscatter-
ing mechanism is highly complex because of the existence of
several phase centers close to each other. Therefore, identical
PS matching becomes even more difficult for multiaspect
SAR images of urban areas.

In recent years, there have been several studies that explored
the possibility to match features between SAR images. In [19],
the capabilities of the conventional scale invariant feature
transform (SIFT) algorithm [20], which is commonly used
for feature extraction and matching between optical images,
were extended to be suitable for SAR images. In [21], the
SAR-SIFT algorithm has been proposed, which focuses on the
efficient extraction of local descriptors from SAR images by
modifying the SIFT algorithm to take into account the statisti-
cal properties of speckle. However, both of the aforementioned
methods are applicable only to SAR images taken from same-
heading orbits with small difference in the respective incidence
angles. Specifically for the task of automatic 3-D positioning,
Nitti et al. [17] have proposed to identify identical scatterers
based on the detection of local features using the Harris
corners. This is followed by constraining the search space by
geocoding the local features, using an external digital elevation
model and orbit information, and eventually using SIFT for the
feature matching. Although the method is promising in terms
of detection and positioning of targets even from cross-heading
tracks, it only works on isolated PSs.

In the following, we describe in detail the three strategies
we apply for the detection of identical PSs in SAR images
acquired from the same- and cross-heading orbits. The meth-
ods do not tackle the detection problem directly within the



SAR images, but instead rely on external geospatial data and
on limiting the search space on georeferenced positions of
the PSs.

A. Multitrack PSI Point Cloud Fusion

In [22], a method for geometrical fusion of multitrack PSI
point clouds has been proposed. The fusion algorithm, which
is based on the geocoded PSI point cloud solutions of each
geometry as well as information on heading and looking
angle of the satellites, consists of three major parts, namely:
1) generation of initial point correspondences; 2) restricted
least squares adjustment to minimize the distance between
assumed identical points visible from different viewing geome-
tries; and 3) adding a range-dependent shift to all PSs using
the result of the previous step for the final registration.
A summary of the method is described in the following. For
a detailed description of the algorithm, the reader is referred
to [22] and [23].

Since we are interested in the detection of large number of
point correspondences, only the first part of the algorithm is
relevant. This coarse registration is performed based on the
cross correlation of a subset of geocoded PS point clouds
from different geometries, after projection on a regular grid,
in the xy-, xz-, and yz-planes. The subset is chosen based
on the precision of height update estimates available for each
PS after carrying out Persistent Scatterer Interferometry (PSI)
[23], [24]. The resulting horizontal and vertical shifts from
the mentioned cross correlation procedure are applied to the
PSs of one point cloud to align them with the PSs of the
other point cloud. The coarse shifts are further refined prior
to the selection of corresponding PS pairs. The refinement
is carried out inside a small neighborhood around each PS
which includes the PSs from the other point cloud and tends
to accomplish it by performing a statistical search to find the
best fit between both 3-D point clouds [23]. The refined shift
is applied to the PS point cloud of one acquisition geometry,
and a one-by-one PS correspondence is detected in the other
point cloud. At the final step, the 3-D coordinates of the
geocoded PSs have to be projected on the SAR images of
each orbit track, a process called radar-coding. Since the
matching of the PSI results is performed on coordinates in
the Universal Transverse Mercator (UTM) map projection,
the coordinates are first converted to the Cartesian geocentric
system as (X, Y, Z)i for the i th PS. Subsequently, the range-
Doppler equations described in (3) and (4) are inverted to
obtain the azimuth and range timing coordinates (taz, τrg)i ,
which can be easily expressed in pixels in the radar coordinate
system (L, P)i by knowledge of the range sampling frequency,
pulse repetition frequency, the first sampled azimuth time,
and the first sampled range time for each acquisition. The
latter information is stated in the product annotation files
accompanied by the TS-X image products [25].

For the same-heading tracks, this method typically gen-
erates 200–2000 point correspondences per kilometer square
depending on how densely constructed is a city which directly
affects the total number of PSs in each point cloud.

B. Template Matching on Optical Data

Given the availability of suitable remotely sensed optical
data, one can detect candidate objects from optical images
which are probable to be observed in SAR images from
different viewing geometries. In urban areas, scatterers, which
are good candidates to be visible from both the same-
heading and cross-heading tracks, usually originate from lamp
poles or other cylindrical objects that are vertically oriented
toward the sensor. Therefore, the basic idea when using optical
data for the aid of GCP identification is to detect lamp poles
and match the detected objects to the corresponding bright
points in SAR images.

The method identifies lamp poles based on their distinc-
tive shadows in optical images using a template matching
scheme [26]. Prior to extracting the template, common pre-
processing steps such as noise filtering and histogram equaliza-
tion are carried out on the optical image. Additionally, in order
to make the shadows of lamp poles more prominent, a simple
sharpening procedure is carried out as follows:

I = Io + aIm (5)

where I is the sharpened image, Io is the preprocessed original
image, a is the scalar sharpening factor, and Im is the unsharp
mask. Im is calculated as the difference between Io and its
blurred version. Higher values of factor a means the higher
level of sharpening. The process expressed in (5) is called high
boost filtering [27].

After the sharpening, the template is extracted based on the
shadow of an arbitrary lamp pole visible in the optical image.
The template is then correlated with the reference image to
calculate the following similarity measure for each pixel (u, v)
in the reference image [28]:

ρ(u, v) = �x,y[I(x, y) − Īu,v ][T(x − u, y − v) − T̄]√
�x,y[I(x, y)− Īu,v]2 �x,y[T(x − u, y−v)−T̄]2

(6)

where I(x, y) and T(x, y) denote the pixel values of the
reference and the template image at (x, y), respectively, and
�x,y stands for �N1

x=1�
N2
y=1 with N1 × N2 being the size of the

template. Furthermore, Īu,v and T̄ denote the mean intensity
values of the original image and the template, respectively.
Equation (6) allows for the calculation of the normalized
cross correlation (NCC) value ρ(u, v), which leads to the
detection of the template location in the reference image after
proper thresholding. It is important to note that due to the
normalization carried out in the denominator of (6), ρ(u, v) is
independent of changes in brightness or contrast of the image
and, therefore, improves the result of template matching.

After detection of pixels that belong to the shadows of
lamp poles, the result is georeferenced in the UTM coordinate
system. Since more than one pixel exist for each lamp pole
in the optical image, which represent the object, a subse-
quent clustering is performed. The clustering is carried out



nonparametrically using the mean shift concept [29]
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where pi denotes a 3-D point for which the shift vector M(pi )
is calculated. p j represents the points in a neighborhood of pi ,
g is a kernel function with the bandwidth h, and ‖·‖ is the
Euclidean distance operator. The main idea of the algorithm
is to shift each point in a small neighborhood toward its
weighted mean value and thus representing each cluster by
its centroid [29]. The process is carried out iteratively until
the length of M(pi ) becomes equal or close to zero. For our
application, since in any case there will be a mismatch between
the detected points on optical data and the corresponding
bright points in the SAR image, utilizing a flat kernel in (7)
suffices. This means the algorithm is simplified by calculating
the sample mean in a specified radius of pi and shifting the
desired point toward the estimated center.

In the next step, the clustered points with UTM coordinates
should be radar-coded to all the available SAR images. As it
was mentioned earlier, the positions of the detected lamp
poles on the optical data and the bright PSs in the SAR
image will most probably not coincide after radar-coding. This
can be explained by height uncertainties of the georeferenced
optical data and the fact that the data may not be perfectly
orthorectified. Therefore, in the final step of the algorithm,
the detected lamp poles are registered on the corresponding
bright dots in the SAR image by employing the iterative
closest point (ICP) algorithm [30]. To this end, binary masks
are generated based on thresholding on the bright points on
the SAR image and keeping only the detected lamp poles
from the optical data. The ICP algorithm then finds for
each individual point its closest point in the corresponding
point set. It iteratively estimates the transformation parameters
(translation and rotation) to minimize the mean squared error
between the two point sets and finally registers one point cloud
onto the other point cloud with the refined transformation
parameters.

It is noteworthy that the positioning accuracy of the uti-
lized optical image does not necessarily have to be high.
A horizontal positioning accuracy in the order of couple
of meters and an approximate knowledge of height based
on freely available sources usually suffice for the procedure
described in this section. If a mismatch occurs due to the
low positioning accuracy, this will be compensated by the
final step of the algorithm with applying the ICP. However,
the spatial resolution of the optical data should be strictly high,
10 cm or better, in order to be able to accurately detect the
shadows of the lamp poles.

C. Vector Road Network Data

In urban areas, the cylindrical objects of our interest (lamp
poles, road signs, traffic lights, etc.) are typically located along
the roads. Therefore, with the availability of geospatial road
data, either obtained from OpenStreetMap or country-specific
geoportals, and the projection of such maps on SAR images,

one can search for bright points in the neighborhood of the
road data points.

The method is applied to co-registered stacks of
SAR images. If SAR stacks from multiple viewing geometries
are available, first the road data, which are usually delivered
in the UTM coordinate system, are radar-coded based on the
master orbit information of each stack. It is important to note
that if the road data do not have any information about the
ellipsoidal height, then for the radar-coding a constant height
value based on prior knowledge can be chosen for all the road
data points. Furthermore, the data with horizontal positioning
accuracy in the order of couple of meters will suffice for
the PS matching procedure as the PS correspondences are
detected on a neighborhood-analysis basis, as is depicted in
the following, which does not require the exact position of
the road data point.

After radar-coding, a circular neighborhood is considered
around each road data point. The radius of the circle depends
on the typical width of streets and highways. Subsequently, for
each pixel within the neighborhood the amplitude dispersion
index (ADI) is evaluated [31]

Da ≈ σa

ā
(8)

where σa and ā are the temporal standard deviation and the
temporal mean of calibrated amplitude values of the pixel,
respectively, and Da approximates the phase dispersion. The
pixel with the lowest value of Da , i.e., the one with the
highest phase stability is chosen as potential PS candidate.
This process is carried out for all of the available road data
points. Since at this point, it is possible that many false
pixels with relatively low Da values in the neighborhoods are
categorized as potential GCP candidates, a further thresholding
on Da is performed in SAR images from all available viewing
geometries. This operation, in addition to constraining the
approximate elevation of the PS candidates to be close to
the ground, causes a dramatic decrease in the total number
of detected candidates, but improves the accuracy of the
detection.

Finally, the presumable identical PSs in all available geome-
tries are geocoded using the respective master orbit informa-
tion. In the geocoded results, the PSs which are close enough,
in terms of coordinate differences, are selected as the final
GCP candidates.

IV. AUTOMATIC GCP GENERATION: PROCESSING CHAIN

The processing chain for automatic detection and position-
ing of GCPs includes a set of procedures that starts from
single-look slant range complex SAR images and their corre-
sponding product annotation files to absolute 3-D coordinates
of the chosen GCPs. The flowchart of the algorithm is shown
in Fig. 2. It consists of the following major processes that have
to be carried out in the stated order:

1) identification of identical scatterers visible in multiaspect
SAR images.

2) precise extraction of scatterers’ azimuth and range posi-
tions from SAR images at subpixel level.

3) scatterer visibility check and initial removal of outliers
from time series of phase noise.



Fig. 2. Flowchart of the automatic GCP generation algorithm. The input data is the single-look slant range complex (SLC) SAR images and their accompanying
L1B product annotation files. The identical PS detection part is drawn inside the gray dashed rectangle. In the case of PS detection from cross-heading viewing
geometries, the algorithm receives as input the optical image or road network data of the scene upon availability. The processes are depicted with big blue
rectangles, while the subprocesses are shown with small gray rectangles. The name of each process step is written in bold letters. The last blue rectangle
includes the processes and subprocesses that all the detected candidates should go through independent of the detection methodology.

4) correction of radar timings for all the perturbing signals.
5) estimation of the 3-D absolute coordinates of the

scatterers.

This section discusses each step. It is important to note
that since some of the steps are well-established and well-
documented techniques in the SAR community, all the details



will not be repeated here. Instead, for these processes,
the relevant references are provided.

A. Identification of Identical PS

This section has been already covered in Section III and
is shown as the processes inside the gray dashed rectangle
in Fig. 2. For detection of PS candidates from same-heading
orbits, the PSI processing is carried out following the guide-
lines from [24], [31]–[33] and the identical PS matching is
done using the PSI multitrack fusion algorithm described
in [22] and [23]. In the case of localization from cross-heading
tracks, the PS candidate selection is carried out using the
methods based on the optical data or on the road network
data. Regardless of the detection method, the output of this
step is the approximate radar coordinates of identical PSs in
terms of lines and samples in all non-coregistered images of
different orbit tracks.

B. Precise Extraction of PS Timings

The rough radar coordinates of the PSs from the previous
step should be refined to subpixel level in order to extract the
timings precisely. To this end, a process called point target
analysis (PTA) is carried out [8]. In each image of the scene,
a 32 × 32 window centered on the PS is extracted. In both
range and azimuth directions, an oversampling by a factor
of 32 is performed and the integer peak position of the PS
response is measured. Subsequently in a 3×3 window centered
on the peak position, a paraboloid interpolation is performed
to refine the values around the maximum. This method allows
the retrieval of the peak position of the PS with a sensitivity
better than (1/1000) of a pixel in each dimension [5]. These
values are then converted to radar timings based on the product
annotation files [25].

Based on the result of the PTA for each PS, the refined peak
power Ppeak and the clutter power Pclutter can be computed.
These values, if expressed in decibel, are related to the SCR
of the target as

SCR = 10

(
Ppeak−Pclutter

10

)
(9)

which is expressed as a digital number.

C. PS Visibility Check and Initial Outlier Removal

The SCR of potential PS candidates should be high enough
in the stack of SAR images so that the PS can be localized
with high precision. Therefore, we analyze the time series of
phase noise values σφ of the PSs to exclude potential outliers
and check whether the scatterer is visible in one data take. The
σφ of a PS in acquisition i is related to the Signal-to-Clutter-
Ratio (SCR) of the target as [34]

σφi ≈ 1√
2 SCRi

(10)

which is expressed in radians. The values of σφ , for a
specific PS in all data takes, are nonnegative and follow a
right-skewed distribution. Removal of outliers based on statis-
tical measures such as mean or median is not recommended

since many regular values can be categorized as outliers.
Therefore, we use a method called adjusted boxplot which
allows for robust elimination of outliers in univariate skewed
distributions [35].

The main idea of the adjusted boxplot is to modify the
original boxplot method, described in [36], to include infor-
mation about the skewness of the data. Therefore, instead of
classifying an observation as outlier if it lies outside of the
interval defined by the boxplot method [36]

[Q1 − 1.5 IQR; Q3 + 1.5 IQR] (11)

the adjusted boxplot method declares an observation as outlier
if its value exceeds the following interval [35]:

[Q1 − 1.5 e(−4MC) IQR; Q3 + 1.5 e(3MC) IQR]. (12)

In (11), Q1 and Q3 are the first and the third quartiles
of the data, respectively, and IQR = Q3 − Q1 denotes the
interquartile range. In (12), MC is the medcouple, a robust
measure of the skewness of a univariate sample which for
the right-skewed distributions is always nonnegative [37]. The
exponential functions in (12), which depend on the MC as well
as the included coefficients, are chosen experimentally based
on some well-known skewed distributions. For more details on
the theory and implementation of the adjusted boxplot method,
the reader is referred to [35].

After the automatic identification and exclusion of σφ values
which do not lie within the interval of (12), the remaining
time series is analyzed to remove the data takes in which the
specific PS is not visible. This is done by removing all σφ

values which are above 0.5 rad (≈30°) as is stated in [24].

D. Correction of PS Timings in a Stack

The correction of the extracted PS timings is per-
formed using the imaging geodesy technique [1], which
was briefly introduced in Section II-A. It is worth mention-
ing that the tropospheric and ionospheric effects are cor-
rected based on global numerical weather models and global
ionospheric maps, respectively, if local GNSS receivers are not
available in the vicinity of the investigated area. Along with
these corrections comes the corresponding geometrical calibra-
tion of the SAR sensor in range and azimuth which ensures
centimeter localization accuracy. The calibration is based on
corner reflectors with known reference coordinates [1]. The
output of this part is the absolute 2-D radar timing coordinates.

E. Absolute 3-D Localization of PS

At the final step in the processing chain, the corrected
range and azimuth timings from the entire multiaspect
set of SAR images are combined to retrieve the absolute
3-D position of the PS with the stereo SAR method described
in Section II-A. Apart from the 3-D position of the target,
stereo SAR reports on the standard deviation of each coor-
dinate component (SX , SY , and SZ ) as the by-product of the
least squares adjustment. Furthermore, the observation quality
of each PS, i.e., the azimuth and range standard deviations
(Saz and Srg), retrieved from applying VCE to residuals are
delivered. It is important to note that the VCE is carried



Fig. 3. (Left) Optical image and (right) SAR amplitude images of the test area in Berlin. The contrast of the optical image has been adjusted to illustrate
the shadows of the lamp poles prominently.

out individually for each geometry which allows to judge
the consistency of the observed geometries with respect to
the underlying assumption that the intersection occurs at a
common PS.

The residuals of the adjusted range and azimuth obser-
vations are the basis for the elimination of outliers after
stereo SAR processing. Therefore, the processing is carried
out repeatedly, where first the initial 3-D coordinates are
estimated using the provided input timings. The range and
azimuth residuals are analyzed to exclude observations with
residual values larger than 0.6 m in range or larger than
1.1 m in azimuth. The upper bounds correspond to the nominal
spatial resolution of TS-X high-resolution spotlight products
used in this paper. Then the stereo SAR is performed again
with the cleaned observations. This time, observations that
show residuals larger than two times the Saz and the Srg
are removed. Additionally, to remove the PSs, which are not
considered ideal for stereo SAR due to wrong correspon-
dence matching caused by several scatterers being too close,
the third step of data cleaning is performed. PSs having an
Saz higher than 20 cm in any of their azimuth geometries are
removed based on the assumption that the discrepancy should
not exceed the typical size of the PS object, for instance,
a lamp pole.

The estimated variance–covariance matrix of the 3-D posi-
tion of the target is further used for error analysis. The
matrix gives important information about the stability of
the coordinates’ results and is affected by the factors stated
in Section II-A.

V. EXPERIMENTAL RESULTS

In this section, the workflow described in Section IV
is applied on real data to produce remotely sensed
SAR-based GCPs. In Section V-A, the results are reported
for a small test site in Berlin where the detection of GCP

TABLE I

ACQUISITION PARAMETERS OF STACKS OF SAR IMAGES IN BERLIN

candidates are carried out using cross-heading geometries.
In Section V-B, the processing results are shown for the entire
city of Oulu, Finland, where the detection and positioning are
performed on PS candidates detected from both the same-
and cross-heading orbit tracks using the methods described
in Sections III-A and III-C, respectively.

A. Berlin

The first test site includes a small area close to the Berlin
central railway station. The SAR data set, 214 images in
total, consists of two stacks of TS-X very high-resolution
spotlight images acquired with a range bandwidth of 300 MHz.
The images cover a period of approximately six years from
April 2010 to March 2015. In terms of viewing geometry,
one stack was acquired from a descending orbit with images
recorded at 05:20 coordinated universal time (UTC), and one
stack was acquired from an ascending track with images
recorded at 16:50 UTC. The acquisition parameters of each
stack are summarized in Table I.

For the selected test site, an aerial optical image with
ground spacing of 7 cm is also available. The optical image
is orthorectified and was used in a stereo matching process to
produce a digital surface model with decimeter accuracy [38].
The optical image of the test site and the corresponding
SAR images are shown in Fig. 3.



Fig. 4. Demonstration of PS correspondence detection in Berlin based on high-resolution optical data. (a) Preprocessed optical image after negative intensity
transformation and the extracted template. (b) Calculated NCC map after correlating the extracted lamp pole template with the reference image in which
the detected objects are marked by yellow rectangles. (c) 44 detected objects in the UTM coordinate system after clustering. In (d) and (e), the radar-coded
results are depicted by yellow circles, which show offsets with respect to the bright points in the SAR images. (f) and (g) Results of matching after using
the ICP algorithm on the descending and the ascending image, respectively. In (f) and (g), it can be seen that the detected objects from the optical image
(green circles) coincide with the visible bright points in the SAR images.

The GCP candidate selection is carried out based on
the optical data which includes the detection of lamp
poles and their projection onto cross-heading SAR images
(see Section III-B). The individual steps of this process,
applied on the Berlin test site, are shown in Fig. 4. After
the extraction of the template [see Fig. 4(a)], the NCC map is
calculated and pixels with values higher than 0.6 are classified
as parts of shadows of lamp poles as illustrated in Fig. 4(b).
It is important to note that the exact tuning of the threshold
is not necessary as long as the value is chosen low enough.
If the threshold is strictly chosen as a high value, although we
are selecting the most similar pixels to the template, we may
ignore all the other candidates which show less similarity
to the template but might have been potential candidates
for stereo SAR processing and 3-D localization. Therefore,

in our processing chain, the default value is set to 0.6, which
is slightly higher than the half of the Normalized Cross
correlation (NCC) range [0,1], to guarantee a certain degree
of similarity while selecting a large number of pixels. In the
Berlin case study, this leads to the selection of 2030 pix-
els which are further clustered to represent the 44 detected
objects in the UTM coordinate system [see Fig. 4(c)]. The
objects include the lamp poles along the bridge and at
the street perpendicular to the bridge as well as flag poles
at the top left of the optical image close to the Berlin
railway station. After radar-coding of the results onto the
entire ascending and descending SAR images, the mismatch
between the projected points and the actual bright points in
the SAR images, as depicted in Fig. 4(d) and (e), is resolved
using ICP. The detection outcome is marked with green circles



Fig. 5. Range and azimuth residuals for two PS examples of the Berlin test case after the stereo SAR processing. Step 1 (gross outlier detection) and step 2
(2σ test) have already been applied. (a) PS41. (b) PS43.

in Fig. 4(f) and (g). It is seen from the results that not all of
the available street lights can be detected using the mentioned
strategy because some can be occluded by cars or the object’s
shadow is not distinctive enough to match the extracted
template. However, this is of low importance in our application
since in such a small test site, with an area less than 2 km2,
two or three GCPs will certainly suffice. Moreover, if the
method detects wrong candidates, which do not fall in the
category of PSs, the subsequent Point Target Analysis (PTA)
and phase noise analysis will discard these points.

The precise radar timings of the PSs are extracted using
PTA (see Section IV-B). Subsequently for each PS candi-
date in each data take, SCR and σφ values are evaluated
using (9) and (10), respectively. After excluding potential out-
liers with the adjusted boxplot method, the data takes in which
the scatterer is not visible are discarded by thresholding on
the σφ values (see Section IV-C). At this point, one might
argue that analyzing the time series of the remaining σφ

values can already give a hint if the scatterer is a suitable
candidate for positioning or not. This statement is partially
true since the mentioned analysis is only useful to separate
the time-coherent scatterers from the noncoherent ones. It is

possible that several scatterers, located close to each other,
are mapped as one bright point which results in low σφ value
but of course not a suitable candidate for stereo SAR. These
candidates are usually discarded in the stereo SAR processing
due to large Saz values which indicate that not the same
object has been detected from multiple viewing geometries.
Therefore, in our processing chain, the detected candidates
are not entirely removed based on their average SCR and they
are all passed to the final stereo SAR processing.

As for the corrections, the ionospheric delay is estimated
using global ionospheric maps. The tropospheric delay is
estimated using the zenith path delay information of the closest
permanent Global Navigation Satellite System (GNSS) station
in Potsdam which is situated approximately 35 km away from
the test site.

The positioning of the 44 PSs is carried out using stereo
SAR (see Section II-A) and is followed by outlier elimi-
nation according to the criteria described in Section IV-E.
Starting from the corrected input timings, the first solution is
analyzed for gross outliers in the observations exceeding the
resolution of the underlying TS-X high-resolution spotlight
product. Applying these thresholds to the residuals of the



Fig. 6. Posterior azimuth and range standard deviations (Saz, Srg) of the nine best GCP candidates estimated by VCE in the geodetic stereo SAR processing.

Fig. 7. Posterior standard deviations scaled to 95% confidence level of the nine best GCP candidates estimated posterior to the geodetic stereo SAR processing.
The standard deviations are defined in the local coordinate system of Berlin in north, east, and vertical direction (SN , SE , and SH ).

adjusted observations reduces the number of solvable PSs
from 44 to 42, because in the case of an obvious mismatch,
all the observations of one geometry are removed. Moreover,
the total number of observations is reduced by 25%, but this
strongly varies across the individual PSs. After recomputation
and application of the 2σ test using the estimated standard
deviations from the VCE (Saz, Srg), the number of solvable
PSs remains 42 and the total amount of observations is
reduced by another 8%. At this stage, the data is fairly
cleaned at the observation level regarding the individual range
and azimuth geometries, but their consistency has not been
considered so far. Looking at the observation residuals of
the two PSs displayed in Fig. 5 reveal that there are cases
for which the azimuth of one geometry is clearly biased,
because we try to combine data from different phase centers.
In the ideal case, the algorithm yields a coordinate solution
for which all sets of observations (two sets of azimuth and

two sets of range) can fulfill the range-Doppler positioning
model of (3) and (4). For a mismatch or a spatial separa-
tion of the phase centers, the usually more precise range
observations dominate the solution, and only one of the
azimuth data sets may fit the estimated coordinates without
a bias, but not the second set of azimuth data. Such a
situation is illustrated by PS41 [see Fig. 5(a)], where the
36° azimuth displays a prominent bias of about −30 cm.
To a certain degree this must be accepted since we cannot
expect ideal multidirectional PSs, e.g., the lamp poles have a
certain diameter. In this paper, as mentioned in Section IV-E,
we define an empirical limit of 20 cm of what we consider
acceptable, which removes candidates like the PS41 during
the final processing step. Therefore, the residual results of
scatterers such as PS43 [see Fig. 5(b)] may be seen as the best
case scenario. The remaining difference in quality between
range and azimuth is due to the nonsquare product reso-



TABLE II

RESULT OF CROSS COMPARISON BETWEEN THE ESTIMATED HEIGHTS
OF STEREO SAR hS AND THEIR CORRESPONDING LIDAR

HEIGHTS hL . THE OFFSET ho IS AN INDICATOR

FOR THE ABSOLUTE ACCURACY OF hS

lution, i.e., the TS-X spotlight SLC data have a resolution
of 0.6 m × 1.1 m in range and azimuth, respectively [25].

For the aforementioned reasons, only nine PSs remain which
we consider as good GCP candidates. The bar graphs of
Figs. 6 and 7 summarize the quality of these PSs. Fig. 6 shows
the posterior estimated standard deviations of observations.
The Saz values vary from 3 to 19 cm with an average of 12 cm,
while the Srg values range from 1 to 24 cm with an average
of 6 cm. This indicates that, for these natural PSs, the removal
of error terms, as expressed in (1) and (2), and discarding
the outliers allow subdecimeter and decimeter precision in
range and azimuth, respectively. In Fig. 7, the positioning
quality is assessed by reporting the precision of the estimated
coordinates. The standard deviations are defined in the local
coordinate system of Berlin in the north, east, and height
(SN , SE , and SH ) in the confidence level of 95%. The
mean values of SN , SE , and SH are 2.7, 2.8, and 2.2 cm,
respectively. The higher precision in the height direction is
merely the effect of the cross-heading geometry used for the
positioning.

Until now, the discussion was mostly focused on analyzing
the relative accuracy of the coordinates based on the posterior
precision estimates. Although the most reasonable procedure
to validate the absolute accuracy is a point-wise comparison
of stereo SAR coordinates with respect to the corresponding
GNSS-surveyed ones, this was not applicable at the time
of the study. Instead, the stereo SAR estimated ellipsoidal
heights of the nine GCPs were compared with the LiDAR
heights of the same area. We assume the phase centers of the
detected GCPs are at the base of the lamp poles on the ground.
Therefore, the cross comparison includes finding the nearest
neighbors of the GCP candidate in the LiDAR point cloud
within the radius of 1 m, excluding the LiDAR points with
large height values which originate from the top of the lamp
pole, estimating the mode of the LiDAR heights to represent
the reference height, and evaluating the difference between
the ellipsoidal height of stereo SAR results with respect to the
reference height. The radius of the neighborhood is chosen in a
way that the reference height calculation includes a reasonable
number of samples and still be small enough to possibly

TABLE III

ACQUISITION PARAMETERS OF STACKS OF SAR IMAGES IN OULU

prevent the inclusion of different objects in the search window.
It is also worth to note that the calculation of mode is carried
out with the assumption that the majority of samples in the
window stems from the ground. The results of the cross
comparison are reported in Table II. The estimated stereo SAR
and approximated LiDAR reference heights are denoted by
hS and hL , while their offset is represented by ho. It is seen
that for all except for one of the GCPs, the height offset is
below 20 cm. The results report a bias of 13 cm and a precision
of 5 cm overall with respect to the LiDAR data which roughly
implies the absolute accuracy of the height estimation using
the stereo SAR method.

B. Oulu

The second test site covers the entire city of Oulu. The
SAR data include four stacks of TS-X high-resolution spotlight
products with 177 images in total. The images were acquired
from May 2014 to October 2016, from two ascending orbits
and two descending orbits. The acquisition parameters of the
Oulu data set are reported in Table III, while the mean scene
coverage and the acquisition time plot of the TS-X images are
shown in Fig. 8. No images were ordered during the periods
from November 2014 to March 2015 and November 2015 to
March 2016 due to the accumulation of snow expected in Oulu
during winter.

