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Myocontrol is control of a prosthetic device using data obtained from (residual) muscle

activity. In most myocontrol prosthetic systems, such biological data also denote the

subject’s intent: reliably interpreting what the user wants to do, exactly and only when

she wants, is paramount to avoid instability, which can potentially lead to accidents,

humiliation and trauma. Indeed, instability manifests itself as a failure of the myocontrol

in interpreting the subject’s intent, and the automated detection of such failures can be

a specific step to improve myocontrol of prostheses—e.g., enabling the possibility of

self-adaptation of the system via on-demand model updates for incremental learning,

i.e., the interactive myocontrol paradigm. In this work we engaged six expert myocontrol

users (five able-bodied subjects and one trans-radial amputee) in a simple, clear

grasp-carry-release task, in which the subject’s intent was reasonably determined by

the task itself. We then manually ascertained when the intent would not coincide with the

behavior of the prosthetic device, i.e., we labeled the failures of the myocontrol system.

Lastly, we trained and tested a classifier to automatically detect such failures. Our results

show that a standard classifier is able to detect myocontrol failures with a mean balanced

error rate of 18.86% over all subjects. If confirmed in the large, this approach could pave

the way to self-detection and correction of myocontrol errors, a tighter man-machine

co-adaptation, and in the end the improvement of the reliability of myocontrol.

Keywords: myocontrol, instability, reliability, interactive myocontrol, prosthesis control, amputee

1. INTRODUCTION

Myocontrol—open-loop high-level control based upon muscle activity—is the primary way to
allow upper-limb amputees to control a self-powered prosthesis (Jiang et al., 2012), at least in
the academic community. Such control is usually enforced using (residual) muscle activity of the
user’s body, gathered via surface electromyography (sEMG,Merletti et al., 2011), or more advanced
techniques (Castellini et al., 2014). It is intended and desired, that coordinated muscle activation
patterns correspond to desired actions of the rehabilitation device; a suitable system must then be
put in place to correctly interpret such patterns, exactly for the duration of an action—this is the
essence of reliability in myocontrol.

Instability in myocontrol is here outlined as the manifested consequence of low robustness of
the human-machine interface (HMI) control system, with respect to changes in the sEMG input
signals (for a same given users intent), producing control outputs inconsistent with respect to the
user’s will. Consequently, we define a myocontrol failure as an event in which the prosthetic hand
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starts a behavior that does not coincide with the one expected by
the user, i.e., it is in contrast with the users intent (note that in
the following of the manuscript the terms myocontrol instability
and myocontrol failure can be used interchangeably). In the
extreme case a failure can be catastrophic: picture for instance
a prosthetic hand suddenly failing to turn the steering wheel of a
car when required.

Still, after 30 years and more of academic research, reliability
of myocontrol is an open issue. Indeed, myocontrol suffers
from the quintessential problems related to human-machine
interaction: the inconstancy of signals gathered from human
beings; the need to determine what the user wants the device
to do (at best, a blurry target); the fact that, by definition,
assistive/rehabilitation devices are to be controlled by disabled
and impaired persons such as e.g., stroke patients, amputees,
elderly subjects, etc., whose signals are, from the point of view
of the engineer, even worse.

A spectacular example of the general unreliability of
myocontrol can be found in the outcome of the ARM
competition of the 2016 Cybathlon (ETH, 2016). Instability led to
so many failures by users of myocontrolled arm/hand prosthetic
systems that both categories were won by teams using body-
powered one-DoF prosthetic arms, and they were competing
against some of the most advanced academic solutions in the
world1. A very recent, fascinating survey about current pitfalls
and practical requirements of myocontrol is Schweitzer et al.
(2018); see also, for instance, ETH (2016) and the video clips in
Schweitzer (2016).

The reasons why the scientific community has so far been
unable to provide a safe solution to this problem lie both in the
unstable nature of the above-mentioned signals (Micera et al.,
2010; Peerdeman et al., 2011; Fougner et al., 2012; Ison and
Artemiadis, 2014) and we claim (Castellini et al., 2015; Nowak
et al., 2017a, 2018), in the bad design of testing protocols, and
the lack of an appropriate framework to induce co-adaptation
in the user. Interestingly, these remarks obviously also apply to
“standard” human-machine interaction, e.g., teleoperation. Our
way toward the solution of the problem is incremental learning,
allowing for on-demand model updates in real time, leading
to an interactive myocontrol paradigm: a natural, simultaneous
and proportional (s/p) control scheme which can be taught new
information (Gijsberts et al., 2014; Strazzulla et al., 2017), and
where the possibility of updating should desirably be achieved in
an autonomous and real-time fashion. Therefore, an “automatic
oracle” able to detect myocontrol instability is the first step
toward such an approach, that otherwise would require the
presence of the subjective judgement of a “human oracle” (i.e., the
experimenter or the subject), introducing a significant weakness
in the whole paradigm (Nowak et al., 2018). Following up our
own preliminary work (Nowak et al., 2017b), we hereby propose
a further advancement toward the automated detection of failures
inmyocontrol, especially by involvingmultiple subjects in amore
appropriate experimental protocol and using a completely new
feature extraction and labeling approach for the classification

1The winners are Robert Radocy of TRS Prosthetics (TRS-Prosthetics, 2016) and
the Softhand Team (Godfrey et al., 2017).

along with an extended analysis and discussion. Other past
studies also attempted fault-tolerant approaches to myocontrol
(e.g., Hargrove et al., 2010; Scheme et al., 2011; Amsuss et al.,
2014); however, they were concerned with classification of
myoelectric patterns, therefore not considering s/p myocontrol
as it has been made in the present work.

In order to minimize the complexity of the problem, we made
the assumption that if we engage a human subject in a simple,
well-defined task with a clear aim, the subject’s intent will adhere
to the actions required by the task. If we can time the intervals
during which a specific action is required, we can then claim
that the subject’s intent is the sequence of actions scripted in
the task. Accordingly, we designed an extremely simplified, well-
structured but still realistic grasp-carry-release experimental task,
to evaluate automatic detection of the myocontrol instability.
Namely, we engaged six subjects, five able-bodied persons and
one trans-radial amputee. All subjects were expert users of
the state-of-the-art s/p myocontrol system used in this study
(see section 2.1). By means of a posteriori analysis of video
recordings of the experiment, we were able to obtain the starting
and ending times of the grasp actions and to determine the
myocontrol failure occurrence instants, i.e., when the hand
would grasp during the no-grasp intervals and vice-versa (false
positives and false negatives). Additionally, each user had a
wireless button available to signal his/her feeling on when the
myocontrol system would be failing. Using these pieces of
information, we could exactly label the task execution. Lastly,
a standard classifier was used to try and associate features—
extracted from the myocontrol-predicted motor currents and the
status feedback signals from the prosthetic hands—to failures
(both false positives and negatives).

The article is organized as follows: in section 2 the
experimental setup and protocol, and the classification system
are presented, whereas section 3 reports per-subject and global
analyses results, and finally section 4 is dedicated to the
discussion of several emerging aspects and conclusions.

