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Myocontrol is control of a prosthetic device using data obtaed from (residual) muscle
activity. In most myocontrol prosthetic systems, such biagical data also denote the
subject's intent: reliably interpreting what the user warst to do, exactly and only when

she wants, is paramount to avoid instability, which can potetially lead to accidents,
humiliation and trauma. Indeed, instability manifests idf as afailure of the myocontrol

in interpreting the subject’s intent, and the automated detction of such failures can be
a speci ¢ step to improve myocontrol of prostheses—e.g., endling the possibility of
self-adaptation of the system via on-demand model updatesdr incremental learning,
i.e., the interactive myocontrol paradigm. In this work we egaged six expert myocontrol

users (ve able-bodied subjects and one trans-radial ampuwge) in a simple, clear
grasp-carry-release task, in which the subject's intent wa reasonably determined by
the task itself. We then manually ascertained when the intémvould not coincide with the

behavior of the prosthetic device, i.e., we labeled the faites of the myocontrol system.

Lastly, we trained and tested a classi er to automatically dtect such failures. Our results
show that a standard classi er is able to detect myocontrol &ilures with a mean balanced
error rate of 18.86% over all subjects. If con rmed in the lage, this approach could pave

the way to self-detection and correction of myocontrol erres, a tighter man-machine
co-adaptation, and in the end the improvement of the reliality of myocontrol.

Keywords: myocontrol, instability, reliability, interact ive myocontrol, prosthesis control, amputee

1. INTRODUCTION

Myocontrol—open-loop high-level control based upon musclevitgt—is the primary way to
allow upper-limb amputees to control a self-powered prosthegisn@ et al., 20)2at least in
the academic community. Such control is usually enforcedgigiesidual) muscle activity of the
user's body, gathered via surface electromyography (sEM@Getti et al., 201), or more advanced
techniques Castellini et al., 2041t is intended and desired, that coordinated muscle atitva
patterns correspond to desired actions of the rehabilitatienice; a suitable system must then be
put in place to correctly interpret such patterrexactly for the duration of an actierthis is the
essence akliability in myocontrol.

Instability in myocontrol is here outlined as the manifedteonsequence of low robustness of
the human-machine interface (HMI) control system, with resp® changes in the SEMG input
signals (for a same given users intent), producing contrapats inconsistent with respect to the
user's will. Consequently, we de ne a myocontfalure as an event in which the prosthetic hand
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starts a behavior that does not coincide with the one expeoyed along with an extended analysis and discussion. Other past
the user, i.e., it is in contrast with the users intent (ndtattin  studies also attempted fault-tolerant approaches to myoabntr
the following of the manuscript the terms myocontrol institlyi  (e.g.,Hargrove et al., 2010; Scheme et al., 2011; Amsuss et al.,
and myocontrol failure can be used interchangeably). In th€019; however, they were concerned with classication of
extreme case a failure can be catastrophic: picture for iestanmyoelectric patterns, therefore not considering s/p myocoint
a prosthetic hand suddenly failing to turn the steering whefed  as it has been made in the present work.
car when required. In order to minimize the complexity of the problem, we made
Still, after 30 years and more of academic research, ritjabi the assumption that if we engage a human subject in a simple,
of myocontrol is an open issue. Indeed, myocontrol su erswell-de ned task with a clear aim, the subjectss intent waiilhere
from the quintessential problems related to human-machindo the actions required by the task. If we can time the intésva
interaction: the inconstancy of signals gathered from hama during which a speci ¢ action is required, we can then claim
beings; the need to determine what the user wants the devitkat the subjects intenis the sequence of actions scripted in
to do (at best, a blurry target); the fact that, by de nition, the task. Accordingly, we designed an extremely simpli eelllw
assistive/rehabilitation devices are to be controlled salled structured but still realistic grasp-carry-release expentaktask,
and impaired persons such as e.g., stroke patients, amputets,evaluate automatic detection of the myocontrol instépil
elderly subjects, etc., whose signals are, from the pointesf v Namely, we engaged six subjects, ve able-bodied persons and
of the engineer, even worse. one trans-radial amputee. All subjects were expert users of
A spectacular example of the general unreliability ofthe state-of-the-art s/p myocontrol system used in this stud
myocontrol can be found in the outcome of the ARM (see section 2.1). By means afposteriorianalysis of video
competition of the 2016 Cybathloi(TH, 201§. Instability ledto  recordings of the experiment, we were able to obtain the isigrt
so many failures by users of myocontrolled arm/hand prosthet and ending times of the grasp actions and to determine the
systems that both categories were won by teams using bodgyyocontrol failure occurrence instants, i.e., when the hand
powered one-DoF prosthetic arms, and they were competingiould grasp during the no-grasp intervals and vice-versisé
against some of the most advanced academic solutions in tlpositives and false negatives). Additionally, each user had a
world®. A very recent, fascinating survey about current pitfallsvireless button available to signal his/her feeling on wites
and practical requirements of myocontrol Bchweitzer et al. myocontrol system would be failing. Using these pieces of
(2018) see also, for instance,TH (2016)and the video clips in information, we could exactly label the task execution.tlyas
Schweitzer (2016) a standard classi er was used to try and associate features—
The reasons why the scienti c community has so far beerextracted from the myocontrol-predicted motor currents aihe
unable to provide a safe solution to this problem lie both in thestatus feedback signals from the prosthetic hands—to failure
unstable nature of the above-mentioned signélscgra et al., (both false positives and negatives).
2010; Peerdeman et al., 2011; Fougner et al., 2012; Ison andThe article is organized as follows: in section 2 the
Artemiadis, 2013 and we claim Castellini et al., 2015; Nowak experimental setup and protocol, and the classi cation system
et al., 2017a, 20),8in the bad design of testing protocols, and are presented, whereas section 3 reports per-subject and global
the lack of an appropriate framework to induce co-adaptatioranalyses results, and nally section 4 is dedicated to the
in the user. Interestingly, these remarks obviously also afgply discussion of several emerging aspects and conclusions.
“standard” human-machine interaction, e.g., teleoperatiour
way toward the solution of the problem is incremental leagin
allowing for on-demand model updates in real time, leading?2, METHODS
to an interactive myocontrgbaradigm: a natural, simultaneous
and proportional (s/p) control scheme which can be taught newFigure 1 depicts a conceptual representation of the HMI
information (Gijsberts et al., 2014; Strazzulla et al., 20aid organization and informational ow related to the setup used
where the possibility of updating should desirably be acldeme in this work. The idea of an automatic oracle for myocontrol
an autonomous and real-time fashion. Therefore, an “autticna failure detection is also outlined. In this relation, theacte acts
oraclé able to detect myocontrol instability is the rst step as asupervising ageititaving access to all information available
toward such an approach, that otherwise would require thevithin the HMI system for a hand prosthesis. The oracle should
presence of the subjective judgement of a “human oracle’{ie  be able to gather signi cant data, manipulate and interpretid a
experimenter or the subject), introducing a signi cant weaks nally, provide a response on the occurrence of a myocontrol
in the whole paradigmowak et al., 2018 Following up our failure (as output of a classi cation system) whenever caesll
own preliminary work (Nowak et al., 201 )bwe hereby propose This behavior should be available online during the conwbl
afurther advancement toward the automated detection dfifas  the prosthesis, also providing informational feedback touker
in myocontrol, especially by involving multiple subjectsimare  and/or demanding for an interaction if useful, and supplying
appropriate experimental protocol and using a completely nevgpeci c bu ered data to allow the s/p myocontrol update its
feature extraction and labeling approach for the classi@ati model in the face of new detected instabilities, carrying au
interactive learning paradigm. Relying on such architectime
LThe winners are Robert Radocy of TRS Prosthefica-Prosthetics, 20yand  this work we focussed on evaluating the possibility to detect
the Softhand Teamodfrey et al., 2097 myocontrol failures by extracting features that are basedhe
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myocontroller prediction outputs (belonging to thgrosthetic-
hand independeninformational zone, se&igure 1) and on a
minimal set of the prosthetic hand feedback signals (belomgd
the human-machine interfagaformational zone, seEigure 1).

