Drivers and Barriers to the Adoption of Cargo Cycles: An Exploratory Factor Analysis

City Logistics Conference 2019
June 13, 2019

Lars Thoma
German Aerospace Center (DLR) – Traffic Research
Problem statement
– Cargo cycles can reduce cities‘ traffic problems…

- Cities are burdened by heavy traffic and its externalities
- Last mile logistics thrive
- Potential analysis: Up to 50 % of trips are replacable by cargo cycles (BMVI 2015)
Problem statement

… but are rarely used and poorly studied

- Only very few trips are done by cargo cycles
- Very little research and theories focussing on cargo cycle usage
Problem statement

... but are rarely used and poorly studied

- Only very few trips are done by cargo cycles
- Very little research and theories focusing on cargo cycle usage

What are drivers and barriers for adapting cargo cycles?
Drivers and barriers for adapting cargo cycles
– Agenda

1. Problem statement
 Cargo cycles can be used to solve traffic problems, but are rarely used and poorly studied

2. Method
 Survey of real-life interested cargo cycle users

3. Results
 Identifying underlying drivers and barriers by means of an exploratory factor analysis

4. Implications
 Building a framework for describing and researching cargo cycle adoption
Drivers and barriers for adapting cargo cycles
– Agenda

1. **Problem statement**
 Cargo cycles can be used to solve traffic problems, but are rarely used and poorly studied

2. **Method**
 Survey of real-life interested cargo cycle users

3. **Results**
 Identifying underlying drivers and barriers by means of an exploratory factor analysis

4. **Implications**
 Building a framework for describing and researching cargo cycle adoption
Method – Introduction

Objective: collect real life data among German companies and organizations

Setting up a cargo cycle testing scheme

Interested companies fill out survey for quantitative primary data collection
Method
– Sample

• 389 respondents
• 79 % male
• Mean age: 43.9 years
• Mostly fleet decision makers (92 %)
Method
– Questionnaire

- 23 items describing relevant aspects for the use of cargo cycles derived from literature research focusing on
 - Cargo cycle
 - Electric mobility
 - Diffusion of innovation
 - Case studies
- Importance rating of these 23 items on a 5-point-Likert scale
- Exemplary items
 - *Cargo cycles promote employees’ health*
 - *The implementation of cargo cycles requires organizational effort*
Method
– Statistical analysis

- Exploratory factor analysis for data reduction
- Identifying an underlying factor structure
- Principal component factor extraction with varimax rotation allows most sensible interpretation of factors
- Number of extracted factors determined by Kaiser criterion (Eigenvalue > 1)
- KMO criterion in our sample = .71
 (above recommended cut-offs between .5 and .6)
- Significant Bartlett’s test indicate the appropriateness of the data set for exploratory factor analysis
- Calculating unweighted factor scores by averaging the scores of items that load highest on that specific factor
Drivers and barriers for adapting cargo cycles
– Agenda

1. **Problem statement**
 Cargo cycles can be used to solve traffic problems, but are rarely used and poorly studied

2. **Method**
 Survey of real-life interested cargo cycle users

3. **Results**
 Identifying underlying drivers and barriers by means of an exploratory factor analysis

4. **Implications**
 Building a framework for describing and researching cargo cycle adoption
Results
– Overall factor structure

<table>
<thead>
<tr>
<th>DRIVERS</th>
<th>BARRIERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2 SOFT BENEFITS</td>
<td>F1 VEHICLE LIMITATIONS</td>
</tr>
<tr>
<td>Health</td>
<td>Spatial coverage</td>
</tr>
<tr>
<td>Image</td>
<td>Loading capacity</td>
</tr>
<tr>
<td>Travel time reliability</td>
<td>Weather</td>
</tr>
<tr>
<td></td>
<td>Electric range</td>
</tr>
<tr>
<td>F4 COST BENEFITS</td>
<td>F3 WORRIES AND PERILS</td>
</tr>
<tr>
<td>Purchase cost</td>
<td>Theft</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>Organizational effort</td>
</tr>
<tr>
<td>Flexible parking</td>
<td>Implementation cost</td>
</tr>
<tr>
<td></td>
<td>Payload damage</td>
</tr>
<tr>
<td>F5 URBAN ADVANTAGES</td>
<td>F6 RIDERS’ CONCERNS</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Employee acceptance</td>
</tr>
<tr>
<td>Environmental goals</td>
<td>Handling experience</td>
</tr>
<tr>
<td>Travel time</td>
<td>Fun</td>
</tr>
<tr>
<td></td>
<td>F7 INFRASTRUCTURE CONSTRAINTS</td>
</tr>
<tr>
<td></td>
<td>Cycle infrastructure</td>
</tr>
<tr>
<td></td>
<td>Safety</td>
</tr>
<tr>
<td></td>
<td>Service network</td>
</tr>
</tbody>
</table>
Results