For Oulu, no optical images with sufficient spatial resolution
were available for the detection of PS candidates from cross-
heading geometries. Therefore, the road network data of Oulu
was used instead. The data was freely accessed from the
Finnish Transport Agency [39]. It was delivered in vector
format in the UTM coordinate system and includes the main
streets and highways of Oulu.

The detection of PS candidates from the same-heading
tracks was carried out using the multitrack PSI fusion algo-
rithm described in Section III-A. As the prerequisite of
the algorithm, the PSI processing was performed by the
PSI-GENESIS of the German Aerospace Center [33]. For each
detected PS, the elevation and the deformation parameters
(in this paper only a linear trend) were estimated. As an
example, the radar-coded PS elevation map of the ascending
stack of beam 30 is visualized in Fig. 9. After geocod-
ing, the 3-D point clouds obtained from either ascending–
ascending (AA) or descending–descending (DD) geometries
form the initial input of the fusion algorithm as demonstrated
in Fig. 10.

Fig. 10(a) shows the geocoded PS point clouds from the DD
geometries, visualized in white and gray. The yellow points
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Fig. 8. (a) Mean scene coverage of the TS-X images overlaid on the optical image of Oulu taken from Google Earth. (b) Acquisition time plot of the
TS-X images of Oulu.

Fig. 9. PS elevation map obtained from PSI processing of an ascending stack of Oulu (beam 30). The total number of scatterers is approximately 540 000 after
selecting only the PSs with posterior coherence values equal or higher than 0.7.

represent the identified PS pairs from the fusion algorithm.
The total number of the correspondences is approximately
32 000 and the Euclidean distances between the matched
PSs vary from 1.5 to 5 m. In order to reduce the number
of PS correspondences to the ones with higher quality and
closer distance, as well as to preserve the homogeneity of the
distribution, a regular grid was imposed on the point clouds.
Inside the 10 m × 10 m grid, the PS pairs that were closer
together and had lower ADI values were selected to reduce
the number of pairs from 32 000 to 10 000. The comparison
between PS pairs before and after reduction can be seen
in Fig. 10(b) and (c) (zoomed-in view), respectively. The same
procedure depicted in Fig. 10 was also carried out for the

SAR images from the AA geometries and close to 9500 PS
correspondences were detected. The results then were radar-
coded for both geometry configurations.

The PS candidates to be localized from the cross-heading
geometries, either ascending–descending (AD) configura-
tion or quad geometry (ADAD) configuration, were selected
based on the detection of bright points along the roads
using the road network data as explained in Section III-
C. The road network data were first radar-coded on the
master scenes of all the four geometries as seen on the
mean intensity images of each stack in Fig. 11. A circular
neighborhood with a radius of 70 pixels was then considered
around each road network node within which the ADI was



Fig. 10. Depiction of PS correspondence detection from SAR images of same-heading orbit tracks of Oulu using the first step of the multitrack PS fusion
algorithm proposed in [22]. (a) Geocoded PS point clouds of beams 54 and 94 in a DD configuration as white and gray points as well as the detected PS
correspondences in yellow. (b) and (c) Zoomed-in view of (a) marked by the red rectangle before and after imposing a 10-m grid in which the pairs with the
closest distance are chosen.

evaluated for all pixels for all the four stacks. The neighbor-
hood is chosen based on a rough knowledge on the maximum
width of highways in Oulu (≈35 m) and was adapted to the
SAR data by taking into account the pixel spacing in range
and azimuth direction and the oversampling factor used in the
processing. After selecting the pixel with the lowest ADI in
each neighborhood, a further threshold of 0.25 on Amplitude
Dispersion Index (ADI) values, typically used in PSI process-
ing [31], selects the stable bright points from each stack. After
geocoding, the PSs from different stacks which are closer than

a threshold of 3 m are chosen as the final stereo candidates
and are subsequently radar-coded on all the SAR images.
The distance threshold depends on the geometry configuration
from which the user is interested to localize the targets.
If same-heading geometries are considered, the value should
be lower than 3 m in order to ensure correct PS correspondence
detection. An example of PS candidates visible from ADAD
configuration in Oulu is given in Fig. 12. The candidates are
all assumed to be bases of lamp poles and can be seen as
bright points inside the green circles. The explained procedure



Fig. 11. Projection of the road network data of Oulu onto the master scene of (a) beam 30, (b) beam 54, (c) beam 69, and (d) beam 94. The road data is
represented by red points and is the basis for detection of identical PS candidates from cross-heading orbit geometries.

produced 107 and 52 initial candidates from ADAD and AD
geometry configurations, respectively. The quantity is lower
in the latter because of the strict distance threshold of 1.5 m
imposed on coordinate differences of PSs visible in different
stacks. The threshold value is chosen empirically based on the
histogram of minimum Euclidean distances evaluated between
the PS pairs.

The PTA was performed on all the detected PS candidates
in all the SAR images in which the candidate was visible. For
each candidate a time series of σφ was evaluated using (10).
Fig. 13 demonstrates the initial outlier removal on two PS
candidates based on the adjusted boxplot method explained
in Section IV-C. The σφ values of each scatterer are sorted
in time in Fig. 13(a) and (b). The distribution of σφ is right-
skewed in both cases as can be seen in Fig. 13(c) and (d).
From the distribution plots, one can detect the samples which
are not connected to the tail of the distribution and mark them
as potential outliers. This process is done automatically and
without the need for manual intervention using the interval
defined in (12). In Fig. 13(e) and (f), the detected outliers are
marked with red rectangles. For all the candidates, the men-
tioned procedure was carried out.

The atmospheric corrections were carried out using global
ionospheric maps and the global tropospheric zenith path
delays provided with the Vienna mapping function [40], since
there was no access to the Oulu GNSS receiver at the time
of the study. The geodynamic effects were fully considered
according to the IERS conventions and all the effects were
removed from the PS timings.

The final positioning was carried out by stereo SAR with
all the mentioned outlier removal steps in Section IV-E. The
last criterion, which includes the removal of PSs based on Saz
values higher than 20 cm, reduces the amount of total PSs to
only those points which can be considered ideal stereo candi-
dates. The averaged quality of the estimated 3-D coordinates
for all the remaining high-quality PSs are reported in Table IV.
The scatterers are categorized based on the geometry con-
figuration that is used for their positioning. The results are
all expressed in centimeter and are defined in the local east,
north, and vertical coordinates. The standard deviations are
all defined within 95% confidence interval. From Table IV,
it is seen that the averaged precisions are smaller than 2 dm
for all the cases. As it was expected, the localization quality
boosts as the difference in the viewing geometries becomes



Fig. 12. PS correspondence detection from ADAD geometry configuration for (a) beam 30, (b) beam 54, (c) beam 69, and (d) beam 94. For each subfigure,
the respective averaged heading angle (α) and the averaged incidence angle (θinc) are stated.

TABLE IV

AVERAGED STATISTICS BASED ON THE LEAST SQUARES ESTIMATED 3-D COORDINATE STANDARD DEVIATIONS IN OULU. THE LETTERS A AND D
STAND FOR ASCENDING AND DESCENDING GEOMETRIES, RESPECTIVELY. THE SAMPLE MEAN AND STANDARD DEVIATION ARE DENOTED BY

μ AND σ , AND S[ENH] REPRESENT THE LOCAL COORDINATES STANDARD DEVIATIONS WITHIN 95% CONFIDENCE LEVEL

larger which is the case when changing from AA or DD
to the AD and ADAD geometry configurations. It is also
evident that for cross-heading geometries, the retrieval of
the height component is the most precise one as for the
same-heading cases, the precision in the north component is
the highest. Therefore, in general, the localization of targets
from cross-heading tracks is desirable. The only remaining
concern regarding localization using cross-heading tracks is
the diameter of the lamp poles which may worsen the accuracy
in the east coordinate component. This bias can be estimated
and removed if the scatterer is also visible from same-heading
tracks, which is usually the case.

The distribution of the total 2049 generated GCPs is visual-
ized on the optical image of Oulu in Google Earth in Fig. 14.
The scatterers are color-coded based on the underlying geom-

etry configuration used for their localization. It is seen that
almost the entire area of Oulu is covered with the generated
GCPs. The ones from the same-heading geometries cover the
built areas, while the ones from cross-heading configuration
include the base of lamp poles, street lights, and traffic lights.

VI. CONCLUSION

In this paper, we described a processing chain for automatic
detection and positioning of opportunistic PSs, which are
visible from multiaspect TS-X images. This paves the way
for the generation of GCPs from SAR data only.

Three algorithms have been recommended for identical PS
detection which are different in terms of number of generated
GCPs and the subsequent positioning precision. The method
based on the PSI fusion algorithm is able to provide point



Fig. 13. Example of initial outlier removal based on phase noise time series of the detected candidates. In (a) and (b), the sorted σφ values of two random
PSs are shown with their distributions depicted in (c) and (d). The outliers are identified and removed automatically based on the distributions and are shown
in red rectangles in (e) and (f).

correspondences even on buildings and areas with complex
scattering mechanisms in SAR images. Therefore, a large
number of potential PS pairs can be obtained which normally
cover the entire scene. The downside of the method is that
SAR image stacks are required for which a complete PSI
processing has to be performed separately before being able
to find the PS correspondences. Furthermore, the method is
usually applicable only for same-heading PS point clouds.
Consequently in terms of localization precision with the subse-
quent stereo SAR, the relative error in the cross range is larger
than the error for range and azimuth components. Another
disadvantage is that many of the initial PS correspondences
cannot be considered useful candidates for stereo SAR and
have to be eliminated later in the processing, because the
registration is only performed within the limits of the PSI 3-D
localization quality for which PS pairs with distances of up to
5 m are detected. The detection algorithm based on the external
optical data is quite straightforward to implement and provides

identical scatterers that are visible from cross-heading orbits
leading to higher localization precision. The disadvantage
of the method is that for reliable detection of lamp poles,
the spatial resolution of the optical image should be in the
subdecimeter regime. Moreover, the method is highly prone
to detecting other linear structures as shadows of lamp poles
and, therefore, more sophisticated object detection algorithms
are recommendable. The method based on vector road network
data, similar to the optical method, provides candidates which
are suitable to be localized from cross-heading geometries.
Also, the external data is freely accessible for most locations.
The disadvantage of the method is that a co-registration on one
master has to be carried out for each stack and the amplitude
data must be calibrated.

It has been shown that the GCP generation processing chain
is quite flexible as it allows the user to constraint the number
and the quality of the candidate GCPs either from the start
of the procedure, by selecting different distance thresholds for



Fig. 14. Total number of 2049 GCPs in Oulu color-coded based on the geometry configuration used for their positioning. The underlying optical image is
taken from Google Earth.

detection or trimming the data based on estimated phase noise
time series, or at the final step of the procedure based on the
posterior quality indicators obtained from stereo SAR.

By applying the algorithm to two test sites, it has been
demonstrated that it is capable of positioning natural PSs with
precision values ranging from 2 and 4–5 cm, for cross-heading
AD and ADAD configurations, respectively, to approximately
20 cm for candidates extracted from same-heading geometries.
As it was expected, the difference in the viewing geometries of
the observed PS has the highest impact on the final localization
precision followed by the number of acquisitions used in stereo
SAR processing, the SCR of the target, and the quality of the
external error corrections. Furthermore, as a preliminary cross
comparison, the estimated ellipsoidal height of the retrieved
candidates in Berlin was compared with the corresponding
height of a LiDAR data which reported an average bias of
approximately 13 cm.

The produced absolute GCPs have ample of applications in
geodesy and absolute mapping. These points may substitute
the conventional GCPs that are required for georeferencing of
satellite imagery, which are usually surveyed at the field by
GNSS. They can be further integrated as absolute reference
points into multipass Interferometric SAR (InSAR) techniques.
Furthermore, they can be used to detect long-term ground
motions with small magnitudes and low spatial frequency,
which are invisible to phase-based InSAR methods.

The future work will focus on smart preselection of the PS
candidates by including the information obtained from PTA,
using integrated sidelobe ratio, to robustly remove the PS can-
didates which are located too close to each other. Furthermore,
the stereo SAR processing could benefit from weighting the
initial timing observations of the PSs based on their respective

SCR or ADI values and also can be carried out with robust
parameter estimation schemes such as M-estimator. Moreover,
it is desirable to carry out GNSS measurements at selected test
sites to be able to correctly validate the absolute accuracy of
the generated GCPs. Finally, it is important to note that the
proposed methodology is tailored to detection and absolute
localization of GCPs in an urban area, where a large number
of PSs are available. In applications where the investigated
scene includes mainly a nonurban area, it is recommendable
to employ artificial PSs such as corner reflectors or active
transponders.
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Abstract: Persistent Scatterer Interferometry (PSI) is an advanced multitemporal InSAR technique that
is capable of retrieving the 3D coordinates and the underlying deformation of time-coherent scatterers.
Various factors degrade the localization accuracy of PSI point clouds in the geocoding process, which
causes problems for interpretation of deformation results and also making it difficult for the point
clouds to be compared with or integrated into data from other sensors. In this study, we employ the
SAR imaging geodesy method to perform geodetic corrections on SAR timing observations and thus
improve the positioning accuracy in the horizontal components. We further utilize geodetic stereo SAR
to extract large number of highly precise ground control points (GCP) from SAR images, in order to
compensate for the unknown height offset of the PSI point cloud. We demonstrate the applicability
of the approach using TerraSAR-X high resolution spotlight images over the city of Berlin, Germany.
The corrected results are compared with a reference LiDAR point cloud of Berlin, which confirms the
improvement in the geocoding accuracy.

Keywords: geocoding; geodetic corrections; ground control point; persistent scatterer interferometry;
positioning; synthetic aperture radar; TerraSAR-X

1. Introduction

In the past two decades, Interferometric Synthetic Aperture Radar (InSAR) and its multitemporal
extensions have proved their ability for continuous mapping and deformation monitoring of the
surface of the Earth. Among the existing InSAR approaches, Persistent Scatterer Interferometry (PSI)
is nowadays considered one of the most operational techniques for wide area processing. PSI is
a single-master InSAR technique that extracts phase-stable scatterers, the so-called Persistent Scatterers
(PS), from a stack of SAR images and retrieves their heights along with their deformation history
through the exploitation of their interferometric phase [1,2]. Its usage of multiple images and the
restriction of the estimation of parameters to only PS overcomes the main limitations of InSAR, namely
atmospheric disturbances and geometric and temporal decorrelation [3]. The PSI technique is highly
effective in urban areas because of the availability of a high density of PS. In particular, coupling
the technique with high resolution images, such as the ones from the TerraSAR-X spotlight mode,
produces on average between 40,000 to 100,000 PS per square kilometer [4,5], which allows for detailed
infrastructure monitoring.

Similar to other InSAR approaches, PSI is a relative technique. This means that the height and
the deformation estimates of all PS are relative with respect to a reference point, which is chosen
during the PSI processing [2]. For most of the cases, no information about the exact height and the
stability of the reference point is available. Therefore, PSI assumes a height value extracted from the
available external Digital Elevation Model (DEM) for this point and considers a height update equal
to zero. Evidently, if the reference point is not stable in time and/or its true absolute height value
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is not equal to the corresponding DEM height, due to an erroneous DEM, the deformation and/or
the height estimates of all PS will be biased. The height of PS points is an influential factor in the
geocoding process. Geocoding assigns each PS to its 3D position in a geodetic reference system using the
orbit parameters of the master acquisition and the estimated interferometric height [6–8]. Therefore,
if the height estimates are biased, then the 3D coordinates of the PS will have offsets with respect to
their true positions. Furthermore, the timing information of the master orbit, which is also directly
involved in the geocoding process, could be erroneous due to atmospheric and geodynamic effects [9],
which again hampers the localization accuracy of the PS. Assigning PS to wrong locations can lead to
misrepresentation of the origin of the deformation and thus degrades the interpretation of the signal.
This is in particular important for monitoring small-scale deformations in urban areas using high
resolution SAR products for which the detailed structure of buildings and other objects are captured.
Additionally, wrongly geocoded PSI point clouds can be neither integrated into nor compared with
data from other sensors.

Several studies have been carried out in order to improve the geocoding accuracy of InSAR point
clouds. In [10], the authors used an external Digital Surface Model (DSM) to evaluate a height shift
between the PSI point cloud and the DSM in the vicinity of the point cloud. In [11], in addition to
the usage of the DSM similar to the approach in [10], the authors installed a corner reflector in one
scene and measured its position by Global Navigation Satellite System (GNSS). They radar-coded
the 3D coordinates of the corner reflector and calculated a shift in range and azimuth with respect to
the position of the object in the SAR image. Eventually, they corrected the entire point cloud using
the three shifts: in range, azimuth and cross-range. In an alternative approach, a manual shift based
on an overlay of a PSI point cloud on an ortho-rectified aerial image was used to compensate for
the geocoding errors in [12]. Apart from the mentioned methods which all rely on external 2D or 3D
data to correct for the errors of geocoding, two geometrical point cloud fusion approaches have been
proposed in [13], which effectively compensates for the DEM error of the reference points in each
of the multiaspect point clouds. The first method, which is further elaborated in [14], is based on
a least squares PS matching scheme while the second approach, described in detail in [15], employs
the iterative closest point (ICP) algorithm [16] to perform multiaspect point cloud matching. The first
geodetic approach for reducing geocoding errors has been described in [17], in which the concepts
of SAR imaging geodesy [9] and stereo SAR [18] were combined with urban SAR tomography [19]
in order to absolutely localize a large number of scatterers by absolutely geolocating the manually
extracted reference point.

Motivated by our work in [17] and the recently developed frameworks which automatically
extract and localize Ground Control Points (GCP) from SAR images from different orbit tracks [20,21],
we propose a SAR-based method for improving the geocoding accuracy of PSI point clouds.
We will show that by employing SAR GCPs and applying geodetic corrections in the entire
scene, one can correct for the geocoding errors as a post-processing step after the PSI processing.
The applicability of the method is demonstrated in an urban area using high resolution TerraSAR-X
spotlight images of Berlin, Germany. Furthermore, the results are compared with an external aerial
Light Detection and Ranging (LiDAR) data, demonstrating the improvement in the geocoding
accuracy of the PSI point clouds.

The remainder of the paper is organized as follows. Section 2 reviews the geocoding procedure
of InSAR products and their error sources. Section 3 describes the methods used for improving the
geocoding accuracy of PSI point clouds. The test site and the dataset are introduced in Section 4.
The results and discussion are reported in Section 5 and the conclusions are drawn in Section 6.

2. InSAR Geocoding: Principle and Error Sources

Geocoding is performed as the final step of any InSAR processing in order to report the results in
a common geodetic reference system. It is indeed a coordinate transformation from radar datum to an
earth-fixed geodetic datum [7]. For each pixel in the SAR image, geocoding is carried out by iterative
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solving of the Doppler-Range-Ellipsoid equations to retrieve the 3D Cartesian coordinates of the target
~T =

(
XT , YT , ZT

)
[6,8,22]: ∥∥∥~̇S(taz) ·

(
~S(taz)−~T

)∥∥∥ = 0, (1)
∥∥∥~S(taz)−~T

∥∥∥− c · τrg

2
= 0, (2)

XT
2

(a + HT)2 +
YT

2

(a + HT)2 +
ZT

2

(b + HT)2 − 1 = 0, (3)

where~S and ~̇S are the satellite state vector and its velocity vector, respectively. They are both functions
of azimuth time taz, which is the time of the closest approach, when the two-way travel time of the
radar chirp τrg is recorded [23]. The first equation dictates the zero-Doppler condition. The second
equation means that the geometric distance between ~T and ~S should be equal to τrg multiplied by
the speed of light in vacuum c divided by two. The result from Equations (1) and (2) is intersected
with a reference ellipsoid with semi-major axis a and semi-minor axis b and with an estimated
height above the ellipsoid HT that is obtained from InSAR. The final coordinates are calculated in
the Cartesian coordinate system. For convenience of interpretation, these coordinates are usually
converted to the geographic coordinates (Φ,Λ,H) or to the Universal Transverse Mercator (UTM)
map projection (E,N,H), where Φ and Λ are the geographic latitude and longitude while E and N
denote the UTM Easting and Northing and H representing the height above the, global or local,
reference ellipsoid.

Looking closely at Equations (1)–(3), the factors which influence the final position of the target after
geocoding are the orbit accuracy, the radar timings (taz, τrg) and the estimated height of the target HT .
For modern SAR sensors such as TerraSAR-X, the orbit accuracy is in the centimeter regime [24,25] and
therefore its effect on localization inaccuracy of targets is negligible. In the following, the other factors,
namely taz, τrg and HT , and their error sources are briefly discussed. It is also characterized how these
errors affect the final position of the target in the UTM coordinate system. It is important to note that
only the errors common to all PS in a PSI point cloud, causing biased observations, are addressed here.
For stochastic effects influencing individual PS, such as feature localization error depending on the
Signal-to-Clutter-Ratio (SCR) of the target, the reader is referred to [22].

2.1. Errors in Azimuth and Range Times

The radar timings of a target can be affected by various error sources. These errors include:

• satellite dynamic effects such as incorrect annotation of taz in the time of radar pulse reception or
incorrect annotation of τrg due to instrument cable delays in the satellite [9].

• propagation delays caused by the ionosphere and the troposphere, from which the latter is
considered the most prominent error source on τrg for SAR satellites operating in X-band [7,9].

• geodynamic effects that change the position of a target on the ground, including solid earth tides,
plate tectonics, ocean loading and atmospheric loading [9,18].

These errors cause biases in the timings, which are directly propagated into the final coordinates of
the geocoded target through Equations (1) and (2). For taz, the errors cause shifts only in the along track
direction. If we consider a straight satellite orbit trajectory and approximate the curved Earth geometry
by a rectilinear one [23], as is visualized in Figure 1a, the ground shift δlaz due to an erroneous azimuth
time t′az is calculated in meters as:

δlaz = vg
(
t′az − taz

)
, (4)

where taz is the true azimuth time and vg denotes the ground-track velocity of the satellite [23].
The error affects only the horizontal geocoded coordinates and with the knowledge of the local
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heading angle of the satellite α, its effect can be projected onto the local East δlE
az and North δlN

az
components (see Figure 1b):

δlE
az = δlaz sin α, (5)

δlN
az = δlaz cos α. (6)

Considering the near polar orbit of current SAR satellites, with heading angles close to 180◦

or 360◦, Equations (5) and (6) show that error in taz mostly affects the North component of
the geocoded coordinates.

𝑡𝑎𝑧
′ 

𝑡𝑎𝑧 

swath width 

𝛿𝑙𝑎𝑧 

(a)

East 

North 
2𝜋 − 𝛼 

Satellite heading 

N

azl

E

azl

azl

(b)

Figure 1. Timing bias in azimuth and its effect on the geocoded coordinates. (a) azimuth timing error
causing a displacement on the ground δlaz; (b) projection of δlaz onto the East δlE

az and North δlN
az

components using satellite heading angle α.

Errors in τrg cause a delay in the received radar pulse that affects the geometrical distance between
the satellite and the target in the slant range direction δlsr, which leads to a displacement on the ground
range δlgr depending on the the local incidence angle θ (see also Figure 2a):

δlsr = c

(
τ′rg − τrg

)

2
, (7)

δlgr =
δlsr

sin θ
, (8)

where τrg and τ′rg are the true and the erroneous range time, respectively. Similar to δlaz, δlgr is related
to the East δlE

gr and the North δlN
gr components by a projection using α (see also Figure 2b):

δlE
gr = δlgr cos α, (9)

δlN
gr = −δlgr sin α. (10)

It is evident from Figure 2a and Equation (8) that δlgr becomes larger with steeper incidence
angles. It is also worth mentioning that, according to Equations (9) and (10), the timing error in range
manifests itself mostly in the East coordinate component.
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𝛿𝑙𝑠𝑟 

𝛿𝑙𝑔𝑟 
reference ellipsoid 

𝑐
𝜏𝑟𝑔

2
 

𝑐
𝜏𝑟𝑔

′

2
 

𝜃 

nadir 

(a)

East 

North 
2𝜋 − 𝛼 

Satellite heading 

𝑟′ 

𝑟 
grl

E

grl

N

grl

(b)

Figure 2. Timing bias in range and its effect on the geocoded coordinates. (a) range timing error and its
impact on geocoding in the ground range δlgr; (b) projection of δlgr onto the East δlE

gr and North δlN
gr

components using satellite heading angle α.

2.2. Error in the Height of PS

In Section 1, it was mentioned that the height estimates in InSAR approaches are defined with
respect to a reference point. This implies that no DEM error is assumed for this point and its final
height is equal to its corresponding DEM height. In the specific case of PSI, exploiting the differential
interferograms, the DEM error for each PS is estimated relative to the reference point and at a later step
before geocoding, the DEM height of each PS is added to its DEM error to obtain the final PS height
denoted by H′T . It is obvious that the final absolute height accuracy of all PS depends on the DEM
error of the reference point, which is an overall unknown offset. This height error δH = H′T − HT is
constant for all PS and has a significant effect on final geocoded coordinates both in the horizontal and
in the vertical components, as can be seen in Figure 3. The variable δH causes a horizontal shift in the
ground range δlgr

H as:

δlgr
H =

δH
tan θ

. (11)

Similar to the error in range timing (see Equations (9) and (10)), δlgr
H can be projected onto the

East and the North components by knowledge of α.

𝛿𝐻 

𝐻𝑇  𝐻𝑇
′ = 𝐻𝑇 + 𝛿𝐻 

reference ellipsoid 

true DEM 

biased DEM 

gr

Hl

s

Hl

nadir 

𝜃 

Figure 3. Depiction of height error δH due to unknown DEM error at the reference point and its effect
on geocoded coordinates. It can be seen that this error causes a shift in the cross-range direction δls

H ,
which is decomposed into an offset in ground range δlgr

H and a vertical component δH.
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3. Methodology

The error sources and their impact on the localization of InSAR point clouds have been addressed
in Section 2. In this section, we present our proposed framework for the estimation and removal of the
aforementioned biases, which leads to an improvement of the overall geocoding accuracy of PSI point
clouds. The method is divided into four parts, which are briefly explained in the following and are
depicted in Figure 4. Each processing step is carried out independently and produces an intermediary
result, which is shown as a parallelogram in Figure 4. The double shapes indicate that two or more
SAR image stacks are involved in each processing. The intermediary results, gathered in the dashed
gray rectangle, are the input for the fourth step, updated geocoding, which produces the final absolute
3D PSI point clouds. Please note that the input for our approach includes a minimum of two SAR
image stacks acquired from different viewing geometries i.e., from separate orbits. This is required
for the extraction of highly precise GCPs. Apart from the methodology description, the procedure to
compare the geocoded PSI point clouds with external LiDAR data is also explained in this section.

Master scene 
corrections

Sensor 
effects

Atmospheric 
effects

Geodynamic 
effects

GCP 
generation

PS matching

Point target 
analysis

Outlier 
removal

Geodetic 
stereo SAR

Master scene 
corrections
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effects

Geodynamic 
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PS detection

Reference 
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3D point 
cloud in 
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3D point 
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removal

Geodetic 
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estimation

Geocoding
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matching

3D point 
cloud in 

UTM

Absolute 3D 
point cloud

Figure 4. Workflow of the utilized geocoding error correction method. The processing steps, included
in the big rectangles, are carried out independently and their results are shown by the parallelograms.
The double shapes indicate that each processing is carried out for two or more SAR image stacks, which
is the necessary condition for GCP generation.

3.1. PSI Processing

A concise description of the PSI technique has been given in Section 1. The major steps of the
processing chain are outlined in Figure 4. The output of the PSI processing are the geocoded 3D UTM
coordinates of PS and their displacement parameters. For details about the theory of the method and
its processing sequence, the interested reader is referred to [1,2].

3.2. Master Scene Corrections

Geocoding is commonly carried out based on the orbit and the timing information of the master
SAR image. In order to provide unbiased taz and τrg, the errors stated in Section 2.1 are mitigated
by the SAR imaging geodesy approach [9,26–29]. The ionospheric path delay is corrected on base
of the global Total Electron Content (TEC) maps that use the single layer model [30] for ionosphere.
Using the orbit information of the SAR satellite, the point at which the line of sight of the satellite
passes through the ionospheric layer to the point of interest is analytically localized. The zenith TEC
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value is then determined at the location of the aforementioned point through spatial and temporal
interpolation of the TEC maps [27,31,32]. Subsequently, the vertical TEC value at the point is projected
onto the line of sight of the SAR satellite using a proper mapping function [31]. The path delay
caused by troposphere is computed through the 4D integration of numerical weather data from
European Centre for Medium-Range Weather Forecasts (ECMWF). The method extracts the dataset
from a local database, converts it to a conventional geographic coordinate system, performs a 3D
interpolation for defined integration points and eventually integrates the refractivity index along
the integration path in the slant-range direction from the point of interest to the satellite [15,26].
The geodynamic effects are removed based on the state-of-the-art models according to the International
Earth Rotation and Reference Systems Service (IERS) guidelines [33]. The effects are reported in the
horizontal and the radial coordinate components, which are transformed to the radar timing coordinate
system [9]. The coordinate transformation residuals between object and sensor coordinate systems are
compensated for by taking into account the plate tectonics effect and referring the observation to a
reference epoch [26]. Finally, the geometric calibration constants in range and azimuth are updated
based on the most recent studies concerning long-term corner reflector experiments [34]. For this
purpose, all the aforementioned effects are initially mitigated using the described methods and then the
median of offsets between the expected position of the corner reflector, surveyed with GNSS, and its
corresponding position in a time series of SAR images is considered as new re-calibration constants [34].
All of the mentioned corrections are computed for a coarse grid and are further interpolated for targets
inside the grid [35]. The corrections are subtracted from the annotated SAR measurements to achieve
absolute taz and τrg. For more information regarding SAR imaging geodesy and its operational
implementation, the reader is referred to [9,26,34,35].