2. METHODS

Figure 1 depicts a conceptual representation of the HMI
organization and informational flow related to the setup used
in this work. The idea of an automatic oracle for myocontrol
failure detection is also outlined. In this relation, the oracle acts
as a supervising agent having access to all information available
within the HMI system for a hand prosthesis. The oracle should
be able to gather significant data, manipulate and interpret it and,
finally, provide a response on the occurrence of a myocontrol
failure (as output of a classification system) whenever consulted.
This behavior should be available online during the control of
the prosthesis, also providing informational feedback to the user
and/or demanding for an interaction if useful, and supplying
specific buffered data to allow the s/p myocontrol update its
model in the face of new detected instabilities, carrying out an
interactive learning paradigm. Relying on such architecture, in
this work we focussed on evaluating the possibility to detect
myocontrol failures by extracting features that are based on the
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myocontroller prediction outputs (belonging to the prosthetic-
hand independent informational zone, see Figure 1) and on a
minimal set of the prosthetic hand feedback signals (belonging to
the human-machine interface informational zone, see Figure 1).

2.1. Experimental Setup and Control
The experimental setup for the intact subjects as well as for the
amputated subject is visible in Figure 2. For the intact subject,
it consisted of a commercial orthotic splint that was fitted with
a custom-design mounting for the i-LIMB Revolution multi-
fingered prosthetic handmanufactured by Touch Bionics / Össur
(Touchbionics, 2017) (in the academic variant called Robo-limb)
and a single Myo bracelet by Thalmic Labs (Thalmic-Labs,
2017). The i-LIMB is a commercially available electric-powered
prosthetic hand presenting 6-DoF, including the flexion of 5
motorized fingers plus the abduction of the thumb. The Myo
has eight sEMG sensors covering the full circumference of the
users proximal forearm, and allows to acquire sEMG data at a
sampling rate of 200 Hz. The Robo-limb has six step motors,

each one of which can directly be controlled in current via a
simple serial port protocol. This prosthetic hand provides, for
each motor, feedback signals about the current reading and
a “digit status” flag; in particular, this digit status feedback
consists of a signal with discrete values, each of them identifying
univocally one of the following digit statuses: “opening,” “open,”
“closing,” “closed,” and “stalled”. For the amputed subject, the
setup consisted of a specifically designed orthotic socket, with
the Robo-limb attached to its end-point by means of a standard
connection interface. In particular, the prosthetic socket was a
bespoke carbon fiber socket with 8 sEMG sensors embedded, and
a standard pin/lock connection, manufactured by Pohlig GmbH
(GmbH, 2019). The socket therefore allowed to acquire sEMG
signals from the residual forearm’s muscles. The experimental
setups were completely wearable thanks to portable power
supplies (lithium batteries) and wireless data communication
with a nearby computer (bluetooth). All subjects were provided
with a wireless button to signal whenever the myocontrol failed
in interpreting their intent (more details in section 2.2).

FIGURE 1 | Conceptual block diagram of the automatic oracle applied to the HMI for the control of a prosthetic hand. The present study focuses on the possibility of

detecting myocontrol failures extracting features from the Prosthetic hand-independent and Human-Machine Interface informational zones. Dashed lines indicate

desirable information flows for the future on-line implementation of the oracle.

FIGURE 2 | Overview of the experimental setup. (A) Setup view for the able-bodied subjects. (B) The setup worn by one of the subjects. Electronics and battery

supply are embedded in the palm area of the splint. (C) Setup view for the amputee subject. (D) The setup worn by the amputee subject. Electronics and battery

supply are embedded in a small backpack.
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S/p myocontrol was enforced using four parallel instances of
Ridge Regression with Random Fourier Features (RR-RFF), a
method already tested and used for myocontrol; the description
of this particular Machine-Learning(ML)-based myocontroller
lies outside of the article aims—for details refer to Gijsberts
et al. (2014), Strazzulla et al. (2017), and Patel et al. (2017).
Rectified sEMG data, pre-processed with a 1st-order Butterworth
low-pass filter with cut-off at 1 Hz, was taken as the input
space of the myocontroller. On the other hand, the output of
the myocontroller was given by the outputs of the four RR-
RFF instances, and it was directly fed as (proportionally scaled)
current commands to the six motors of the prosthetic hand.
Note that, in order to build the RR-RFF instances, the algorithm
was trained by gathering sEMG data while the users performed
specific actions in accordance with explicative visual stimuli
administered by the i-LIMB itself: i.e., the user followed the
actions showed by the robotic hand (i.e., the ground truth)
while, automatically, the sEMG data was acquired in order to
train the algorithm (for details see again Gijsberts et al., 2014;
Patel et al., 2017, and refer to section 2.2 for information on
the experimental procedure and specific actions). The reason
why only four myocontrol prediction signals are used for the
six DoFs of the prosthetic hand is that, for the grasp actions
required in this study, the flexion of the middle, ring and little
fingers are fully coupled (see section 2.2). Finally, it is worth
to note that the output of the RR-RFF algorithm is a real
number, which we limit to values between 0 and 1. In this
relation, the mapping of this value to the prosthetic hand motor
currents was based on a threshold (empirically set to 0.3) in
order to let the users voluntarily trigger the prosthetic hand
action. This means that the proportional control was between
0.3 and 1, whereas below 0.3 the robo-limb was set to a “home
configuration” with all fingers fully open (see also the robo-limb
actions description in section 2.2.3). Finally, please note that the
use of the activation threshold and the “home configuration” are
not arbitrary assumptions of the present study, but they were
already included in the implementation of the RR-RFF-based s/p
myocontrol developed and presented in our past works (Gijsberts
et al., 2014; Patel et al., 2017; Strazzulla et al., 2017).

2.2. Experimental Protocol
2.2.1. Participants
The experiment was performed in accordance with the
Declaration of Helsinki and was approved by the Work
Council of the German Aerospace Center. All participants were
thoroughly informed about the experimental protocol and were
asked to sign an informed consent form. The participants were
five able-bodied subjects and one trans-radial amputee, in the
age between 28 and 45 years old among which there were five
men and one woman. All subjects were experts in the usage of
the state-of-the-art s/p myocontrol used in this study. “Experts”
means that they knew what myocontrol is and they already used
the same setup of this work at least two times in the last 2 months.
This was necessary since we wanted to detect failures rather than
observing the quality of the control. Additionally, please note that
the myocontroller used in this study allows incremental learning,
therefore enabling continuous co-adaptation during the online

prosthesis usage by triggering new model updates; this further
justifies the engagement of expert users, since in this case the
failure detection is very useful also when a certain learning (and
co-adaptation) framework was already established.