– Drivers: Soft benefits

<table>
<thead>
<tr>
<th>Item</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health</td>
<td>.673</td>
</tr>
<tr>
<td>Image</td>
<td>.615</td>
</tr>
<tr>
<td>Travel time reliability</td>
<td>.547</td>
</tr>
</tbody>
</table>

F2 SOFT BENEFITS
- Health
- Image
- Travel time reliability

F4 COST BENEFITS
- Purchase cost
- Maintenance cost
- Flexible parking

F5 URBAN ADVANTAGES
- Accessibility
- Environmental goals
- Travel time

Drivers

1. **F2 SOFT BENEFITS**
 - Health
 - Image
 - Travel time reliability

2. **F4 COST BENEFITS**
 - Purchase cost
 - Maintenance cost
 - Flexible parking

3. **F5 URBAN ADVANTAGES**
 - Accessibility
 - Environmental goals
 - Travel time
Results

– Drivers: Cost benefits

<table>
<thead>
<tr>
<th>Item</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase cost</td>
<td>.752</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>.604</td>
</tr>
<tr>
<td>Flexible parking</td>
<td>.486</td>
</tr>
</tbody>
</table>

Drivers

F2 Soft Benefits
- Health
- Image
- Travel time reliability

F4 Cost Benefits
- Purchase cost
- Maintenance cost
- Flexible parking

F5 Urban Advantages
- Accessibility
- Environmental goals
- Travel time
Results
– Drivers: Urban advantages

<table>
<thead>
<tr>
<th>Item</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility</td>
<td>0.697</td>
</tr>
<tr>
<td>Environmental goals</td>
<td>0.524</td>
</tr>
<tr>
<td>Travel time</td>
<td>0.463</td>
</tr>
</tbody>
</table>

F2 SOFT BENEFITS
- Health
- Image
- Travel time reliability

F4 COST BENEFITS
- Purchase cost
- Maintenance cost
- Flexible parking

F5 URBAN ADVANTAGES
- Accessibility
- Environmental goals
- Travel time
Results
– Barriers: Vehicle limitations

<table>
<thead>
<tr>
<th>Item</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial coverage</td>
<td>.641</td>
</tr>
<tr>
<td>Loading capacity</td>
<td>.593</td>
</tr>
<tr>
<td>Weather</td>
<td>.524</td>
</tr>
<tr>
<td>Electric range</td>
<td>-.497</td>
</tr>
</tbody>
</table>
Results

– Barriers: Worries and perils

<table>
<thead>
<tr>
<th>Item</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theft</td>
<td>.646</td>
</tr>
<tr>
<td>Organizational effort</td>
<td>.590</td>
</tr>
<tr>
<td>Implementation cost</td>
<td>.583</td>
</tr>
<tr>
<td>Payload damage</td>
<td>.466</td>
</tr>
</tbody>
</table>

BARRIERS

F1 VEHICLE LIMITATIONS
- Spatial coverage
- Loading capacity
- Weather
- Electric range

F3 WORRIES AND PERILS
- Theft
- Organizational effort
- Implementation cost
- Payload damage

F6 RIDERS’ CONCERNS
- Employee acceptance
- Handling experience
- Fun

F7 INFRASTRUCTURE CONSTRAINTS
- Cycle infrastructure
- Safety
- Service network

![Chart](chart.png)
Results

– Barriers: Riders’ concerns

<table>
<thead>
<tr>
<th>Item</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee acceptance</td>
<td>.653</td>
</tr>
<tr>
<td>Handling experience</td>
<td>.607</td>
</tr>
<tr>
<td>Fun</td>
<td>-.462</td>
</tr>
</tbody>
</table>

BARRIERS

F1 VEHICLE LIMITATIONS
- Spatial coverage
- Loading capacity
- Weather
- Electric range

F3 WORRIES AND PERILS
- Theft
- Organizational effort
- Implementation cost
- Payload damage

F6 RIDERS’ CONCERNS
- Employee acceptance
- Handling experience
- Fun

F7 INFRASTRUCTURE CONSTRAINTS
- Cycle infrastructure
- Safety
- Service network
Results