3.3. GCP Generation

The first step regarding the GCP generation is the correct detection of identical PS from multiaspect
SAR images. After the calculation of corrections (see Section 3.2), for each individual Single Look
Complex (SLC) image, bright point-like targets are extracted through the spatial analysis of their SCR.
It is important to mention that for the extraction of GCP candidates, PS from the previously generated
PSI point clouds can be used as well, as has been shown in [21]. However, since our aim is to show
the flexibility of the geocoding error correction approach, independent from which GCP candidate
detection method is used, we use a completely separate processing chain from PSI processing in order
to extract GCPs [20]. After the GCP candidate detection, target radar coordinates are geocoded using
an external DEM and a point-matching scheme is carried out to find the correspondence of each
target in other SLCs with different viewing geometries [20]. The method then extracts the precise
timing information of each point target in all SLCs through Point Target Analysis (PTA) [23]. Finally,
identical PS timings from multiaspect data are combined using stereo SAR to estimate the absolute
3D coordinates of each PS [18]. The individual steps are also depicted in the workflow in Figure 4,
where the last step, called geodetic stereo SAR, refers to the combination of the SAR imaging geodesy
and the stereo SAR methods. The output of this part is several thousands of GCPs with absolute
3D coordinates.

A further filtering of the GCPs is carried out based on their posterior coordinate standard
deviations, which are also the output of the GCP extraction framework. The threshold for this filtering
is chosen based on our previous studies dealing with the stereo localization of natural PS [18,21].
As a final refinement, we filter the GCPs based on their closeness to the road network data of the scene,
which can be freely accessed either from OpenStreetMap [36] or from country-specific geo-portals as
demonstrated in [21]. The reason for the latter filtering is that the most reliable GCP targets are the ones
that can be easily recognized from cross-heading geometries. In urban areas, these targets include lamp
poles and traffic signs, which are commonly found close to streets and roads. For different approaches
of SAR GCP generation using high resolution SAR data, the interested reader is recommended to
consult [20,21].
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3.4. Height Offset Estimation and Updated Geocoding

The objective of this processing step is to calibrate the height coordinates of the PS in PSI point
clouds by using the generated SAR-based GCPs. In order to estimate the DEM error of the reference
point of each PSI point cloud, the first step is to find for each GCP its corresponding point in the
PSI point cloud since different processing chains were used for PSI processing and GCP generation
(see Section 3.3). To this end, we radar-code the GCP coordinates onto the master scenes of each SAR
image stack taking into account the full geodetic corrections. We then select the nearest neighbor of the
GCP in the PS point cloud that has an Amplitude Dispersion Index (ADI) lower than a threshold [1].
In this way, we can correspond each GCP to its closest PS that most likely represents the base of lamp
poles or traffic signs. However, this approach is highly prone to detecting wrong correspondences
since the ADI of the lamp pole might be higher than the predefined threshold. To overcome this
limitation, we further refine the GCP-PS correspondence detection as follows:

1. Coordinate differences are calculated in range and azimuth of the GCPs and their assumed
corresponding bright point in the PSI point cloud.

2. Points with coordinate differences larger than two times the standard deviation of differences
(2σ rule) are discarded first in range and then in azimuth.

Note that, due to the probable existence of outliers, the standard deviation of coordinate
differences is robustly estimated using the Median Absolute Deviation (MAD) measure [37]. The reason
for the strict measure in the second step is that the geodetic and the propagation errors on range
and azimuth of a TerraSAR-X spotlight scene usually vary within centimeter and millimeter regimes,
respectively. Therefore, large coordinate difference variations show that the wrong correspondence
between the GCP and the bright point has been detected and lead to discarding the candidate.

After the correspondence detection has been refined, we need to robustly estimate a single height
offset among GCP heights and their corresponding PS heights. Initially, the GCP-PS ellipsoidal height
differences are calculated. The dispersion of height differences is estimated using MAD. Furthermore,
large height difference observations are discarded based on the 2σ rule, while the distance of each
observation is evaluated with respect to the median of the differences to ensure robustness [37].
Subsequently, the outlier-free height difference histogram is formed. The peak of the smoothed
histogram is detected as the mode of height differences, which is the approximate estimate of the DEM
error of the reference point.

The estimated height offset is subtracted from the ellipsoidal heights of the geocoded PSI point
cloud to obtain correct absolute heights. At the final step, the corrected heights as well as the corrected
range and azimuth timings (see Section 3.2) are used for an updated geocoding using Equations (1)–(3).
The result is the corrected geocoded 3D PSI point cloud in either Cartesian or UTM coordinate system.

3.5. Cross-Comparison with LiDAR

In order to check the overall localization accuracy of PSI point clouds after correcting for the
geocoding errors, we carry out qualitative and quantitative horizontal and vertical analyses with
respect to a reference LiDAR data. Since data from LiDAR are acquired with a nadir-looking geometry
in contrast to the slant-viewing geometry of SAR sensors, we should make the data from both sensors
as compatible as possible. To this end, we first extract the PS originated from façade of buildings using
an approximate approach proposed in [14]. For each PS, a neighborhood is selected in the horizontal
plane within which the variance of PS heights is evaluated. If the variance is higher than a threshold,
the point is considered to be a façade PS [14]. A similar approach is carried out to extract the 2D
building footprints from the LiDAR point cloud. After the separation of façade and non-façade points
in the UTM coordinate system, the localization accuracy analysis is carried out as follows:

• 2D horizontal accuracy: For a number of test sites, a line is robustly fitted to each side of the
building footprint in the LiDAR point cloud in the East–North plane. The mean distance of the
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façade PS in the PSI point clouds are evaluated with respect to the corresponding footprint line
in the LiDAR data. The average of all the deviations for corrected and non-corrected PSI point
clouds are separately calculated, which demonstrates the closeness of each point cloud to the
reference LiDAR data.

• 1D vertical accuracy: For an identical area in the LiDAR data and both corrected and non-corrected
PSI point clouds, the façade points are excluded. Then for each of the three point clouds, ellipsoidal
height histograms are formed containing two peaks which respectively represent ground and
building roofs from the selected test site. The difference between the height values for which
the ground peaks, in the PSI point cloud and in the LiDAR point cloud occur, indicates the
vertical accuracy.

4. Area of Interest and Data Set

The investigated test site includes the central urban area of Berlin located in northeastern Germany.
Our data set includes two stacks of TerraSAR-X high-resolution spotlight products with nominal spatial
resolution of 1.1 m in azimuth and 0.6 m in range. The total number of images is 214, which cover
a period of approximately five years from April 2010 to March 2015. In terms of viewing geometry,
one stack is acquired from a descending orbit track and the other one from an ascending orbit with
approximate incidence angles of 36◦ and 42◦, respectively. In addition to the SAR data, an aerial
LiDAR point cloud with a 3D accuracy in the decimeter regime is available, for which the acquisition
period is from January to March 2009. The LiDAR data is used as reference to check the absolute 3D
localization accuracy of PSI point clouds. The acquisition parameters of each SAR image stack are
reported in Table 1. The mean scene coverage of the SAR images, the extent of the LiDAR data and the
test sites used for vertical and horizontal accuracy analysis are marked in Figure 5.

Table 1. Acquisition parameters of stacks of SAR images in Berlin.

Beam Nr. Center θ (Degree) Average α (Degree) Orbit Direction Area (km2) Polarization Nr. of Images

42 36.1 350.3 descending 40.94 VV 107
57 41.9 190.6 ascending 42.52 VV 107

Figure 5. Optical image of Berlin taken from Google Earth. The mean scene coverage of the TerraSAR-X
images as well as the extent of the LiDAR data are marked with colored rectangles. The small yellow
rectangle shows the test site within which the vertical localization accuracy of PSI point clouds has
been analyzed. The cyan arrows indicate the three test sites used for horizontal accuracy analysis.
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5. Results and Discussion

5.1. Berlin InSAR and PSI Processing

The two stacks of Berlin have undergone InSAR and PSI processing using the PSI-GENESIS of
the German Aerospace Center (DLR) [38–41]. The master scenes for both stacks are chosen in winter,
on 24 December 2011 for beam 57 and on 7 March 2012 for beam 42, and central with respect to the
temporal and perpendicular baselines. The baseline distribution of the SAR images of both beams
can be seen in Figure 6. Prior to the InSAR stacking, complex SAR images are oversampled by a
factor of two in both azimuth and range in order to avoid signal aliasing of the interferograms and
amplitudes. The coregistration of slave images onto the master scene is carried out geometrically using
a Shuttle Radar Topography Mission (SRTM) DEM and precise orbits and further applying an offset
correction using PS [42]. Differential interferograms are then formed by removing the topographic
phase contribution using the aforementioned DEM.

(a) (b)

Figure 6. Temporal-perpendicular baseline distribution of the SAR image stacks in Berlin.
(a,b) correspond to the data stacks of Beam57 and Beam42, respectively.

The PSI processing is initiated by extracting the PS candidates by thresholding on the SCR of the
targets estimated in the coregistered SAR image stack [2,38]. After geocoding of the PS candidates
using their corresponding DEM heights, a grid with cell size of 250 m is superimposed on all PS and
the PS with the highest phase stability is selected within each cell using the locally estimated temporal
coherence. These PS form the reference network, which is the basis for the estimation of height and
deformation parameters as well as the estimation and removal of the atmospheric phase screen [1,2].
The parameters of interest in this study include DEM error, linear and periodic motion since we are
analyzing an urban area with the acquisition time spanning over a few years. After the estimation
of differential parameters on the arcs of the network, a robust `1-norm network inversion for outlier
rejection is carried out and a high quality PS is selected as the reference point [40]. Subsequently,
the DEM error and the deformation at each point of the reference network are estimated using an
`2-norm network inversion relative to the previously selected reference point. After compensating
the estimated APS, the PS that are not part of the reference network are connected to the nearest
reference network points and their parameters are estimated. Later, the DEM height of each PS is
added to its corresponding differential residual height estimate. The radar timing of each PS and its
updated height are used for geocoding. The final results of the PSI processing are the topographic
and deformation maps as well as displacement history of each PS. Since the focus of this paper is
on geocoding accuracy of the point clouds only the topographic maps are reported. The results are
shown in Figures 7 and 8. The ascending and descending point clouds consist of approximately 1.3
and 1.4 million PS, respectively. The higher density of PS is seen along the railways and also on
building façades. The white parts with no detected PS include mostly the vegetated areas such as the
well known Tierpark situated at the lower left of the center of the scene. Deformation maps of Berlin
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obtained from TerraSAR-X PSI and SAR tomography have been previously analyzed [4,14,43,44] and
are not further discussed here.

Figure 7. Geocoded PSI point cloud of Berlin, reconstructed from Beam57, in UTM coordinates.
The ellipsoidal height is colorcoded. The x- and y-axis correspond to the UTM East and North,
respectively. The test sites used for vertical and horizontal accuracy analysis are marked with black
rectangle and black arrows, respectively.

Figure 8. Geocoded PSI point cloud of Berlin, reconstructed from Beam42, in UTM coordinates.
The ellipsoidal height is colorcoded. The x- and y-axis correspond to the UTM East and North,
respectively. The test sites used for vertical and horizontal accuracy analysis are marked with black
rectangle and black arrows, respectively.
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5.2. Geodetic Corrections, GCP Generation and Height Offset Estimation

Geodetic error corrections for individual SAR images and GCP generation have been carried
out with the SAR Geodesy Processor (SGP) of the DLR [20,35]. All the timing corrections stated
in Section 3.2 are evaluated for a coarse grid of 200 m in the slant range geometry. The sum of all
corrections in the range and azimuth components of the master scene acquisitions of both beams are
visualized in Figure 9. The corrections are in the radar coordinate system where, the y-axis represents
the azimuth coordinate and the x-axis depicts the range coordinate. The errors are defined in the unit
of length by multiplying range errors with c/2 for one-way measurements and azimuth errors with an
average TerraSAR-X ground track velocity of 7050 m/s. It is seen that the magnitude of range errors is
close to 3 m for Beam57 and approximately 2.75 m for Beam42, whereas the difference of maximum and
minimum range errors over the scene is only 4 cm for both beams. The main contributions to the range
errors come from the troposhperic error followed by geodynamic effects and finally the ionospheric
delays. The azimuth errors are far less significant than range errors and manifest in sub-decimeter
regimes, with millimeter variations across the scenes for both beams. The main source for azimuth
errors is geodynamic effects followed by errors due to satellite dynamics. It is important to note that
given the small squint angle of the TerraSAR-X high resolution spotlight products and their operation
in X-band, the tropospheric and ionospheric delays are negligible for azimuth timings and therefore
are not considered in the SAR imaging geodesy method [34].

(a) Range error Beam57 (b) Azimuth error Beam57

(c) Range error Beam42 (d) Azimuth error Beam42

Figure 9. Range and azimuth error in the radar coordinate system (x-axis: range, y-axis: azimuth) of
the master scenes of both investigated beams, which were acquired on 24 December 2011 (Beam57)
and on 7 March 2012 (Beam42). Note that the scale of the colorbars for range error is in meters while
the one for azimuth errors is in centimeters. The test sites used for vertical and horizontal accuracy
analysis are marked with black rectangle and black arrows, respectively.

For GCP generation, 27 images from both beams are selected, which have been acquired within a
period of 12 months, in 2014 and at the beginning of 2015. The reason for the time restriction is avoiding
the impact of plate tectonics on the final GCP coordinates. Bright point targets are precisely extracted
from the SLCs using PTA with a maximum oversampling factor of 32 in both azimuth and range
followed by a 2D kernel interpolation in a 3 × 3 window [27]. The signal path delays and geodetic
errors are corrected for the location of each point target using their extracted timing information.
After coarse geocoding of these points using a SRTM DEM, for each target, its corresponding points
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from other SLCs are detected if they are located within a distance of couple of meters relative to each
other. The timing information of assumed identical targets are then combined through stereo SAR
to estimate the absolute 3D coordinates of the GCP. The total number of GCPs localized from the
combination of the aforementioned 27 SLCs is 17,673. The SGP removes all the GCPs with localization
precision worse than 1 m based on the 1σ rule. We further filter the results based on the posterior
precision of GCP coordinates in the local East, North and ellipsoidal height. For precision values, we
impose a threshold of 10 cm for all coordinate components. It is observed from Figure 10 that, by
imposing the 10 cm threshold, there still remains an acceptable number of GCPs. This number is equal
to 3800. As the final step, as was mentioned in Section 3.3, the GCPs are further filtered based on their
closeness to the road network data of the scene, which reduces the number of GCPs to approximately
1000. The final obtained GCPs are visualized (in purple) on top of the geocoded PSI point clouds (in
gray) in Figure 11. It is seen that the GCPs almost cover the full area within both PSI point clouds.
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Figure 10. Histogram of GCP precision values in East σE, North σN and height σH .

Figure 11. Distribution of the GCPs within the PSI point clouds of both beams. The test sites used for
vertical and horizontal accuracy analysis are marked with black rectangle and black arrows, respectively.

The generated SAR-GCPs are used to estimate the DEM error of the reference point of each PSI
point cloud. For each radar-coded GCP, its closest PS with an ADI value lower than 0.4 is selected.
The higher threshold value of 0.4 is preferred instead of the recommended ADI threshold of 0.25 [1],
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since lamp poles and traffic signs are assumed to be less stable than the more common PS which usually
occur on building façades and corners. The correspondence detection is further refined by removing
points which show large deviations with respect to the radar-coded GCPs (see Section 3.4). After the
correspondence detection, the DEM error is estimated by analyzing the histogram of ellipsoidal height
differences. Figure 12 summarizes the robust shift estimation procedure for both beams of Berlin.
The left and right subfigures correspond to results from Beam57 and Beam42, respectively. The 2D
scatterer plots show the distribution of range and azimuth coordinate differences among GCPs and their
corresponding identified PS. In Figure 12a,b, the differences are plotted before outlier removal. It can be
seen that very large deviations still occur after the correspondence detection step. Average deviations in
the centimeter regime is observed in the range component while for the azimuth differences of Beam57,
the mean deviation is close to 12 cm. The sample standard deviations, annotated in the subfigures,
also show the large spread of the differences in both coordinate components in the meter regime.
The second row of the subfigures, Figure 12c,d, depict the scatter plots after discarding outliers both in
range and azimuth based on the 2σ rule. Note that the standard deviations for the outlier removal
purpose are robustly estimated using MAD, as was explained in Section 3.4, while the annotated values
in the subfigures are sample standard deviations, that are sensitive to outliers. From Figure 12c,d,
it is clearly observed that the mean deviations decrease and now are close to 2 cm and 3 cm for range
coordinate differences and approximately 2 cm and 1 cm for azimuth coordinate differences of Beam57
and Beam42, respectively. It is important to note that the radar coordinate differences have been
compensated for the continental drift which occurred between the master acquisition times of each
beam, in 2011 and 2012, and the epoch with respect to which the GCPs have been localized, in 2015.
This coordinate shift has been computed utilizing the average East, North, Up velocities from the
nearest International GNSS Service (IGS) permanent station, in Potsdam approximately 45 km away
from Berlin, and have been projected into the line-of-sight and the azimuth directions of each beam.
Eventually, the third row, Figure 12e,f shows the histogram of height differences among GCP-PS pairs
after discarding observations based on the 2σ rule. The peaks of the smoothed version of the height
difference histograms provide the robust estimates of the DEM errors which are −4.06 m and −6.27 m
for Beam57 and Beam42, respectively. It is expected that the DEM errors have different values because
of non-identical PSI reference points. The estimated height shifts are subtracted from the final height
estimates of PSI and along with the fully corrected range and azimuth timings, using SGP, an updated
geocoding is carried out for each beam separately. The localization accuracy of the corrected point
clouds are evaluated in the next subsection.

5.3. Cross-Comparison with LiDAR

The geocoded PSI point clouds before and after applying the aforementioned corrections are
compared with the reference LiDAR data. It is important to note that, since an objective comparison is
difficult to perform, due to the inherent differences between LiDAR and PSI point clouds, we avoid
using the term validation and therefore reside with the word cross-comparison.

In 2D, the corrected and non-corrected PSI point clouds of ascending and descending tracks are
overlaid on the LiDAR data. For a few individual buildings, their façade PS are extracted by the method
explained in Section 3.5. For this procedure, the neighborhood size is chosen to be 4 m while the
height variance threshold is 1.5 m as recommended by [14]. The results for three buildings, indicated
with cyan arrows in Figure 5, are visualized in Figure 13. The green and red dots display the PS from
ascending and descending point clouds, respectively, while the white dots show the extracted building
footprints from LiDAR. All data points are presented in the UTM projection. The first and second
rows correspond to the non-corrected and corrected results, respectively. Note that the subfigures
have different scales. It is clearly seen that, before applying the geodetic corrections and DEM error
compensation, red dots are located far away from the building footprints. This 2D shift is largely
compensated after applying the corrections in all the three cases. Moreover, the endpoint of each
façade in the corrected point clouds match with the endpoint of the façade from the point cloud from
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the opposing geometry. This is not the case for non-corrected point clouds. Another observation is
related to the ascending point clouds. The 2D shift imposed on the green point cloud after correction is
much smaller than the red point cloud. One of the reasons is that the DEM error of the ascending point
cloud is approximately two meters smaller than the descending point cloud. Another explanation
for this is that the center incidence angle is smaller for the descending point cloud compared to the
ascending one (see Table 1). Therefore, according to Equations (8) and (11), the horizontal shifts are
larger for the descending point cloud as has been expected.

(a) (b)

(c) (d)

(e) (f)

Figure 12. Restriction of the DEM error estimation to the true correspondences among GCPs and PS.
(a,b) demonstrate the scatterplots of GCP-PS pairs before outlier removal, for Beam57 and Beam42,
respectively; (c,d) show the scatterplots of the GCP-PS pairs after outlier removal. This causes a
decrease in the bias and the standard deviation of the coordinate differences; (e,f) depict the robust
height offset estimation after removal of the height differences in accordance with the 2σ rule. The peak
of the smoothed histogram indicates the DEM error for each beam. Note that, for all the figures,
the coordinate differences are defined as the GCP coordinates subtracted from their corresponding
PS coordinates.
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In order to quantify the approximate deviation of each point cloud from the reference LiDAR
data, the distance of each façade PS was calculated with respect to a 2D line fitted to the corresponding
LiDAR façade of all the three cases reported in Figure 13. The mean value of the distances for
the corrected point clouds and the non-corrected point clouds are 0.4 m and 2.44 m, respectively.
This proves that applying the corrections have certainly improved the overall geocoding accuracy
of the PSI point clouds in the horizontal plane as the corrected point clouds are located closer to the
LiDAR footprints compared to the non-corrected ones. It is important to note that a deviation equal to
zero does not necessarily mean that the PSI point cloud is absolutely without any errors. The reason is
that façade PS originate as triple-bounces from window corners of buildings which are not perfectly
aligned with footprints extracted from LiDAR. Therefore, the difference in viewing geometries of both
sensors does not allow a flawless comparison.

(a) (b) (c)

(d) (e) (f)

Figure 13. 2D horizontal localization accuracy analysis of PSI point clouds of the test sites marked with
cyan arrows in Figure 5 (top: non-corrected, bottom: corrected). The x- and y-axes correspond to the
Easting and Northing in UTM. Green and red dots show the ascending and descending point clouds
while white dots show the extracted LiDAR footprints. The scale of figures is not identical meaning
that the degree of zoom-in is higher in subfigures (c,f).

For the 1D vertical accuracy analysis, we first visually inspect the vertical cross-section of corrected
and non-corrected PSI point clouds overlaid onto their corresponding LiDAR point cloud for a test
site. Figure 14 visualizes this cross-section. In the subfigures, the x- and y-axes correspond to the
UTM Easting and ellipsoidal heights, respectively. The red and green colors represent the PSI point
clouds of Beam42 and Beam57 while the reference LiDAR point clouds are in white. In the LiDAR
data, the ground line and the building roofs are easily distinguishable as they contain the majority of
the points and are seen as very bright lines in the figures. By looking at Figure 14a,c, a clear height
offset between the ground lines in the non-corrected PSI point clouds of both beams and the ground
line in the LiDAR data is observed. Moreover, in the non-corrected point clouds, the PS on buildings
are not seamlessly aligned with building roofs of the LiDAR point clouds. The non-identical height
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shifts are compensated by employing the height offset estimation method, relying on SAR GCPs, as it
can be seen in Figure 14b,d.

LiDAR

Beam42

(a)

LiDAR

Beam42

(b)

LiDAR

Beam57

(c)

LiDAR

Beam57

(d)

Figure 14. 1D vertical localization accuracy analysis of PSI point clouds, before and after applying
geodetic corrections and height offset compensation, in comparison with LiDAR. The x- and y-axes
correspond to the Easting in UTM and ellipsoidal height, respectively. Green and red dots show
the ascending (Beam57) and descending (Beam42) point clouds while white dots show the LiDAR
data. (a,c) depict the non-corrected point clouds while (b,d) correspond to the corrected ones.
The height shifts, caused by the unknown DEM error of the reference points are easily recognizable in
non-corrected point clouds while the offsets are compensated for in the corrected results. Note that the
Easting and the height are differently scaled in order to emphasize the vertical effect.

In order to quantify the degree of improvement in the absolute height of PSI point clouds with
respect to the LiDAR heights, the façade PS are excluded and height histograms are formed following
the approach described in Section 3.5. This procedure is carried out for a subset of the PSI point clouds
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and their corresponding LiDAR data marked with yellow rectangle in Figure 5. The ellipsoidal height
histograms are reported in Figure 15 where the top and bottom subfigures correspond to Beam57 and
Beam42, respectively.

The red, green and blue colors describe the height histograms of the LiDAR, non-corrected PSI and
corrected PSI point clouds. The first peak of the histograms relates to the ground points. It is observed
that, after the DEM error of the reference point is estimated with the use of SAR-GCPs, the height
histograms of the corrected PSI point clouds move toward the height histograms of the LiDAR data.
Within each histogram, the height of the ground peaks are reported. The absolute differences in the
height at the peaks of the non-corrected point clouds with respect to the peak of the LiDAR data are
approximately 3.96 m and 6.43 m for Beam57 and Beam42, respectively. The differences reduce to
0.21 m and 0.11 m after the proposed height offset compensation method has been applied.

(a)

(b)

Figure 15. Ellipsoidal height histograms of non-façade points in LiDAR (red), non-corrected PSI
(green) and corrected PSI point clouds (blue) corresponding to the yellow bounding box in Figure 5.
(a,b) show the results for Beam57 and Beam42, respectively. For both beams, the height shifts are
compensated for after correction, using SAR-GCPs, as the ground peaks of PSI point clouds and LiDAR
data become aligned.

6. Conclusions

In this paper, a SAR-based method has been introduced in order to improve the geocoding
accuracy of PSI point clouds. It has been shown that the geocoding errors related to height can be
compensated for by the use of GCPs which are extracted and localized using the SAR data itself.
The corrections in range and azimuth timings of the PS also influence the horizontal accuracy and
have been fully considered using the SAR imaging geodesy technique. The method does not rely on
any external positioning data and can be carried out as a post-processing step after PSI point cloud
generation. A few test cases have been visually inspected, which showed the significance of the applied
corrections, especially for the estimation of the DEM error of PSI reference points. By cross-comparison
of corrected PSI point clouds with respect to a reference LiDAR data, it has been shown that a 2D
horizontal accuracy around 40 cm is achievable while the height accuracy was reported to be close
to 20 cm for one beam and 10 cm for the other beam. The improvement in the geocoding accuracy is
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highly beneficial for very localized small-scale deformation monitoring when, for instance, a certain
part of an individual building is of interest rather than a large area surrounding it. PSI products with
high localization accuracy can also be more easily compared with or incorporated into data from other
sensors in comparison with the out-of-the-box PSI results.

Although the described methodology has been applied to high resolution X-band SAR data,
the concept of geodetic corrections using SAR imaging geodesy is applicable to medium resolution
products, such as the ones from the Sentinel-1 C-band SAR images, as well. The main limitation of the
proposed method for lower resolution SAR products is related to the GCP identification part. In this
case, the SCR of good GCP candidates should be high enough so that they can be visible in medium
and low resolution SAR images. We are currently investigating this issue on Sentinel-1 images of urban
areas. It is also noteworthy that the explained method is mostly suitable for urban areas where a large
number of PS and GCPs are expected. However, in rural areas close to road networks, where lamp
poles and traffic lights are also available, the exact same workflow explained in this paper can be used
for geocoding error correction.

Future studies will focus on the integration of SAR-GCPs inside the PSI processing chain.
Furthermore, more sophisticated and objective comparison strategies should be introduced for
validation of PSI results with respect to accurate DSMs.
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Abbreviations

The following abbreviations are used in this manuscript:

ADI Amplitude Dispersion Index
DEM Digital Elevation Model
DLR German Aerospace Center
DSM Digital Surface Model
ECMWF European Centre for Medium-Range Weather Forecasts
GCP Ground Control Point
GNSS Global Navigation Satellite Systems
IERS International Earth Rotation and Reference Systems Service
IGS International GNSS Service
InSAR Interferometric SAR
LiDAR Light Detection and Ranging
MAD Median Absolute Deviation
PSI Persistent Scatterer Interferometry
PS Persistent Scatterer
PTA Point Target Analysis
SAR Synthetic Aperture Radar
SCR Signal-to-Clutter-Ratio
SGP SAR Geodesy Processor
SLC Single Look Complex
SRTM Shuttle Radar Topography Mission
TEC Total Electron Content
UTM Universal Transverse Mercator
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Abstract—In this paper, we propose a framework referred to
as “geodetic synthetic aperture radar (SAR) tomography” that
fuses the SAR imaging geodesy and tomographic SAR inver-
sion (TomoSAR) approaches to obtain absolute 3-D positions of
a large amount of natural scatterers. The methodology is ap-
plied on four very high resolution TerraSAR-X spotlight image
stacks acquired over the city of Berlin. Since all the TomoSAR
estimates are relative to the same reference point object whose
absolute 3-D positions are retrieved by means of stereo SAR, the
point clouds reconstructed using data acquired from different
viewing angles can be geodetically fused. To assess the accu-
racy of the position estimates, the resulting absolute shadow-
free 3-D TomoSAR point clouds are compared with a digital
surface model obtained by airborne LiDAR. It is demonstrated
that an absolute positioning accuracy of around 20 cm and a
meter-order relative positioning accuracy can be achieved by the
proposed framework using TerraSAR-X data.

Index Terms—Absolute positioning, geodetic SAR tomography,
geodetical fusion, SAR geodesy, SAR tomography, stereo SAR,
synthetic aperture radar (SAR), TerraSAR-X.

