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Abstract

The rapid growth of solar power generation and the variable nature of the solar resource pose challenges for
our electricity grids. Forecasting future changes in the irradiance might help to cost-efficiently manage this
variability both for photovoltaic and concentration solar plants as well as grids with high solar penetrations. So
far, for shortest-term forecasts with lead times of a few minutes, all-sky imager based nowcasting systems are
used. However, due to the complexity of dynamically changing 3d cloud shapes as well as certain geometrical
effects such as self-occlusion or near-horizon saturation, all-sky imager based nowcasting systems exhibit
inherent weaknesses. Here, we present a novel system to generate shortest-term solar forecasts, which is
located at Plataforma Solar de Almeria in southern Spain. This approach is based on downward-facing
cameras (shadow cameras), taking images of the ground. From these images, spatially resolved irradiance
maps are derived. By tracking cloud shadows, future irradiances are predicted. A demonstration system is
achieved, which provides shortest-term forecasts for the next 2 min. To the best of our knowledge, this is
the first time such a system is developed. We benchmark several possible algorithmic approaches on 16 days
and compare the deviations to a state-of-the-art all-sky imager based nowcasting system on 22 days. The
root-mean-squared deviation (RMSD) of this shadow camera based nowcasting system for direct normal
irradiance (DNI) and 1-min temporal averages is 15.6 % for lead times of 2min (MAD, DNI: 9.6 %). In
comparison to an all-sky imager system, this is an improvement as the all-sky imager system only reaches
22.0 % RMSD and 14.8 % MAD (both DNI). This demonstrates the feasibility and attractiveness in terms of

accuracy of the proposed concept.
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1 Introduction

The generation of solar power depends on the current
solar irradiance. Transient clouds can cause rapid de-
clines in solar irradiance, which relates to quick drops in
power dispatched by photovoltaic (PV) plants and pose
operational challenges for solar thermal plants. As solar
penetrations in many countries rise, the variability of the
solar resource threatens the stability of electricity grids.
Therefore, countries and grid operators have started to
define maximum ramp rates. For instance, Puerto Rico
introduced a 10 % capacity per minute limit on PV ramp
rates (LAVE etal., 2013) and several grid operators in
Australia established a 12 min ramp time, which means
that a ramp down from the nominal rated output must be
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smoothened over 12 min (e.g., ROTSTEIN etal., 2012).
Shortest-term forecasts can cost-efficiently reduce the
implementation costs of these regulations by allowing
dynamic curtailment. There are numerous ways to fore-
cast solar irradiances (e.g. MELLIT, 2008; INMAN, 2012;
INMAN etal., 2013; ANTONANZAS etal., 2016) and this
section is confined to brief introductions with a focus on
camera-based approaches.

Such shortest-term solar forecasts cannot be pro-
vided by numerical weather models (NWP, MATHIESEN
and KLE1ssL, 2011), having temporal resolutions of e.g.
3h and spatial resolutions of several km? (e.g. Dra-
GANI etal., 2014). Furthermore, although the temporal
and spatial resolutions of weather satellites are improv-
ing (e.g., BLEY and DENEKE, 2013; BEssHo et al., 2016;
Yoo etal., 2017), their resolutions are still too coarse for
certain applications (HAMMER etal., 1999; CRros etal.,
2014).

© 2019 The authors

Gebriider Borntraeger Science Publishers, Stuttgart, www.borntraeger-cramer.com


http://www.borntraeger-cramer.de/journals/metz
http://www.borntraeger-cramer.de/journals/metz
https://creativecommons.org/licenses/by-nc/4.0/
http://www.borntraeger-cramer.com

2 P. Kuhn etal.: Shadow camera based nowcasting system

Additionally, solar irradiances can be predicted using
other configurations. Various publications present fore-
casting methods based on radiometer measurements,
often in combination with persistence forecasts (e.g.,
Larson etal., 2016), statistical models (e.g., SHAKYA
etal., 2017; Miao etal., 2018), machine learning (e.g.
PeEDRO and CoiMmBRrA, 2012; BENALI etal., 2018) or a
combination thereof (PELLAND etal., 2011; ZaMo et al.,
2014). Persistence forecasts extrapolate current mea-
surements into the future while taking changes in irra-
diances caused by the future sun position into account
(RaMIREZ etal., 2017). With the rising availability of
measurements from large and distributed PV modules,
much work is especially conducted in order to derive
forecasts using such data (e.g., CHU etal., 2015; NuNo
etal., 2018; OGLIARI etal., 2018). For instance, CHEN
etal. (2011) presents a 24 h PV power forecasting sys-
tem based on measured meteorological parameters and
the mean daily power output of the PV system using
a neural network and a self-organized map to classify
the weather forecasts provided by online meteorological
services. Another approach is to utilize grids of irradi-
ance sensors to derive short-term forecasts, e.g. as pre-
sented in SCHENK etal. (2015), YANG etal. (2015) and
WANG etal. (2016). All of these statistical approaches
cannot truely predict future shading events, which is
possible with the novel methodology introduced in this
paper.