2.1. Experimental Setup and Control

The experimental setup for the intact subjects as well ashfer t “closing

amputated subject is visible iRigure 2 For the intact subject
it consisted of a commercial orthotic splint that was ttedttvi
a custom-design mounting for theLIMB Revolutionmulti-

each one of which can directly be controlled in current via a

simple serial port protocol. This prosthetic hand provides, for

each motor, feedback signals about the current reading and

a “digit status” ag; in particular, this digit status feedita

consists of a signal with discrete values, each of themiigerg

univocally one of the following digit statuses: “opening pém,’

;" “closed,” and “stalled”. For the amputed suhjebe

, setup consisted of a speci cally designed orthotic sockéh w
the Robo-limbattached to its end-point by means of a standard
connection interface. In particular, the prosthetic sockesvea

ngered prosthetic hand manufactured by Touch Bionics / Ossu bespoke carbon ber socket with 8 SEMG sensors embedded, and

(Touchbionics, 20)7(in the academic variant calle®obo-limb
and a singleMyo bracelet by Thalmic LabsThalmic-Labs,

a standard pin/lock connection, manufactured by Pohlig GmbH
(GmbH, 2019. The socket therefore allowed to acquire SEMG

2017. The i-LIMB is a commercially available electric-poweredsignals from the residual forearm's muscles. The experinienta
prosthetic hand presenting 6-DoF, including the exion of 5setups were completely wearable thanks to portable power
motorized ngers plus the abduction of the thumb. The Myo supplies (lithium batteries) and wireless data communication

has eight SEMG sensors covering the full circumference of theith a nearby computer (bluetooth). All subjects were provdide

users proximal forearm, and allows to acquire SEMG data

at with a wireless button to signal whenever the myocontrdefi

sampling rate of 200 Hz. The Robo-limb has six step motordp interpreting their intent (more details in section 2.2).

Environmental Feedback
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Filtered
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sEMG s/p
Pre-Processing Myocontrol

|
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FIGURE 1 | Conceptual block diagram of the automatic oracle applied tadhe HM
detecting myocontrol failures extracting features from th Prosthetic hand-indepe|
desirable information ows for the future on-line implemerstion of the oracle.

Failure
Detection
Response

| for the control of a prosthetic hand. The present stud focuses on the possibility of
ndentand Human-Machine Interfaceinformational zones. Dashed lines indicate

supply are embedded in a small backpack.

FIGURE 2 | Overview of the experimental setup(A) Setup view for the able-bodied subjects.(B) The setup worn by one of the subjects. Electronics and batter
supply are embedded in the palm area of the splint(C) Setup view for the amputee subject.(D) The setup worn by the amputee subject. Electronics and battey
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S/p myocontrol was enforced using four parallel instances gfrosthesis usage by triggering new model updates; this furthe
Ridge Regression with Random Fourier Features (RR-RFF),jsti es the engagement of expert users, since in this case the
method already tested and used for myocontrol; the desaonipti failure detection is very useful also when a certain learifamgl
of this particular Machine-Learning(ML)-based myocontrolle co-adaptation) framework was already established.
lies outside of the article aims—for details refer Gjsberts
et al. (2014) Strazzulla et al. (201,7and Patel et al. (2017) 2.2.2. The Carrying Task
Recti ed sEMG data, pre-processed with a 1st-order ButterwortThe central part of the experiment is composed by the repetitions
low-pass lter with cut-o at 1 Hz, was taken as the input of a speci cally designed carrying task. In detail, a mug was
space of the myocontroller. On the other hand, the output ofsupposed to be grasped at a low height using a power grasp (see
the myocontroller was given by the outputs of the four RR-also section 2.2.3), carried to a di erent location and reksgh
RFF instances, and it was directly fed as (proportionally sgaleét an elevated heightl(d 1m). For each task the subject
current commands to the six motors of the prosthetic handstarted in a seated position, then stood up, performed the task
Note that, in order to build the RR-RFF instances, the algonith and ended the repetition by sitting down again. After movihg t
was trained by gathering SEMG data while the users performegiug to the elevated position the following iteration of theka
speci ¢ actions in accordance with explicative visual stimulwas performed in the opposite direction, i.e., moving the mug
administered by the i-LIMB itself: i.e., the user followed thefromthe elevated to the low position. This was repeated tengime
actions showed by the robotic hand (i.e., the ground truth)i.e., ve tasks low to elevated position and ve tasks elevaved
while, automatically, the SEMG data was acquired in order tdow position. Note that the very simple structure of this tasksw
train the algorithm (for details see agathijsberts et al., 2014; desirable in order to hold our assumption that a human subject
Patel et al., 2017and refer to section 2.2 for information on involved in a well-de ned task with a clear aim will adhere to
the experimental procedure and speci ¢ actions). The reasothe actions required by the task. However, bisedes its simple
why only four myocontrol prediction signals are used for thestructure, the speci c design of this experimental task ided
six DoFs of the prosthetic hand is that, for the grasp actionsvalking, standing up, sitting down and body posture rise/lower—
required in this study, the exion of the middle, ring andtié¢  in addition to the main idea of object grasping/releasing—
ngers are fully coupled (see section 2.2). Finally, it is thor because we wanted to introduce mental e ort/concentratiod a
to note that the output of the RR-RFF algorithm is a realbody posture demanding elements in the execution of the task,
number, which we limit to values between 0 and 1. In thissince they are known as stress factors for myocontrol inltyab
relation, the mapping of this value to the prosthetic hand motor(see section 2.2.5). In case a “catastrophic” failure prewdethte
currents was based on a threshold (empirically set to 0.3) inompletion of the task (i.e., the mug was dropped, impossibility
order to let the users voluntarily trigger the prosthetic lkdan to grasp or release the mug, etc.), the subject was asketiita re
action. This means that the proportional control was betweero the seated position. The mug was returned to the original
0.3 and 1, whereas below 0.3 the robo-limb was set to a “hontecation and the attempted task was repeated. In this relation
con guration” with all ngers fully open (see also the roba¥lb  please note that a failure during the transportation phase of
actions description in section 2.2.3). Finally, please nua the the grasped object not necessarily coincided with a mugglli
use of the activation threshold and the “home con guratiare as a single explicatory example, consider that just the index
not arbitrary assumptions of the present study, but they wererroneously opened during the object transportation: thisigo
already included in the implementation of the RR-RFF-based s/pot generate a “catastrophic” failure. After the ten task titjoas
myocontrol developed and presented in our past wotksgberts  were completed, the subject took a break of no less than 10 min,

etal., 2014, Patel et al., 2017; Strazzulla et al.) 2017 and then executed a second session in the same way as the one
just described. Iirigure 3we see an overview of the experimental