I. INTRODUCTION

S PACEBORNE tomographic synthetic aperture radar (SAR)
inversion (TomoSAR) [1]–[9] uses stacks of SAR images

acquired at slightly different positions over a certain time
period in a repeat–pass manner, like all other advanced InSAR
techniques, such as persistent scatterer interferometry (PSI)
[10]–[14], small baseline subset (SBAS) [15]–[17], SqueeSAR
[18]–[20], and CEASAR [21]. They all aim at retrieving the 3-D

position and the parameters of the undergoing motion of point,
surface, and/or volumetric scatterers. Among them, TomoSAR
is the only technique that can reconstruct nontrivial reflectivity
profiles along the third native coordinate of SAR—elevation
s—for each azimuth–range (x − r) pixel. In particular, using
stacked very high resolution (VHR) SAR images delivered
by modern spaceborne SAR sensors, TomoSAR allows us to
retrieve not only the most detailed 3-D geometrical shape but
also the undergoing temporal motion of individual buildings
and urban infrastructures in the centimeter or even millime-
ter scale [4], [5], [22], [23]. The resulting 4-D point clouds
have a point (scatterer) density that is comparable to LiDAR.
Experiments using TerraSAR-X high-resolution spotlight data
stacks show that a scatterer density on the order of one million
points per square kilometers can be achieved by TomoSAR
[24]. However, similar to conventional InSAR and PSI, the
elevation and deformation rates are estimated with respect to
a previously chosen reference point that makes them relative
3-D estimates [25]–[27].

Another attractive feature of modern SAR sensors, in par-
ticular of TerraSAR-X and TanDEM-X, is the precise orbit
determination and high geometrical localization accuracy. After
compensating for the most prominent geodynamic and atmo-
spheric error sources, the absolute 2-D (range and azimuth)
positions of targets such as corner reflectors and persistent
scatterers can be estimated to centimeter-level accuracy—a
method called “SAR imaging geodesy” [28], [29]. Moreover,
using two or more SAR observations acquired from different
satellite orbits, their absolute 3-D positions can be retrieved by
means of stereo SAR [30]. However, common scatterers that
appear in SAR images acquired from different geometries, in
particular from cross heading orbits, are very rare. This limits
the application in 3-D absolute scattering positioning.

In this paper, we propose a framework referred to as
“geodetic TomoSAR” that fuses the SAR image geodesy and
TomoSAR approaches to obtain absolute 3-D positions of a
large amount of natural scatterers. We work on four stacks of
TerraSAR-X high-resolution spotlight images over the city of
Berlin, among them two are acquired from ascending orbits
and two from descending ones. First, tens of opportunistic (or
natural) point scatterers that appear in all image stacks are man-
ually identified. Their absolute 2-D SAR range and azimuth
positions are calculated using imaging geodesy by compensat-
ing all the error sources, and their absolute 3-D positions are
then calculated using stereo SAR. the most precisely localized
point target is then chosen as reference point for the follow-
on TomoSAR processing. Since the TomoSAR estimates are
relative to the identical reference point whose absolute 3-D
positions are known, the resulting point clouds are geodetically
fused. Finally, to assess the position estimates, the resulting
absolute 3-D TomoSAR point clouds are compared with a



digital surface model (DSM) obtained by airborne LiDAR.
Experimental results demonstrate that the absolute positioning
accuracy using TerraSAR-X is around 20 cm. The elevation
estimation accuracy of TomoSAR depends on the number of
the used images, SNR, baseline distribution, orbit height, and
wavelength. In our experiments using TerraSAR-X, it is around
1 m [31].

II. STEREO SAR

A. SAR Imaging Geodesy for Absolute Ranging

The general imaging principle of SAR is based on the trans-
mission of pulses and the reception of their echoes reflected
back from the surface. Therefore, the location of a pixel in
a radar image corresponds to the two-way round-trip time
tR (= range) as well as the mean time of transmission and
reception tA (= azimuth). Since the position of the satellite with
respect to time is known from precise orbit determination, the
azimuth is referred to an absolute location in 3-D space. The
geometric distance R from this satellite position to the surface
is obtained by scaling the two-way round-trip time with the
velocity of light c.

In the case of a point scatterer, the two radar observations,
i.e., the azimuth time and the geometric range, can be extracted
from the focused SAR image through point target analysis
(PTA), which yields the center coordinates of the scatterer’s
signature at subpixel level. If the errors present in this type of
observations (atmospheric signal delays including ionospheric
and tropospheric delays, geodynamic displacements such as
solid Earth tides, continental drift, atmosphere pressure loading,
ocean tidal loading, pole tides, ocean pole tides, and atmosphere
tidal loading) are corrected by external models and the remain-
ing unknown effects, e.g., time delays induced by cables and
electronics, are calibrated for, the outcome are absolute 2-D
radar observations.

For TerraSAR-X and TanDEM-X, this whole process has
been mastered down to the 1–2 cm level [32]. It involves an
accurate SAR processor to generate the focused SAR images,
the PTA to extract the radar coordinates, the computation of the
external corrections, and the geometrical calibration [32]. Since
the process combines correction principles used in geodesy
with SAR, we refer to it as SAR imaging geodesy [28]. The
following provides a short summary on important elements of
the process, and the reader interested in the details can find them
in [28], [32].

In order to generate SAR images that are accurately focused
in zero-Doppler geometry, the TerraSAR-X multimode SAR
processor (TMSP) [33] avoids approximations often used to re-
duce the computational effort, e.g., the stop–go approximation,
which assumes a static satellite during the transmission and
reception of one pulse. Furthermore, effects such as the nonzero
duration of the pulses are taken into account. For the external
corrections, we distinguish between the signal propagation
delays due to the atmosphere and the geodynamical effects
(solid Earth tides, plate tectonics, ocean loading, atmospheric
loading, etc.), causing a displacement of a target on ground.
The geodynamic effects are considered by models following the
conventions issued by the International Earth Rotation and Ref-
erence Systems Service (IERS) [34], whereas the atmosphere
is corrected through path delays derived from complemen-

tary Global Navigation Satellite System (GNSS) observations.
Thus, the concept of separating the atmospheric delay into a
nondispersive part (usually called tropospheric delay—even if
it involves also contributions from other atmosphere layers) and
a dispersive part (ionospheric delay) which is well established
in the field of GNSS [35] can be adapted to SAR.

It is worth to mention for medium-resolution sensors, such
as Sentinel-1, the positioning capability is less precise than for
high-resolution sensors. In fact, a Sentinel-1 artificial corner
reflector needs to be 4.5 m large, which is unrealistic, in order
to achieve 1-cm range accuracy. Shoebox-sized compact active
transponders would be a convenient and highly demanded
alternative [36].

Based on these thoroughly corrected 2-D observations, our
stereo SAR approach allows the straightforward retrieval of ab-
solute 3-D coordinates by combining sets of range and azimuth
observations of a target in a joint parameter estimation.

B. Stereo SAR for Absolute 3-D Positioning of Corner
Reflectors or Persistent Scatterers

The details as well as the validation of the stereo SAR
method outlined in this section are given in [37]. Its analysis
was carried out for TerraSAR-X and TanDEM-X data of our
corner reflectors located at the geodetic observatories Wettzell
(Germany) and Metsähovi (Finland). The reference coordinates
of both reflectors are known from onsite geodetic surveying
with accuracy better than 5 mm, and the comparison with the
solution computed by stereo SAR showed differences at the
2–3-cm level [37].

The geometry of a SAR observation of a single point
target at zero-Doppler location is given by the well-known
range-Doppler equation system [38], i.e.,

|XS − XT | − R =0 (1)

ẊS(XT − XS)

|ẊS ||XT − XS |
=0 (2)

where Xs and Ẋs are the position and velocity vectors of the
sensor with respect to the azimuth time tA, XT denotes the
unknown position vector of the target, and R is the observed
range derived from the two-way round-trip time after compen-
sation of all system and atmospheric delays. If the relationship
between the sensor trajectory during an acquisition (position
and velocity) and the azimuth time is expressed by an analyt-
ical model, e.g., polynomials, and introduced into the range-
Doppler equations, the unknown target position XT can be
resolved in absolute 3-D by combining at least two acquisitions.
In terms of geometry, this corresponds to the intersection of two
or more circles that are perpendicularly oriented with respect
to the sensor trajectories since the target is considered to be at
zero-Doppler location (see Fig. 1).

The mathematical problem becomes overdetermined for two
or more radar acquisitions because every acquisition i provides
two equations (1) and (2) that relate the observations tA,i and
tR,i with the three target coordinates XT = [x y z]. However,
an optimal solution to this problem can be found by applying
general least squares parameter estimation [37]. This allows a
straightforward computation of absolute 3-D coordinates in the



Fig. 1. Graphical representation of a stereo SAR acquisition for a target
at zero-Doppler location. Note that due to the availability of repeat–pass
data stacks, we use multiple images from the same geometry in stereo SAR
configuration for a more accurate and robust absolute 3-D location estimation.

global reference frame of the satellite orbit, and all observations
taken from orbit tracks with visibility on the target can be
combined into a single estimate. In addition to the actual
coordinate solution, the parameter estimation provides the cor-
responding standard deviations that allow the quality analysis
of the solution. The standard deviations are influenced by the
noise of the observations, the intersection geometry given by
the separation of the orbit tracks (= stereo baseline), and the
total amount of acquisition used to compute the solution.

In order to apply the stereo SAR method with TerraSAR-X
in practice, the following steps have to be performed.

1) Focusing of the TerraSAR-X image by the TMSP. The
step is fulfilled by ordering the TerraSAR-X L1B data,
which provides not only the accurately focused single-
look slant range complex (SLC) images but also extensive
metainformation [39]. This metainformation includes the
trajectory of the SAR antenna phase center in the Interna-
tional Terrestrial Reference Frame (ITRF) 2008, which is
described by discrete position and velocity vectors (10-s
sampling interval). Polynomials are used to interpolate
the trajectory from the state vectors of the science orbit.

2) Locating the maxima of the point scatterer responses
visible in the images taken from different orbit tracks by
using PTA. The PTA algorithm must avoid aliasing and
employ best practice interpolation.

3) Computation of the external radar corrections introduced
in Section II-A according to the time and the observation
geometry of every acquisition.

4) Stereo SAR processing using the range and azimuth
observations of Step 2 corrected by the results of Step 3,
as well as the polynomial trajectory models obtained
in Step 1.

Note that Steps 3 and 4 have to be performed in iteration:
An initial 3-D position is computed without correcting the
observation data. This solution is introduced into the correction
computation, which yields a first set of corrections. After

repeating this process one to two times, both the corrections
and the position solution become stable, and the final result is
achieved.

III. TOMOSAR

TomoSAR, including SAR tomography and differential SAR
tomography, uses stacks of SAR images taken from slightly
different positions over a long period in a repeat–pass man-
ner and uses the stacks to reconstruct the 3-D positions of
coherent objects and their undergoing motion by means of
spectral estimation. According to the scattering mechanism,
the coherent targets, i.e., the signal, to be resolved can be
categorized as discrete scatterers and volumetric scatterers. The
reflectivity along elevation of discrete scatterers can be charac-
terized by several δ-functions, i.e., the signal can be described
by a deterministic model with a few parameters. Volumetric
scatterers have a continuous backscatter profile associated with
completely random scattering phases, i.e., the signal can only
be described by stochastic models. Our target application is
urban infrastructure monitoring, i.e., the resolution of discrete
scatterers with motion. For tomographic SAR reconstruction of
distributed scatterers, the readers are recommended to consult
[40], [41].

Among various TomoSAR system models, differential SAR
tomography was originally proposed in [2] for estimating linear
motion of multiple scatterers inside a pixel. Motion, how-
ever, is often nonlinear (periodic, accelerating, stepwise, etc.).
Therefore, conventional differential SAR tomography has been
extended to estimate multicomponent nonlinear motion in [5]
by means of the generalized “time warp” method. It rewrites
the D-TomoSAR system model to an M + 1-dimensional stan-
dard spectral estimation problem, where M indicates the user-
defined motion model order and hence enables the motion
estimation for all possible complex motion models. In this
section, this generalized model will be briefly described.

The focused complex-valued measurement gn at an azimuth–
range pixel for the nth acquisition at time tn (n = 1, . . . , N)
is [3]

gn =

∫

Δs

γ(s) exp (−j2π (ξns + 2d(s, tn)/λ)) ds (3)

where γ(s) represents the reflectivity function along elevation
s with an extent of Δs, and ξn = −2bn/(λr) is the spatial
(elevation) frequency proportional to the respective aperture
position (baseline) bn, with λ being the wavelength and r
being the range. d(s, tn) is the line-of-sight (LOS) motion as a
function of elevation and time. The motion relative to the master
acquisition may be modeled using a linear combination of M
base functions τm(tn) [5], i.e.,

d(s, tn) =

M∑

m=1

pm(s)τm(tn) (4)

where pm(s) is the corresponding motion coefficient to be
estimated. Later, we will show that τm(tn) can be interpreted as
a warped time variable if we choose the units of the coefficients



appropriately. The choice of the base functions depends on
the underlying physical motion processes, e.g., linear, seasonal,
step function, temperature history, or even measured GPS de-
formation series of ground control points.

Let us define the mth temporal frequency component at tn
as ηm,n = 2τm(tn)/λ. Then, (3) can be rewritten as an M + 1-
dimensional Fourier transform of γ(s)δ(p1 − p1(s), . . . , pM −
pM (s)), which is a delta line in the M + 1 elevation-motion
parameter space, i.e., [5]

gn =

∫

ΔpM

· · ·
∫

Δp1

∫

Δs

γ(s)δ (p1 − p1(s), . . . , pM − pM (s))

· exp (−j2π(ξns+η1,np1+· · ·+ηM,npM))

× dsdp1, . . . ,dpM, n = 1, . . . , N. (5)

After discretizing (5) along s and motion parameter space, in
the presence of noise ε, the discrete-TomoSAR system model
can be written as

g = Rγ + ε (6)

where g is the measurement vector with N elements, γ is the
reflectivity function along elevati on uniformly sampled along
elevation sl (l = 1, . . . , L) and motion parameter space pm,lm

(lm = 1, . . . , Lm). R is an irregularly sampled M -dimensional
discrete Fourier transform mapping matrix sampled at ξn and
ηm,n. In practice, R and γ are reshaped to 2-D matrices,
with a dimension of N × (L × L1 × · · · LM ). This renders
tomographic SAR inversion a higher dimensional spectral esti-
mation problem that can be again solved by the well-established
spectral estimation methods. For more details, the readers are
recommended to consult [5].

In our test sites, the following two component motion base
functions, i.e., M = 2, are assumed.

• Linear motion: η1,n = 2tn/λ, and the coefficient p1(s)
stands for the LOS velocity (v) as a function of s.

• Seasonal motion: η2,n = 2τ2(tn)/λ where τ2(tn) =
sin(2π(tn − t0)) can be interpreted as a warped time vari-
able modeling the seasonal movement evolving over time,
and p2(s) stands for the amplitude (a) of the periodic
motion; t0 is the initial phase offset.

IV. GEODETIC SAR TOMOGRAPHY

Here, we will introduce the proposed framework geodetic
SAR tomography, which consists of four main steps, namely,
identification of reference point candidates, absolute position-
ing of reference point candidates, TomoSAR processing, and
fusion of geodetic point clouds. To make the procedure more
accessible for the readers, we explain the framework together
with practical examples.

A. Data Sets

In this paper, the investigated test site includes the central
area of the city of Berlin, Germany. The available data set
consists of four stacks of TerraSAR-X VHR spotlight images
acquired with a range bandwidth of 300 MHz. The images have

Fig. 2. Optical image of the city of Berlin (Google Earth). Rectangles mark
the coverage of the four TerraSAR-X data stacks.

TABLE I
ACQUISITION PARAMETERS OF EACH STACK INCLUDING THE AVERAGE

INCIDENCE ANGLE, THE FLYING DIRECTION OR AZIMUTH, THE

TRACK TYPE AND THE NUMBER OF AVAILABLE IMAGES

an azimuth resolution of 1.1 m and a slant-range resolution
of 0.6 m covering an area of 10 km × 5 km. Two stacks
are acquired from descending orbits with images recorded
at 05:20 Coordinated Universal Time (UTC), and two stacks
are acquired from ascending tracks with images recorded at
16:50 UTC. Fig. 2 shows the mean scene coverage of individual
stacks overlaid on the optical image of Berlin. Furthermore, the
details about the system parameters and properties of each stack
are summarized in Table I.

Since Berlin is regularly monitored by TerraSAR-X, a large
number of images are available for each stack ranging from
102 to 138 with a time span of approximately five years from
February 2008 to March 2013 with the acquisition repeat cycle
of 11 days. The four stacks consist of noncoregistered complex
images.

In addition to the TerraSAR-X data sets, a point cloud of the
test area obtained from aerial laser scanning is available (pro-
vided by “Land Berlin” and “Business Location Service,” sup-
ported by “Europäischer Fonds für Regionale Entwicklung”).
This data set is used to construct a DSM, which serves as a ref-
erence for the localization accuracy analysis of the TomoSAR
point clouds. The LiDAR point cloud corresponding to the
Reichstagsgebäude, Berlin, Germany, is visualized in Fig. 3.

B. Absolute Positioning of the Reference Point

As a characteristic of all interferometric SAR techniques,
the height and deformation updates are estimated relative to
a reference point. Although special care is taken to choose
the reference point in an area close to the reference digital
elevation model (DEM) and most plausibly not affected by



Fig. 3. LiDAR point cloud of a small area in Berlin in UTM coordinate system
based on WGS 84 data. High absolute localization accuracy, on the order of
10 cm, makes the point cloud an excellent source to serve as a reliable reference
surface model.

deformation, this however cannot be fully guaranteed and leads
to complication in interpretation of the final results. Moreover,
the exact 3-D position of the reference point is not known.
Therefore, it is more likely that the final geocoded results
will show offsets or even small scaling effect with respect to
their true positions. The latter can also be problematic when
it is desired to fuse the results obtained from different (same-
heading or cross-heading) tracks in order to produce shadow-
free point clouds. In this case, a lack of knowledge about the
exact height of the reference point leads to inconsistencies
between the point clouds [42]–[44].

In the following, the approach to select and absolutely lo-
calize natural point scatterers in SAR images is reported. The
exact 3-D positions of the points are achieved with the stereo
SAR method explained in Section II. Finally, the point with the
highest quality is used as the reference point in the TomoSAR
processing of all the four stacks which is extensively treated in
Section IV-C.

1) Identification of Reference Point Candidates: The point
targets, on which the 3-D stereo SAR reconstruction is per-
formed, should have certain characteristics to be consid-
ered suitable reference point candidates. The criteria are the
following.

• The target should be located in an isolated area.
• The target should be a single scatterer of high SNR, which

is visible through the entire stack of SAR images.
• The target should be visible, at least, in two stacks of

images acquired from different geometries.

The first condition should be satisfied in order to minimize
the impact of interference caused by neighboring targets’ re-
sponses on the reference candidate point. This is met by visual
inspection of the mean amplitude image of each stack and the
corresponding optical image of the scene to identify isolated
targets.

The second condition ensures that the later tomographic
reconstruction reaches in a higher 3-D localization as these
points will also be served as reference points while forming
differential observations. This is dealt with by calculation of
the normalized amplitude dispersion index [10].

The third condition is vital from the radargrammetric point
of view. Although, in optical imagery, selection of identical
targets is commonly carried out with well-established algo-
rithms such as scale-invariant feature transform (SIFT) [45] and
Kanade–Lucas–Tomasi feature tracker [46], in SAR images,
this cannot be done due to the existence of speckle [47]. For
this reason and also considering the low number of candidates,
in this paper, identical targets were selected manually by visual
investigation of mean amplitude images of different stacks.

2) Absolute Positioning of the Reference Point: The out-
come of the aforementioned procedure is eight point scatter-
ers chosen from the central area of the city of Berlin (see
Figs. 4 and 5). All of the scatterers are assumed the base of
lamp posts located in the area, which typically have cylinder
shapes that can reflect back radar signals from all illumina-
tion angles as shown in the right plot of Fig. 4. The scat-
terers are from three different types categorized based on the
combination of geometry used for 3-D positioning, namely,
ascending–ascending (AA), descending–descending (DD), and
ascending–descending (AD). Fig. 6 shows the two different
stereo orbit configurations that are used for point scatterers in
Berlin. For each target, the time coordinates are retrieved by
PTA from a number of SAR images in the stack. These time
measurements are first corrected and then used in the zero-
Doppler equations, outlined in Section II, to retrieve the 3-D
coordinates. Table II gives an overview of data-take configura-
tions, the time period within which the time coordinates were
measured and the number of images used in PTA.

Among the candidates reported in Table II and visualized
in Figs. 4 and 5, the one with the highest quality, i.e., the
lowest 3-D standard deviation is selected as the reference
point for TomoSAR processing of all the SAR image stacks.
The stability of the results depends on the geometry of the
observations, the number of observations, and the SNR of the
targets. The geometrical configuration is the most important
factor as for AD geometry the intersection occurs at almost
90◦ angle providing a well-conditioned system of equations.
This effect can be clearly seen in Fig. 6(b), whereas a large
baseline between the ascending and the descending acquisitions
is achievable. On the other hand, AA or DD configurations
[see Fig. 6(a)] result in a more ill-posed system due to a
rather small baseline. In order to support the aforementioned
discussion, the coordinate standard deviations of the scatterers
are plotted in Fig. 7 (left subfigure). The horizontal axis con-
sists of the names of the scatterers with subscripts denoting
the geometry used for the 3-D positioning. The vertical axis
describes the standard deviation values ranging from 1 to
9 cm, which are at least one order of magnitude better than the
relative estimates achieved by repeat–pass InSAR. In addition,
the graph demonstrates that the standard deviation values are
lower in the x-direction. Moreover, as it was expected, the
results from PAD1 and PAD2, which are calculated from the
cross-heading orbits, are more precise than the other points.
It is worth mentioning that restricting the quality control of
estimates solely based on the standard deviations may not be
a reliable criterion. This is mainly due to the presence of
covariance between the coordinate stochastics. Therefore, it
is meaningful to analyze the error ellipsoid that is obtained



Fig. 4. (Left) Selected reference point candidates visualized as red dots in the optical image of Berlin (Google Earth). All of the candidates are assumed base of
lamp posts. (Right) Photograph of one of such lamp posts in Berlin.

Fig. 5. Selected reference point candidates distinguished with yellow circles in the SAR images taken from the ascending and descending geometries with an
incidence angle between 36◦ and 55◦, as detailed in Table I.

Fig. 6. Different orbit stereo configurations taken into account for 3-D scatterer reconstruction in Berlin. (a) Same heading orbits. (b) Cross-heading orbits.

by transformation of the posterior variance–covariance matrix
of the estimates to the uncorrelated diagonal matrix of the
eigenvalues based on eigenvector decomposition. In this case,

the diagonal elements of the decomposed matrix represent
the stochastics in the inherent SAR coordinate system. The
mentioned approach was carried out on the variance–covariance



TABLE II
DATA TAKE CONFIGURATION FOR THE SELECTED

NATURAL POINT SCATTERERS

matrix of each point, and the result is plotted in Fig. 7
(right subfigure) where σr, σa, and σs denote the ellipsoid
axes that orient themselves with respect to the range, the
azimuth, and the elevation of the SAR geometry, respectively.
It is observed that, for the scatterers, which are localized
from the same-heading geometries, the range component is
minimal followed by azimuth, whereas the highest uncertain-
ties are allocated to elevation components varying from 4 to
14 cm. However, it is seen that due to the almost optimum
geometry configuration of cross-heading tracks, the elevation
components of PAD1 and PAD2 have the smallest value better
than 2 cm.

Based on the given discussion, the matter of configura-
tion leads to discarding the point targets identified from the
same-heading tracks narrowing the selection between PAD1 and
PAD2. Among them, PAD1 was selected as the reference point
since it has slightly better precision, and it was also visible
in all the four stacks. Fig. 8 shows the selected target in the
mean amplitude images of one ascending and one descending
TerraSAR-X spotlight image. The target is a lamp pole in
a pedestrian area near the Berlin central station. Its absolute
positions in the ITRF 2008 are as follows:

[X Y Z] = [3783630.014 ± 0.010 m 899035.0040

± 0.010 m 5038487.589 ± 0.011 m].

It has to be emphasized that the listed 1-cm level uncertain-
ties refer to the variance–covariance information provided by
the position computation with stereo SAR. Thus, these values
are a measure for the consistency of the stereo-based scat-
terer retrieval. It must be considered however that the satellite
illuminates different sides of the lamp post from ascending
and descending orbits. Regarding the absolute accuracy of the
reference point, we expect a bias on the order of 20 cm, which
depends on the diameter of the lamp post. We will analyze this
possible bias in Section IV-D.

C. Tomographic Processing

After choosing the aforementioned absolutely geo-positioned
scatterer as the reference point, the InSAR stacking and
TomoSAR processing were done by the PSI-GENESIS [11]

and Tomo-GENESIS system [48], [49] of the Remote Sensing
Technology Institute of DLR, respectively.

The Tomo-GENESIS processing chain consists of three main
steps, namely, preprocessing, tomographic processing, and fu-
sion of point clouds. In this paper, mainly the first two steps are
concerned, which are briefly outlined as follows. Furthermore,
instead of geometrical fusion of point clouds as previously
used in Tomo-GENESIS, a geodetical fusion method will be
introduced.

1) Preprocessing: The processing starts from the stack of
coregistered complex SAR images. The task of preprocessing
is to estimate and remove the atmospheric phase screen (APS)
of each image in the stack. The core feature of the preprocess-
ing is spatial difference. It makes use of the assumption that
APS is spatially slowly varying but highly uncorrelated from
one image to another. Therefore, the estimates using spatially
differential measurements should be “APS free.” Such a method
was already described in [50]. We customized it to adopt our
problem [51].

The preprocessing procedures are described as follows: Im-
ages in the stack are downsampled if they are VHR. In the
downsampled images stack, pixel pairs with spacing (arc)
shorter than the atmospheric correlation length (typically rec-
ommended to be 2 km [52] in this paper, due to the high
density of bright points, an even shorter distance of 250 m is
chosen), are then selected and connected. Spatial differential
measurements are calculated between the pixels in a pair. Then,
we estimate the topography and motion parameters based on the
single point scatterer phase model. The differential topography
estimates is further integrated globally, and the topographic
phase contribution is removed from each image. The remaining
phase should be fairly flat. It consists of only the deforma-
tion phase, APS, and stochastic scattering phase. The un-
wrapped residual phase is first low-pass filtered in space to
remove random noise, and high-pass filtered in time to elim-
inate deformation signals. The result in this step is the APS
of each image on the network made up of selected pixels.
After interpolation and upsampling, the APS-induced phase is
removed for each image of the stack.

2) Tomographic Processing: After APS removal, tomo-
graphic processing is applied to each pixel of the stacked
images aiming at the retrieval of the elevation and motion pa-
rameters of multiple scatterers inside one azimuth–range pixel.
Here, the generalized time warp model with M = 2 is used; we
estimate linear and periodic seasonal motion.

Depending on the applications, different algorithms can be
chosen for tomographic reconstruction.

• PSI: PSI is a special case of TomoSAR that attempts to
separate the following phase contributions: elevation of
the point, deformation parameters (e.g., deformation rate
and amplitude of seasonal motion), orbit errors, and tro-
pospheric water vapor delay. This is done by assuming
the presence of only a single scatterer in the pixel.
This restriction brings the big advantage of computa-
tional efficiency. It is recommended for large-scale urban
monitoring.



Fig. 7. Estimated coordinate stochastics for three components obtained from stereo SAR. The importance of geometry configuration on 3-D positioning is clearly
seen as the scatterers localized from cross-heading tracks are more precise.

Fig. 8. Common target visible in all ascending and descending data stacks, which is selected as the reference point for the follow-on TomoSAR processing. The
point can be observed as a bright dot inside the yellow circles.

• Maximum detection (MD): MD stands for SVD-Wiener
(linear MAP) reconstruction followed by peak detection
and model order selection and final refinement of the
amplitude and phase estimates [4]. This algorithm is
computationally efficient and is not sensitive to irregu-
lar sampling. As a linear method, MD has almost no
super-resolution capability. Taking account to its fast
computation, MD is recommended if the native elevation
resolution is sufficient for the application.

• Scale-down by L1 norm minimization, model selec-
tion, and estimation reconstruction (SL1MMER): The
SL1MMER algorithm is proposed in [53]. It consists of
three main steps: 1) a dimensionality scale down by L1

norm minimization; 2) model selection; and 3) parameter
estimation. In [24] and [54], this algorithm is demon-
strated to give robust estimation with very high elevation
resolution. In the relevant parameter range for TomoSAR,
super-resolution factors of 1.5–25 (compared with the
Rayleigh resolution unit) can be expected. SL1MMER
can offer so far ultimate 4-D SAR imaging; however,
it is computationally very expensive. Therefore, it is
recommended for the monitoring of individual high rise
buildings.

• Integrated Approach: Considering the high computational
cost of TomoSAR, tomographic SAR inversion is inte-
grated with PSI for operational use in [51]. With the
integration of PSI, the processing is 30–50 times faster
than SL1MMER alone, and still comparable results can
be achieved. Thus, it gives a good compromise of the
aforementioned three methods.