2.2.2. The Carrying Task
The central part of the experiment is composed by the repetitions
of a specifically designed carrying task. In detail, a mug was
supposed to be grasped at a low height using a power grasp (see
also section 2.2.3), carried to a different location and released
at an elevated height (1d ≈ 1m). For each task the subject
started in a seated position, then stood up, performed the task
and ended the repetition by sitting down again. After moving the
mug to the elevated position the following iteration of the task
was performed in the opposite direction, i.e., moving the mug
from the elevated to the low position. This was repeated ten times,
i.e., five tasks low to elevated position and five tasks elevated to
low position. Note that the very simple structure of this task was
desirable in order to hold our assumption that a human subject
involved in a well-defined task with a clear aim will adhere to
the actions required by the task. However, bisedes its simple
structure, the specific design of this experimental task included
walking, standing up, sitting down and body posture rise/lower—
in addition to the main idea of object grasping/releasing—
because we wanted to introduce mental effort/concentration and
body posture demanding elements in the execution of the task,
since they are known as stress factors for myocontrol instability
(see section 2.2.5). In case a “catastrophic” failure prevented the
completion of the task (i.e., the mug was dropped, impossibility
to grasp or release the mug, etc.), the subject was asked to return
to the seated position. The mug was returned to the original
location and the attempted task was repeated. In this relation,
please note that a failure during the transportation phase of
the grasped object not necessarily coincided with a mug falling;
as a single explicatory example, consider that just the index
erroneously opened during the object transportation: this would
not generate a “catastrophic” failure. After the ten task repetitions
were completed, the subject took a break of no less than 10 min,
and then executed a second session in the same way as the one
just described. In Figure 3we see an overview of the experimental
protocol execution. Therefore, in total, two sessions per subject
were performed, each of which was composed of a myocontroller
training phase and the ten iterations of the mug-carrying task. In
particular, during the training phase the user followed a stimulus
while sEMG data were gathered to train the ML algorithm.

2.2.3. Myocontroller Training and Update Procedure
As already mentioned, the mug is supposed to be grasped using
a power grasp. However, the ML algorithm was trained with
the “power grasp,” “index pointing,” “thumbs-up,” and “rest.”
In this application, the “rest” action implicates the opening of
the artificial hand, i.e., the artificial hand fully open is intended
as a “home configuration” that was reached when the user
didn’t contract the forearm muscles (i.e., the “rest” action). Each
of these actions was provided for the training only with one
repetition demonstrated by the user. Note that this is done to
make the carrying task “more tricky” from a myocontrol point of
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FIGURE 3 | Experimental protocol overview: the subject (1) stood up and began the task, (2) grasped the cup in the lower position, (3) released the cup in the

elevated position, and (4) sat down completing the task. Some parts of the image have been omitted in order to preserve the anonymity of the subject.

view. By adding more grasp types there is an higher probability
of misinterpretation by the ML algorithm. The reason of this
lies on the fact that, by training only on one repetition, the
ML algorithm lacks information about signal variations along
different muscle contractions and body postures. Indeed, the ML
algorithm training was performed in a seated position with the
elbow located on an arm rest, whereas the carrying tasks were
performed in bent and stretched body positions (see Figure 3).

Once the training is completed, the user started the carrying
task session. However, an update of the ML algorithm could
be possible in case of a “catastrophic” failure, i.e., a failure
that prevented the completion of the task. As mentioned
before, after this happened the subject was asked to return
to a seated position and retry the task. Here, if the subject
“catastrophically” failed for a second time, the ML algorithm
was updated. Since RR-RFF can be used incrementally, we
added more information about the failed attempt to the data
base of the algorithm. For example, after the second failed
attempt on release the mug in the elevated position, another
repetition of the “rest” action would be trained to improve the
control in this specific situation. Among all sessions, there were
thirteen repeated attempts and updates were required only in
two cases.

2.2.4. Failure Occurrences Determination
Time instants of myocontrol failure occurrences were annotated
exploiting two sources of information, the video recording of the
full task and the button pressing of the subject. Whenever the
user would realize that the prosthetic hand is not acting according
to her intent, she should indicate this by a short press of the
wireless button. By doing so we combined understanding of the
participant about what was intended to happen with the details
of video analysis. Detailed information on how exactly the two
sources of information (user input and video annotations) were
reconciled are provided in section 2.4.

2.2.5. Instability Stress Factors
It is worth to highlight that the specific design of the experimental
protocol was chosen in order to insert instability stress factors
within the execution of the tasks. Indeed, sources of myocontrol
instability during Activities of Daily Living (ADL) can be
principally due to: mental effort and lack of concentration
of the user during the execution of simultaneous duties (i.e.,
controlling the prosthesis with muscle contraction while walking,
sitting, etc.); usage of small data sets for the training of the
ML-based myocontrol algorithm; user tiredness; and variations
of the body posture (with a particular consideration for the
posture of the arm from where the sEMG data is acquired)
(Fougner et al., 2011; Wolf et al., 2013; Khushaba et al., 2016).
Therefore, the experimental task and protocol were designed in
order to contain the following specific instability stress factors:
increased possibility of misinterpretations of the ML myocontrol
algorithm by training on multiple grasp types with only one
repetition; training of the ML algorithm in a totally different
body posture (in a sitting position with the elbow resting on the
armrest) with respect to the one used during the task executions;
variations of the body (and arm) posture in order to accomplish
the task (standing, sitting, stretching in order to grasp and
release in lower/higher locations, walk); and, finally, several task
repetitions, which likely introduced non-negligible physical and
mental efforts.

2.3. Feature Extraction
The feature types for the classifier were selected on the basis
of the observation that an instability of the myocontrol is
reflected as an oscillatory behavior on the prediction outputs
of the related ML algorithm. Furthermore, according to the
control mapping between the prediction signals and the motor
currents for the control of the prosthetic hand (see section
2.1), in order to actually make a failure happen the prediction
signal has to necessarily show an oscillation, for at least one of
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its four components. Therefore, this has to be reflected, to a
certain extent, in the opening/closing motions of the fingers of
the prosthetic hand (i.e., in a delayed and electromechanically
smoothed form).

Accordingly, two different features were considered. One was
the counting of the number of myocontrol prediction signal
crossings of the threshold value of the prediction-to-motor
currents mapping function (see section 2.1), or, for simplicity,
threshold crossings (TC). It can be noted that such a feature,
embedding the oscillating behavior aforementioned, does not
directly depend on the prosthetic device, being computed just
a step before the artificial hand subsystem is involved (see
Figure 1). For the second feature types, the “digit status” feedback
available from the i-LIMB (see section 2.1) was considered,
which includes the behavior of the prosthetic hand in the feature
space representation. In particular, the i-LIMB feedback was
filtered to obtain a new signal, named “filtered digit status,” with
only two possible values: “flexing” (replacing the closed/closing
digit statuses) and “extending” (replacing the open/opening digit
statuses). Specifically, the “extending” status was associated to
the value 0, whereas the “flexing” status to the value 1. This
way, the counting of the variations of the filtered digit status
value—or simply status changes (SC)—was used as a feature.
Both TC and SC features are computed by means of a running
window; the operation performed over the window was simply
the direct crossings and the status changes. Incidentally, note
that the difference between TC and SC lies in the fact that
the latter embeds information from the physical system of the
prosthesis. Indeed, it is not possible in general to compute SC
from TC: multiple consecutive prediction signal crossings of the
threshold (incorporated by TC) will not be visible in SC if they are
faster than the electromechanical response time of the artificial
hand; additionally, when the prosthesis fingers are stalled due to
external forces, crossings of the threshold will not be appreciable
in SC, since SC varies only in relation to fingers physical motions.