2.2. Experimental Protocol protocol execution. Therefore, in total, two sessions pejesib

2.2.1. Participants were performed, each of which was composed of a myocontroller

The experiment was performed in accordance with theraining phase and the ten iterations of the mug-carryingtds
Declaration of Helsinki and was approved by the Workparticular, during the training phase the user followed a stinsu
Council of the German Aerospace Center. All participants wereavhile sSEMG data were gathered to train the ML algorithm.
thoroughly informed about the experimental protocol and were

asked to sign an informed consent form. The participants wer@.2.3. Myocontroller Training and Update Procedure

ve able-bodied subjects and one trans-radial amputee, & thAs already mentioned, the mug is supposed to be grasped using
age between 28 and 45 years old among which there were & power grasp. However, the ML algorithm was trained with
men and one woman. All subjects were experts in the usage tife “power grasp,” “index pointing,” “thumbs-up,” and “rest.”
the state-of-the-art s/p myocontrol used in this study. flexts” In this application, the “rest” action implicates the opening of
means that they knew what myocontrol is and they already usetthe arti cial hand, i.e., the arti cial hand fully open is iehded
the same setup of this work at least two timesinthe last 2 in@nt as a “home con guration” that was reached when the user
This was necessary since we wanted to detect failures idner didn't contract the forearm muscles (i.e., the “rest” acjidBach
observing the quality of the control. Additionally, pleaseathat of these actions was provided for the training only with one
the myocontroller used in this study allows incrementatféag, repetition demonstrated by the user. Note that this is done to
therefore enabling continuous co-adaptation during theinal make the carrying task “more tricky” from a myocontrol poirit o
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FIGURE 3 | Experimental protocol overview: the subjec{l) stood up and began the task, (2) grasped the cup in the lower position,(3) released the cup in the
elevated position, and(4) sat down completing the task. Some parts of the image have bee omitted in order to preserve the anonymity of the subject.

view. By adding more grasp types there is an higher probabilit®.2.5. Instability Stress Factors
of misinterpretation by the ML algorithm. The reason of this Itis worth to highlight that the speci c design of the experintal
lies on the fact that, by training only on one repetition, the protocol was chosen in order to insert instability stressdec
ML algorithm lacks information about signal variations agpn within the execution of the tasks. Indeed, sources of myawdnt
di erent muscle contractions and body postures. Indeed, the Mlinstability during Activities of Daily Living (ADL) can be
algorithm training was performed in a seated position with theprincipally due to: mental e ort and lack of concentration
elbow located on an arm rest, whereas the carrying tasks weoé the user during the execution of simultaneous duties.,(i.e
performed in bent and stretched body positions (égure 3). controlling the prosthesis with muscle contraction while wagk
Once the training is completed, the user started the carryingitting, etc.); usage of small data sets for the training hef t
task session. However, an update of the ML algorithm could/L-based myocontrol algorithm; user tiredness; and variaio
be possible in case of a “catastrophic” failure, i.e., a failurof the body posture (with a particular consideration for the
that prevented the completion of the task. As mentionedoosture of the arm from where the sEMG data is acquired)
before, after this happened the subject was asked to retufrougner et al., 2011; Wolf et al., 2013; Khushaba et al.)2016
to a seated position and retry the task. Here, if the subjectherefore, the experimental task and protocol were designed i
“catastrophically” failed for a second time, the ML algorithmorder to contain the following speci c instability stress faus:
was updated. Since RR-RFF can be used incrementally, wereased possibility of misinterpretations of the ML myoawht
added more information about the failed attempt to the dataalgorithm by training on multiple grasp types with only one
base of the algorithm. For example, after the second failegkpetition; training of the ML algorithm in a totally di erent
attempt on release the mug in the elevated position, anothdsody posture (in a sitting position with the elbow resting on the
repetition of the “rest” action would be trained to improve the armrest) with respect to the one used during the task execation
control in this speci c situation. Among all sessions, therere variations of the body (and arm) posture in order to accomplish
thirteen repeated attempts and updates were required only ithe task (standing, sitting, stretching in order to graspdan
two cases. release in lower/higher locations, walk); and, nally, sl task
repetitions, which likely introduced non-negligible physieaid

. A mental e orts.
2.2.4. Failure Occurrences Determination entale orts

Time instants of myocontrol failure occurrences were amed

exploiting two sources of information, the video recordirfgle ~ 2.3. Feature Extraction

full task and the button pressing of the subject. Whenever th&he feature types for the classi er were selected on the basis
user would realize that the prosthetic hand is notacting adicg  of the observation that an instability of the myocontrol is
to her intent, she should indicate this by a short press of thee ected as an oscillatory behavior on the prediction outputs
wireless button. By doing so we combined understanding ef thof the related ML algorithm. Furthermore, according to the
participant about what was intended to happen with the detail€ontrol mapping between the prediction signals and the motor
of video analysis. Detailed information on how exactly thit currents for the control of the prosthetic hand (see section
sources of information (user input and video annotationsyeve 2.1), in order to actually make a failure happen the prediction
reconciled are provided in section 2.4. signal has to necessarily show an oscillation, for at leastad
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its four components. Therefore, this has to be re ected, to averlap couples, providing in total 18 featusetsor each of the
certain extent, in the opening/closing motions of the nges subjects involved in the experiment.
the prosthetic hand (i.e., in a delayed and electromechépica
smoothed form). 2.4. Labeling and Classi cation

Accordingly, two di erent features were considered. One wagirstly, for the sake of clarity, note that the automatic deavas
the counting of the number of myocontrol prediction signal trained on a training set labeled thanks to the exploitatidmhz
crossings of the threshold value of the prediction-to-motorexperimental task design and the video analysis, and thereaf
currents mapping function (see section 2.1), or, for simpjicit was tested on new data (that was not part of the training
threshold crossinggC). It can be noted that such a feature, set). In this testing, even if the experimental task phasee wer
embedding the oscillating behavior aforementioned, does n carefully designed, when a certain action of the prosthesis was
directly depend on the prosthetic device, being computed jugperformed (closing, opening or any other) the algorithm would
a step before the arti cial hand subsystem is involved (segot be able to predict a myocontrol failure, for example, with
Figure 1). For the second feature types, the “digit status” feedback simple congruency-check, because it doesn't know when and
available from the i-LIMB (see section 2.1) was consideredyhy such action was performed—a machine learning algorithm
which includes the behavior of the prosthetic hand in thedfeat is required for this purpose. In particular, the labeling of the
space representation. In particular, the i-LIMB feedback wateatures, computed as described in the previous subsectas, w
Itered to obtain a new signal, named “ Itered digit statugith performed by going through three steps: rst, the beginning and
only two possible values: “ exing” (replacing the closedéahg end instants of time were obtained for each task; afterwards
digit statuses) and “extending” (replacing the open/openiigitd a usersintent ground truthwas determined in relation to the
statuses). Speci cally, the “extending” status was adsocta execution of the grasp or the rest action (see section 22jjy,
the value 0, whereas the “ exing” status to the value 1. Thighe instants of time of failures were identi ed, allowing ts
way, the counting of the variations of the Itered digit statu de ne the myocontrol behavior as stable or unstable.
value—or simplystatus change(SC)—was used as a feature. The starting and ending time of a task, name#tart and
Both TC and SC features are computed by means of a runninignp, respectively, were input by the experimenter by pressing
window; the operation performed over the window was simplya key on the computer keyboard, while vocally indicating them
the direct crossings and the status changes. Incidentadite to the subject. On the other hand, the user's intent ground
that the dierence between TC and SC lies in the fact thatruth is obtained by manually inspecting the video recordifg
the latter embeds information from the physical system of theeach experiment (a timer was seen in the video, synchronized
prosthesis. Indeed, it is not possible in general to compute S@ith the data recordingFigure 3) determining the times of the
from TC: multiple consecutive prediction signal crossingshaf ~ grasping and releasing of the mug, here indicatetbaaspand
threshold (incorporated by TC) will not be visible in SCiftheme  treLEask respectively. In this way, considering that the subject
faster than the electromechanical response time of thecai is instructed—uwithin every single task—to (i) rest frdgrart
hand; additionally, when the prosthesis ngers are stallad tb  until grasping the mug, (ii) grasp frorraspuntil releasing it,
external forces, crossings of the threshold will not be appitgtei  and (iii) rest, again, frontreeasdill the end of the taskenp,
in SC, since SC varies only in relation to ngers physical mos.  therefore it was possible to individuate the temporal evolutio