– Barriers: Infrastructure constraints

<table>
<thead>
<tr>
<th>Item</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle infrastructure</td>
<td>.719</td>
</tr>
<tr>
<td>Safety</td>
<td>.527</td>
</tr>
<tr>
<td>Service network</td>
<td>.484</td>
</tr>
</tbody>
</table>

BARRIERS

F1 VEHICLE LIMITATIONS
- Spatial coverage
- Loading capacity
- Weather
- Electric range

F3 WORRIES AND PERILS
- Theft
- Organizational effort
- Implementation cost
- Payload damage

F6 RIDERS’ CONCERNS
- Employee acceptance
- Handling experience
- Fun

F7 INFRASTRUCTURE CONSTRAINTS
- Cycle infrastructure
- Safety
- Service network
Results
– Overall factor structure

DRivers

- **F2 SOFT BENEFITS**
 - Health
 - Image
 - Travel time reliability

- **F4 COST BENEFITS**
 - Purchase cost
 - Maintenance cost
 - Flexible parking

- **F5 URBAN ADVANTAGES**
 - Accessibility
 - Environmental goals
 - Travel time

BarrIers

- **F1 VEHICLE LIMITATIONS**
 - Spatial coverage
 - Loading capacity
 - Weather
 - Electric range

- **F3 WORRIES AND PERILS**
 - Theft
 - Organizational effort
 - Implementation cost
 - Payload damage

- **F6 RIDERS’ CONCERNS**
 - Employee acceptance
 - Handling experience
 - Fun

- **F7 INFRASTRUCTURE CONSTRAINTS**
 - Cycle infrastructure
 - Safety
 - Service network
Drivers and barriers for adapting cargo cycles

– Agenda

1. **Problem statement**
 Cargo cycles can be used to solve traffic problems, but are rarely used and poorly studied

2. **Method**
 Survey of real-life interested cargo cycle users

3. **Results**
 Identifying underlying drivers and barriers by means of an exploratory factor analysis

4. **Implications**
 Building a framework for describing and researching cargo cycle adoption
Implications

• Based on the results of the factor analysis, we propose a framework for describing and researching the adoption of cargo cycles in last mile logistics
• Our results indicate that among barriers, infrastructure constraints are considered as most important
• Among drivers, importance rating are closely together, with cost benefits scoring slightly highest
Thank you very much for your attention!

Lars Thoma
lars.thoma@dlr.de
German Aerospace Center (DLR) | Traffic Research | Commercial Transport
Rutherfordstraße 2
12489 Berlin
Item loadings on the seven factors