Thereafter, from such features, we derived three different
feature sets: one composed by the TC feature, another by the
SC feature and, lastly, one by the combination of the two
previous ones (denoted TC+SC). It follows that the related
feature vectors are

fTC ∈ N
4,

fSC ∈ N
4,

fTC+SC ∈ N
8,

where fTC, fSC, and fTC+SC are the TC, SC, and TC+SC (in the
following also indicated as TCSC) feature vectors, respectively.
In addition, three different window lengths were tested for
the computation of the feature vectors, both without overlap
and with an overlap of half the window length for each of
them. In this way it was possible to evaluate the performance
of the instability detection also in relation to the delays that
the different feature extraction methods would introduce in
an online implementation. Therefore, resuming for the sake of
clarity, the whole evaluation was tested on three different feature
types, computed with three different window length-window

overlap couples, providing in total 18 feature sets for each of the
subjects involved in the experiment.

2.4. Labeling and Classification
Firstly, for the sake of clarity, note that the automatic oracle was
trained on a training set labeled thanks to the exploitation of the
experimental task design and the video analysis, and thereafter
was tested on new data (that was not part of the training
set). In this testing, even if the experimental task phases were
carefully designed, when a certain action of the prosthesis was
performed (closing, opening or any other) the algorithm would
not be able to predict a myocontrol failure, for example, with
a simple congruency-check, because it doesn’t know when and
why such action was performed—a machine learning algorithm
is required for this purpose. In particular, the labeling of the
features, computed as described in the previous subsection, was
performed by going through three steps: first, the beginning and
end instants of time were obtained for each task; afterwards,
a user’s intent ground truth was determined in relation to the
execution of the grasp or the rest action (see section 2.2); finally,
the instants of time of failures were identified, allowing us to
define the myocontrol behavior as stable or unstable.

The starting and ending time of a task, namely tSTART and
tEND, respectively, were input by the experimenter by pressing
a key on the computer keyboard, while vocally indicating them
to the subject. On the other hand, the user’s intent ground
truth is obtained by manually inspecting the video recording of
each experiment (a timer was seen in the video, synchronized
with the data recording, Figure 3) determining the times of the
grasping and releasing of the mug, here indicated as tGRASP and
tRELEASE, respectively. In this way, considering that the subject
is instructed—within every single task—to (i) rest from tSTART
until grasping the mug, (ii) grasp from tGRASP until releasing it,
and (iii) rest, again, from tRELEASE till the end of the task tEND,
therefore it was possible to individuate the temporal evolution
of the users’ intent with a reasonable degree of reliability, and
use it for the myocontrol performance labeling. A qualitative
graph of the task and user intent timing is depicted in Figure 4.
Thereafter, the instants of time in which a failure occurred where
identified using the video analysis; more in detail, it was done by
carefully looking at the behavior of the prosthetic hand and, once
a behavior of the prosthetic hand in contrast with the user intent
was identified, then the exact instant of time was determined
by individuating the initial video frame of such behavior, and
taking note of the time displayed in the timer present in the
video. Exploiting the information given by the intent ground
truth, the occurrence of motions of the prosthetic hand that
were in disagreement with the user’s intent was considered as
“myocontrol failure” event, whereas every motion in accordance
to the intent was considered as “myocontrol success.” It is worth
to highlight that the determination of failure/success behaviors
is based on a posteriori judgement based on video inspections
which is, however, further supported by the information of
the user’s opinion provided by pressing the wireless button. In
this way, the experiment scene was analyzed (e.g., slow-motion
replay, frame by frame inspection, etc.) without neglecting the
users feeling on the occurrence of a failure: this means that
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FIGURE 4 | A qualitative example of the timing of a task, together with the user intent (that determines the different task zones, denoted with colored areas) and the

failures. The latter were determined by video analysis (red stars), also exploiting the information reported by the subject pressing the wireless button (blue triangles).

The letters (a–d) indicate the different instances of pressing the button in response to a failure, according to the list of section 2.4.

particular attention was devoted to identify failure time instants
around the pressing of the wireless button by the user; however,
at the same time, the entire video was carefully inspected for
failures, and therefore, in case an unwanted behavior of the
prosthesis occurred when not signaled by the user, or differently,
there was no failure even if signaled by the user, the decision
based on the mere video analysis was considered trustworthy.
Indeed the online judgement of the user provided by pressing
the wireless button cannot be considered absolutely reliable; in
particular within the present study we were able to identify
specific recurring unreliable behaviors (refer also to Figure 4):

(a) once a subject presses the button, she will not signal again for
additional failures following the first instance (i.e., while and
just after the button pressing);

(b) there is a “structural” delay between the occurrence of
a myocontrol failure and the pressing of the button by
the user—this is due to a cognitive process in identifying
the failure, and the delay can be remarkable (of the
order of seconds);

(c) during the delaymentioned in (b), if other failures occur then
they are not reliably reported by the user;

(d) finally, even if the subject is asked to constantly focus on
identifying unwanted behaviors of the prosthetic hand, some
failures are not even noticed/perceived by the subject, and
therefore they are simply not reported.

Therefore the video analysis allowed us to determine the
existence and time instants of myocontrol failure occurrences
bypassing the online-only judgement problems just listed above,
which also formed the most relevant criticisms of our previous
preliminar study on automated instability detection (Nowak
et al., 2017b). Finally, note that the failures were discrete events
(see Figure 4) because, in the study, the interest was related to the
initial instant in which an unwanted behavior of the prosthetic
hand manifested. The fact that a failure could persist after its
initial occurrence were not considered as relevant, because the
detection of a failure implies—in an online usage scenario—the

stop of the action executed by the user and the performing of a
model update.

At the end of the procedure just described, the outcome is a
set of time instants of the myocontrol failures. This information
was thereafter used to label the features extracted from the user-
machine data flow (as described in section 2.3). In particular,
since every feature vector corresponded to a certain data window,
in accordance to the specific length and overlap used, if within
the window a failure was present, then the label associated to
such related feature vector was set to “failure” (associated to the
value 1); in the opposite case, as “success” (associated to the
value 0). The labeled features were used as input to a classifier
in order to evaluate the automatic detection of an instability in
the myocontrol.

A Support Vector Machine (SVM) classifier was used to
perform the classification of the feature sets. The implementation
was realized in MATLAB by means of the LIBSVM library
(Chang and Lin, 2001). The procedure for the validation of the
myocontrol failures detection was realized for each single subject
by means of a nested cross-validation (CV) applied to the whole
dataset, composed by the features extracted from the data of
all the tasks executed during the experiment (i.e., 20 tasks, see
section 2.2). Note that training dataset imbalances have been
taken into consideration when training the classifier (especially
in relation to the usage of different window lengths) using a class-
weighted SVM (wSVM) (Akbani et al., 2004). The wSVM differs
from the non-weighted variant because it uses two regularization
parameters C0, for the class “failure” (value: 0), and C1, for the
class “success” (value: 1), instead of using a single regularization
parameter C (for details refer also to Veropoulos et al., 1999).
Specifically, in order to tackle the skewness of class portions in
the datasets, the regularization parameters of the wSVM were
set as C0 = 1 and C1 = n0/n1, where n0 and n1 are the
number of “success” and “failure” classes in the training dataset,
respectively. Thus, in detail, the CV was composed by two nested
loops. The inner loop consisted of a 10-fold CV, where a grid-
search was conducted for the selection of the best wSVM classifier
hyperparameter combination. The outer loop, a 10-fold CV as
well, evaluates the performance of the wSVM model that won in
the inner loop, tested on a separated external fold.