Thereafter, from such features, we derived three di erenof the users' intent with a reasonable degree of reliabiktyd
feature sets: one composed by the TC feature, another by the it for the myocontrol performance labeling. A qualitativ
SC feature and, lastly, one by the combination of the twd@raph of the task and user intent timing is depictedrigure 4.
previous ones (denoted TC+SC). It follows that the related hereafter, the instants of time in which a failure occurvelere

feature vectors are identi ed using the video analysis; more in detail, it wasddy
carefully looking at the behavior of the prosthetic hand and;®n
frc 2 N4 a behavior of the prosthetic hand in contrast with the userimte
fe 2 N4 was identi ed, then the exact instant of time was determined

by individuating the initial video frame of such behaviondca
frccse 2 N8, taking note of the time displayed in the timer present in the
video. Exploiting the information given by the intent ground
wherefrc, fsg andfrccsc are the TC, SC, and TC+SC (in the truth, the occurrence of motions of the prosthetic hand that
following also indicated as TCSC) feature vectors, respegti were in disagreement with the user's intent was considered as
In addition, three dierent window lengths were tested for “myocontrol failure” event, whereas every motion in acconde
the computation of the feature vectors, both without overlapto the intent was considered as “myocontrol success.” liagthv
and with an overlap of half the window length for each ofto highlight that the determination of failure/success beibas
them. In this way it was possible to evaluate the performancis based ora posteriorijudgement based on video inspections
of the instability detection also in relation to the delaysath which is, however, further supported by the information of
the dierent feature extraction methods would introduce in the user's opinion provided by pressing the wireless button. In
an online implementation. Therefore, resuming for the sake othis way, the experiment scene was analyzed (e.g., slovomoti
clarity, the whole evaluation was tested on three di eremittee ~ replay, frame by frame inspection, etc.) without neglecting the
types computed with three dierent window length-window users feeling on the occurrence of a failure: this means that
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FIGURE 4 | A qualitative example of the timing of a task, together withhie user intent (that determines the different task zones, d®ted with colored areas) and the
failures. The latter were determined by video analysis (rexfars), also exploiting the information reported by the subct pressing the wireless button (blue triangles).
The letters (a—d) indicate the different instances of presg the button in response to a failure, according to the lisbf section 2.4.

particular attention was devoted to identify failure timestants  stop of the action executed by the user and the performing of a
around the pressing of the wireless button by the user; howevenodel update.
at the same time, the entire video was carefully inspected for At the end of the procedure just described, the outcome is a
failures, and therefore, in case an unwanted behavior of thget of time instants of the myocontrol failures. This infcation
prosthesis occurred when not signaled by the user, or di dsent was thereafter used to label the features extracted fromiske
there was no failure even if signaled by the user, the detisianachine data ow (as described in section 2.3). In particular
based on the mere video analysis was considered trustworthgince every feature vector corresponded to a certain datdawn
Indeed the online judgement of the user provided by pressingn accordance to the speci c length and overlap used, if within
the wireless button cannot be considered absolutely reglidh  the window a failure was present, then the label associated to
particular within the present study we were able to identifysuch related feature vector was set to “failure” (assatiatehe
speci ¢ recurring unreliable behaviors (refer alsdiigure 4): value 1); in the opposite case, as “success” (associated to the
value 0). The labeled features were used as input to a classi er

(a) once a subject presses the button, she will not signal &gjain i order to evaluate the automatic detection of an instapiin

additional failures following the rstinstance (i.e., Wwhiand  the myocontrol.

just after the button pressing); A Support Vector Machine (SVM) classier was used to

b) th . sstructural” delav bet th ?erform the classi cation of the feature sets. The implemé&ata
(b) there is a structural” delay between (né 0CCUITeNnce Of s realized in MATLAB by means of the LIBSVM library
a myocontrol failure and the pressing of the button by . .
. . - .. .2 (Chang and Lin, 2001 The procedure for the validation of the
the user—this is due to a cognitive process in identifyin

. yocontrol failures detection was realized for each sisglgect
the failure, and .the delay can be remarkable (of theoy means of a nested cross-validation (CV) applied to the whole
order of seconds);

dataset, composed by the features extracted from the data of
all the tasks executed during the experiment (i.e., 20 tasks, s
section 2.2). Note that training dataset imbalances hawn be
taken into consideration when training the classi er (espdyi

(d) nally, even if the subject is asked to constantly focus o inrelationto the usage of di erent window lengths) using a slas
identifying unwanted behaviors of the prosthetic hand, soméveighted SVM (wSVM)Akbani et al., 2004 The wSVM di ers
failures are not even noticed/perceived by the subject, angiom the non-weighted variant because it uses two regulticiaa
therefore they are simply not reported. parameter<Co, for the class “failure” (value: 0), ar@, for the

class “success” (value: 1), instead of using a single rézatlan

Therefore the video analysis allowed us to determine thparameterC (for details refer also t&/eropoulos et al., 1999

existence and time instants of myocontrol failure occunes Speci cally, in order to tackle the skewness of class portions in

bypassing the online-only judgement problems just listedvaho the datasets, the regularization parameters of the wSVM were
which also formed the most relevant criticisms of our prexdou set asCp D 1 andC; D np=ni, whereng and n; are the
preliminar study on automated instability detectiomdwak number of “success” and “failure” classes in the trainingadat,

et al., 2017p Finally, note that the failures were discrete eventsespectively. Thus, in detail, the CV was composed by two nested

(seeFigure 4) because, in the study, the interest was related to thiwops. The inner loop consisted of a 10-fold CV, where a grid-

initial instant in which an unwanted behavior of the prostleet search was conducted for the selection of the best wSVM @gssi

hand manifested. The fact that a failure could persist after i hyperparameter combination. The outer loop, a 10-fold CV as
initial occurrence were not considered as relevant, bexzdlus  well, evaluates the performance of the wSVM model that won in
detection of a failure implies—in an online usage scenarlte—t the inner loop, tested on a separated external fold.