Since our aim is to demonstrate the framework of geodetical
SAR tomography, the simple MD method, i.e., SVD-Wiener
followed by model order selection and parameter estimation,
is chosen for an efficient TomoSAR processing. Starting from
SLCs, for an input data stack, the Tomo-GENESIS system
retrieves the following information: number of scatterers inside
each azimuth–range pixel, amplitude and phase, topography
and motion parameters (e.g., linear deformation velocity and
amplitude of thermal dilation induced seasonal motion) of each
detected scatterer with respect to a reference point.

The final elevation estimates of two of the four data stacks
using the same reference point are exemplified in Fig. 9. The
elevation is color-coded. Fig. 9(a) and (b) refers to the result
for beams 42 and 57, respectively. For each of the retrieved



Fig. 9. TomoSAR results. Elevation estimates of two of the four stacks using the same reference point; elevation is color-coded [unit: m]. (a) Beam 42, descending.
(b) Beam 57, ascending.



Fig. 10. TomoSAR results. Estimated LOS linear deformation rate (a) and amplitude of seasonal motion (b) of beam 42. Motion parameter is color-coded.
(a) Linear deformation rate [mm/y]. (b) Amplitude of seasonal motion [mm].



scatterers/points, its undergoing amplitude of seasonal motion
and linear deformation rate are also estimated.

Since, in this paper, mainly the absolute positions of these
scatterers are concerned, the motion results will not be dis-
cussed further. To give the readers an impression of the esti-
mated motion parameters, Fig. 10 shows the estimated LOS
linear deformation (a) rate and (b) amplitude of seasonal motion
of beam 42 as an example. It can be observed that Berlin is rather
stable, i.e., there is no significant ground deformation pattern.
Most of the buildings and other man-made urban infrastructures
mainly undergo temperature changes and induced seasonal
deformation with amplitude of up to 15 mm. Some railway
sections, the buildings along them, and several buildings in
construction undergo a linear subsidence with a rate of up to
8 mm/y. For a more meaningful analysis, LOS deformation
estimates of different viewing angles need to be fused [55].

D. Geodetic Fusion of TomoSAR Point Clouds

The side-looking geometry of SAR sensors only allows
for mapping the illuminated sides of buildings. In order to
produce a shadow-free point cloud, coregistration of results
from, at least, one set of cross-heading orbits is required. For
PSI and TomoSAR whose estimates are relative, geocoded
point clouds obtained from different acquisition geometries
cannot be directly coregistered. This is mainly due to the
offsets in the elevation direction that are caused by selection
of reference points with unknown heights, during the process-
ing. The coregistration task of two unstructured 3-D InSAR
point clouds is referred to as point cloud fusion in the SAR
community. In [42], a method for fusion of multitrack PSI
results is proposed based on a least-squares matching scheme
that minimizes the distances between assumed identical points
of two point clouds. The method aims to estimate the off-
set between the identical points in the elevation direction. In
[44], an alternative feature-based fusion algorithm is proposed,
which is based on automatic detection and matching the so-
called L-shapes of high rise buildings from InSAR point clouds.
This method is computationally more efficient than the one
introduced in [42] due to the reduced number of points in
the matching step. Relevant work in the airborne research
domain can be found in [56] and [57]. It is important to note
that all mentioned existing methods perform the point cloud
fusion geometrically. It can be shown that by merging the
capabilities of the stereo SAR (see Section II) and TomoSAR
(see Section III), it is possible to perform geodetic point
cloud fusion.

In the framework of geodetical SAR tomography, TomoSAR
processing is based on the selection of an identical reference
point whose 3-D positions are retrieved by means of stereo
SAR. After geocoding, it is therefore expected that the point
clouds will be automatically fused without further manipula-
tions. However, this is not true for the following reasons.

• Each point cloud is geocoded separately based on the
corresponding noncorrected range and azimuth timing
information. As a consequence, the geocoded coordinates

Fig. 11. Shift between the geocoded reference points in TomoSAR point
clouds obtained from cross-heading geometries relevant to our specific case.
The drawing is in the east-up plane while ascending and descending satellites
fly perpendicular to the plane far away and toward the reader, respectively.
For successful point cloud fusion, the coordinates resulted from stereo SAR
(PSS) should be shifted toward the expected true position of the reference
point in each ascending and descending stack (PGAsc

,PGDsc
). In order to

do so, the corresponding shift vector in the elevation direction (dsAsc, dsDsc)
should be evaluated for each stack based on the known local incidence angles
(θAsc, θDsc) and the heading angles of the satellites (αAsc, αDsc).

of the reference point, in each stack, show offsets with
respect to the reference point coordinates obtained from
stereo SAR, as well as to the geocoded reference point
coordinates of other stacks.

• Scatterers visible in SAR images acquired in urban en-
vironment from both ascending and descending orbits,
which are assumed identical in stereo SAR processing,
are often lamp posts [37]. The SAR illuminates different
sides of the lamp post from ascending and descending
orbits. This means the identical scatterer assumption is not
fully valid. Under the assumption that these two points are
identical in 3-D, the reference point coordinates obtained
from stereo SAR is situated on the body between the
two sides of the lamp post. The coordinate offsets of the
true reference points of individual stacks and the results
obtained from stereo SAR depend on the diameter of the
lamp post and incidence angles of each stack.

In order to compensate for the mentioned offsets, corrections
are further required. For successful fusion of TomoSAR point
clouds obtained from different viewing geometries, the coordi-
nate shifts between the geocoded coordinates of the reference
point in each stack and the reference point coordinates obtained
from stereo SAR should be resolved.

Fig. 11 describes the problem stated earlier related to the
nonmodeled diameter of the lamp post. The drawing is depicted
in the (approximately) east-up plane where it is assumed that
the ascending (left) and descending (right) satellites fly away
and toward the reader, respectively. The diameter of the lamp
post (D) is approximately 20 cm. The red dot denotes the
approximate position of the reference point whose coordinates
are retrieved with the stereo SAR method PSS. The two green
dots indicate the true positions on which the geocoded reference
points in the point clouds obtained from ascending (PGAsc

)
and the descending (PGDsc

) tracks should be located. In order



Fig. 12. Optical image of Federal Intelligence Building (Google Earth). The
part in the red ellipse is investigated later to compare the fusion results before
and after applying the coordinate corrections.

to compensate the offset between the two cross-heading point
clouds, caused by the diameter of the lamp post, for each of the
ascending and descending stacks, PSS should be shifted to the
corresponding illuminated base of the lamp post by evaluation
of the shift vectors dsAsc,dsDsc in the elevation direction. With
the knowledge of the local incidence angle of each beam at the
location of the lamp post (θAsc, θDsc) and the satellites heading
angles (αAsc, αDsc), each component of the shift vectors can be
calculated as follows:

dz =
D · tan(θAsc) · tan(θDsc)

tan(θAsc) + tan(θDsc)
(7)

dxAsc = dxyAsc · cos(αAsc) (8)

dyAsc = −dxyAsc · sin(αAsc) (9)

dxDsc = dxyDsc · cos(αDsc) (10)

dyDsc = −dxyDsc · sin(αDsc). (11)

dxyAsc = dz · cot(θAsc) and dxyDsc = dz · cot(θDsc). Shift
in the upward direction (dz) is equal for all the stacks and there-
fore can be evaluated using a least squares adjustment based on
different combinations of the ascending and descending tracks.
Afterward, the individual horizontal shifts (dxyAsc, dxyDsc)
are calculated for each stack, and with the known azimuth
angles, they are projected into the east and north direc-
tions (dxAsc, dyAsc, dxDsc, dyDsc). The shift vectors thus are
formed as

dsAsc = [dxAsc, dyAsc, dzAsc]
T (12)

dsDsc = [dxDsc, dyDsc, dzDsc]
T . (13)

Subsequently,PSS is shifted to the position ofPGAsc
orPGDsc

that is dependent on the acquisition geometry of the stack

PGAsc
=PSS − dsAsc (14)

PGDsc
=PSS − dsDsc. (15)

The remaining errors of the geocoding is compensated by
evaluating the difference between the geocoded reference point
coordinates of each stack and the corresponding PGAsc

or
PGDsc

. Finally, for each stack, the unique difference vector is
added to the coordinates of all the scatterers to produce four
absolutely localized corrected point clouds.

Compensation for the coordinate shifts between the
geocoded reference points and true position of the stereo SAR
results allows for seamless geodetic fusion of TomoSAR point
clouds. These corrections have been applied to each point cloud
separately. To confirm that the corrections are necessary, a
small test site including the Federal Intelligence Service (BND)
building in Berlin is chosen to compare the fusion results before
and after applying the coordinate corrections. Fig. 12 shows the
optical image of the building. The red ellipse marks the building
section that is investigated in Fig. 13.

In Fig. 13, the results from the ascending stacks are visual-
ized in blue, and the descending point clouds are shown in red.
In the noncorrected fusion (left), the black arrow represents the
shift available between the same heading tracks. Moreover, the
black ellipse highlights that the result from descending stacks
(red) does not match with the building fraction captured from
ascending stacks (blue). The right figure illustrates the fused
point clouds by applying all aforementioned corrections. The
good match of all four point clouds confirms the effectiveness
of the proposed fusion strategy.

Fig. 14 illustrates the fusion of two ascending and two
descending absolute TomoSAR point clouds in 2-D over the
city of Berlin. The coordinates are expressed in Universal
Transverse Mercator (UTM) coordinate system. It is seen that
the point clouds are reasonably overlaid on each other after
applying the corrections. This part is finalized by 2-D and 3-D
visualizations of the fused point cloud of the central urban area
of Berlin illustrated in Fig. 15. The absolute point clouds are
plotted in the UTM coordinate system, and the height of each
scatterer is color-coded with respect to the WGS84 ellipsoid.

The coverage of the test site is approximately 10 km ×
5 km and the number of captured absolute positioned scatterers
is 63 million. It is clearly seen that the fusion of TomoSAR
point clouds obtained from different geometries allows for
highly detailed 3-D mapping of the city. It is worth to mention
that the aforementioned point density is obtained using the
computationally efficient MD estimator, processing the same
data sets using more expensive algorithms, e.g., SL1MMER,
will even lead to a significantly higher point density [54]. This
aspect is however outside the scope of this paper.

V. LOCALIZATION ACCURACY ANALYSIS OF

THE FUSED TOMOSAR POINT CLOUD

The localization accuracy of the fused TomoSAR point cloud
is assessed by comparing the results with an accurate DSM cal-
culated from a point cloud obtained from aerial laser scanning



Fig. 13. Comparison between the fusion results before (left) and after (right) applying the reference point coordinate correction. The result from the ascending
stacks is visualized in blue, and the descending point clouds are shown in red. The noncorrected fusion (left) includes certain offsets between the results from
same-heading tracks (the black arrow) and wrong intersection of different building fractions captured from cross-heading tracks (the back ellipse).

Fig. 14. Fusion result of two ascending and two descending tracks over the
city of Berlin. The point clouds are absolutely localized after correcting the
geocoded coordinates of the reference point and are geodetically fused.

characterized with a large number of data points and high
absolute geolocalization accuracy on the order of 10 cm. This
allows for a quantitative analysis on the positioning accuracy of
the TomoSAR point cloud.

To check the overall accuracy of the point cloud, Fig. 16(a)
shows the fused TomoSAR point cloud of a small area of
Berlin overplotted onto the corresponding area in LiDAR DSM.
The heights of the scatterers are color-coded with blue to red
values indicating lower to higher heights. The DSM is plotted
in gray for better visualization purposes. The good fit of the
TomoSAR point cloud on the DSM is visually observable.
For a closer speculation, a cross section through the buildings,
marked with a white rectangle in Fig. 16(a), is visualized in
Fig. 16(b). The figure shows a slice in the xz plane with
the height values color coded. In order to validate the results
illustrated in Fig. 16, the accuracy analysis is carried out for
horizontal and vertical directions separately as reported in the
following.

A. Horizontal Accuracy Analysis

The optimum way to assess the accuracy of the fused To-
moSAR point cloud is a point-wise comparison with respect

to the LiDAR point cloud. However, this is not feasible as
LiDAR sensors map the surface with a nadir looking angle,
whereas SAR sensors capture the scene from a side-looking
geometry. The difference in acquisition geometry leads to dif-
ferent mapping of the same object and therefore complicates
the comparison.

In this paper, the horizontal assessment is carried out by
evaluating the mean façade points from the TomoSAR point
cloud with respect to the extracted corresponding façade line
from the LiDAR DSM.

• Building façades from the LiDAR DSM are estimated as
follows: Based on the top view extent of the building,
an area is cropped, which contains the desired build-
ing fraction. Centered on each point inside the cropped
scene, a vertical cylinder with the radius of 2 m is
considered. Inside the cylinder, the height variance is
calculated. Points with height variances higher than a
threshold are labeled as façade points. The building façade
surface is assumed vertical. Therefore, at the final step,
the footprint of the façade in 2-D, i.e., on the ground
plane, is estimated by fitting a line to the façade points
using reweighted least squares with a bisquare weighting
function.

• For the TomoSAR point cloud, points belonging to a
specific façade are extracted using the algorithms pro-
posed in [58] and [59]: First, the scatterer density in
the horizontal plane is estimated in adaptive windows
varying dependent on the orientation of the façades. Based
on the estimated point density and local normal direc-
tions, points belonging to individual building façades are
extracted.

The perpendicular distance between the façade points ex-
tracted from TomoSAR point clouds and the corresponding
façade lines estimated from LiDAR DSM is calculated. The
mean value of the deviations is regarded as the horizontal bias
between the TomoSAR point cloud and the LiDAR DSM.

B. Vertical Accuracy Analysis

The vertical accuracy is analyzed by comparing identical flat
grounds mapped in LiDAR DSM and in the fused TomoSAR



Fig. 15. Three-dimensional absolutely positioned TomoSAR point clouds in 3-D (top) and 2-D (bottom). The absolute height values are color-coded and range
between 70 m to 110 m. Clearly, the fusion of multitrack point clouds allow for a very detailed representation of the city where most of the structures can be easily
recognized.

point cloud. An identical patch is selected from both the
TomoSAR point cloud and the reference surface. Inside the
patch, the height deviation of scatterers from the TomoSAR
point cloud with respect to the flat scene in the LiDAR
DSM is evaluated by calculating the root mean square error.

C. Test Sites and Discussion

Different test sites from Berlin are chosen to validate the
positioning accuracy of the fused TomoSAR point cloud. For
horizontal analysis, two different buildings are selected, and
for each of them, the extracted façade in the LiDAR DSM is



Fig. 16. (a) Fused TomoSAR point cloud overplotted onto the reference DSM. The DSM is plotted in gray for better visualization purposes. The height of the
TomoSAR point cloud is color coded. It is seen that the scatterers are fitted to the corresponding building parts on the DSM as no large deviations are visible from
the plot. The cross section in the xz plane visualized in (b) confirms the mentioned statement. [unit: meters].

compared with the detected façade points in the TomoSAR
point cloud. Fig. 17 shows the findings of the first test site
including a high-rise building in Postdamer Platz located at
a distance of approximately 2 km from the reference point.
Fig. 17(a) shows the optical image of the area where the investi-
gated façade is marked with a white rectangle. Fig. 17(b) and (c)
shows the mapped area in the LiDAR DSM and the TomoSAR
point cloud in the UTM coordinate system with the facade dis-
tinguished with a white rectangle and a black rectangle, respec-
tively. Façade points from the LiDAR DSM are extracted based
on a threshold of 20 m on the height standard deviation values
estimated in a vertical cylinder with the radius of 2 m around
each point. The façade footprint, i.e., a line on the ground
plane, is then the estimated. Fig. 17(d) shows the LiDAR façade
points, color-coded based on the height variance values, and the
estimated façade line in red. Façade points in the TomoSAR
point cloud are approximated by applying a threshold of
13 points/m2 on the scatterer density estimates. Moreover, the
TomoSAR point cloud is clipped within height values of 80
to 160 m. The latter is carried out based on the information
from the LiDAR DSM, which shows that the façade points are
most likely located within the mentioned height interval. The

result is shown in Fig. 17(e), where the detected TomoSAR
façade points are color-coded based on the scatterer density
estimates and are plotted along with the estimated façade line
from the LiDAR DSM. Eventually, Fig. 17(f) shows the his-
togram of the perpendicular distances between the TomoSAR
façade points and the fitted LiDAR façade line. The mean
value of the distances implies the bias between the TomoSAR
point cloud and the LiDAR DSM for this specific test site,
which is equal to −0.184 m. The standard deviation hints the
estimation accuracy of TomoSAR, which is equal to 1.17 m.
It matches well with the meter-order elevation estimatio accu-
racy calculated from the derived Cramér–Rao lower bound [31].

For vertical accuracy analysis, several test sites are selected.
The important criterion in the selection of the test sites is
that they should be absolutely located on flat ground. Expe-
riences show that the deviations within a couple of meters
exist between the TomoSAR point cloud and the LiDAR DSM.
This corresponds to: 1) the meter-level elevation estimation
accuracy of repeat–pass InSAR, such as TomoSAR; and 2) the
fact the roof points or ground points selected for evaluation
are very unlikely being precisely located on flat surfaces as
desired.



Fig. 17. First test site for the horizontal accuracy analysis of the TomoSAR point cloud. The investigated façade is marked with white rectangles. (a) Optical
image of Postdamer Platz (Google Earth). (b) Corresponding LiDAR DSM. (c) Corresponding TomoSAR point cloud. d) Detected façade points from the LiDAR
DSM and the estimated façade line in UTM projection. The façade points are color-coded based on the height variance values and the façade line is expressed in
black. (e) Detected façade points from the TomoSAR point cloud, color-coded based on the scatterer density values, and the façade line fitted to LIDAR DSM
drawn in black. (f) Histogram of differences between TomoSAR façade points and the façade line in LiDAR DSM. The histogram is centered on −0.184 m, which
hints the achieved absolute positioning accuracy.

VI. CONCLUSION

In this paper, we have proposed the “geodetic TomoSAR”
framework that fuses SAR image geodesy and SAR tomog-
raphy to obtain absolute 3-D positions of a large amount of
natural scatterers. An absolute 3-D TomoSAR point cloud with
63 million points covering an area of 10 km × 5 km over the
city of Berlin is presented. Compared with a high-precision
LiDAR DEM, the absolute positioning accuracy of the pro-
posed approach reaches 20 cm. It demonstrates the applicability
of the proposed approach. Future work concentrates on: 1) au-
tomatic identification of common scattering objects appearing
in SAR images obtained from different geometries, e.g., by
exploring the regular pattern attributed to building façades (for
same heading orbits) or street lamps (for cross heading orbits);
and 2) investigation on absolute deformation estimates for large
area, e.g., by cooperating GPS measurements.
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Abstract—Differential synthetic aperture radar tomography
(D-TomoSAR), similar to its conventional counterparts such as
differential interferometric SAR and persistent scatterer interfer-
ometry, is only capable of capturing 1-D deformation along the
satellite’s line of sight. In this paper, we propose a method based
on L1-norm minimization within local spatial cubes to reconstruct
3-D displacement vectors from TomoSAR point clouds available
from at least three different viewing geometries. The method-
ology is applied on two pairs of cross-heading—combination of
ascending and descending—TerraSAR-X (TS-X) spotlight image
stacks over the city of Berlin. The linear deformation rate and
the amplitude of seasonal deformation are decomposed, and the
results from two test sites with remarkable deformation pattern
are discussed in detail. The results, to our knowledge, demonstrate
the first attempt for motion decomposition using TomoSAR data
from multiple viewing geometries.

Index Terms—Differential SAR tomography (D-TomoSAR),
geodetic point cloud fusion, L1-norm minimization, motion de-
composition, synthetic aperture radar (SAR).

I. INTRODUCTION

T OMOGRAPHIC synthetic aperture radar (SAR) inversion
(TomoSAR) is a multibaseline extension of conventional

interferometric SAR (InSAR) which allows for multiple scat-
terer discrimination within each resolution cell [1]–[4]. There-
fore, it is favored over similar InSAR approaches, such as
persistent scatterer interferometry (PSI) [5], [6], for studying
urban areas in which the prevalent occurrence of layover
violates the single scatterer assumption. By multitemporal

analysis of SAR image stacks, TomoSAR is capable of es-
timating the underlying deformation of individual scatter-
ers in the scene, a framework called differential TomoSAR
(D-TomoSAR) [7]. Using TerraSAR-X (TS-X) high-resolution
spotlight data stacks, experiments show that D-TomoSAR is
capable of providing 4-D maps with a scatterer density on the
order of one million points per square kilometers [8].

One of the limitations of InSAR techniques, including
TomoSAR, is that they only measure deformation along the
radar line of sight (LOS). Therefore, apart from the fact that no
information can be retrieved from the shadowed parts, due to
the dependence of the LOS motion on the satellite’s position,
interpreting the deformation pattern can be complicated. In
order to enhance the understanding of the undergoing defor-
mation, a decomposition of the observed LOS displacement
into the 3-D deformation vector is beneficial. One method to
tackle the aforementioned problem is using a combination of
deformation observations from an ascending and a descending
track (cross-heading) where two out of three components can
be retrieved [9]. For particular cases, to retrieve the third
component, a prior knowledge about the characteristics of the
displacement is necessary [9], [10]. If LOS observations from
more than two geometry configurations are available, then it is
possible to reconstruct the full 3-D displacement vector in the
local coordinate system without the use of auxiliary data [11].
However, since the LOS deformation estimates obtained from
different viewing geometries do not necessarily originate from
the same object, a strategy should be introduced to overcome
this problem.

In this paper, we propose a method to reconstruct 3-D de-
formation vectors of urban areas from TomoSAR point clouds
available from at least three different viewing geometries. The
method has the following strengths.

1) It benefits from multitrack data which, in the cross-
heading case, allow for shadow-free deformation moni-
toring and, in the same-heading case, provide substantial
increase in the scatterer density of the displacement map.

2) For coregistration of the multitrack point clouds, the
method uses a geodetic approach unlike geometric ap-
proaches such as the ones reported in [12] and [13]. The
coregistration therefore is more accurate and objective in
terms of geolocalization.

3) It estimates the full 3-D displacement vector of each point
by minimizing the L1-norm of the residuals instead of



the more popular L2-norm. This approach is more robust
with respect to outliers and retains the high density of
TomoSAR point clouds.

To our knowledge, this is the first attempt for motion decom-
position using TomoSAR data from multiple viewing geometries.

The rest of this paper is organized as follows. In Sections II
and III, the theoretical aspects related to TomoSAR and InSAR
LOS deformation are described, respectively. Section IV ex-
plains the proposed algorithm. Section V reports on the results
of applying the proposed method on simulated data as well as
real data, and the conclusion is drawn in Section VI.

II. D-TomoSAR

Conventional D-TomoSAR, proposed in [7], assumes solely
the linear motion of multiple scatterers in each azimuth-range
resolution cell. However, dealing with X-band data of urban
areas, nonlinear motion parameters such as the periodic sea-
sonal displacement should also be taken into account, which
does not fit into the framework of spectral estimation [1], [14].
In [14], a generalized time warp method is proposed in order to
allow for multicomponent nonlinear motion retrieval of multi-
ple scatterers which rewrites the D-TomoSAR system model to
an M + 1-dimensional spectral estimation problem, where M
denotes the user-defined motion model order. The specific type
of the time warp method relevant to our application is described
in this section.

It is well known that, within the Fraunhofer far-field approx-
imation, the focused complex-valued SAR measurement (gn)
at an azimuth-range pixel is essentially the Fourier transform of
the elevation (s)-dependent reflectivity profile (γ) of that pixel
sampled at the corresponding elevation frequency (ξn) which,
considering the temporal progression of the scatterers, for the
nth acquisition at time tn (n = 1, . . . , N), is written as [14]

gn =

∫

Δs

γ(s) exp

(
−j2π

(
ξns +

2d(s, tn)

λ

))
ds (1)

where Δs is the elevation extent of the object, λ is the wave-
length, r is the slant range, and ξn =(−2bn)/λr, with bn

denoting the perpendicular baseline. d(s, tn) is the relative LOS
motion as a function of elevation and time which can be modeled
by a linear combination of M base functions τm(tn) as [14]

d(s, tn) =

M∑

m=1

pm(s)τm(tn) (2)

where pm(s) is the corresponding motion coefficient to be
retrieved. As discussed earlier, the relevant motion models to
be considered in urban areas are linear and seasonal (thermal)
deformation (M = 2) which, by defining the mth temporal
frequency component at tn as ηm,n = 2τm(tn)/λ, are charac-
terized as follows [14]:

1) linear motion with η1,n =2tn/λ and the coefficient p1(s)
which stands for the LOS velocity (v) as a function of s;

2) seasonal motion with η2,n = 2 sin(2π(tn − t0))/λ and
the coefficient p2(s) which stands for the amplitude

(a) of the periodic motion while t0 is the initial phase
offset. Note that tn and t0 should be specified in years.
Alternatively, a temperature-dependent motion can be
considered.

As the base function of the seasonal motion is chosen as a
sinusoidal signal, (1) implies a nonlinear problem. The time
warp method deals with this issue by rearranging the image
acquisition times in order to imitate a linear motion trend [14].
Therefore, the D-TomoSAR system model, for our specific case
(M = 2), is extended to

gn =

∫

Δa

∫

Δv

∫

Δs

γ(s)δ (v − v(s), a − a(s))

· exp (−j2π(ξns + η1,nv + η2,na)) × dsdvda
n =1, . . .N. (3)

Equation (3) is further discretized along s and the motion
parameters space (p1, p2). The discrete D-TomoSAR system
model with the presence of noise ε can be written as [4]

g = Rγ + ε (4)

where g is the measurement vector with N elements, γ is the re-
flectivity function, and R is the mapping matrix. For more infor-
mation on how to solve (4) for retrieving the relevant unknown
parameters, the interested reader is referred to [1] and [14].

III. INSAR LOS DEFORMATION

The deformation measurement of SAR techniques dLoS is
the projection of the original 3-D displacement vector d with
components de, dn, and du in east, north, and up direction,
respectively, onto the LOS. Assuming a local incidence angle of
θinc and a satellite orbit with heading angle αh, we can write [9]

dLoS = du cos(θinc) − dALD sin(θinc) (5)

where dALD includes the projection of dn and de on the
azimuth look direction (ALD), which is perpendicular to the
satellite flying direction and therefore is expressed as

dALD = de cos(αh) − dn sin(αh). (6)

Fig. 1 depicts the aforementioned projection in 3-D. If (6) is
substituted in (5), the explicit relation between deformation
measurement dLoS and the displacement components for a
single pixel can be written as

dLoS =du cos(θinc)−de cos(αh) sin(θinc)+dn sin(αh) sin(θinc).
(7)

From (7), it is inferred that, in order to be able to solve for the
three deformation components, at least three LOS observations
from different nonplanar acquisition geometries are required.
Another issue regarding motion decomposition is the sensitivity
of InSAR observations with respect to each component.
Considering the near polar orbit of TS-X satellites, for instance,
with the heading angle of 190.6◦ and an incidence angle of
36.1◦, the sensitivity decomposition of LOS deformation is



Fig. 1. Projection of the original displacement vector �d with components
(de, dn, du) onto the radar LOS.

[0.8, 0.58, −0.1] · [du, de, dn]T . Therefore, it is seen that ob-
servations are most sensitive to the deformation in the vertical
direction and least sensitive to the deformation in the north
direction. This fact should not be falsely interpreted as ignoring
the deformation component dn in the functional model of the
decomposition problem stated in (7), like in [15]. According to
(6), converting dALD to de while ignoring dn results in the bias
Δde in the east-west motion component which is expressed as

Δde = dn · tan(αh). (8)

With typical satellite azimuth values of TS-X, (8) demonstrates
that the systematic error in east-west component can reach up
to 18% of the deformation in the north-south direction if dn is
omitted.

IV. MOTION DECOMPOSITION USING

MULTITRACK INSAR OBSERVATIONS

The workflow of the proposed algorithm is shown in Fig. 2. It
uses as input the TomoSAR point clouds from different viewing
geometries and delivers 3-D deformation maps. In this section,
as the main focus of this paper, the procedures inside the dashed
rectangle are explained in detail. In each section, at first, a
small motivation is given, followed by describing the proposed
methodology.

A. Geodetic Point Cloud Fusion

InSAR point cloud fusion is referred to as the coregistra-
tion of at least two point clouds obtained from different orbit
tracks, either same or cross-heading. Such coregistration is
necessary because the reference point chosen during the PSI
and TomoSAR processing is different for each stack of SAR
data with unknown height which causes the point clouds to
show certain offsets with respect to their true positions as well
as to each other [12]. For solving this problem, relevant to
meter-resolution SAR data, two geometrical approaches have
been introduced in [12] and [13]. Although with such methods
the coregistration is carried out successfully, there will be
no guarantee that the yielded fused point cloud is accurately
geolocalized.

Fig. 2. Flowchart of the proposed motion decomposition algorithm. The
processes inside the dashed rectangle are explained in Section IV.

In this paper, point cloud fusion is carried out geodetically
using the recently developed geodetic SAR tomography frame-
work [16]. The basic idea is to select an identical reference point
during TomoSAR processing of each stack whose absolute
position is retrieved from the SAR data itself. The position
of this reference point is calculated by StereoSAR [17], i.e.,
combining more than two SAR measurements, available from
different orbits, whose range and azimuth times are corrected
for the most prominent error sources, a method called imaging
geodesy [18], [19]. Since the elevation and deformation of
scatterers of each stack are evaluated with respect to this point,
the absolute point clouds are coregistered after geocoding with
some refinements. The required steps for performing geodetic
point cloud fusion are summarized in the following. For more
details, the interested reader is recommended to consult [16].