Frontiers in Neurorobotics | www.frontiersin.org 7 August 2019 | Volume 13 | Article 68

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Meattini et al. Instability Detection for Interactive Myocontrol

3. RESULTS

3.1. Metrics and Statistical Analysis
First, an analysis of the myocontrol failure occurrences along
the individual task executions is reported. Such analysis provides
for an overview of the temporal distribution of the failures
and, according to the structure of the experimental protocol,
permits to retrieve preliminary considerations on the nature and
distribution of the failures themselves.

Subsequently, a global evaluation of the classification
performance was carried out considering all the six subjects
involved in the experiment. Specifically, in order to provide
an overview of the experimental results, we used the Receiver
Operating Characteristics (ROC) (Fawcett, 2006), and computed
the balanced error rates (BER) over the different combinations
of window lengths and overlaps for the extraction of the
features. Furthermore, the data gathered from the subjects
was also evaluated statistically. Here, we performed a three-
way ANOVA with the factors feature type, window length,
and window overlap, in order to determine the set of
parameters which provides the best performances. Finally, due
to the modest number of subjects involved in the present
“first step” study on automatic myocontrol failure detection,
we conducted a statistical power analysis related to our
experimental design.

3.2. Per-Subject Failure Occurrence
Analysis
In this section a per-subject analysis of the failure occurrences
is provided, intended to launch the global analysis on the
classification performance of the following subsection, which
otherwise could result incomplete since decoupled from a view of
the number and temporal distribution of the myocontrol failures.
In the following, the subjects involved in the experiments will be
indicated as S1, S2, S3, S4, and S5 for the able-bodied ones, and
SA for the amputee.

Fist of all, an example of the temporal plot of the myocontrol
failures along with the wireless button pressings is provided in
Figure 5, in particular for one task of the subjects S4 and SA.
Such graphs are the equivalent realistic case of the qualitative
graph of Figure 4. For the sake of compactness, the temporal
plots of the failures for all the tasks and subjects are not reported,
instead the number and temporal distribution of the failures were
analyzed in an aggregate form along the different task executions,
considering each subject individually.

Figure 6A shows the mean number of failures per task related
to each subject. In particular, we can see that the highest mean
number of failures was given by the subject S4, while the
highest standard deviation can be observed in relation to the
subject S1. From this preliminary analysis (together with the
example provided in Figure 5), it is already possible to notice
that the general behavior of the myocontrol failures for the
amputee subject SA was comparable with the ones presented
by the able-bodied subjects. This allows a global analysis of
the failure detection performance including all subjects (see
next subsection). Then, for a finer analysis, in Figure 6B the
mean number of failures per subject is reported for the different

zones of the task executions, that are: Pre-Grasp (between tSTART
and tGRASP), Grasp (between tGRASP and tRELEASE) and Post-
Grasp (between tRELEASE and tEND)—see section 2.4. From such
figure it is possible to observe that the mean number of failures
appreciably increased for all the subjects during the last part
of the task execution (i.e., the Post-Grasp zone). This could be
due to the combination of two aspects: the first was the lack
of concentration due to the negative effect of mental and/or
physical efforts in executing the task; the secondwas related to the
duration of the Post-Grasp zone, which was found to be longer
than the other zones for all subjects.

In order to further analyse the possible presence of patterns
of failure occurrences within the task zones themselves, in
Figure 6C a map of the temporal trend of the mean number
of failures is provided. Specifically, such a map was computed
according to a task-zones-wise normalized time, in order to make
the various task durations uniform. Looking at the figure, first
of all it is possible to better see that, on average, the myocontrol
failures were mostly concentrated in the Post-Grasp zone of the
task execution, and particularly in its central part. Furthermore,
it is visible that at the beginning of the task, specifically in the
first part of the Pre-Grasp zone, the mean number of failures
was particularly limited (in several zones, zero). Differently, an
increasing of failures was present as the normalized tGRASP time
was approached (i.e., the reaching to grasp phase), in which
the motions of the arm and of the whole body of the subjects
were particularly stressed (see frame 2 in Figure 3). Lastly, we
can highlight that, in the Grasp zone, the mean number of
failures was comparable with the values observable in the Pre-
Grasp zone; in particular, those subjects that presented a higher
average number of failures while holding the object, showed such
behavior more in proximity of the starting and ending parts
of the object grasp action. We are able to observe a certain
degree of consistency among the Pre-Grasp and the Grasp zones,
characterized by a clearly lower average number of failures with
respect to the Post-Grasp zone.

3.3. Global Evaluation
3.3.1. Classification Performance
The ROC curves plot the true positive rate vs. the false positive
rate obtained by modifying the decision criterion of the wSVM
class membership probabilities output, and were computed for
every feature set, for each subject, in accordance with the
convention illustrated in the following. A “myocontrol success”
(or “success,” S) was considered the positive condition (P),
whereas a “myocontrol failure” (or “failure,” F) was considered as
the negative condition (N). In accordance with this, it was possible
to define the relative true positive (TP), false positive (FP), false
negative (FN) and true negative (TN) occurrences, that can be
arranged in a confusion matrixMconf of the form

Mconf =

[

NTP NFP

NFN NTN

]

,

where NTP, NFP, NFN , NTN are the total number of TP, FP, FN,
and TN occurrences based on the wSVM classifier prediction
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FIGURE 5 | Real-case example of the temporal plot of the myocontrol failures and the wireless button pressings within a task execution, for the subjects S4 and SA.

The failure occurrences are determined by the a posteriori video analysis of the experiments. (A) Eighth task of the subject S4. (B) Twelfth task of the subject SA.

outputs, obtained during a single validation of the outer loop 10-
fold CV (see Labeling and Classification subsection) for a given
feature set. In this relation, the matrix of occurrence ratesMrate is
given for each couple of subject and feature set as

Mrate =

[

TPR FPR

FNR TNR

]

=









NTP

NTP + NFN

NFP

NFP + NTN

NFN

NTP + NFN

NTN

NFP + NTN









,

(1)

where TPR, FPR, FNR, and TNR are the TP, FP, FN, and TN
rates, respectively. Figure 7 therefore reports the mean ROC
curve—over the five intact subjects and for the amputee—of the
ROC curves obtained from the TPR and FPR of the matrices
computed as in (1). Furthermore, Table 1 reports the Area
Under Curve (AUC) of the mean ROCs of Figure 7: indeed
the AUC provides an aggregate measure of the quality of the
classifier model’s predictions across all possible classification
thresholds applied to the decision values; for further details
about ROC and wSVM decision values see Fawcett (2006)
and Chang and Lin (2001).