(c) during the delay mentioned in (b), if other failures octhien
they are not reliably reported by the user;
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3. RESULTS zones of the task executions, that @Pee-Grasfibetweerntstart

. . . and tgrasp, Grasp (betweentgraspand tre easg and Post-
3_'1' Metrics and Statistical Anal_ySIS Grasp(betweentre easeand tenp)—see section 2.4. From such
First, an analysis of the myocontrol failure occurrencesngl

he individual task . . q h sisi gure it is possible to observe that the mean number of failures
the individua .tas executions Is repo.rte. ) SPC ana YS'S'QHW appreciably increased for all the subjects during the last part
for an overview of the temporal distribution of the failures

. ) of the task execution (i.e., the Post-Grasp zone). This coald b
and, according to the structure of the experimental protocoldue to the combination of two aspects: the rst was the lack

permits to retrieve preliminary considerations on the natared of concentration due to the negative e ect of mental and/or

d'StS”bt;Jt'on of tt|1e fallurelskt)htlemsel\lles.. ¢ th lassi cati rghysicaleortsin executing the task; the second was relat ¢kt
ubsequently, a giobal eva ua}non_ of the class ca_t|o uration of the Post-Grasp zone, which was found to be longer
performance was carried out considering all the six subjectﬁlan the other zones for all subjects

involved n the experlmelnt. Speci cally, in order to prowdg In order to further analyse the possible presence of patterns
an overview of the experimental results, we used the RECeIVES failure occurrences within the task zones themselves, in

Operating Characteristics (ROGydwcett, 2006and computed Figure 6C a map of the temporal trend of the mean number

the b_alanced error rates (BER) over the di erent co_mbination%f failures is provided. Speci cally, such a map was computed
of window lengths and overlaps for the extraction of Fheaccordingto atask-zones-wise normalized time, in order &k
features. Furthermore, t.he' data gathered from the SUbJecEﬁe various task durations uniform. Looking at the gure,str
was also evaluz_athed hstapstlcall%/. Here, we p_er(fjorme;d a-hrege ) it is possible to better see that, on average, the myoabnt
Waé’ A_NSVA wit It € actodrs eaturz type win OP:N engthf failures were mostly concentrated in the Post-Grasp zonéef t
and window  overlap,in order to determine the set of iaq execution, and particularly in its central part. Furtimere,
parameters which provides the ,beSt p'erforman(.:es. Finally, dli'{sis visible that at the beginning of the task, speci cally et

to the modest number of subjects involved in the present,g part of the Pre-Grasp zone, the mean number of failures

“rst step” study on automatic myocontrol failure detection ¢ narticularly limited (in several zones, zero). Di ergnthn
we cpnducted a statistical power analysis related to Ol1F1creasing of failures was present as the normalizgghsptime
experimental design. was approached (i.e., theaching to grasphase), in which
. . the motions of the arm and of the whole body of the subjects

3.2. Per-Subject Failure Occurrence were particularly stressed (see frame Figure 3. Lastly, we
Analysis can highlight that, in the Grasp zone, the mean number of
In this section a per-subject analysis of the failure ocawres failures was comparable with the values observable in the Pre
is provided, intended to launch the global analysis on the&srasp zone; in particular, those subjects that presentedtehig
classi cation performance of the following subsection, @hi average number of failures while holding the object, showet s
otherwise could resultincomplete since decoupled from awiew behavior more in proximity of the starting and ending parts
the number and temporal distribution of the myocontrol faies.  of the object grasp action. We are able to observe a certain
In the following, the subjects involved in the experiment ¢  degree of consistency among the Pre-Grasp and the Grasg,zone
indicated as S1, S2, S3, S4, and S5 for the able-bodied ndes, eharacterized by a clearly lower average number of failuits w
SA for the amputee. respect to the Post-Grasp zone.

Fist of all, an example of the temporal plot of the myocontrol
failures along with the wireless button pressings is provigted
Figure 5 in particular for one task of the subjects S4 and SA3.3. Global Evaluation
Such graphs are the equivalent realistic case of the queaditati3.3.1. Classi cation Performance
graph of Figure 4 For the sake of compactness, the temporairhe ROC curves plot the true positive rate vs. the false positive
plots of the failures for all the tasks and subjects are notmtepp  rate obtained by modifying the decision criterion of the wSVM
instead the number and temporal distribution of the failuresre  class membership probabilities output, and were computed for
analyzed in an aggregate form along the di erenttask exeosti every feature set, for each subject, in accordance with the
considering each subject individually. convention illustrated in the following. A “myocontrol suess”

Figure 6Ashows the mean number of failures per task relateqor “success,” S) was considered thesitive condition(P),
to each subject. In particular, we can see that the higheshmeavhereas a “myocontrol failure” (or “failure;” F) was consigas
number of failures was given by the subject S4, while theéhenegative conditio(N). In accordance with this, it was possible
highest standard deviation can be observed in relation ® thto de ne the relativetrue positive(TP), false positivéFP), false
subject S1. From this preliminary analysis (together witk th negative(FN) and true negativ TN) occurrences, that can be
example provided irFigure 5), it is already possible to notice arranged in a confusion matrid o of the form

that the general behavior of the myocontrol failures for the " #
amputee subject SA was comparable with the ones presented M Ntp Nep
by the able-bodied subjects. This allows a global analysis of conf Neny Ny

the failure detection performance including all subjectse(s
next subsection). Then, for a ner analysis, Figure 6B the  whereNtp, Nrp, Nen, Nty are the total number of TP, FP, FN,
mean number of failures per subject is reported for the di erentand TN occurrences based on the wSVM classi er prediction
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FIGURE 5 | Real-case example of the temporal plot of the myocontrol fhires and the wireless button pressings within a task execign, for the subjects S4 and SA.
The failure occurrences are determined by the posteriorivideo analysis of the experiments(A) Eighth task of the subject S4.(B) Twelfth task of the subject SA.

outputs, obtained during a single validation of the outerpd®-
fold CV (see Labeling and Classi cation subsection) forgegi
feature set. In this relation, the matrix of occurrence sdtRte is
given for each couple of subject and feature set as

" #
TPR FPR
Mrate D
FNR TNR
2 Npp Nep 3 (1)
b g NtpC Nrn NepC NTNé
NEN NN '

NP C Nen NppC Nty

whereTPR FPR FNR and TNR are the TP, FP, FN, and TN
rates, respectivelykigure 7 therefore reports the mean ROC

In relation to these gure and table, let us rstly observe
the results given by the TC feature type. Window lengths of
0.5 s report for lower AUC values, under the threshold of 0.8
(both for intact subjects and amputee), highlighting the prese
of a relatively consistent number of missed or wrong failure
detections. Instead, with window lengths of 1 sand 3sweean s
AUC values grater than 0.8, with the highest one equal to G907
and 0.953 for the intact subjects and the amputee, respegtivel
for a 3 s overlapped window. Di erently, looking now Rigure 7
and Table 1 for the TCSC and SC feature types, it is possible
to observe better classi cation performance, i.e., AUC w&alue
always greater than 0.8, and greater than 0.9 if only the ewnd
lengths of 1 s and 3 s are considered. In particular, for the 3
window length, we can see that the minimum AUC value is equal
to 0.942. Here, we can observe the preferable classi er rsodel'
performance for the case of a 3 s non-overlapped window: an

curve—over the ve intact subjects and for the amputee—of théUC of 0.9606 for the intact subjects and 0.9927 for the amputee

ROC curves obtained from th& PR and FPRof the matrices
computed as in (1). FurthermoreTable 1 reports the Area
Under Curve (AUC) of the mean ROCs dfigure 7. indeed

Therefore, better classi cation performance are reportetiie
same combination of selected features for both intact subgnd
amputee, also showing similar trend of performance along all th

the AUC provides an aggregate measure of the quality of thieatures/windowings. The overall best score was reportetidy

classi er model's predictions across all possible classocat
thresholds applied to the decision values; for further dstail
about ROC and wSVM decision values seewcett (2006)
andChang and Lin (2001)

amputed subjects with an AUC of 0.9927.