<table>
<thead>
<tr>
<th>Item</th>
<th>F1 Vehicle limitations</th>
<th>F2 Soft benefits</th>
<th>F3 Worries & perils</th>
<th>F4 Cost benefits</th>
<th>F5 Urban advantages</th>
<th>F6 Riders’ concerns</th>
<th>F7 Infrastructure constraints</th>
<th>h2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial coverage</td>
<td>.641</td>
<td>-0.108</td>
<td>.033</td>
<td>-0.084</td>
<td>.057</td>
<td>.078</td>
<td>-0.063</td>
<td>.44</td>
</tr>
<tr>
<td>Loading capacity</td>
<td>.593</td>
<td>-0.267</td>
<td>.122</td>
<td>0.025</td>
<td>0.014</td>
<td>-0.215</td>
<td>0.218</td>
<td>.53</td>
</tr>
<tr>
<td>Weather</td>
<td>.524</td>
<td>-0.084</td>
<td>.229</td>
<td>0.165</td>
<td>-0.210</td>
<td>.241</td>
<td>0.042</td>
<td>.47</td>
</tr>
<tr>
<td>Electric range</td>
<td>-0.497</td>
<td>-0.213</td>
<td>0.180</td>
<td>0.378</td>
<td>0.106</td>
<td>-0.041</td>
<td>-0.125</td>
<td>.50</td>
</tr>
<tr>
<td>Health</td>
<td>-0.041</td>
<td>0.673</td>
<td>0.088</td>
<td>0.127</td>
<td>0.024</td>
<td>-0.119</td>
<td>-0.051</td>
<td>.50</td>
</tr>
<tr>
<td>Image</td>
<td>0.004</td>
<td>0.615</td>
<td>-0.133</td>
<td>-0.028</td>
<td>0.324</td>
<td>0.189</td>
<td>0.060</td>
<td>.54</td>
</tr>
<tr>
<td>Travel time reliability</td>
<td>-0.238</td>
<td>0.547</td>
<td>0.121</td>
<td>0.225</td>
<td>0.135</td>
<td>-0.089</td>
<td>0.024</td>
<td>.45</td>
</tr>
<tr>
<td>Theft</td>
<td>-0.141</td>
<td>0.057</td>
<td>0.646</td>
<td>-0.044</td>
<td>-0.067</td>
<td>0.172</td>
<td>0.144</td>
<td>.50</td>
</tr>
<tr>
<td>Organizational effort</td>
<td>0.228</td>
<td>0.016</td>
<td>0.590</td>
<td>-0.067</td>
<td>0.148</td>
<td>0.297</td>
<td>-0.234</td>
<td>.57</td>
</tr>
<tr>
<td>Implementation cost</td>
<td>0.153</td>
<td>0.071</td>
<td>0.583</td>
<td>-0.112</td>
<td>0.129</td>
<td>-0.329</td>
<td>0.105</td>
<td>.52</td>
</tr>
<tr>
<td>Payload damage</td>
<td>0.085</td>
<td>-0.062</td>
<td>0.466</td>
<td>0.163</td>
<td>-0.378</td>
<td>0.116</td>
<td>0.289</td>
<td>.49</td>
</tr>
<tr>
<td>Purchase cost</td>
<td>-0.257</td>
<td>0.017</td>
<td>-0.074</td>
<td>0.752</td>
<td>0.045</td>
<td>0.065</td>
<td>0.089</td>
<td>.65</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>0.130</td>
<td>0.220</td>
<td>-0.103</td>
<td>0.604</td>
<td>0.091</td>
<td>-0.032</td>
<td>-0.215</td>
<td>.50</td>
</tr>
<tr>
<td>Flexible parking</td>
<td>0.028</td>
<td>0.174</td>
<td>0.013</td>
<td>0.486</td>
<td>0.263</td>
<td>-0.058</td>
<td>-0.010</td>
<td>.34</td>
</tr>
<tr>
<td>Accessibility</td>
<td>0.033</td>
<td>0.060</td>
<td>-0.002</td>
<td>0.156</td>
<td>0.697</td>
<td>0.028</td>
<td>-0.020</td>
<td>.52</td>
</tr>
<tr>
<td>Environmental goals</td>
<td>-0.065</td>
<td>0.218</td>
<td>0.011</td>
<td>0.149</td>
<td>0.524</td>
<td>0.030</td>
<td>0.244</td>
<td>.41</td>
</tr>
<tr>
<td>Travel time</td>
<td>-0.405</td>
<td>0.075</td>
<td>0.208</td>
<td>0.218</td>
<td>0.463</td>
<td>-0.168</td>
<td>0.004</td>
<td>.50</td>
</tr>
<tr>
<td>Employee acceptance</td>
<td>0.321</td>
<td>-0.023</td>
<td>0.026</td>
<td>0.068</td>
<td>-0.044</td>
<td>0.653</td>
<td>0.084</td>
<td>.54</td>
</tr>
<tr>
<td>Handling experience</td>
<td>-0.245</td>
<td>-0.032</td>
<td>0.261</td>
<td>-0.072</td>
<td>0.050</td>
<td>0.607</td>
<td>0.028</td>
<td>.51</td>
</tr>
<tr>
<td>Fun</td>
<td>-0.270</td>
<td>0.443</td>
<td>0.077</td>
<td>0.117</td>
<td>-0.010</td>
<td>-0.462</td>
<td>-0.065</td>
<td>.51</td>
</tr>
<tr>
<td>Cycle infrastructure</td>
<td>0.020</td>
<td>0.030</td>
<td>-0.042</td>
<td>-0.076</td>
<td>0.083</td>
<td>-0.025</td>
<td>0.719</td>
<td>.53</td>
</tr>
<tr>
<td>Safety</td>
<td>0.159</td>
<td>0.183</td>
<td>0.246</td>
<td>-0.042</td>
<td>0.276</td>
<td>0.292</td>
<td>0.527</td>
<td>.56</td>
</tr>
<tr>
<td>Service network</td>
<td>0.050</td>
<td>-0.297</td>
<td>0.210</td>
<td>-0.020</td>
<td>0.195</td>
<td>0.049</td>
<td>0.484</td>
<td>.41</td>
</tr>
<tr>
<td>Explained Variance (%)</td>
<td>13.9</td>
<td>9.1</td>
<td>6.2</td>
<td>5.8</td>
<td>5.3</td>
<td>5.0</td>
<td>4.6</td>
<td></td>
</tr>
</tbody>
</table>