In relation to these figure and table, let us firstly observe
the results given by the TC feature type. Window lengths of
0.5 s report for lower AUC values, under the threshold of 0.8
(both for intact subjects and amputee), highlighting the presence
of a relatively consistent number of missed or wrong failure
detections. Instead, with window lengths of 1 s and 3 s we can see
AUC values grater than 0.8, with the highest one equal to 0.9075
and 0.953 for the intact subjects and the amputee, respectively,
for a 3 s overlapped window. Differently, looking now at Figure 7
and Table 1 for the TCSC and SC feature types, it is possible
to observe better classification performance, i.e., AUC values
always greater than 0.8, and greater than 0.9 if only the window
lengths of 1 s and 3 s are considered. In particular, for the 3s
window length, we can see that the minimum AUC value is equal
to 0.942. Here, we can observe the preferable classifier model’s
performance for the case of a 3 s non-overlapped window: an
AUC of 0.9606 for the intact subjects and 0.9927 for the amputee.
Therefore, better classification performance are reported for the
same combination of selected features for both intact subjects and
amputee, also showing similar trend of performance along all the
features/windowings. The overall best score was reported by the
amputed subjects with an AUC of 0.9927.

In order to further evaluate the failure detection performance
and statistically assess their distribution among the subjects, the
BER was computed for the different feature types and window
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FIGURE 6 | Analysis of the number and temporal distribution of the myocontrol failures, also in light of the different zones of the task executions, according to the

experimental protocol and considering each subject singularly. (A) Mean number of failures along tasks for each subject. Error bars represent standard deviation.

(B) Mean number of failures in the different zones of the tasks for each subject. Error bars represent standard deviation. (C) Map of the temporal behavior of the mean

number of failures for each subject, computed on time portions normalized with respect to the different zone durations of the task executions.

length/overlap combinations. The BER is given as

BER =
100

2

(

NFN

NTP + NFN
+

NFP

NFP + NTN

)

,

where the multiplication by 100 is present to obtain a percentage
value. The goal of the statistical analysis was to use the BER
outcome metrics to compare different features and windowing
characteristics. In order to do that, we first carried out a
comparison between the intact subjects and the amputee. This
has been done in two directions: (i) looking at the temporal
distribution of the failures in the tasks and (ii) looking at the
BER outcome. In relation to the distribution of the failures
along the task, the temporal trend of the failures—as already
illustrated in Figure 6C—was considered. Indeed, in Figure 8A

such temporal trend is illustrated among all the subjects in a

least square sense, highlighting the cases related to the amputee
(red circles) and the cases related to the intact subjects (blue
crosses). Then, the influence of each single case contributing
to the least square trend was assessed computing the related
Cook’s distances—a commonly used estimate of the influence of
data points in least-squares regression analyses (Cook, 2000)—
which values are reported in Figure 8B. In particular, within
this latter figure, it is also depicted an aggregated range-plot
that highlights how the Cook’s distances related to the amputee
(marked with red circles in the range-plot) are not exceeding
the middle point of the range of all distances, therefore meaning
that the influence of the amputee on the temporal trend of
the failure was limited with respect to the entire group of
subjects. On the other hand, from the point of view of the
BER metrics, the presence of a significant difference between
amputee and intact subjects was verified, computing the BERs
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FIGURE 7 | The mean ROC curves for the amputee and intact subjects, with respect to the selected type of feature, and reported for the different combinations of

window length and overlap. In gray, the ROC curves obtained for each subject during the outer loop of the nested CV; red, blue, and green standard lines indicate the

ROC curves related to intact subjects for the TC, TCSC, SC features, respectively, and the triangle-marked lines indicate the amputee. Dashed and circle-marked lines

indicate the half window overlap for intact subjects and amputee, respectively. (A) ROC curves for the feature Threshold Crossing (indicated by TC). (B) ROC curves

for the feature Threshold Crossing plus Status Change counting (indicated by TCSC). (C) ROC curves for the feature Status Change counting (indicated by SC).
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TABLE 1 | The AUC values with respect to the ROC curves illustrated in Figure 7, reported for the different type of feature and combinations of window length/overlap,

for the intact subjects (S1–5) and the amputee (SA).

AUC

Feature type Window overlap 0.5 s window 1 s window 3 s window

S1–5 SA S1–5 SA S1–5 SA

TC

No overlap 0.7955 0.7172 0.8286 0.8108 0.8895 0.9031

Overlap 0.7986 0.7656 0.8274 0.8731 0.9075 0.953

TCSC

No overlap 0.86 0.9196 0.9159 0.9662 0.9526 0.9722

Overlap 0.8514 0.9345 0.9017 0.9523 0.942 0.9815

SC

No overlap 0.897 0.9195 0.9075 0.9808 0.9606 0.9927

Overlap 0.9003 0.9304 0.9044 0.9755 0.9425 0.9915

Numbers in bold highlight the higher AUC values for S1–5 and SA.

for all the combination of feature and windows, grouping
then the data as “amputee” and “intact”. To do this, firstly
the normality of these data was assessed using the Shapiro-
Wilk test, which reported that the distribution of the group
“amputee” significantly differed from a normal distribution
(p = 0.042; significance level set to 0.05). Consequently, we
performed the non-parametric Wilcoxon rank-sum test, which
results reported that the BERs of the “amputee” group did not
differ significantly from the “intact” group, W = 1021, p =

0.0826. Therefore, given the limited influence of the amputee
on the overall temporal trend of failures during the tasks and
the non-significant difference between the BERs of the intact
subjects and the amputee, for the main statistical analysis related
to the comparison of the different features and windowing
combinations we pooled the data of the intact subjects and the
amputee together for a global evaluation of the classification
performance.

Therefore, in this relation, we investigated three different
factors with the BER outcome, namely feature type (TC,
TC+SC or SC), window size (0.5s, 1.0s or 3.0s) and window
overlap (no overlap or half overlap). Taking these factors
into account we performed a three-way ANOVA using the
statistical tools provided in R (R Core Team, 2013). Normality
of data distribution was verified using the Shapiro-Wilk test,
and a Levene’s test to check the homogeneity of variance was
performed; both tests revealed that the assumptions of the
ANOVA were not violated. Statistical significance was set to
p < 0.05. We obtained the following results: for the factor
feature type F(2, 90) = 17.493, p < 10−3, for the factor
window size F(2, 90) = 2.809, p = 0.066 and for window
overlap F(1, 90) = 1.866, p = 0.175. Since window size, window
overlap and all interaction terms as well have no significant
influence, as usual in the case of nonsignificant factors we
pooled together the related data, reducing the model to the
only factor feature type, and performed a one-way ANOVA.

The results are F(2, 105) = 18.09, p < 10−3. A boxplot
of the different groups can be found in Figure 9. The one-
way ANOVA was then followed up by a Tukey-test to perform
pairwise comparisons. It followed that both SC and TC+SC
perform significantly better than TC with p < 10−3 in both cases.
However, the difference between SC and TC+SC is not significant
with p = 0.569. The Tukey-test therefore revealed that better
classification performance are obtained with the SC and TC+SC
feature types.

Finally, we report in Figure 10 the mean BER
per each subject over the single BERs obtained with
both the TC+SC and SC feature types (since we have
seen that there is no statistically significant difference
between TC+SC and SC). Looking at the figure, the
resulting mean BER over all the subjects is equal to
18.86%. This classification performance provides positive
outcomes on the actual possibility to automatically detect
instability with the mid-term prospect of improving
myocontrol reliability.