In order to further evaluate the failure detection perforntan
and statistically assess their distribution among the sibjehe
BER was computed for the di erent feature types and window
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FIGURE 6 | Analysis of the number and temporal distribution of the myaantrol failures, also in light of the different zones of theask executions, according to the
experimental protocol and considering each subject singally. (A) Mean number of failures along tasks for each subject. Errordss represent standard deviation.

(B) Mean number of failures in the different zones of the tasks feach subject. Error bars represent standard deviation(C) Map of the temporal behavior of the mean
number of failures for each subject, computed on time portins normalized with respect to the different zone durations fothe task executions.

length/overlap combinations. The BER is given as least square sense, highlighting the cases related to tpatam
(red circles) and the cases related to the intact subjedtse (b
BERD 100 NeN Nep crosses). Then, the in uence of each single case contriguti
2 NppCNeny  NgpCNpy to the least square trend was assessed computing the related

Cook's distances—a commonly used estimate of the in uence of
where the multiplication by 100 is present to obtain a perceatagdata points in least-squares regression analySeskK, 200p—
value. The goal of the statistical analysis was to use the BEwich values are reported ifigure 8B In particular, within
outcome metrics to compare di erent features and windowingthis latter gure, it is also depicted an aggregated range-plo
characteristics. In order to do that, we rst carried out athat highlights how the Cook's distances related to the ampute
comparison between the intact subjects and the amputee. Thigmarked with red circles in the range-plot) are not exceeding
has been done in two directions: (i) looking at the temporalthe middle point of the range of all distances, therefore megni
distribution of the failures in the tasks and (ii) looking #te that the in uence of the amputee on the temporal trend of
BER outcome. In relation to the distribution of the failuresthe failure was limited with respect to the entire group of
along the task, the temporal trend of the failures—as alreadsubjects. On the other hand, from the point of view of the
illustrated in Figure 6G—was considered. Indeed, Figure 8A BER metrics, the presence of a signi cant di erence between
such temporal trend is illustrated among all the subjects in @amputee and intact subjects was veri ed, computing the BERs
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FIGURE 7 | The mean ROC curves for the amputee and intact subjects, withespect to the selected type of feature, and reported for thelifferent combinations of
window length and overlap. In gray, the ROC curves obtained faeach subject during the outer loop of the nested CV; red, ble, and green standard lines indicate the
ROC curves related to intact subjects for the TC, TCSC, SC feares, respectively, and the triangle-marked lines indi¢a the amputee. Dashed and circle-marked lines
indicate the half window overlap for intact subjects and amptee, respectively.(A) ROC curves for the feature Threshold Crossing (indicated byC). (B) ROC curves
for the feature Threshold Crossing plus Status Change couirtg (indicated by TCSC)(C) ROC curves for the feature Status Change counting (indicateby SC).
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TABLE 1 | The AUC values with respect to the ROC curves illustrated ifigure 7, reported for the different type of feature and combinatios of window length/overlap,
for the intact subjects (S1-5) and the amputee (SA).

AUC
Feature type Window overlap 0.5 s window 1 s window 3 s window
S1-5 SA S1-5 SA S1-5 SA

No overlap 0.7955 0.7172 0.8286 0.8108 0.8895 0.9031
TC

Overlap 0.7986 0.7656 0.8274 0.8731 0.9075 0.953

No overlap 0.86 0.9196 0.9159 0.9662 0.9526 0.9722

TCSC

Overlap 0.8514 0.9345 0.9017 0.9523 0.942 0.9815

No overlap 0.897 0.9195 0.9075 0.9808 0.9606 0.9927
SC

Overlap 0.9003 0.9304 0.9044 0.9755 0.9425 0.9915

Numbers in bold highlight the higher AUC values for S1-5 and SA.

for all the combination of feature and windows, groupingThe results areF(2, 105) D 18.09p < 10 3. A boxplot
then the data as “amputee” and “intact’. To do this, rstly of the dierent groups can be found irFigure 9. The one-
the normality of these data was assessed using the Shapimay ANOVA was then followed up by a Tukey-test to perform
Wilk test, which reported that the distribution of the group pairwise comparisons. It followed that both SC and TC+SC
“amputee” signi cantly diered from a normal distribution perform signi cantly better than TC witlp < 10 3in both cases.
(p D 0.042; signi cance level set to 0.05). Consequently, widowever, the di erence between SC and TC+SC is not signi cant
performed the non-parametric Wilcoxon rank-sum test, whichwith p D 0.569. The Tukey-test therefore revealed that better
results reported that the BERs of the “amputee” group did notlassi cation performance are obtained with the SC and TC+SC
di er signi cantly from the “intact” group, W D 1021,p D feature types.
0.0826. Therefore, given the limited in uence of the amputee Finally, we report in Figure1l0 the mean BER
on the overall temporal trend of failures during the tasks andoer each subject over the single BERs obtained with
the non-signi cant di erence between the BERs of the intactboth the TC+SC and SC feature types (since we have
subjects and the amputee, for the main statistical analykitece seen that there is no statistically signi cant dierence
to the comparison of the dierent features and windowing between TC+SC and SC). Looking at the gure, the
combinations we pooled the data of the intact subjects and theesulting mean BER over all the subjects is equal to
amputee together for a global evaluation of the classi catio 18.86%. This classication performance provides positive
performance. outcomes on the actual possibility to automatically detect
Therefore, in this relation, we investigated three dierentinstability with the mid-term prospect of improving
factors with the BER outcome, namelgature type(TC, myocontrol reliability.
TC+SC or SC)window size(0.5s, 1.0s or 3.0s) andindow
overlap (no overlap or half overlap). Taking these factors3.3.2. Statistical Power and Results Generalizability
into account we performed a three-way ANOVA using theln order to analyse the power of our experimental design in
statistical tools provided iR (R Core Team, 20)3Normality  detecting statistical e ects, we conductedpast hoc power
of data distribution was veri ed using the Shapiro-Wilk test, analysiswith the program G*Power(Faul et al., 20Q9for a
and a Levene's test to check the homogeneity of variance WAl description seeErdfelder et al., 1996 with relation to
performed; both tests revealed that the assumptions of thRey main e ects taken into account with the ANOVA of the
ANOVA were not violated. Statistical signi cance was set tQorevious subsection. Let us rst consider the signi cantlyttbe
p < 0.05. We obtained the following results: for the factorperformance of the features SC and TCSC with respect to TC
feature type @, 90) D 17.493p < 10 3, for the factor resulting from the one-way ANOVA. We have a total sample size
window size B2, 90) D 2.809p D 0.066 and forwindow of 108 and a number of groups equal to 3. The related observed
overlap k1, 90)D 1.866p D 0.175. Sincwindow sizewindow e ect size calculated on the basis of the sum of squares was equ
overlapand all interaction terms as well have no signicanttof D 0.587 [that is a large e ect siz€¢hen, 198)]; the power
inuence, as usual in the case of nonsigni cant factors we(l ) to detect an e ect of this size was determined to be
pooled together the related data, reducing the model to th€.9889 (for a signi cance set at D 0.001), which was clearly
only factor feature typeand performed a one-way ANOVA. greater than the (conventionally) recommended threshdl@.8