1) Identification of time-coherent reference point candidates
to be visible in SAR images from two or more viewing
geometries. The stability of the reference points is mea-
sured by evaluating the amplitude dispersion index [5].

2) Extraction of 2-D radar coordinates of the candidates with
subpixel accuracy from all available SAR images using
point target analysis [20].

3) Correction of the radar time coordinates for the at-
mospheric, geodynamic, and satellite effects depending
on the corresponding acquisition time and geometry of
the SAR observation using imaging geodesy [18], [19].



4) Solving the range-Doppler equations for identical targets
visible from different viewing geometries using the stereo
SAR method to retrieve the absolute 3-D coordinates [17]
and selecting the point with the highest quality visible in
all stacks as the reference point.

5) Performing TomoSAR processing of each stack based on
the identical reference point chosen in step 4. The results
are then independently geocoded.

6) If the selected reference point was localized from the
same-heading tracks, the geodetic point cloud fusion is
performed by shifting all of the geocoded point clouds
toward the coordinates of the absolute reference point.
If the selected reference point was localized from the
cross-heading tracks, since most probably these targets
are vertically oriented cylinders such as lamp poles, the
bias in the coordinates of the reference point should be
resolved, depending on the diameter of the object, before
shifting the point clouds toward the coordinates of the
reference point.

The aforementioned framework leads to a shadow-free dense
TomoSAR point cloud with absolute coordinates which is far
more accurate than the geometrically fused point clouds in
terms of geolocalization. In [16], it was reported that the hor-
izontal localization accuracy of such geodetically fused point
clouds is approximately 20 cm when compared to highly accu-
rate digital surface models obtained from LiDAR. Considering
the spatial extent of buildings in urban areas, it is important to
note that the mentioned accuracy is sufficient for the task of
motion decomposition.

B. Problem Formulation Within Spatial Cubes

The absolutely localized fused point cloud, which is the re-
sult of the previous step, is the basis for motion decomposition.
Since it is unlikely that the same scatterer can be visible from
different viewing geometries, especially from cross-heading
tracks, the problem of decomposition is defined in a spatial
volume centered on the target point for which the 3-D motion
retrieval is desired. The cube is sliding on the points until the
entire area of interest is covered. Inside the cube, the necessary
information for the follow-on estimation is recorded. Assuming
m as the number of points inside the cube, except for the
central point, which is constrained to be equal or larger than
three in order to guarantee an overdetermined system, and
n as the number of unknowns, which is equal to three, the
observation vector b is of size m × 1 including either LOS
linear rates or LOS amplitudes of seasonal motion attributed
to the corresponding scatterers; X is an n × 1 vector consisting
of the three unknown motion components of the central point,
A is the design matrix of size m × n, which is evaluated
based on the heading angle of the satellite and the unique local
incidence angle associated to each scatterer [see (7)], and W is
the weight matrix of deformation observations of size m × m
that is evaluated based on the inverse squared distance of each
scatterer relative to the central point, which means that points
closer to the central point have higher weights.

An issue regarding this approach is that scatterers that orig-
inated from different objects may be included in one cube.

Therefore, it is important to choose a proper dimension for the
spatial cube. It should be small enough to only include, as much
as possible, scatterers originating from an identical object and
also big enough to include appropriate number of scatterers to
prevent the decomposition problem from becoming underdeter-
mined or unreliable. This choice depends on the inherent scale
of the objects, as well as the spatial resolution of the SAR data.
After an empirical study, for TS-X high-resolution spotlight
data over European cities, we recommend to choose a cube size
of 5 m × 5 m × 5 m, which is used in this paper.

Eventually, after building the required matrices and vectors,
we move to the next step which is the estimation of the 3-D
motion components of the central point inside the cube.

C. Three-Dimensional Motion Retrieval

With the necessary vector notations already introduced in
Section IV-B, the functional model of our problem inside each
cube is written as

b = AX + v (9)

with v being the vector of residuals with the same size as the ob-
servation vector, i.e., m × 1. Equation (9) depicts an overdeter-
mined (m ≥ n) system for which the estimation of unknowns
is commonly carried out by minimizing the (weighted) sum of
the square of residuals known as the (weighted) least squares
(L2-norm minimization) [21], [22]

vT Wv =
m∑

i=1

viWi,iv
T
i → min . (10)

Equation (10) gives the unique solution of the problem which
guarantees unbiasedness and minimum variance when matrix
W is chosen equal to the inverse of the covariance matrix of
the observations [22]. However, the aforementioned properties
of the least squares method are valid when observations are only
influenced by random errors following a normal distribution.
If several observations are affected by gross errors (outliers) to
cause the errors follow a non-Gaussian and heavily tailed distri-
bution, parameter estimation based on L2-norm minimization is
far from optimal [23]. The reason lies on the objective function
described in (10) which inherently gives more weight to outliers
with large residual values rather than normal observations in the
minimization process. Therefore, L2-norm minimization is not
robust in such cases due to the high sensitivity of the estimator
toward outliers.

For our specific case study which relies on point clouds
obtained from TomoSAR, there always exists a large amount
of outliers in the elevation and deformation estimates for the
reasons adequately given in [1], [4], [8], and [24]. Thus, an
estimator which is robust with respect to outliers should be
employed for motion decomposition.

For the aforementioned reasons, inside each cube centered
on the target point, we carry out the estimation of motion
components by L1-norm adjustment.

For the system of equations outlined in (9), the unknown
vector can be retrieved by minimizing the (weighted) sum of



Fig. 3. Optical image of the city of Berlin (Google Earth). Rectangles mark the
coverage of the four TS-X data stacks.

the absolute residuals [25]

wT |v| =

m∑

i=1

wi|vi| → min (11)

where w is an m × 1 vector which contains the diagonal
elements of the weight matrix W. The optimization problem
outlined in (11) is dealt with linear programming. Unlike least
squares, while solving (11), similar weights are associated
with the residuals in the minimization process, i.e., L1-norm
adjustment does not magnify the effect of outliers. Therefore,
it facilitates less biased estimation of the unknown parameters
compared to least squares, although the solution does not
necessarily have a minimum variance [25].

V. APPLICATION ON SIMULATED DATA AND REAL DATA

In this section, the proposed method described in Section IV
is validated using simulated and real data. In Section V-A and B,
the data set is introduced, and the effect of the viewing geome-
try of the SAR satellites on the retrieval of the 3-D deformation
vector is inspected, respectively. In Section V-C, a simple
simulation is carried out to justify the utilization of L1-norm
adjustment instead of least squares for the task of motion de-
composition. Section V-D and E are dedicated to the TomoSAR
processing and the motion decomposition carried out on real
data, respectively. Finally, some remarks on the computational
complexity of the entire procedure are given in Section V-F.

A. Test Area and Data Set

The investigated test site includes the central area of the city
of Berlin, Germany. The available data set, 460 images in total,
consists of four stacks of TS-X very high resolution spotlight
images acquired with a range bandwidth of 300 MHz. The im-
ages have an azimuth resolution of 1.1 m and a slant range reso-
lution of 0.6 m covering an area of 10 km × 5 km in a period of
five years from March 2008 to March 2013. In terms of viewing
geometry, two stacks were acquired from descending orbits
with images recorded at 05:20 Coordinated Universal Time
(UTC), and two stacks were acquired from ascending tracks
with images recorded at 16:50 UTC. Fig. 3 shows the mean

TABLE I
ACQUISITION PARAMETERS OF EACH STACK INCLUDING THE AVERAGE

INCIDENCE ANGLE, THE AZIMUTH, THE TRACK TYPE,
AND THE NUMBER OF AVAILABLE IMAGES

scene coverage of individual stacks overlaid on the optical im-
age of Berlin. Furthermore, the details about the system param-
eters and properties of each stack are summarized in Table I.

B. Effect of Viewing Geometry

The quality of motion decomposition depends highly on the
difference in the viewing geometry of the acquisitions [26]. This
effect can be analyzed by a concept equivalent to the dilution
of precision (DOP) commonly used with GNSS measurements
[11], [27]. If we assume that a single point is observed from
multiple viewing geometries where LOS measurements are
uncorrelated and have equal standard deviations σ, one can
evaluate the posterior covariance matrix of the displacement
estimates (QX̂) as

QX̂ =

⎡
⎣

σ2
u σue σun

σeu σ2
e σen

σnu σne σ2
n

⎤
⎦ = σ2 · (AT A)

−1
. (12)

The square root of the diagonal elements of QX̂ denotes the
precision of the displacement components, where subscripts u,
e, and n stand for up, east, and north, respectively. If we set
σ = 1, then the diagonal terms represent the effect of geometry
on these estimates. A low diagonal value indicates the goodness
of the geometry configuration for retrieving the corresponding
component. Using the incidence angle and azimuth values
of Table I in (7), the DOP matrix is calculated for a point
target hypothetically visible in all of the available four viewing
geometries. The matrix is equal to

⎡
⎣

43.3 −0.8 277.8
−0.8 0.51 −5.4
277.8 −5.4 1801.7

⎤
⎦ .

The following conclusions can be drawn from the calculated
DOP matrix.

1) The square root of the diagonal elements is approximately
equal to [6.6 0.7 42.5], which shows the strength of the
current geometry configuration to retrieve the east-west
motion component and its weakness for retrieving the
north-south motion component. Therefore, it is expected
that the motion in the north-south direction cannot be
reliably resolved due to the inherent near-polar orbit of
TS-X satellites.

2) The off-diagonal elements show the covariance be-
tween relative errors in motion components. Thus, the
north-south component should not be omitted from the



functional model of the decomposition problem to pre-
vent the propagation of error on other components.

3) According to [28], the correlation between the motion
components poses another problem to the motion decom-
position. This value for the relative error in the north-south
and the vertical components is calculated to be the follow-
ing: ρnu =σnu/(σn · σu)=277.8/(

√
1801.7 ×

√
43.3) ≈

0.994. This means that not only the north-south compo-
nent should not be omitted from the functional model, but
also with the current geometry configuration, the separa-
tion of the north-south and the vertical motion component
is ambiguous; an issue that is elaborated in [28].

Based on these findings, the analysis of motion will be re-
stricted to the east-west and vertical directions while retaining
the motion in the north-south component in the functional
model of the problem. It is essential to add that precise unam-
biguous retrieval of the north-south component, in general, is
not possible using the geometry configuration of current SAR
satellites [28].

Additionally, it is important to note that the analysis given
in this section only considers the best possible combination
of viewing geometries, i.e., existence of observations from
the four available satellite orbits inside the spatial volume.
Obviously, it is possible that inside each cube observation from
less than four geometries will be available. For instance, in a
test case, that involves the motion decomposition of a high-rise
building for which observations from one side of the façade
cannot include LOS measurements from the cross-heading
tracks. Nevertheless, the concept described in this section can
be used to analyze the impact of viewing geometry on each
motion component in the aforementioned cases as well.

C. Motion Decomposition on Simulated Data

Motion decomposition is performed on simulated data solely
for the purpose of comparing the results obtained from min-
imizing the L1-norm and the L2-norm of residuals. To this
end, motion decomposition is carried out for a point target
assumed to undergo a subsidence in the vertical direction with
a magnitude of 10 mm/year and lateral deformations in the
east and north directions with 2 and 1 mm/year, respectively,

i.e., dT =

⎡
⎣

du,T = −10
de,T = 1
dn,T = 2

⎤
⎦ mm/year. It is important to note

that, since the goal is to compare the two mentioned estimation
methods, the magnitude and the distribution of the deformation
are chosen arbitrarily with no actual physical meaning.

For the reconstruction of dT, assuming that the point is
visible from the four viewing geometries listed in Table I,
four LOS displacements are calculated using (7). These four
values are then used to realize 30 LOS observations in four
groups differing in the associated incidence and heading angles
to each point. The value 30 is chosen based on the average
number of points visible in a 5 m × 5 m × 5 m cube in the
fused TomoSAR point cloud of the city of Berlin. The 30 LOS
deformation observations are randomly realized following a
Gaussian probability density function with the mean value
equal to the LOS deformation calculated using the mentioned

Fig. 4. Simulated LOS deformation values for 30 points assumed to be inside
a cube. The simulation uses the system parameters of the four available data
stacks outlined in Table I. The outliers are plotted inside squares, while the
other dots represent the normal observations.

forward model and the variance (σ2
v) approximated by the

Cramér–Rao bound of LOS linear deformation rate obtained
from interferometric measurements [5], [28], [29]

σ2
v =

(
λ

4π

)2

· 1

2NOA · SNRσ2
t

(13)

where NOA is the number of acquisitions in a stack of SAR
data, SNR denotes the signal-to-noise ratio, and σ2

t is the
variance of the temporal baseline distribution. If we consider
a TS-X data stack with λ = 31 mm, assuming that SNR =
10 dB, NOA = 115, and σt ≈ 1.6 years, evaluated based on
the acquisitions listed in Table I, then σv ≈ 0.03 mm/year. Of
course, σv is higher in practice than the reported value mainly
due to the atmospheric disturbances. Nevertheless, the exact
inclusion of the atmospheric error was ignored since for us vital
is the comparison between the two aforementioned parameter
estimation methods. In order to have a more realistic scenario,
we set the standard deviation of the estimated deformation rate
of all scatterers inside the cube to be σv = 1 mm/year.

The next step includes the addition of deliberate outliers
in the data. Based on the variability in the LOS deformation
measurements observed in a number of cubes in the real data
of Berlin, for the simulation, we assume that approximately
20% of the observations inside the cube (six in our case)
are corrupted by gross errors. Without loss of generality, we
presume that the linear deformation rate of these points is
off with an error with a magnitude of 10 mm/year. Fig. 4
shows the scatter plot of the simulated LOS deformation values.
Black dots inside the squares represent the outliers, while the
other dots are normal observations. We proceed now with
estimation of the 3-D deformation components of the desired
point scatterer which is carried out by minimizing the L2- and
L1-norms of the residuals following (10) and (11), respectively.
Fig. 5 shows the histogram of residuals [see (9)] obtained from
each estimator. It is seen that more residuals are close to zero
in the L1 results rather than the L2. Also, it is observed that the
L2-norm minimization tends to distribute the errors caused by



Fig. 5. Histograms of residuals evaluated after the motion decomposition
performed with L2- and L1-norm minimization.

TABLE II
TRUE MOTION COMPONENTS AND THE RETRIEVED ONES FROM L2- AND

L1-NORM MINIMIZATION FOR THE SIMULATED CASE STUDY

outliers onto other normal observations, while this effect is less
significant for L1-norm minimization. Additionally, Table II
reports the true motion components as well as the estimated
ones with L2- and L1-norm minimization. The difference be-
tween the true components and the estimated ones is also
reported in the fourth column. It can be observed that L1-norm
minimization outperforms L2-norm minimization for all of the
retrieved components.

D. Real-Data TomoSAR Processing and Geodetic Point
Cloud Fusion

The InSAR stacking and TomoSAR processing of the Berlin
data were carried out by the GENESIS [30] and the Tomo-
GENESIS system [1], [31] of the Remote Sensing Technol-
ogy Institute, German Aerospace Center (DLR). Starting from
SLCs, for an input data stack, the Tomo-GENESIS system re-
trieves the following information: the number of overlaid scat-
terers inside each azimuth-range pixel, amplitude and phase,
topography, and motion parameters of each detected scatterer.
In this paper, the tomographic inversion was performed by the
Maximum Detection (MD) algorithm of the Tomo-GENESIS.
The MD algorithm uses SVD-Wiener for reconstruction of the
reflectivity profile, followed by peak detection, model order
selection, and final refinement of the amplitude and phase
estimates [4].

According to previous studies on Berlin reported in [15] and
[16], the city is rather stable, i.e., there is no significant linear
ground deformation. Most of the buildings and other man-
made urban infrastructure mainly undergo temperature-change-
induced seasonal deformation [15], [32]. The LOS linear and

Fig. 6. (Top) Mean calibrated amplitude image of Berlin from a descending
orbit track. (Bottom left) Berlin central railway station. (Bottom right) Railway
bridge.

Fig. 7. Geodetically fused TomoSAR point cloud of Berlin in 3-D. Height is
color-coded.

seasonal deformation maps of the entire Berlin can be found
in [16], [32], and [33]. This study only focuses on two small
test sites including the Berlin central railway station and the
railway bridge which, in previous studies, showed a remarkable
pattern of seasonal deformation [15], [34]. These test sites are
marked with red rectangles on a descending SAR intensity map
in Fig. 6.

For a meaningful analysis on the mentioned areas, LOS
deformation estimates are to be decomposed (see Section V-E).
For this purpose, TomoSAR point clouds obtained from mul-
tiple viewing angles are fused using the geodetic SAR tomog-
raphy framework [16]. Fig. 7 illustrates the fused TomoSAR
point cloud in the UTM coordinate system. The point cloud
covers an area of 10 km × 5 km and contains approximately
63 million point scatterers. It is observed that fusion of point
clouds obtained from cross-heading orbit tracks provides a
highly detailed shadow-free point cloud which is the basis
for the motion decomposition. Such shadow-free TomoSAR
point clouds can be further utilized to reconstruct dynamic city
models [35]–[38].



Fig. 8. Berlin central railway station. LOS amplitude of seasonal motion of (a) beam 42, (b) beam 57, (c) beam 85, and (d) beam 99. Decomposed seasonal
deformation in (e) the vertical direction and (f) the east-west direction by L2-norm minimization. Decomposed seasonal deformation in (g) the vertical direction
and (h) the east-west direction by L1-norm minimization. Deformation maps are in millimeters.

E. Motion Decomposition and Discussion

Using the method introduced in Section IV, motion decom-
position is done on the two mentioned test cases. Fig. 8 shows
the TomoSAR LOS seasonal deformation maps of the central
station available from each orbit [Fig. 8(a)–(d)] as well as the
decomposed motion maps in the vertical [Fig. 8(g)] and east-
west directions [Fig. 8(h)]. In order to justify why L1-norm
minimization was preferred over L2-norm, the vertical and east-
west motion components evaluated by L2-norm minimization
are also shown in Fig. 8(e) and (f). From the LOS maps,
seasonal deformation with magnitudes up to 12 mm is visible.
This is mainly due to the thermal-dilation-induced deformation
of the construction material—steel—of the railway station.
Fig. 8(g) shows that the main parts of the station and also the
bridge in the east of the station undergo vertical seasonal de-
formation with magnitudes up to 6 mm. This describes 12 mm
of motion between summer and winter due to the expansion
and contraction of steel material. The east hallway also shows
magnitudes of 5 mm of vertical seasonal deformation (yellow
part). The most interesting pattern is observed in Fig. 8(h).
The right hallway undergoes heavy seasonal deformation in the
east-west direction, with magnitudes equal to 12 mm (24 mm
between summer and winter). The railway bridge next to the
hallway has smaller magnitudes of motion and moves in the
reverse direction with respect to the hallway. The rail tracks
located on the west side of the station show smaller values of
horizontal seasonal motion on the order of 5 mm.

By comparing the estimated components from L1- and
L2-norm minimization, another important observation is that,
in the results of L2-norm minimization, most of the scatterers
are filtered out because of low precisions. This is most apparent
in Fig. 8(e), where the deforming hallway in the east direction
of the station is not visible. On the contrary, L1-norm minimiza-
tion preserves the deformation pattern and hence demonstrates

its robustness against outliers. Furthermore, to give a rough
estimate on the noise level of the estimates obtained from the
two mentioned estimators, the empirical standard deviation of
the deformation values in the vertical direction was evaluated
for both cases [see Fig. 8(e) and (g)]. The calculated values are
equal to 2.64 and 3.25 mm for L1 and L2, respectively.

Fig. 9 shows the TomoSAR LOS linear deformation maps of
the central station available from each orbit [Fig. 9(a)–(d)] as
well as the decomposed motion map in the vertical direction
[Fig. 9(e)]. In general, the building and the rail tracks are not
influenced by significant linear deformation as it is observed
from the LOS maps. There are some parts at the left side of the
station in red color which show a construction site and therefore
cannot be interpreted as deforming areas. Furthermore, the
main building parts of the station show LOS subsidence not
higher than 4 mm/year. The decomposed linear vertical map
[see Fig. 9(e)] shows that the internal sections of the two main
parts undergo vertical subsidence on the order of 2–4 mm/year,
while the rail tracks and other parts of the station are stable.

For the second test site, the railway bridge, motion decom-
position is only performed on the seasonal deformation map
since there is no significant linear ground deformation visible
in the area. The result is shown in Fig. 10. From the seasonal
LOS maps [see Fig. 10(a)–(d)], it can be observed that the two
sections on the railway bridge undergo seasonal deformation
with magnitudes up to 7 mm. Another prominent pattern can
be seen on the building at the top left of each subfigure.
From Fig. 10(e), it is seen that not much of the LOS seasonal
deformation can be attributed to the motion in the vertical
direction as, for most of the area in the scene, magnitudes not
higher than 4 mm are visible. On the other hand, the rail tracks
and the building located at the top left are highly influenced
by the seasonal deformation in the east-west direction with
amplitudes as high as 12 mm.



Fig. 9. Berlin central railway station. LOS linear motion of (a) beam 42, (b) beam 57, (c) beam 85, and (d) beam 99. (e) Decomposed linear deformation rate in
the vertical direction. Deformation maps are in millimeters per year.

Fig. 10. The railway bridge. LOS amplitude of seasonal motion of (a) beam 42, (b) beam 57, (c) beam 85, and (d) beam 99. Decomposed seasonal deformation
in (e) the vertical direction and (f) the east-west direction. Deformation maps are in millimeters.

F. Note on the Computational Complexity

In this section, the computational effort required for the
TomoSAR processing and the follow-on motion decomposition
is discussed. If we define O (1) to be the computation time
for one addition and multiplication, since the tomographic
inversion is performed using the MD algorithm, according to
[39], it requires at least O (N2 + NL), where N is the number
of images in the stack (in our study ranging from 102 to 138)
and L is the level of discretization in the elevation direction
(usually 50–200 for TS-X).

The motion decomposition was carried out by L1-norm
minimization, which generally requires more computational
effort than the standard least squares method. Following the
aforementioned notation, the computational complexity of or-
dinary L2-norm minimization in a linear functional model
is O (C2N), where N denotes the number of observations
(inside a cube varying from 3 to 140) and C is the number of

unknowns, which, in our study, is always equal to three. For
parameter estimation using L1-norm minimization, the analysis
is not straightforward since the complexity depends on the type
of solver that is used for minimization, the number of iterations,
and also the required accuracy to achieve convergence. In
this experiment, the L1-norm minimization was carried out by
CVX, a package for specifying and solving convex programs
[40], [41]. It uses as default the SDTP3 solver [42] to perform
the optimization iteratively with roughly ten iterations relevant
to our case and the required accuracy of ε1/2, where ε is the
machine precision approximately equal to 2.22 × 10−16. With
these considerations, for the first test site (Berlin central station)
which has a total number of scatterers approximately equal
to 250 000 from the four stacks, the motion decomposition
using L1-norm minimization takes about 700 min, while the
adjustment based on L2-norm takes about 40 min on a personal
computer utilizing eight-core 3.60-GHz CPUs with a physical



memory of 32 GB. Thus, the former is 17.5 times more compu-
tationally expensive than the latter.

VI. CONCLUSION AND OUTLOOK

In this paper, a methodology has been proposed for recon-
structing the 3-D displacement components from LOS obser-
vations available from tomographic processing of SAR image
stacks acquired from multiple viewing geometries. The coreg-
istration of multitrack TomoSAR point clouds was performed
using the geodetic SAR tomography framework, which provides
absolutely localized TomoSAR point clouds. Based on the
fused TomoSAR point cloud, the 3-D deformation vector of
each scatterer was constructed inside a spatial cube by means
of L1-norm minimization, which is more robust with respect
to outliers than the more popular L2-norm minimization. The
effect of the geometry configuration of the four available TS-X
satellites on the motion decomposition was analyzed. As ex-
pected, it was seen that, with the current SAR satellites oper-
ating in near-polar orbits, the reliable retrieval of deformation
in the north-south direction is not possible. However, the com-
ponent should be considered in the functional model in order
to prevent biased estimation of the two other motion com-
ponents. The decomposition methodology was used on TS-X
very high resolution spotlight data available from multiple
viewing geometries over the city of Berlin. The results showed
that man-made objects constructed with steel material undergo
seasonal deformation with magnitudes up to 24 mm between
summer and winter in the east-west direction.

Future work will concentrate on the following: 1) combining
both L1-norm and L2-norm minimization in the estimation
process to provide robust displacement estimates accompanied
by quality indicators and 2) performing GPS measurements in
order to produce absolute deformation maps.
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Abstract: Since its launch in 2007, TerraSAR-X has continuously provided spaceborne synthetic
aperture radar (SAR) images of our planet with unprecedented spatial resolution, geodetic, and
geometric accuracy. This has brought life to the once inscrutable SAR images, which deterred many
researchers. Thanks to merits like higher spatial resolution and more precise orbit control, we are now
able to indicate individual buildings, even individual floors, to pinpoint targets within centimeter
accuracy. As a result, multi-baseline SAR interferometric (InSAR) techniques are flourishing, from
point target-based algorithms, to coherent stacking techniques, to absolute positioning of the former
techniques. This article reviews the recent advances of multi-baseline InSAR techniques using
TerraSAR-X images. Particular focus was put on our own development of persistent scatterer
interferometry, SAR tomography, robust estimation in distributed scatterer interferometry and
absolute positioning using geodetic InSAR. Furthermore, by introducing the applications associated
with these techniques, such as 3D reconstruction and deformation monitoring, this article is also
intended to give guidance to wider audiences who would like to resort to SAR data and related
techniques for their applications.

Keywords: multi-baseline; multi-pass; PS; DS; geodetic; TomoSAR; D-TomoSAR; PSI; robust
estimation; covariance matrix; InSAR; SAR; review

1. Introduction

1.1. Overview of Multi-Baseline InSAR

Since its launch in 2007, TerraSAR-X has continuously revealed synthetic aperture radar (SAR)
images of unprecedented high resolution from space. This has brought life to the once obscure and
sometimes inscrutable SAR images that deterred many researchers. Figure 1 shows a comparison of the
medium resolution ERS image and a high resolution TerraSAR-X spotlight image of the same area in Las
Vegas. Individual buildings are for the first time interpretable by the naked eye from spaceborne SAR
images, because the 1-m resolution in spotlight mode is well beyond the inherent scale of the 3-m floor
height typical of urban infrastructure. This marks the start of an era of urban infrastructure monitoring
using spaceborne SAR images. Currently, the staring spotlight mode provides images with a resolution
up to 25 cm, from which the mapping of individual window edges is even possible. This breakthrough
in spatial resolution, together with the precise orbit determination with sub-centimeter accuracy [1,2],
positions TerraSAR-X images as a perfect dataset for long-term repeated monitoring of large areas
with precision and high resolution.

Remote Sens. 2018, 10, 1374; doi:10.3390/rs10091374 www.mdpi.com/journal/remotesensing
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Figure 1. Comparison of medium (ERS) and high (TerraSAR-X) resolution SAR images of downtown
Las Vegas [3].

Among the many promising InSAR techniques that prospered in the past decade, multi-baseline,
especially multi-pass, InSAR techniques are undoubtedly one of the jewels in the crown. They build
up invaluable data cubes of long-term image time series. For example, the TerraSAR-X revisit time of
11 days allows monthly deformation signals of the Earth’s surface, such as ground subsidence, to be
retrieved using techniques like persistent scatterer interferometry (PSI). For monitoring dense urban
areas, SAR tomography (TomoSAR) and its differential form, D-TomoSAR inversion, are the most
competent techniques because of their capability of layover separation. They generate point clouds
with density comparable to that of a LiDAR. Both PSI and TomoSAR produce highly accurate parameter
estimates, because they work on highly coherent point targets. Therefore, they are often the workhorses
for deformation monitoring and 3D reconstruction, especially in urban areas. To complement
these techniques, distributed scatterer (DS)-based techniques, such as SqueeSAR [4], robust InSAR
optimization (RIO) [5] and coherence tomography enable dense monitoring of deformation in areas of
low interferometric coherence, such as volcanic areas. Among them, some algorithms, such as RIO,
address the statistical robustness of estimators to ensure the reliability of the accuracy of the estimates
in operational processing over large areas. Despite the many advantages of multi-baseline InSAR,
they are still relative measures, as the estimates are often relative to a local reference point whose 3D
position is unknown. Such differential operation is often performed in multi-baseline InSAR in order to
mitigate some common phase errors, such as atmospheric delay. It was only until recently, that geodetic
InSAR [6] bridged the gap between multi-baseline InSAR techniques and absolute positioning using
SAR imaging geodesy [7] to produce absolute 3D (and higher dimensional) InSAR point clouds.
It is an important piece of the components of the ecosystem of Earth observation using SAR data.
Multi-baseline InSAR techniques that were once only a relative measure can now be employed as
geodetic techniques to provide centimeter-level absolute positioning and millimeter-level relative
deformation monitoring.