3.3.2. Statistical Power and Results Generalizability
In order to analyse the power of our experimental design in
detecting statistical effects, we conducted a post hoc power
analysis with the program G*Power (Faul et al., 2009; for a
full description see Erdfelder et al., 1996), with relation to
key main effects taken into account with the ANOVA of the
previous subsection. Let us first consider the significantly better
performance of the features SC and TCSC with respect to TC
resulting from the one-way ANOVA. We have a total sample size
of 108 and a number of groups equal to 3. The related observed
effect size calculated on the basis of the sum of squares was equal
to f = 0.587 [that is a large effect size (Cohen, 1988)]; the power
(1 − β) to detect an effect of this size was determined to be
0.9889 (for a significance set at α = 0.001), which was clearly
greater than the (conventionally) recommended threshold of 0.8
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FIGURE 8 | Influence of the amputee subject on the linear trend of the number

of failures along the different phases of the experimental task (pre-grasp,

grasp, post-grasp zones—see section 3.2). (A) All subjects Least Square

linear trend (red line) of the mean number of failure computed on time portions

normalized with the respect to the different zone duration (see Figure 6C and

section 3.2). Points regarding the amputee subjects are reported with red

circles, wheares blue crosses represent the points related to intact subjects.

(B) Cook’s distances of each single point (or case) related to the Lest Square

trend of (A). In the top-left part, it is present an aggregated range-plot of the

Cook’s distances, highlighting the location of the amputee-related values with

red circles within the whole interval of distance values.

(Cohen, 1988). On the other hand, considering now the effect of
the factors statistically analyzed by the three-way ANOVA in the
previous subsection (total sample size of 108; number of groups
equal to 18), we calculated on the basis of the sum of squares
that the effect size of the factor feature type was 0.6235, and the
related power of the experiment was 0.9955 (for a significance set
at α = 0.001), clearly greater than the conventional threshold
of 0.8. Differently, the effect size of the factor window length
was calculated to be equal to 0.2496 with a related power of the
experiment (1 − β) = 0.1458 (for a significance at α = 0.001)
and (1 − β) = 0.6215 (for a significance at α = 0.05). The
effect size of the factor window overlap resulted to be equal to
0.1436 with a related power of the experiment (1 − β) = 0.0327
(for a significance at α = 0.001) and (1 − β) = 0.3147 (for
a significance at α = 0.05). Therefore, we cannot completely
rule out that there was an effect of the factors window length and
window overlap as resulting by the three-way ANOVA, because it
exists the possibility that the limited statistical power have played
a role in limiting the significance of such specific factors. Indeed,
to obtain a power of at least (1 − β) = 0.8, a total sample size of

FIGURE 9 | Boxplot of the BER grouped by feature type. The symbol “***”

denotes p < 0.001, according to the Tukey-Test of section 3.3.

834 (with significance at α = 0.001) or 383 (with significance
at α = 0.05) would be needed for the window overlap factor,
and a total sample size of 323 (with significance at α = 0.001)
or 158 (with significance at α = 0.05) would be required for
the window length factor. However, what we can say is that the
experiment had enough statistical power to detect a significant
better classification performance given by the usage of the SC
and TCSC feature.

In addition, there are also some considerations that must
be outlined about possible limits in the generalizability of the
presented results. First of all, as already mentioned in section 3.1,
notwithstanding the importance that we think this first study on
Interactive Myocontrol has, it is necessary to take into account
that the number of six subjects involved in the experiment was
relatively modest. In this regard, pooling together the intact
subjects and the amputee for the ANOVA reported in section
3.3.1 has to be handled with care, even if motivated by an analysis
of the influence of the amputed subject on the overall temporal
distribution of the failures and, more directly, on a Wilcoxon
rank sum test (see section 3.3.1). Indeed, there exists the risk
that the number of intact subjects NI = 5 and the number of
amputees NA = 1 could limit the validity of such results to only
the specific subjects involved in this study, therefore affecting its
generalizability. In fact, it is necessary to take into account that in
real daily life applications amputees could show remarkable levels
of heterogeneity with respect to able-bodied subjects and to other
amputees. However, if such differences affect also the sphere of
automatic failure detection for Interactive Myocontrol still needs
to be verified, and further studies have to be carried out also in
this direction, as outlined in the following section 4. In this study,
for a separated analysis and comparison of the failure detection
performance between the intact subjects and the amputee, it is
possible to refer to Figure 7 and Table 1 and related explanations
in section 3.3.1.
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FIGURE 10 | Mean BER per each subject over the single BERs obtained with both TC+SC and SC features. The resultant mean BER over all subjects is

equal to 18.86%.

4. DISCUSSION AND CONCLUSIONS

4.1. Interactive Myocontrol and
Co-adaptation
The study presented in this article took its inspiration from the
interactive myocontrol paradigm as a way to face the problem
of instability in myocontrol, so far unresolved. In interactive
myocontrol, the s/p control scheme can be updated with
new information, once necessary in the face of a myocontrol
failure occurrence—as a particularization of the incremental
learning concept. Within the whole framework of human-
machine interaction in prosthesis control, it is desirable to have
such incremental updates in an autonomous and real time
fashion, and therefore we introduced an automatic oracle agent
as a counterpart of a “human oracle,” whose presence we want
to avoid because it represents a source of bias of the whole
paradigm. The role of the automatic oracle is to detect when a
myocontrol failure occurs, defined as a behavior of the prosthetic
device that does not coincide with the user intent. Indeed, please
note that the goal of the myocontrol model was exactly to
translate the muscle output signals into the user intent: therefore,
if during the prosthesis usage the muscle output became flawed
for any reason, then the model should understand that such
specific output was still related to a certain intent. It follows that
failure detection is needed to let the model gather more data
and understand that new muscle signals have to be considered
in order to continue understanding the right intent of the user.
Finally, theoretically the action of the automatic oracle should be
as much transparent and imperceptible as possible for the user,
i.e., the user should not notice its presence even during the update
of the s/p myocontrol.

On the other hand, we are aware that total transparency is very
difficult to achieve—if not impossible—and indeed, interactive
myocontrol also aims to co-adapt with the user. Picture putting
the automatic oracle together with the subject’s judgement: once
a failure is detected, the system would ask to the user to repeat
the action while she is communicating her intent, in order
to let the oracle gather new data in view of the incremental
learning. Thereafter the myocontroller model update will occur
automatically with basically no additional burden to the user;
in other specific cases the subject could voluntarily “teach the

prosthesis” for new data to preventively improve myocontrol
stability, or even to learn completely novel actions.

In the light of these concepts, the authors firmly think that the
topic of automated instability detection is quintessential to fully
exploit interactive myocontrol. We are therefore confident that
the work here presented, focusing on the possibility of classifying
myocontrol instability, represents an essential preliminary step
toward a truly interactive prosthetic myocontrol.