Frontiers in Neurorobotics | www.frontiersin.org 12 August 2019 | Volume 13 | Article 68



Meattini et al. Instability Detection for Interactive Myocontrol

FIGURE 9 | Boxplot of the BER grouped byfeature type The symbol “***”
denotes p < 0.001, according to the Tukey-Test of section 3.3.

834 (with signi cance at D 0.001) or 383 (with signi cance
at D 0.05) would be needed for theindow overlagactor,
and a total sample size of 323 (with signi cance aD 0.001)
FIGURE 8 | In uence of the amputee subject on the linear trend of the numbe or 158 (With Signi cance at D 0-05) would be reqUired for

of failures along the different phases of the experimentahsk (pre-grasp, the window lengthfactor. However, what we can say is that the
grasp, post-grasp zones—see section 3.2)(A) All subjects Least Square experiment had enough statistical power to detect a signi cant
linear trend (red line) of the mean number of failure computeon time portions better classi cation performance given by the usage of the SC
normalized with the respect to the different zone duratiorsge Figure 6C and

. ) . . i and TCSC feature.
section 3.2). Points regarding the amputee subjects are reprted with red . . .
circles, wheares blue crosses represent the points relatetb intact subjects. In a(.jdltlon, there arg als.o §ome C0n5|derat|_0ns_ 'Fhat must
(B) Cooks distances of each single point (orcase) related to the Lest Square be outlined about possible limits in the generalizability bét
trend of (A). In the top-left part, it is present an aggregated range-plobf the presented results. First of all, as already mentioned insest1,
Cook's distances, highlighting the location of the amputeeelated values with notwithstanding the importance that we think this rst stud;n

red circles within the whole interval of distance values.

Interactive Myocontrol has, it is necessary to take into aoto
that the number of six subjects involved in the experiment was
(Cohen, 1988 On the other hand, considering now the e ect of relatively modest. In this regard, pooling together the atta
the factors statistically analyzed by the three-way ANOWAhe  subjects and the amputee for the ANOVA reported in section
previous subsection (total sample size of 108; number of groug&3.1 has to be handled with care, even if motivated by aryaisal
equal to 18), we calculated on the basis of the sum of square§the in uence of the amputed subject on the overall temporal
that the e ect size of the factdieature typevas 0.6235, and the distribution of the failures and, more directly, on a Wilomx
related power of the experiment was 0.9955 (for a signi caete srank sum test (see section 3.3.1). Indeed, there exists $ke ri
at D 0.001), clearly greater than the conventional thresholdhat the number of intact subjectd; D 5 and the number of

of 0.8. Dierently, the e ect size of the factowvindow length amputeedNa D 1 could limit the validity of such results to only
was calculated to be equal to 0.2496 with a related power of thiee speci ¢ subjects involved in this study, therefore a agtits
experiment (1 ) D 0.1458 (for a signi cance at D 0.001) generalizability. In fact, itis necessary to take into actdoat in

and (1 ) D 0.6215 (for a signicance at D 0.05). The realdaily life applications amputees could show remarkabkddev

e ect size of the factowindow overlagesulted to be equal to of heterogeneity with respect to able-bodied subjects andter
0.1436 with a related power of the experiment (1) D 0.0327 amputees. However, if such di erences a ect also the sphere of
(for a signicance at D 0.001) and (1 ) D 0.3147 (for automatic failure detection for Interactive Myocontrollstieeds

a signicance at D 0.05). Therefore, we cannot completelyto be veri ed, and further studies have to be carried out also i
rule out that there was an e ect of the factomsndow lengttand  this direction, as outlined in the following section 4. Irislstudy,
window overlags resulting by the three-way ANOVA, because itfor a separated analysis and comparison of the failure detection
exists the possibility that the limited statistical power&glayed performance between the intact subjects and the amputee, it is
arole in limiting the signi cance of such speci c factorsdeed, possible to refer téigure 7and Table 1and related explanations

to obtain a power of at least (1 ) D 0.8, a total sample size of in section 3.3.1.
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FIGURE 10 | Mean BER per each subject over the single BERs obtained withdth TC+SC and SC features. The resultant mean BER over all sjdzts is
equal to 18.86%.

4. DISCUSSION AND CONCLUSIONS prosthesis” for new data to preventively improve myocontrol
41 . stability, or even to learn completely novel actions.

T nterac_tlve Myocontrol and In the light of these concepts, the authors rmly think that the
Co-adaptation topic of automated instability detection is quintessent@fully
The study presented in this article took its inspiration frolret  exploit interactive myocontrol. We are therefore con detiat
interactive myocontrgbaradigm as a way to face the problemthe work here presented, focusing on the possibility of chgiss;f
of instability in myocontrol, so far unresolved. In inteta® myocontrol instability, represents an essential prelimjnatep

myocontrol, the s/p control scheme can be updated withtoward a truly interactive prosthetic myocontrol.
new information, once necessary in the face ofmgocontrol