1.2. Principle of Multi-Baseline InSAR

InSAR is the technique of using SAR as an interferometer. Multi-baseline InSAR techniques
exploit the interferometric phase (i.e., the phase difference) of multiple complex-valued SAR images.
These images are acquired at different satellite positions, time, or frequency, and hence, they create
spatial, temporal baselines, or ∆k-radar when forming interferograms. For TerraSAR-X images,
such multi-baseline configuration is usually acquired in a repeat-pass manner (hence “multi-pass”),
except if the twin satellite TanDEM-X was employed. Figure 2 shows the multi-baseline InSAR
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configuration in an urban scenario at a fixed azimuth position. The TerraSAR-X satellite flies
perpendicular into the screen/paper. The term r indicates the line of sight (LOS), i.e., the slant range
direction, of the sensor; s is the elevation direction that is perpendicular to the range and azimuth. The
blue outline on the surface indicates the area illuminated by radar pulses. The elongated ellipse is the
range-elevation tube within which all the objects are imaged into a single pixel in the focused SAR
image. The cross-section of the tube naturally depends on the range and azimuth resolution of the
sensor. The extent of the tube ∆s is much larger than the dimension of the cross-section because of
the large distance between the sensor and the object, as well as the small angular diversity among
different acquisitions. Therefore, it is common that several objects, such as a building roof, tree and
ground, are layovered in a single pixel in a TerraSAR-X image.

Figure 2. Schematic drawing of the principle of multi-baseline InSAR at a fixed azimuth position
(modified after [8]). The TerraSAR-X satellite flies away from the reader into the screen/paper.
The line-of-sight, i.e., the range direction, of the sensor is indicated by r. The range timing is always
delayed after propagation through the atmosphere. The term s is the elevation direction that is
perpendicular to the range. The blue outline on the surface indicates the area illuminated by radar
pulses. The elongated ellipse is the range-elevation resolution cell with in which all the objects are
imaged into a single pixel in the final SAR image. It is very common that several objects, such as
a building roof, tree and ground, are layovered in a single pixel in a TerraSAR-X image.

If one considers a single phase center in the range-azimuth-elevation tube without layover
(i.e., single scatterer model), the absolute interferometric phase of the n-th measurement in a
multi-baseline InSAR stack is [9]:

φn = −4π

λ

bns
R

+ φde f o + φatmo + φerror, (1)

where λ is the wavelength of the SAR electromagnetic wave, bn is the baseline of the n-th image, s is
the elevation of the single scatterer and R is the nominal range which is the distance of the SAR sensor
to a zero-elevation point. The deformation phase φde f o is often modeled as a function d (tn) (e.g., linear
or periodic) of the acquisition time tn. The interferometric phase is always delayed due to atmospheric
propagation. In multi-baseline InSAR, such atmospheric phase delay φatmo is mitigated by subtracting
a nearby reference point. This renders multi-baseline InSAR a relative measure, unless the absolute
position of the reference point is known a priori.
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Based on Equation (1), the forward system model of multi-baseline InSAR measurement can be
expressed as Equation (2), where gn is the pixel value at the n-th image, and γ (s) is the reflectivity
profile along the elevation direction. Since a far-field antenna acts like a Fourier transform to the signal
in the resolution cell, each measurement is actually the Fourier transform at a specific frequency that
is linearly proportional to the perpendicular baseline bn to the master satellite position. This is also
known as the system model for TomoSAR [10–13].

gn =
∫

∆s

γ (s) exp
(
−j

4πbn

λR
s
)

ds. (2)

In the case of differential TomoSAR (D-TomoSAR), Equation (2) is extended into higher
dimensions [14–16].

Equation (2) can be written in a more compact matrix form as:

g = Rγ, (3)

where R and γ are the discretized Fourier matrix and the reflectivity profile along the direction
s, respectively. Estimating γ is essentially a spectral estimation problem. In the case of PSI- or
DS-based interferometry that assumes a single phase center in the resolution cell, it is basically
a spectral estimation of a single frequency. Equation (3) will degenerate to either Equation (4) for the
deterministic PS mode or Equation (5) for the stochastic DS model.

g = r (s1) γ1, (4)

E
(

ggH
)
= r (s1)Cggr (s1)

H , (5)

where s1 is the elevation of the single phase center, r (s1) is the column in R associated with s1, γ1 is
the complex-valued brightness of the PS and Cgg is the covariance matrix of the DS.

1.3. The Structure of This Paper

The rest of this article introduces the recent development of the aforementioned techniques, each
in its respective section. In Section 2, we introduce the development of PS-based methods following
their improvements in estimates accuracy that in turn refers to the reconstructed point density, as
well as the reduction of the required number of images for a reliable estimation. Section 3 focuses
on the development of robust InSAR techniques based on DS. Section 4 focuses on the evolution of
TerraSAR-X absolute positioning from a single target to many targets and eventually to the fusion with
multi-baseline InSAR.

2. Advances in Point Scatterer-Based Methods

This section focuses on the advances of PS-based methods, i.e., PSI and TomoSAR/D-TomoSAR in
urban areas. Their development mainly focuses on the improvement of estimation accuracy, which in
turn increases the density of the retrieved point cloud or reduces the number of interferograms required
for a reliable estimation.

Both PSI and TomoSAR utilize a single-master configuration to extract time-coherent scatterers
from SAR images. The major difference between the two methods is the number of scatterers that
are assumed within a resolution cell, which requires different spectral estimators to be employed in
the parameter retrieval. However, over the past two decades, PSI has made substantial development,
so that it usually refers to a full processing chain including interferogram formation and reference
network construction. Therefore, PSI is often employed as a preprocessing step for TomoSAR. Several
variations of PSI that differ in algorithmic details have been introduced in recent years. For a full review



Remote Sens. 2018, 10, 1374 5 of 32

of these techniques the reader is referred to [17]. Although the specifics of existing PSI algorithms are
different, the following workflow is widely acknowledged:

Step 1 Differential interferogram formation: From a stack of N + 1 co-registered SAR images,
a master acquisition is selected. Subsequently N interferograms are computed, while their
topographic phase components are removed using a reference digital elevation model (DEM).

Step 2 Reference network construction: Scatterers presumed to be the most phase-stable ones are
selected. The detection can be carried out using various methods, such as thresholding on the
amplitude dispersion index (ADI) [18] or on the signal-to-clutter ratio (SCR) [19]. These PS
candidates are connected to form a reference network. Through the PS double-difference
phase measurements, i.e., difference in time and space, differential topography and
differential motion parameters are estimated on arcs.

Step 3 Atmospheric phase estimation: The differential topography estimates are integrated with
respect to an arbitrarily chosen reference point so that the topographic phase components
are removed from the interferometric phases. The remaining phase contributions include
deformation, atmosphere, and noise. Then a low-pass filtering in the spatial domain and
a high-pass filtering in the temporal domain extracts the atmospheric component, which is
interpolated over the entire scene and subtracted from the differential interferograms.

Step 4 PS densification: Additional PS are computed from the corrected differential interferograms.
These PS are connected to the nearest point(s) in the reference network and their modeled
parameters are estimated.

Step 5 PS geocoding: The DEM height of each PS is added to its differential height estimate.
The radar timing of each PS and its updated height are geocoded using satellite orbit and a
reference ellipsoid to represent the PS coordinates in a common geodetic coordinate system.

The processing steps for TomoSAR are similar to those of PSI, except the fourth step is replaced
with higher-order spectral estimators that can be enumerated as followings.

• The full reflectivity profile is reconstructed using higher-order spectral estimation techniques.
• The scatterers’ positions and motion parameters are determined by detecting maxima on the

reflectivity profile.

2.1. Overview of Advances

For each of the steps delineated above, numerous improvements have been suggested in the
literature. For example, in the reference network step, [20,21] consider the geometry of the connections
among arcs to construct a redundant reference network, while dense differential PS pairs were used
in [22] to form the network. In terms of network inversion, to robustly retrieve the topography
and deformation estimates of the PS in the reference network, a `1 norm outlier rejection scheme
was proposed after the LAMBDA estimation [23]. In [24,25], numerical weather data were used to
simulate and mitigate tropospheric delay. For a detailed comparison of widely used PSI techniques,
the interested reader is referred to [21].

The development of TomoSAR has been mainly focused on the improvement of the spectral
estimator and the scatterer detector. Studies have been conducted to improve the maximum likelihood
estimator (MLE) by restricting the support of the signal (i.e., nonlinear least square) [3,13], by `2 norm
regularization (i.e., the Tikhonov method) [15], and by `1 norm regularization (i.e., compressive
sensing-based method) [26,27]. The SL1MMER algorithm proposed in [27] was also recently extended
to the M-SL1MMER [28], which exploits group sparsity in the urban environment. M-SL1MMER
achieves a comparable result with far fewer images than SL1MMER and other algorithms. Several
studies have also addressed the efficiency and robustness of the detection of scatterers. For example,
[29] describes the optimal detection of multiple scatterers, and [27,30–32] address scatterer detection in
the super-resolution regime where the distance among scatterers is less than the elevation resolution.
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In general, TomoSAR is so far the most competent multi-baseline InSAR method for urban
area monitoring. However, the relatively high computational cost limits it for extensive uses like
PSI, especially for the CS-based TomoSAR algorithms. Therefore, combining PSI and TomoSAR
has also been proposed to improve the computational efficiency of TomoSAR processing [22,33,34].
Only recently, an efficient sparse recovery algorithm was proposed, which made city-scale 3D/4D
reconstruction directly using SL1MMER operational [35].

2.2. Very High Resolution PSI

PSI is undoubtedly the workhorse for deformation monitoring of large areas, owing to its
computational efficiency and reliability in the accuracy of the deformation estimates. As mentioned
earlier, estimating the unknown elevation and deformation parameters in PSI is a spectral estimation of
a single frequency. The spectral estimator is essentially a periodogram that can be expressed as follows.

θ̂ = arg max
θ

{∣∣∣∣∣
1
N

N

∑
n=1

gn exp (−jφn (θ))

∣∣∣∣∣

}
≈ arg max

θ

{∣∣∣∣∣
1
N

N

∑
n=1

gn

|gn|
exp (−jφn (θ))

∣∣∣∣∣

}
, (6)

where θ denotes the parameters, including the elevation s and the deformation parameters, and φn (θ)

is the modeled phase of the PS in the n-th image (i.e., Equation (1)). Often, the amplitude of g is
dropped in the estimation [18], since it barely changes the estimates for PS of high signal-to-noise
ratio (SNR).

Employing very high resolution (VHR) PSI, it is now possible to detect very localized deformation
patterns even on different parts of a single building [36]. Apart from its deformation monitoring
capability, VHR PSI leads to detailed 3D reconstruction of urban areas owing to the high density PSI
point clouds. It can typically produce 40,000 to 100,000 PS per square kilometer using TerraSAR-X high
resolution spotlight images [37,38]. The 3D reconstruction capability has even been strengthened by the
geometrical fusion of PSI point clouds obtained from different viewing geometries, i.e., along-heading
and cross-heading orbits [39]. Especially in the case of cross-heading orbits, that is, the combination
of point clouds from ascending and descending orbits, point cloud fusion provides a shadow-free
point cloud of the observed area. It also allows a decomposition of the raw LOS PSI deformation
measurements into 3D displacement vectors in geodetic coordinate system [36,40,41].

2.3. Differential TomoSAR

Unlike PSI, D-TomoSAR retrieves the full reflectivity profile γ, and detects prominent peaks from
it. Therefore, D-TomoSAR is inherently a more competent method for urban area monitoring than PSI.
The MLE (under complex Gaussian noise) of γ can be expressed as follows.

γ̂MLE = arg min
γ

1
2
‖g− Rγ‖2

2 . (7)

During the last decade, we have developed a suite of algorithms named Tomo-GENESIS
[42] to address both the methodological and practical aspects of D-TomoSAR. For example, the
Tomo-GENESIS suite includes both conventional linear estimators [15] and the compressive sensing
(CS)-based estimator that works in the superresolving regime [27,30,31], as well as a computationally
efficient processing pipeline [22], the fusion of TomoSAR point clouds from multiple aspects [43] and
3D object reconstruction from TomoSAR point clouds [44–46].

2.3.1. Conventional (Non-Superresolving) D-TomoSAR

For spaceborne data, the number of acquisitions is usually far less than the discretization of γ.
Therefore, Equation (3) is often under-determined. A popular method before the invention of CS-based
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TomoSAR techniques to regularize the equation system was to employ the `2 norm regularization that
is also known as Tikhonov regularization. The regularized estimator is shown as follows.

γ̂`2
= arg min

γ

1
2
‖g− Rγ‖2

2 + λ`2 ‖γ‖
2
2 , (8)

where λ`2 is the regularization parameter. We have implemented the estimator using singular value
decomposition with Wiener filtering on the system matrix R. Therefore this algorithm is also known
as SVD-Wiener in the community [15].

This type of estimator is also a maximum a posteriori (MAP) estimator. It is the optimal Bayesian
estimator that minimizes posterior expected loss. Experiments showed promising performance
on TerraSAR-X image stacks [13]. However, in the classical Nyquist–Shannon sampling regime,
the resolution of the reconstructed reflectivity profile is limited by the so-called Rayleigh resolution
(see Equation (9)) [15] that is governed by the spread of the baseline ∆b.

ρs =
λR
2∆b

. (9)

2.3.2. Super-Resolving D-TomoSAR

For dense urban areas, closely spaced objects often coexist in a range-azimuth-elevation resolution
cell. These objects cannot be resolved by conventional tomographic inversion algorithms. This is where
CS-based super-resolving tomographic inversion comes to play, as it can achieve super-resolution
in the estimate of γ, if it is sparse. The CS-based TomoSAR estimator can be generally expressed in
a similar form as Equation (8), except that the `2 regularization term is replaced by the signal sparsity
term, i.e., the `0 norm. Because of the nonconvexity of the `0 norm, it is often relaxed by the `1 norm
in optimization, such as the SL1MMER “scale-down by `1 norm minimization, model selection, and
estimation reconstruction” algorithm proposed in [27]. The `2 + `1 norm estimator can be expressed
as follows.

γ̂`0
= arg min

γ

1
2
‖g− Rγ‖2

2 + λK‖γ‖1, (10)

where λK is a regularization parameter (K being the sparsity, i.e., the number of discrete scatterers).
In practice, the minimization of the `0 norm is often relaxed by the `1 norm for better convexity in
the optimization.

Because of their super-resolving ability and the robustness of the `1 norm minimization, CS-based
D-TomoSAR algorithms are the state of the art in term of the accuracy of the parameter estimate and
the performance of scatterer detection. This in turn increases the density of the reliable points. Figure 3
is a comparison of the point cloud retrieved by PSI and SL1MMER of the same building (Bellagio
Hotel, Las Vegas). SL1MMER retrieves many more points than PSI. Yet, CS-based algorithms are less
computationally efficient than the conventional TomoSAR. To cope with large area processing, we
enriched Tomo-GENESIS with an approach [22,47] that integrates PSI, conventional TomoSAR, and
super-resolving TomoSAR. Recently, we have developed a fast and accurate `1-regularized least square
solver with application to D-TomoSAR [35]. This new solver offers a speedup of one or two orders of
magnitude than typical second order cone programming. With above-mentioned advances, we are able
to reconstruct a high-quality TomoSAR point cloud of an entire city with density comparable to that of
LiDAR. For a better overview of the capability of the aforementioned methods, Table 1 summarizes
the typical density of the point cloud reconstructed by PSI and D-TomoSAR using a TerraSAR-X high
resolution sliding spotlight image stack.
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Table 1. Comparison of the typical density of the point cloud reconstructed by PSI and D-TomoSAR
using TerraSAR-X high resolution spotlight image stack.

Density (thousand/km2)

PSI [38] 40–100
D-TomoSAR (non-superresolving) [15] 150–250
D-TomoSAR (SL1MMER) [48] 500–1500

Figure 3. Comparison of the density of the 3D point cloud retrieved by PSI (left) and TomoSAR (right)
of Bellagio Hotel, Las Vegas [8].

2.3.3. Staring Spotlight TomoSAR

In spotlight modes, the radar beam is steered back and forth toward a common reference target in
order to increase its illumination time tAP (see Figure 4). The beam sweep rate controls the balance
between the scene spatial extent and the azimuth resolution. In the TerraSAR-X sliding spotlight mode,
the radar beam is swept at a moderate rate with a squint angle range up to±0.75 degrees [49]. While in
its staring spotlight mode, the beam sweep rate is set to equal the frequency modulation (FM) rate
of the reference target. In other words, the radar beam is configured to exactly follow the target over
time and the squint angle range can be up to ca. ±2.2 degrees. As a result, the azimuth resolution
is maximized. Nevertheless, the improved azimuth resolution comes at the cost of reduced scene
extent: the time span of a focused image ∆timage is considerably shorter. Needless to say, the slant
range resolution stays unchanged for both modes, as long as the same range bandwidth is employed
during imaging.

Figure 4. TerraSAR-X sliding (left) and staring (right) spotlight imaging geometry [48].

The transition from sliding to staring spotlight requires several adaptations in SAR focusing and
InSAR processing. In the staring spotlight mode, the satellite can no longer be assumed to be standing
still during chirp transmission and reception, or to follow a linear trajectory. In addition, variations
of tropospheric and ionospheric delay within the large squint angle span also need to be corrected.
Another major challenge is to estimate Doppler centroid frequency as a function of focused image time.
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The TerraSAR-X multimode SAR processor [50,51] and the integrated wide area processor [24,25] were
revised accordingly.

For PSI and TomoSAR in urban areas, the improved azimuth resolution has at least two
advantages. PSs in the same resolution cell in the sliding spotlight mode may be resolved in different
resolution cells in the staring spotlight mode. This leads to an increase in the density of the resulted 4D
point cloud. Furthermore, the clutter in each resolution cell may be significantly suppressed, thanks to
the increased azimuth resolution. Consequently, the SCR of PSs increases, which in turn leads to a
better lower bound on the variance of elevation estimates [52].

In order to demonstrate these improvements, we processed two interferometric stacks of the City
of Las Vegas in the sliding and staring spotlight modes using the SL1MMER algorithm. Each stack
consists of 12 scenes acquired from October 2014 to February 2015. In each mode, 11 coregistered
complex interferograms were used for the TomoSAR reconstruction of two regions of interests (ROIs).

One of the ROIs is a relatively flat region that was selected mainly for the assessment of relative
vertical accuracy. The mean intensity maps in both modes are shown in Figure 5a. In the staring
spotlight mode, point-like targets, such as the six bright points aligned at each side of the central
field, are more focused. Even for DS, clutter appears to be more suppressed and thus the boundaries
between areas of different smoothness are easier to recognize. This indicates an increased SCR. As a
result, the reconstructed TomoSAR point cloud from staring spotlight images has a significant increase
in the number of points compared to that of the sliding spotlight images. Indeed, the total number of
scatterers in the staring spotlight is approximately 5.5 times as high, and the scatterer density is up to
circa 13.5 million points per km2 in this small region. In addition, the better SCR also improves the
relative accuracy of height estimates. In fact, the relative accuracy of height estimates using staring
spotlight images is approximately 1.7 times as high [48].

(a) ROI #1 that contains a flat area.

(b) ROI #2 that contains two high-rise buildings.

Figure 5. Mean intensity map of two ROIs in the sliding (a) and staring (b) spotlight modes [48].



Remote Sens. 2018, 10, 1374 10 of 32

Another ROI contains two high-rise buildings (Hilton Grand Vacations on the Las Vegas Strip),
which were chosen as a demonstration of layover separation. The mean intensity maps are shown in
Figure 5b. Similarly, point-like targets stand out more prominently from clutter in the staring spotlight
mode and the regularities on the building facades are more clearly visible. The TomoSAR point clouds
of single and double scatterers are shown in Figure 6. For this ROI, a substantial increase in the number
of (single and double) scatterers was also observed. The scatterer density in the staring spotlight mode
is approximately 5.1 times as high, see Table 2. The number of double scatterers in the staring spotlight
mode almost rivals the number of single scatterers in the sliding spotlight mode.

600 620 640 660 680 700
Topography [m]

Figure 6. Updated topography (m) of the region in Figure 5b with 12 TerraSAR-X images in the sliding
(left column) and staring (right column) spotlight modes, respectively. The upper and lower rows show
single and double scatterers, respectively [48].

Table 2. Statistics of the point clouds in Figure 6.

Sliding Staring Ratio 1

No. of single scatterers 148, 646 740, 656 4.98
No. of double scatterers 21, 576 124, 546 5.77
Total no. of scatterers 170, 222 865, 202 5.08
Single-to-double-scatterer ratio 6.89 5.95 1.16
Scatterer density (million/km2) 1.56 7.91 5.08

1 The ratio was calculated by dividing the larger by the smaller value.

2.3.4. Point Cloud Fusion

Both PSI and D-TomoSAR deliver 4D point clouds relative to their reference points. They need
to be co-registered when considering the results from multiple SAR image stacks. Although general
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point cloud fusion is a classic topic in the computer vision field, there is very little literature addressing
InSAR point cloud fusion, especially for point clouds from image stacks of cross-heading orbits.
This is because the fusion of two point clouds requires the identification of common points in the
two point clouds. There is theoretically no common point from such two point clouds due to the
cross-heading geometry.

The first attempt to fuse cross-heading TerraSAR-X point clouds in an urban area was presented
in [36]. This algorithm employs RANSAC to robustly match the ground points of two cross-heading
TerraSAR-X PSI point clouds. The point correspondences are found by searching closely spaced point
pairs on the ground surface. Therefore, this algorithm does not address the exact point correspondence.
To find the exact point correspondence, Wang and Zhu detected the end positions of L-shaped facades
in the two TomoSAR point clouds where the two point clouds converge [43]. In [6,53], the authors
located dozens of pairs of street lampposts in two point clouds as point correspondences, additionally
taking into account the diameter of the lampposts.

The fusion of along-heading (either both ascending or both descending) InSAR point clouds is
less challenging. Classical point cloud co-registration methods such as iterative closest point (ICP)
can be directly applied. Gernhardt et al. have demonstrated the direct application of ICP on multiple
InSAR point clouds of a volcano [39].

2.3.5. 3D Motion Decomposition

A natural step after the fusion of multiple D-TomoSAR point clouds from different aspects
is the decomposition of the 1D LOS displacement vector into its original 3D motion components.
A 3D deformation vector in a geographic coordinate system is highly beneficial to improving the
interpretation of the deformation pattern. A 3D motion decomposition algorithm was proposed and
validated on four TomoSAR point clouds in [54]. The method relies on either geometrical [39,43] or geodetic
fusion [6,55] of multi-aspect TomoSAR point clouds as input. It estimates the 3D motion components
of the queried point target by inclusion of observations from all different viewing geometries and
robust inversion with `1 norm minimization in a local neighborhood. The method allows for highly
detailed and shadow-free 3D deformation monitoring, as has been demonstrated in [54]. An example
of seasonal motion decomposition on a small test site in Berlin is demonstrated in Figure 7, where it
shows the vertical (up), and horizontal (east-west) linear deformation of a railway bridge.

1 
 

Institut für Methodik der Fernerkundung 

Up 

East-West 

[mm] 

Figure 7. Decomposed seasonal deformation of a railway bridge located in the northeast of Berlin,
Germany [54].
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2.3.6. Object Reconstruction

Due the development described above, the quality of TomoSAR point cloud, including point
density and relative accuracy, has become sufficient for the reconstruction of 3D models of individual
objects. We have developed a suite of algorithms that have proved effective for tasks ranging from
reconstructing vertical facade [44,45] (see Figure 8), to the detection and reconstruct of a LOD1 model
of individual buildings [46,56].

Figure 8. A TomoSAR point cloud of Las Vegas (upper), and the reconstructed facades (lower) [45].
The color of the point cloud represent its height above ellipsoid.

2.4. Object-Based InSAR Algorithms

The reconstruction of such high quality dense point clouds, as in aforementioned examples,
are only possible with a stack of fairly high number of images. In practice, we are often faced with
a limited number of images. In such situations, a proper algorithm should exploit information from
neighboring pixels in order to reduce the number of images needed for a reliable reconstruction, such as
adaptive filtering and nonlocal filtering that have been extensively described in previous literature,
such as [4,57,58] and [59–61], respectively. However, this section goes beyond these pixel cluster-based
methods. It focuses on the recent development of object-based algorithms that explicitly exploit
geometric and semantic information to support parameter retrieval in multi-baseline InSAR. To this end,
this section introduces the M-SL1MMER algorithm [28], which exploits the freely available building
footprint from OpenStreetMap (OSM), and RoMIO (Robust Multi-pass InSAR via Object-based low
rank decomposition) [62,63], which exploits the smoothness prior and low rank property of the InSAR
data stack of individual objects.

2.4.1. M-SL1MMER

Multiple-snapshot SL1MMER (M-SL1MMER) is an extension of the original SL1MMER
algorithm for joint tomographic reconstruction of resolution cells containing scatterers that share,
up to quantization errors, the same height (hereafter referred to as “iso-height resolution cells”) [28].
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Similar approaches based on multiple snapshots or polarimetric channels can be found, for example,
in [64–66].

In M-SL1MMER, the iso-height resolution cells are detected by projecting the freely available
OSM building footprint [67] to the SAR image, and shifting it toward the near range direction until it
reaches the top of the building. Each shifted position of the footprint represents a cluster of iso-height
resolution cells. Let a specific iso-height cluster contain M resolution cells; the InSAR measurements
gm ∈ CN (N being the number of interferograms) of the m-th resolution cell can be approximated
with the linear model (see Equation (3)) gm ≈ Rmγm for all m = 1, . . . , M. In addition, we assume
without loss of generality that R1 ≈ · · · ≈ RM and rewrite the M linear models in the more compact
form G ≈ RΓ, where the m-th columns of G and Γ equal gm and γm, respectively. A key element of
M-SL1MMER involves solving the following `2,1 regularization problem:

Γ̂ = arg min
Γ

1
2
‖RΓ−G‖2

F + λ2,1‖Γ‖2,1, (11)

where ‖ · ‖F and ‖Γ‖2,1 = ∑L
i=1 ‖γi‖2 denote the Frobenius and `2,1 norms, respectively, and γi is the

i-th row of Γ. The `2,1 norm is known to promote the entries of Γ to be jointly sparse among columns.
In other words, nonzero rows can be expected in Γ̂ or its submatrices. Solving the minimization
problem in (11) is followed by model selection and amplitude debiasing independently for each
resolution cell, as in the SL1MMER algorithm (see Section 2.3).

As a practical demonstration, we reconstructed the elevation of two high-rise buildings using
6 TanDEM-X bistatic sliding spotlight interferograms. The elevation estimates of the upper and lower
layers are depicted in Figure 9. In the case of layover, the higher and lower scatterers can be found in
the upper and lower layers, respectively. The smooth color transition on the reconstructed building
facades already indicates its high quality. Roof-facade and facade-ground interactions are clearly
visible in the near and far range, respectively. This can also be observed in the elevation difference
map under layover (see Figure 10). The color change from deep blue (near range) to cyan (far range)
corresponds to increasing elevation distance between building roof and facade.

Figure 9. Elevation estimates of two test buildings with M-SL1MMER using 6 TanDEM-X bistatic
sliding spotlight interferograms. In the case of layover, the higher and lower scatterers appear in the
upper and lower layers, respectively [28].
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Figure 10. Difference of elevation estimates of higher and lower scatterers in Figure 9 subject to
layover. The red and yellow rectangles mark areas where roof-facade and facade-facade interactions
are expected, respectively [28].

2.4.2. RoMIO

As a complement to M-SL1MMER, RoMIO does not necessarily require explicit information of
the footprints of the objects in the image. It is a more general framework that exploits the low rank
property of InSAR phase tensor, because the low rankness of a tensor describes its information entropy,
which requires looser signal support than the explicit iso-height line required in M-SL1MMER. RoMIO
filters the InSAR data tensor by robustly minimizing its rank. Therefore, it can be regarded as a
filtering step in prior to multi-baseline InSAR algorithms. The core RoMIO estimator can be expressed
as follows.

{X̂ , Ê} = arg min
X ,E

rank(X ) + λrank‖E‖0, s.t. X + E = G, (12)

where G is the observed InSAR phase tensor, X and E model the tensor of the true signal, and the sparse
outliers, respectively, X̂ , Ê are the recovered outlier-free phase tensor and the estimated outlier tensor,
respectively, rank(X ) refers to the multilinear rank of X , and λrank is the regularization parameter.
In practice, the multilinear rank and the `0 norm are relaxed by the tensor nuclear norm ‖X ‖∗ and `1

norm, respectively.
RoMIO reaches filtering performance comparable to state-of-the-art filtering algorithms,

i.e., nonlocal means filtering [59,61]. However, it outperforms nonlocal means filtering by a factor of two
in terms of the interferometric phase variance when the interferogram is corrupted by 50% outliers [63].
The merit of this extreme robustness in turn improves parameter estimation in multi-baseline InSAR
algorithms. In typical settings of the TerraSAR-X high-resolution spotlight image stack, i.e., 10–20
images, SNR of 0–5 dB, a combination RoMIO and PSI outperforms the original PSI by a factor of 10 to
30 in the accuracy of the linear deformation estimates [63].

While optimizing the deformation parameters using multi-baseline InSAR algorithms, e.g., PSI,
RoMIO can also make use of the explicit support of objects, such as a given segmentation mask of
the SAR image. RoMIO includes a spatial regularization term, e.g., smoothness, of the 2D matrices of
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the parameters in the estimator [62]. A general form of such regularized estimators can be expressed
as follows.