4.2. Informational Set for Automated
Failure Detection
Figure 9 shows that statistically significantly better classification
performances were obtained using the TC+SC and SC feature
types, whereas there was no significant difference between
TC+SC and SC (refer to the ANOVA results in the section 3.3).
This result tells that the usage of the information coming from
the prosthetic device significantly improved the classification
performance, highlighting the importance of the terminal part of
the user-device interface chain, i.e., the informational zone that
is the outcome of the influences of all the previous steps (the
human-machine interface informational zone—refer to Figure 1).
In light of the obtained results, this can be likely due to the fact
that part of the information embedded in the TC feature was
not corresponding to any behavior visible to a human eye (for
details see section 2.3)—even in ameticulous video analysis—and
therefore was simply not corresponding to a myocontrol failure,
determining poorer classification performance with the TC
feature only, in accordance to the importance of the information
given directly by the prosthetic device.

Additionally, the dimension of the informational set needed
for the automatic oracle is worth to be discussed. In principle
the inclusion of all possible data from the HMI environment
is absolutely welcome (Figure 1): just think about an automatic
oracle that can get as much knowledge as possible from the
prosthetic system in order to better understand myocontrol
failure occurrences and be potentially very reactive to unknown
situation—the more information available, the better the
performance. Nevertheless, the experimental results presented in
section 3.3 shows that a failure classification performance with
mean BER of 18.86% (refer to Figure 10) can be obtained with
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a very small subset of the available HMI information, i.e., only
using the prosthetic hand feedback about the extending/flexing
status of the fingers (SC feature). This specific aspect deserves a
careful consideration, because it shows the possibility to improve
the reliability ofmyocontrol with a very limited set of information
and, therefore, with few hardware requirements (e.g., sensors).
This means lower costs without negatively affect the user’s
degree of acceptance of the prosthetic system (which is strongly
influenced by weight, heat production, hardware faults, etc.).

4.3. Can the Automated Detection Go
Online?
One of the fundamental aspects to detect myocontrol failures
online (and possibly update the myocontroller model on-the-fly)
is the window length used to extract the features for the classifier,
because of the delay that it consequently introduces. The results
show that the classification performance were independent of the
selected window length and related overlap (refer to Figures 7, 9)
and that there was a statistically significant improvement in the
performance as the TC+SC or SC feature types are used (refer
to section 3.3, Tukey-Test results). This means that acceptable
classification performance can be obtained introducing only a
relatively contained delay of 0.25 s on top of the 0.5 s window
length. Indeed, in order to enhance the immediacy of the
failure detection, it is preferable to have shorter time windows,
approaching lengths of 100—200 ms (that are close to the
delay perception limit for humans). On the other hand, notice
that a fast response to a failure occurrence is not a founding
specification for the interactive myocontrol framework. Indeed,
before a failure is detected, some data has to necessarily be logged
in order to allow the incremental update of the myocontroller
model (a query to the user to know which would have been
the correct action could be necessary, if not only the “power
grasp” is supposed to be used for grasping). Therefore, in this
view, a certain delay would be unavoidable—even desirable: the
data could continuously be logged by means of the window for
the features extraction itself, and then automatically provided
for the update when a failure is detected. Even a delay of few
seconds could turn into a desirable feature. For these reasons,
we think that the possibility to classify myocontrol instability
emerging from the results nicely fits the interactive myocontrol
framework, providing remarkable prospectives in the right
direction for further studies toward an online implementation of
the application.

Another important aspect to make the automatic failure
detection go online is the determination of the user intent
“ground truth” necessary to label the training data for the
automatic oracle. In the present work, the definition and timing
of the user intent was possible by the combination of a priori
(design of the experimental task) and a posteriori (video analysis)
actions, which are difficult to be applicable for real world
applications. However, note that our study focused on verifying
the actual possibility to build a classifier able to detect myocontrol
instabilities. Being this work a novel approach and direction of
research in this field, for the moment we didn’t want to respond
to the question “how to determine user intent ground truths

in real world applications for the automatic oracle trainings,”
instead our experimental goal was to find “how to have a reliable
user intent ground truth for the data labeling of the automatic
oracle, in order to verify if myocontrol failure detection is actually
possible.” Aspects relating the determination of reliable user
intent ground truths in real world applications will be object of
future studies.

4.4. A Wider Perspective: Myocontrol and
Radical Constructivism
In Nowak et al. (2018) we speculated that myocontrol, as
instantiated by ML, could benefit from a Radical Constructivist
(RC, standing also for Radical Constructivism) approach. RC is
a branch of constructivist psychology positing that learning, as
a generic process in humans as well as in machines (i.e., the
agents), is an attempt to optimally organize the agent’s perceptive
field, i.e., its own sensory and experiential inner world, according
to some specific fitting criterion (von Glasersfeld, 1983, 1995).
Once it becomes incremental and interactive (Gijsberts et al.,
2014; Strazzulla et al., 2017), myocontrol fits quite well in this
picture: it is the attempt of a ML algorithm to fit as best as
possible the bio-signal patterns received from a disabled human
subject. One of the crucial aspects of RC-framed myocontrol is
then the necessity of having a reliable “oracle” allowing qualitative
feedback be sent back to itself: whenever something goes wrong
(i.e., a myocontrol failure), based on this knowledge the ML
model must take action to correct its own perceptive landscape;
as well, a good fit can be reinforced.

So far, the feedback oracle has been the user herself. Thanks
to interactive learning, she has been able to ask for further
data gathering and model updating whenever required. In RC
terms, we view the quest for an automated oracle—that we have
introduced in this paper—as an attempt to enlarge the perceptive
universe of the machine (Nowak et al., 2018).

Conclusions
In this article we presented the results of a study for the
improvement of the myocontrol of prosthetic hands with respect
to the well-known issue of reliability. We outlined the concept
of “automatic oracle,” i.e., a supervising agent that is able to
classify when a myocontrol failure occurs, and to carry out
an incremental learning paradigm to deal with myocontrol
instability. Relying on such general framework, in this work
we focussed on the possibility of classifying the myocontrol
instability testing a set of features extracted from the user-device
interface’s informational chain. To this purpose, we engaged
six expert myocontrol users (five able-bodied persons and one
trans-radial amputee) in a simplified and carefully designed
experiment. It consisted of 20 grasping tasks for each subject, in
which we were able to identify the exact timing of myocontrol
failure occurrences thanks to the information provided by
the users and to an offline analysis of the experiment video
recordings, as detailed in section 2.3. In this way, exploiting
reasonable assumptions on the subjects’ intent based on the
structure of our experimental protocol, it was possible to label the
features as “myocontrol success” or “myocontrol failure,” in order
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to train and test a wSVM classifier for the automated detection of
myocontrol instability.

We are confident that the work presented in this article
represents a further step toward a truly interactive prosthetic
myocontrol, in which the overall HMI system will be capable
of online detecting myocontrol instability, allowing for proper
model updates and virtuous user-device interactions where
necessary. About forthcoming future work, the focus will
firstly go on improving the failure classification accuracy by
investigating the usage of different and/or more advanced feature
typologies. We also want to work on a generalization of the
failure definition and detection, for example considering the
teleoperation of ideal and “fully programmable” artificial hands,
as it is possible in presence of virtual reality scenarios. Thereafter,
future efforts will be devoted to the implementation of the real
online application. Such kind of studies are fascinating also
in relation to the possible applications in non-prosthetic or -
rehabilitation systems, i.e., in general teleoperation in the field of
human-robot interaction.
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