failure occurrence—as a particularization of the incremental .
learning concept. Within the whole framework of human- 4-2. Informational Set for Automated
machine interaction in prosthesis control, it is desiraienave  Failure Detection
such incremental updates in an autonomous and real timéigure 9shows that statistically signi cantly better classi catio
fashion, and therefore we introduced antomatic oraclagent performances were obtained using the TC+SC and SC feature
as a counterpart of a “human oracle,” whose presence we watypes, whereas there was no signi cant dierence between
to avoid because it represents a source of bias of the wholéC+SC and SC (refer to the ANOVA results in the section 3.3).
paradigm. The role of the automatic oracle is to detect when @his result tells that the usage of the information comingnfr
myocontrol failure occurs, de ned as a behavior of the presithh  the prosthetic device signi cantly improved the classi catio
device that does not coincide with the user intent. Indeedapk performance, highlighting the importance of the terminal paft
note that the goal of the myocontrol model was exactly tahe user-device interface chain, i.e., the informatioraie that
translate the muscle output signals into the user intentréfiere, is the outcome of the in uences of all the previous steps (the
if during the prosthesis usage the muscle output became awelduman-machine interface informational zengefer toFigure 1).
for any reason, then the model should understand that sucln light of the obtained results, this can be likely due to thetfa
speci ¢ output was still related to a certain intent. It followsat  that part of the information embedded in the TC feature was
failure detection is needed to let the model gather more dataot corresponding to any behavior visible to a human eye (for
and understand that new muscle signals have to be considereetails see section 2.3)—even in a meticulous video anatgsid
in order to continue understanding the right intent of theers  therefore was simply not corresponding to a myocontrol faglur
Finally, theoretically the action of the automatic oradiesld be  determining poorer classi cation performance with the TC
as much transparent and imperceptible as possible for the usdeature only, in accordance to the importance of the inforimat
i.e., the user should not notice its presence even duringplakate  given directly by the prosthetic device.
of the s/p myocontrol. Additionally, the dimension of the informational set neetle
Onthe other hand, we are aware that total transparency is veffpr the automatic oracle is worth to be discussed. In principle
di cult to achieve—if not impossible—and indeed, interagéi  the inclusion of all possible data from the HMI environment
myocontrol also aims t@o-adaptwith the user. Picture putting is absolutely welcomd={gure 1): just think about an automatic
the automatic oracle together with the subject's judgemente oracle that can get as much knowledge as possible from the
a failure is detected, the system would ask to the user to tepeprosthetic system in order to better understand myocontrol
the action while she is communicating her intent, in orderfailure occurrences and be potentially very reactive to unkmo
to let the oracle gather new data in view of the incrementasituation—the more information available, the better the
learning. Thereafter the myocontroller model update willmcc performance. Nevertheless, the experimental results predémt
automatically with basically no additional burden to theeus section 3.3 shows that a failure classi cation performance wi
in other speci c cases the subject could voluntarily “teabe t mean BER of 18.86% (refer Eagure 10 can be obtained with
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a very small subset of the available HMI information, i.e.lyon in real world applications for the automatic oracle trainings,’
using the prosthetic hand feedback about the extendinghgxi instead our experimental goal was to nd “how to have a rekabl
status of the ngers (SC feature). This speci c aspect deseave user intent ground truth for the data labeling of the autoricat
careful consideration, because it shows the possibilitjnfwove  oracle, in order to verify if myocontrol failure detectionactually
the reliability of myocontrol with a very limited set of infimation  possible.” Aspects relating the determination of reliable user
and, therefore, with few hardware requirements (e.g., @a)s intent ground truths in real world applications will be objedt o
This means lower costs without negatively aect the user'$uture studies.

degree of acceptance of the prosthetic system (which is dfrong

in uenced by weight, heat production, hardware faults, etc. 4.4. A Wider Perspective: Myocontrol and

Radical Constructivism
4.3. Can the Automated Detection Go In Nowak et al. (2018we speculated that myocontrol, as
Online? instantiated by ML, could bene t from &Radical Constructivist
gRC, standing also for Radical Constructivism) approach. KC i
a branch of constructivist psychology positing that learniag,
a generic process in humans as well as in machines (i.e., the

because of the delay that it consequently introduces. Thelte agent}; is an attempt to optimally organize the agents perceptive

show that the classi cation performance were independenhef t eld, i.e.,its own sensory ?‘”‘?' experiential inner world, actiog
selected window length and related overlap (refefigures 7 9) to SOme speci ¢ tt.'ng criterion {/on 'Glasers.fel_(jj, 1983, 1995
and that there was a statistically signi cant improvementtire Once it becomes incremental and mteractl\@u(;berts_ et 5.1"’
performance as the TC+SC or SC feature types are used (re?e_QM; St_ra_zzulla et al,, 201 myocontrol _ts quite well in this

to section 3.3, Tukey-Test results). This means that acbkpta plcture: Itis the gttempt of a ML a.Igorlthm to t as best as
classi cation performance can be obtained introducing oaly pos§|ble the bio-signal pgtterns received from a disabled mumg
relatively contained delay of 0.25 s on top of the 0.5 s windoﬁumed' One of_the cruc_lal aspe_cts O,T RC-frf\med _my_occ_)m;rol !
length. Indeed, in order to enhance the immediacy of thethen the necessity of havm_garehable oracle aIIovv_mgltam/e
failure detection, it is preferable to have shorter time ving, feedback be sent back to itself: whenever something goeggwron

approaching lengths of 100—200 ms (that are close to th@.-'e" a myocontrol fgilure), base@! on this knowlgdge the ML
delay perception limit for humans). On the other hand, noticemOdel must take action to correct its own perceptive landscape;

that a fast response to a failure occurrence is not a foundin@s gvelll(, agr(l)ocfl tgabn blf remflor;:]ed.b h h . Thank
speci cation for the interactive myocontrol framework. ladd, 0 far, the feedback oracle has been the user herself. Thanks

before a failure is detected, some data has to necessalilgdred ;O mterar(]:nv.e Iearglng, dSTe hdas.beenh able to ask. fo(; flurtgcér
in order to allow the incremental update of the myocontroller ata gathering and model updating whenever required. In

model (a query to the user to know which would have beerj_ferms’ we v_|ew_the quest for amtomatedoracle—that we have_
the correct action could be necessary, if not only the ..powemtroduced in this paper—as an attempt to enlarge the perceptive
grasp” is supposed to be used for grasping). Therefore, in thigverse of the machinéNowak et al., 2018
view, a certain delay would be unavoidable—even desirtide:
data could continuously be logged by means of the window fofConclusions
the features extraction itself, and then automatically jled In this article we presented the results of a study for the
for the update when a failure is detected. Even a delay of feimprovement of the myocontrol of prosthetic hands with respect
seconds could turn into a desirable feature. For these reaso to the well-known issue of reliability. We outlined the cept
we think that the possibility to classify myocontrol insthtyi  of “automatic oracle;” i.e., a supervising agent that is dble
emerging from the results nicely ts the interactive myotah classify when a myocontrol failure occurs, and to carry out
framework, providing remarkable prospectives in the rightan incremental learning paradigm to deal with myocontrol
direction for further studies toward an online implementatiof  instability. Relying on such general framework, in this work
the application. we focussed on the possibility of classifying the myocontrol
Another important aspect to make the automatic failureinstability testing a set of features extracted from the darice
detection go online is the determination of the user intentinterface's informational chain. To this purpose, we engaged
“ground truth” necessary to label the training data for thesix expert myocontrol users ( ve able-bodied persons and one
automatic oracle. In the present work, the de nition and tingg  trans-radial amputee) in a simplied and carefully designed
of the user intent was possible by the combinationaopriori  experiment. It consisted of 20 grasping tasks for each sybject
(design of the experimental task) aaghosterior{video analysis) which we were able to identify the exact timing of myocontrol
actions, which are dicult to be applicable for real world failure occurrences thanks to the information provided by
applications. However, note that our study focused on vargyi the users and to an oine analysis of the experiment video
the actual possibility to build a classi er able to detect mgotrol  recordings, as detailed in section 2.3. In this way, expigiti
instabilities. Being this work a novel approach and directidn reasonable assumptions on the subjects' intent based on the
research in this eld, for the moment we didn't want to respond structure of our experimental protocol, it was possible to ldbhe
to the question “how to determine user intent ground truths features as “myocontrol success” or “myocontrol failuregrder

One of the fundamental aspects to detect myocontrol failure
online (and possibly update the myocontroller model on-thg- y
is the window length used to extract the features for thestlas
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to train and test a wSVM classi er for the automated detectid ETHICS STATEMENT
myocontrol instability.
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