{Ŝ, P̂} = arg min
S,P

1
2
‖W � (G − G(S, P))‖2

F + λTV f (S, P), (13)

where S and P are the matrices of the elevation and deformation parameters. Similar to other MAP
estimators, e.g., Equation (8), the first term on the right-hand side of the estimator is a data fidelity term
that calculates a weighted log likelihood between the observed InSAR phase tensor G and the modeled
tensor G, whereW denotes an optional weighting tensor, and � denotes the element-wise product
between two tensors. An example of the weighting tensor can be a tensor comprised of coherence
matrices of each interferogram. Pixels of higher coherence are given higher weights. The function
f (S, P) denotes the regularization term that represents the spatial prior of S and P. The regularization
parameter λTV controls the balance between these two terms. In [62], we made use of the popular
total variation as a smoothness prior.

3. Advances in Robust Estimation

3.1. Overview of Advances

Robust estimation in multi-baseline InSAR was sporadically mentioned in previous
literature. Some examples include using an adaptive window to improve the covariance matrix
estimation [4,57,68], improving the PSI reference network by `1 norm minimization [23,24], and robust
detection of multiple scatterers in TomoSAR [31,33]. However, it was not systematically addressed
until [5]. Wang and Zhu pointed out that, due to the existence of non-Gaussian samples and unmodeled
phase, e.g., the atmospheric phase, robust estimation in multi-baseline InSAR lies on the following two
fundamental problems:

• covariance matrix estimation for DS, due to the existence of non-Gaussian and
nonstationary samples

• phase history parameters estimation for both DS and PS, due to observations with large
unmodeled phase

The impact of non-robust covariance estimation and the existence of nonstationary phase
on parameter estimation in multi-baseline InSAR has been confirmed in several recent works,
such as [69–72], and [58,73], respectively. The following sections will elaborate on these two points.
The development of robust estimation is greatly associated with DS-based InSAR. Please refer to [74]
for a recent review of DS-based InSAR techniques.

3.2. Robust Covariance Matrix Estimation

The estimation of the covariance matrix of a pixel is usually carried out by the sample covariance
matrix. Its estimator is shown in Equation (14), where g is the multivariate observation, and G is the
matrix consisting of M spatial samples, that is G = [g1, g2, ..., gM]. Equation (14) is also the MLE if
the samples are complex circular Gaussian (CCG) distributed. Unfortunately, this equation does not
always hold in real data. This is why a robust estimator is necessary. A robust covariance estimator
should consider the following two scenarios (and the mixture of both):

• the selected samples are non-Gaussian (possibly heavily tailed distribution)
• the expected interferometric phase of the samples is nonstationary, e.g., very strong underlying

topographic phase

Ĉgg =
1
M

M

∑
m=1

gmgH
m =

1
M

GGH (14)

The following content will summarize the robust covariance estimators, focusing on the
points above.
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3.2.1. Non-Gaussian Samples

For the first scenario, [5] proposed that the sample covariance matrix can be made more robust by
an M-estimator, which is essentially an iterative reweighted sample covariance matrix [75,76]:

Ĉk+1 =
1
M

M

∑
m=1

w
(

gH
m Ĉ−1

k gm

)
gmgH

m , (15)

where m and k are the sample index and the iteration index, respectively, and w (x) is a weighting
function of the negative log-likelihood of the sample gm to the CCG probability density function
(PDF). The weighting function down-weights highly deviated samples whose log-likelihood is small.
Equation (15) is solved iteratively. The authors of [5] also proposed an approximation to drop the
iterative process, which is the sign covariance matrix (SCM) [77,78]. Extending it to complex number,
it is:

ĈSCM =
1
M

M

∑
m=1
‖gm‖−2gmgH

m (16)

SCM is an engineering solution for fast processing under the general M-estimator’s framework.
The weighting function is replaced by the inverse of the `2 norm of the sample. Therefore, only the
direction (or sign) of each multivariate sample is considered.

3.2.2. Non-Gaussian Samples with Nonstationary Interferometric Phase

It is often the case that the interferometric phase of the selected samples are not stationary, due to
varying topography and motion or other factors. Usually, this type of deterministic phase is estimated
and mitigated in prior to covariance estimation. For example, [58] proposed a multi-resolution defringe
algorithm to mitigate such nonstationary phase.

Nevertheless, poor estimates significantly affect the covariance matrix estimation. Therefore, [5]
proposed a new covariance estimator rank M-estimator (RME) for complex multivariate. The RME is
derived by replacing the multivariate g with its rank r in Equation (15):

ĈRME,k+1 =
1
M

M

∑
m=1

w
(
xm
(
ĈRME,k

))
r̂m.r̂H

m (17)

The complex rank vector r, analogous to its real number version [78], is defined as follows:

r̂m =
1
J

J

∑
j=1

gm � g∗j∥∥∥gm � g∗j
∥∥∥

, (18)

where gj is a direct neighborhood sample of gm, and� denotes the Hadamard product. The multiplication
of the complex conjugate of a direct neighbor mitigates the nonstationary interferometric phase of gm.
Due to the multiplication, the RME is a fourth-order descriptor of the sample statistics. An element-wise
square root on

∣∣ĈRME
∣∣ should be performed in order to obtain the second-order momentum. It was

proven that the element-wise square root of
∣∣ĈRME

∣∣ approaches
∣∣Ĉgg

∣∣ asymptotically under CCG
distribution when calculating the rank using one neighborhood sample [5].

3.2.3. Comparison

We compared the sample covariance matrix, M-Estimator, and the RME under three different
scenarios: (1) multivariate CCG, (2) a heavily tailed multivariate distribution (complex t-distribution),
and (3) nonstationary multivariate complex t-distribution. For each scenario, 1000 ten-acquisition
vectors were simulated according to the distribution and a predefined coherence matrix that has a
exponential decay of the coherence w.r.t. the temporal baseline. In the last scenario, linear phase fringes
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with ten different fringe frequencies randomly picked within [0 π/10] were added to the phases of the
ten acquisitions.

The results are shown in Figure 11, where each row corresponds to the three scenarios, respectively.
The top left subplot can be regarded as the ground truth, because MLE is the optimal estimator
under CCG, and is asymptotically unbiased. All three estimators can preserve the correct shape
of the covariance matrix under CCG. The MLE fails in the second scenario, where the samples are
contaminated by outliers. The coherence is usually overestimated because of the large amplitude
of the outliers. In the last scenario, both MLE and M-estimator are not capable of dealing with
nonstationary phases. Heavy underestimation occurs because of the summation of the complex
numbers with non-constant phases. The estimates of M-estimator are extremely low due to more
summation operations caused by the iterative process. Last but not least, RME is invariant to such
nonstationary phase, and hence maintains good performance in all conditions.

A quantitative experiment shows that the robust estimator is extremely effective for samples with
low coherence. At true coherence of 0.2, M-estimator outperforms the Gaussian MLE by a factor of 1.1
to 2.3, and a factor of 1 to 10, in terms of the accuracy and the bias, respectively, under a wide range of
outlier percentages [5].

0 0.2 0.4 0.6 0.8 1

Figure 11. Comparison of three covariance matrix estimators under three different observation cases:
first row: complex circular Gaussian, second row: complex t-distribution with one degree of freedom,
and third row: nonstationary complex t-distribution with one degree of freedom. First column: MLE
(under Gaussian), second column: M-estimator with t-distribution weighting, and third column: rank
M-estimator with t-distribution weighting.

3.3. Robust Phase History Parameters Retrieval

A robust covariance matrix estimate alone is not sufficient for a robust estimation of the phase
history parameters, i.e., elevation, and motion parameters, because a multi-pass InSAR observation
g ∈ CN may contain an unmodeled phase, e.g., uncompensated atmospheric phase, unmodeled
motion phase, etc. The following content provides examples of robust estimators for the retrieval of
the phase history parameters of both PS and DS.
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3.3.1. Robust PS Estimator

The general form of the MLE of PS phase history parameters can be expressed as follows:

θ̂MLE = arg min
θ

‖g− ḡ (θ)‖2
2 , (19)

where ḡ (θ) is the modeled PS signal. Equation (19) is shown to be equivalent to Equation (6) in [79].
Similar to the robust covariance estimator, it can be robustified by an M-estimator:

θ̂M−est = arg min
θ

N

∑
i=1

ρ (Re [εi (θ)]/σR ) + ρ (Im [εi (θ)]/σI ) , (20)

where the residual εi (θ) equals gi − ḡi (θ), Re [·], Im [·] are the real and imaginary parts of a complex
number, and σR and σI are the standard deviations of the real and imaginary parts of the residual,
respectively. The function ρ (x) is the so-called robust loss function that can be derived from the PDF
of the contaminated distribution of g, if it is known. However, it is usually unknown in practice. We
shall use stable empirical functions instead, e.g., the Tukey biweight function.

3.3.2. Robust DS Estimator

According to [80], the MLE of DS phase history parameters can be expressed as follows:

θ̂MLE = arg min
θ

{
gHΦ (θ) |C|−1 Φ (θ)H g

}
(21)

where Φ is a diagonal matrix of the modeled interferometric phase. If stationarity is assumed for a DS
and its neighborhood, one can treat a cluster of DSs as a single PS by averaging them, as proposed in
SqueeSAR [4]. Then, the robustified DS estimator is identical to Equation (20).

However, if the objective is a full inversion of individual single-look DS observation (without
averaging) without the strict assumption of phase stationarity, the robustified estimator is shown in [5]
to be in the following form:

θ̂M−est = arg min
θ

{
εH (θ)W (ε̄) ε (θ)

}
, (22)

where the residuals ε (θ) is shown in Equation (23). It is whitened by a robust covariance matrix
estimate, e.g., ĈRME. The matrix W ∈ RN×N is a diagonal robust weighting matrix computed from
the mean residual ε̄. Because of possible outliers in the residual, ε̄ should also be robustly estimated,
for example by a robust weighted averaging of ε (θ) of the selected samples.

ε (θ) =
∣∣ĈRME

∣∣−0.5
Φ(θ)Hg (23)

To summarize, Equation (22) is a joint estimation of the phase parameters of individual single-look
DS observations in a neighborhood. It is solved iteratively. Its computation should begin with initial
estimates of each sample in the neighborhood (assumed to be the same), which jointly determine
the initial weighting matrix. The same weighting matrix is used to retrieve the parameters of each
single-look DS in the neighborhood, and is updated on the basis of all the estimates upon finishing
one iteration.

To demonstrate the robustness of the estimator, Figure 12 shows the linear deformation rate of
the volcano Stromboli, Italy, estimated by the robust DS phase history parameter retrieval method.
Parameter estimation in active volcanic areas is challenging due to strong decorrelation, and the
varying deformation model. In the experiment, only 16 interferograms acquired in 2008 were used.
We can see that scatterers over 50% of the surface area were retrieved, although most of them did not
undergo any significant deformation. The crater shows an uplift of 10 cm/year, and the southern slope
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undergoes a subsidence of up to 20 cm/year. This may suggest certain displacement of the magma
underneath the volcano.

Figure 12. The linear deformation rate of the volcano Stromboli, in Italy, estimated by the robust DS
phase history parameter retrieval method. In total, 16 interferograms acquired in 2008 were used.
The crater shows an uplift of 10 cm/year, and the southern slope undergoes a subsidence of up to
20 cm/year. This may suggest certain displacement of the magma underneath the volcano. Courtesy:
the tropospheric correction was done by Cong et al.

4. Advances in Absolute Positioning

A unique feature of TerraSAR-X is its precise orbit determination and high precision range
measurements, which allows for an unprecedented 2D localization accuracy of image pixels below one
meter. In recent years, this level of accuracy has been further improved by thorough consideration of
the most prominent error factors affecting range and azimuth measurements of SAR, a method termed
SAR imaging geodesy [7,81]. SAR imaging geodesy is seen as a great leap in SAR technology, because
it extends the applications of SAR to the geodetic positioning domain rather than the imaging domain.
Two of the numerous application examples of SAR imaging geodesy are geodetic stereo SAR [82], a
method that retrieves the precise 3D absolute position of a target by combining its 2D radar timings
from different orbit tracks, and a framework called geodetic InSAR [6], in which multi-baseline InSAR
and stereo SAR are combined to achieve absolute 4D InSAR point clouds. A brief introduction to
the two methods is given below, and the most recent advances of these techniques and their new
applications are described.

The SAR imaging geodesy method aims at attaining 2D absolute pixel localization [7]. A single
pixel in a focused complex SAR image is localized, in across-track, by range τrg and, in along-track,
by azimuth taz times. For a point target inside the mentioned pixel, the following equations read:

τrg =
2R
c

+ δτSD + δτO + δτF + δτI + δτT + δτG

taz = t + δtSD + δtO + δtF + δtG,
(24)
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where R is the geometric distance from the sensor to the center of the pixel in meters and c is the
speed of light in vacuum; the other terms are all expressed in seconds. The raw acquisition time is
denoted by t and the timing error terms subscripted by SD, O, F, I, T and G represent delays caused
by satellite dynamics, orbit inaccuracies, feature localization error, ionospheric delay, tropospheric
delay, and geodynamic effects, respectively. The magnitude of individual errors range from a couple of
centimeters for the ionospheric effect, if the satellite operates in X-band, followed by decimeter regimes
for satellite dynamic effects and geodynamic effects for both components, to up to a few meters for
the tropospheric effect, depending on the weather conditions and the average incidence angle of the
acquired SAR images. Some of the mentioned errors and their effects on SAR measurements are shown
in Figure 13. The curved propagation path shown in Figure 13 is highly exaggerated for visualization
purposes only. In order to remove the mentioned timing errors, the imaging geodesy method exploits
the highly precise orbit data of TerraSAR-X and Tandem-X [1,2,83], utilizes a highly sophisticated
SAR processor to avoid unnecessary approximations [84], precisely extracts targets with sub-pixel
sensitivity [85,86], and corrects the path delay and geodynamic errors by global numerical weather
data [81,87] and state-of-the-art geodetic models [88].

Geodynamic 

effects 

Ionosphere 

Troposphere 

Orbit error 

Ionospheric delay 

Satellite dynamics and 

timing 

Tropospheric delay 

Figure 13. The errors affecting range and azimuth timings of SAR measurements, colorized in red.
Orbit errors cause the satellite trajectory to deviate from the true track, while satellite dynamics and
atmospheric disturbances cause delays in the timings, which lead to incorrect annotation of τrg and taz.
Geodynamic effects change the position of a target on the ground, which again hampers the accuracy
of the timings. Please note that the atmospheric effect shown in the figure is highly exaggerated for
visualization purposes only. The main cause for atmospheric delay is the decrease of the speed of light.

By combining the τrg and taz of the same target visible in SAR images acquired from two or more
different viewing geometries, the stereo SAR method determines the 3D position of the target (see
Figure 14). The 2D radar timing coordinates of a particular target in the SAR image xT = (taz, τrg)

are linked to their corresponding 3D coordinates on the surface of the Earth XT = (X, Y, Z) by the
range-Doppler equation system [85]:

|XS − XT | − c · τrg = 0

ẊS(XS − XT)

|ẊS||XS − XT |
= 0

(25)
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with XS and ẊS denoting the position and the velocity vector of the satellite relative to taz, and τrg

being the calibrated two-way traveled time from the satellite to the target. The variable taz is implicitly
included in the second equation relating the state-vector of the satellite to the time of the acquisition
using a polynomial model [82]. The estimation of the coordinates is performed by least squares
adjustment plus stochastic modeling of timing observations using the variance component estimation
(VCE) [82]. The relative accuracy of the estimated coordinates depends on the SCR of the target,
the precision of the external atmospheric and geodynamic corrections, the degree of difference in the
combined viewing geometries, and the number of SAR acquisitions.

(a) Cross-heading (b) Same-heading

Figure 14. Localization of a point target (red dot) from (a) cross-heading and (b) same-heading satellite
tracks. The satellites are shown by black dots; their trajectories are presented by dashed lines and the
baselines are depicted by solid lines between the satellite positions. The black circles are defined by the
range-Doppler equations and their intersection leads to the 3D position of the target [89].

4.1. Overview of Advances

SAR imaging geodesy was first named in 2011 by Eineder et al., since the method incorporates
correction principles used in geodesy with SAR [7]. Schubert et al. reported on the correction of
atmospheric delays by local height dependent models in [90]. Gisinger studied the effect of utilizing
different mapping functions for converting the zenith atmospheric delays into the radar line of
sight in [91]. These methods used the local GNSS zenith path delays for atmospheric corrections.
Cong et al. introduced atmospheric correction through the 3D integration of weather data obtained
from the European Center for Medium-Range Weather Forecasts (ECMWF) and using global TEC
maps [81]. Apart from atmospheric errors, calibration of internal electronic delays of the SAR
sensor was investigated in [7] and the precision of azimuth timing was improved by calibrating
the sensor’s internal clock rate [92]. The most prominent geodynamic effects, such as solid earth tides,
pole tides, and continental drifts, were included in further studies [7,81,86,93]. In order to improve the
localization precision into sub-centimeter regimes, Balss et al. further modeled geodynamic effects
with smaller magnitudes, such as atmospheric pressure loading, ocean tidal loading, ocean pole tides,
and atmospheric tidal loading [94]. In all the studies, the geodynamic effects were considered by the
state-of-the-art models of the IERS 2010 convention [88]. The already precise orbit of TerraSAR-X [83]
has been further improved by modeling the non-gravitational forces and also solar radiation pressure
modeling [1]. The world-wide reproducibility of high precision measurements was demonstrated in
[95] and an operational processor called the SAR Geodesy Processor (SGP) was introduced in [87].
Relative to applications, the high precision ranging measurement of TerraSAR-X has been exploited
for maritime purposes [96,97]. In terms of achievable accuracy, SAR imaging geodesy is capable
of localizing corner reflectors with 1.16 cm and 1.85 cm range and azimuth standard deviations,
respectively [98].

The first results on 3D localization of CRs by means of stereo SAR was reported in [99]. Although
3D positioning using multi-aspect TerraSAR-X images had been previously demonstrated in [100–102],
the results in [99] were unique in the sense that the stereo processing was carried out on thoroughly
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calibrated range and azimuth timings. Gisinger et al. demonstrated the applicability of the geodetic
stereo SAR method not only on CRs but on opportunistic non-ideal scatterers such as PS in an urban
area [82]. The manually extracted scatterers could be localized with 3D precision better than 10 cm [82],
which paved the way for new geodetic applications such as secular ground movement estimation
using natural PS [103,104], high precision mapping of road networks (DriveMark) [105], and highly
precise automatic SAR Ground Control Point (GCP) generation [89,106–109]. In terms of achievable
accuracy, geodetic stereo SAR is able to localize corner reflectors with 3D precision better than 4 cm and
an absolute accuracy of 2–3 cm when compared to independently surveyed reference positions [82].

4.2. Geodetic InSAR

The geodetic InSAR approach integrates the capabilities of multi-baseline InSAR with SAR
imaging geodesy and stereo SAR techniques. The goal of the framework is to tackle the shortcomings
of both methods: the relative estimates of all InSAR approaches and the small number of points
that can be absolutely localized by geodetic stereo SAR. Therefore, it tends to achieve absolute
positioning of a large number of scatterers by exploiting the advantages of both techniques. In the
following, the workflow of the geodetic InSAR technique is described and some example applications
are demonstrated.

4.2.1. SAR GCP Generation

The first major part of the procedure is concerned with extraction of GCPs from multi-aspect SAR
images. This includes [89]:

Step 1 Detection and matching of identical PS from SAR images acquired from different orbits. In
the reference geodetic SAR tomography technique this task was performed manually [6].
At the current state of the framework, the identification of common PS can be carried out
using the PSI multi-track fusion algorithm [39] for same-heading tracks and utilizing high
resolution optical data [106] or external geospatial road network data [109] for cross-heading
tracks. A combination of all the mentioned methods for automatic detection of large number
of GCPs was used in [89].

Step 2 Precise timing extraction of PS from stacks of non-coregistered SLC images. This is done by
PTA [85,86].

Step 3 PS visibility check and initial outlier removal. The time series of phase noise approximated
by SCR of each PS [19] is analyzed and the outliers are robustly removed by the adjusted box
plot method [110].

Step 4 Correction of PS timings in the stack of images using imaging geodesy.
Step 5 Absolute 3D positioning of each PS by the stereo SAR method [82]. The posterior quality

measures of the observations and the estimates are also reported in this step.

4.2.2. Absolute Localization of InSAR Point Clouds

The main objective of the geodetic InSAR framework is to resolve the DEM error of the reference
point with respect to which the topography and deformation parameters are estimated [20,21,40].
The geodetic InSAR approach can overcome this problem, to some extent, in two ways dependent
on the number of available GCPs. If only a small number of GCPs are available, the best candidate
will be chosen as the reference point during PSI/TomoSAR processing and at the final stage the
geocoded coordinates of all points in the point clouds are shifted toward the absolute coordinates
of this point [6]. If a large number of GCPs are available, for instance using the GCP generation
approaches in [89,107], the DEM error of the reference point is approximated as a post-processing step.
Therefore, the difference in ellipsoidal heights of GCPs and their corresponding geocoded PS heights
are calculated and a height offset is robustly estimated. The height offset is added to the geocoded PS
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heights and an updated geocoding is carried out which results in absolute coordinates of the InSAR
point cloud [111].

4.2.3. Applications

To conclude this subsection, a few examples and applications of the geodetic InSAR framework
are demonstrated below.

Figure 15 shows the city of Oulu in Finland overlaid by 2049 GCPs obtained from four stacks of
TerraSAR-X high resolution spotlight images.

Figure 15. Total number of 2049 GCPs in Oulu, color-coded based on the geometry
configuration used for their positioning (AA: ascending-ascending, DD: descending-descending, AD:
ascending-descending and ADAD: quad geometry) [89]. The underlying optical image is taken from
Google Earth.

The GCPs are color-coded based on the underlying geometry configuration used for their
localization, where AA, DD, and AD stand for ascending-ascending, descending-descending and
ascending-descending orbits, respectively; ADAD means that scatterers were localized from all the four
viewing geometries. It is observed that the entire central area of Oulu is covered with the generated
GCPs. The candidates from the same-heading geometries stem from built areas, while the ones from
cross-heading orbits include the bases of lamp poles, street lights, and traffic lights. The statistics
of the generated GCPs are reported in Table 3, which demonstrate the extremely high potential of
TerraSAR-X for precise 3D positioning.

Comparison with a reference LiDAR point cloud shows that we can achieve a horizontal absolute
accuracy of 20 cm using just a single GCP to correct the geocoding of an InSAR point cloud [6,55].
Therefore, employing over one thousand GCPs, as shown previously, can achieve extremely high
absolute accuracy, presumably in the order of centimeter. In order to demonstrate this, a close
comparison of two cross-heading InSAR point clouds before and after height correction is shown
in Figure 16, where the red and green points represent the PS of descending and ascending tracks,
respectively. It can be seen that after the calibration of the height of the reference point using the GCPs,
the endpoint of building facades correctly match.
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Table 3. Averaged statistics based on the stereo SAR least squares estimated 3D coordinate standard
deviations in Oulu. The letters A and D stand for ascending and descending geometries, respectively.
The sample mean and standard deviation are denoted by µ and σ and S[ENH] represents the local
coordinates standard deviations within a 95% confidence level [89].

Geometry Number of
Scatterers µsE (cm) µsN (cm) µsH (cm) σsE (cm) σsN (cm) σsH (cm)

AA 565 17.73 5.04 15.87 11.98 2.63 11.09
DD 1417 15.08 3.80 16.71 10.38 2.10 11.30
AD 24 2.26 2.50 1.75 0.99 1.11 0.83

ADAD 43 1.17 1.40 1.12 0.42 0.55 0.37

Figure 16. Demonstration of absolute localization of PSI point clouds obtained from an ascending
and a descending orbit track of Oulu. The endpoints of buildings visible from each geometry match
correctly with the endpoints from the opposing geometry.

To give an impression of the fused TomoSAR point cloud of a large area, Figure 17 shows a result
obtained by fusing four TomoSAR point clouds of Berlin obtained from two pairs of cross-heading high
resolution TerraSAR-X spotlight images that are fused by selecting an identical GCP as the reference
point of all point clouds. The point cloud has in total 63 million scatterers in an area of 50 km2. Such
shadow-free highly detailed TomoSAR point clouds can be further utilized to reconstruct dynamic 3D
and 4D city models [44–46,112].
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Figure 17. 3D view of central Berlin after geodetic registration of four TomoSAR point clouds obtained
from a pair of cross-heading high resolution TerraSAR-X spotlight data. The height is color-coded and
ranges between 70 m and 110 m [6].

5. Conclusions and Outlook

This paper provides a review of the multi-baseline InSAR techniques in the scope of TerraSAR-X
data. It covers the evolution of multi-baseline InSAR techniques, particularly with respect to improving
the relative estimation accuracy, introducing robustness to the estimators, and achieving accurate
absolute positioning of scatterers, which includes bridging the absolutely located scatterers with the
relative measures obtained from multi-baseline techniques. Particular focus was placed on our own
development work, specifically SL1MMER, M-SL1MMER, Tomo-GENESIS (TomoSAR), RIO (robust
estimation), RoMIO (object-based InSAR), and geodetic InSAR (absolute positioning).

Looking into the future, the next generation spaceborne SAR missions, including high resolution
wide swath (HRWS) and Tandem-L, will simultaneously possess high resolution and global coverage,
which would enable novel applications such as monitoring global changes. Retrieving geo-parameters
from these data will require not only new technological approaches to manage large amounts of
data, but also new analysis methods. In the following, we would like to point out some promising
future directions:

• Big data management technologies: So far, besides big missions, such as global TanDEM-X DEM
generation, scientists are dealing with SAR data in the order of up to terabytes. However, this is
about to change. Already today, petabytes of Sentinel-1 data are openly accessible to the public.
Yet, only very limited groups are capable of national-scale InSAR data processing, to say nothing
about global. To be prepared for the future, novel big geo-data management technologies are of
high relevance.

• Fast and accurate parameter inversion algorithms: The development of inversion algorithms
should keep up with the pace of data growth. For example, as a pre-study of Tandem-L, sequential
interferometric phase estimators are proposed instead of full covariance matrix inversion to
tackle the challenge of big InSAR data [72]. Fast solvers are demanded for many advanced
parameter inversion models that often involve non-convex, nonlinear, and complex-valued
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optimization problem, such as CS-based tomographic inversion, or low rank complex tensor
decomposition. Besides aforementioned model-based inversion methods, recently, data-driven
machine learning/deep learning methods have boosted the baseline performances in many remote
sensing problems [113], mostly in classification and detection tasks, yet its potential in InSAR
processing or more generally in geoparamater estimation is not yet exploited at all. This deserves
more attention of the community.

• Complicated motion: Up to now, only limited motion models, such as linear, seasonal or a
combination of several basic models, are considered for deformation estimations of InSAR.
There are also studies using model order selection to detect different types of motion either
being embedded in the estimation [114] or considered as a post-processing [115]. However,
the actual motion can be far more complex than any model can describe. The weekly repeat
cycle and long-term monitoring capability of future sensors will enable retrieving much more
complex motion models, and even allow performing classification of different types of motions
and detecting anomalies. This calls for more sophisticated algorithms.

• Data assimilation: At present, the interferometric stack is usually a static cube of interferograms.
As Sentinel-1 provides global coverage every six days, new stacking and multi-pass InSAR
concepts should be able to include new images without excessive computational burden. This
requires development of the data assimilation strategy, as well as novel inversion algorithms that
only require the new measurements and the previous estimates for updating the parameters of
interest.

• Multi-sensor data fusion: In the Copernicus era, it is standard that more than one data source, such
as SAR and optical, is available at any test site. Intelligent use of the complementary peculiarities
of the ever-increasing number of diverse remote sensing sensors and other geo-data sources has
become the natural choice for many applications [116]. Some preliminary work in the community
demonstrated that introducing the geometric prior or semantic prior to InSAR or TomoSAR
reconstruction could significantly reduced the number of required SAR data while retaining the
estimation accuracy [28,63]. This is definitely a promising future direction.
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Abbreviations

The following abbreviations are used in this manuscript:

ADI Amplitude dispersion index
CCG Complex circular Gaussian
CS Compressive sensing
DEM Digital elevation model



Remote Sens. 2018, 10, 1374 27 of 32

DS Distributed scatterer
D-TomoSAR Differential TomoSAR
ECMWF European Center for Medium-Range Weather Forecasts
GCP Ground control point
HRWS High resolution wide swath
ICP Iterative closest point
IERS International Earth Rotation and Reference Systems Service
InSAR SAR interferometry
LOS Line of sight
MAP Maximum a posteriori
MLE Maximum likelihood estimator
M-SL1MMER Multiple-snapshot SL1MMER
OSM OpenStreetMap
PDF Probability density function
PSI Persistent scatter interferometry
PS Point/Persistent Scatterer
RIO Robust InSAR optimization
RME Rank M-estimator
ROI Region of interest
ROMIO Robust multi-pass InSAR via object-based low rank decomposition
SAR Synthetic aperture radar
SCR Signal-to-clutter ratio
SL1MMER Scale-down by L1 norm minimization, model selection, and estimation reconstruction
SNR Signal-to-noise ratio
TEC Total electron content
TomoSAR SAR tomography
VHR Very high resolution
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