Also, further methods based on publically available
data are proposed, e.g. using weather forecasts from
public websites (Tao etal., 2010) or meteorological
data derived from public webcams (e.g. BRUNSKILL and
JoNEs, 2011; KunN etal., 2018d). Moreover, weather
radars could be used to derive solar forecasts (e.g.,
PaBLOS-VEGA etal., 2010; BIxgeL, 2015). However, this
instrumentation is relatively expensive and suffers from
certain limitations regarding resolution and occlusion.

As of today, industrial camera-based nowcasting sys-
tems, providing shortest-term forecasts for the next min-
utes ahead with high spatial and temporal resolutions,
are based on all-sky imagers (ASI). A large amount of
all-sky imager based systems and approaches is pre-
sented in the literature (e.g. SHIELDS etal., 1998 (in-
troduction of dedicated ASI hardware), SHAW etal.,
2005 (demonstration of infra-red (IR) ASI), SMiTH
and Toumr (2008) (demonstration of IR ASI), CHow
etal. (2011) (shadow nowcasting using a developed
ASI), Woobp-BRADLEY etal. (2012) (cloud tracking ap-
proaches for ASI), URQUHART et al. (2012) (ASI derived
nowcasts for PV), ToHSING etal. (2013) (ASI based
sky luminance measurements), URQUHART et al. (2013)
(overview of ASI applications and algorithms), HUANG
etal. (2013) (ASI derived predictions of solar irradiance
fluctuations), YANG etal. (2014) (development and vali-
dation of ASI derived global horizontal irradiance (GHI)
nowcasts), ALONSO and BATLLES (2014) (comparison
between weather satellite and ASI derived cloud cover-
ages), CHU etal. (2014) (ASI based weather classifica-
tions for GHI forecasts), ToHSING et al. (2014) (ASI de-
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rived spectral sky radiance measurements), BERTIN et al.
(2015) (IR ASI for predicting optical satellite commu-
nication link availability), Massip et al. (2015) (presen-
tation of nowcasting algorithms), PENG etal. (2015)
(cloud detection and tracking using three ASIs), KiL-
Lius etal. (2015) (study on potential combination of
ASI and NWP derived cloud heights), URQUHART et al.
(2015) (introduction of high dynamic range (HDR) ASI
for short-term solar power forecasting), NGUYEN et al.
(2016) (using high resolution PV generation profiles
from ASI for grid operators), WILBERT etal. (2016)
(DNI nowcasts derived from four ASIs), SCHMIDT et al.
(2016) (GHI nowcasts derived from one ASI and a
ceilometer), ScHMIDT (2016) (ASI derived PV fore-
casts), Roy (2016) (design and installation of an ASI
for PV nowcasts), KLEIssL etal. (2016) (field study us-
ing a developed ASI), WANG etal. (2016) (using one
ASI and an additional sensor to measure cloud heights),
KazanTtziDIs etal. (2017) (overview of ASI hardware
and algorithms), Kurtz etal. (2017) (study on origin of
ASI deviations), LIANDRAT et al. (2017) (cloud coverage
nowcasts based on an IR ASI), KunN et al. (2017b) (val-
idation of a nowcasting system consisting of four ASIs),
Nourt etal. (2018) (voxel-carving approach using four
ASIs), BLaNc etal. (2017) (DNI nowcasts derived from
two ASIs), ScamipT (2017) (overview of algorithmic
approaches), SALEH et al. (2018) (using an ASI to avoid
batteries in PV plants), Crisosto etal. (2018) (GHI one
hour ahead predictions in one-minute resolution using
Artificial Neural Networks)).

Here, we demonstrate the feasibility of a novel con-
cept: Instead of using upward-facing all-sky imagers,
taking images of the sky, downward-facing off-the-shelf
surveillance cameras are used. From an elevated posi-
tion, these so-called shadow cameras take images of
the ground on a solar test site (Plataforma Solar de
Almerfa) in southern Spain. From these images and ad-
ditional sensors, spatially resolved irradiance maps are
generated. Based on derived cloud shadow speeds, fu-
ture shadow positions and irradiance maps are predicted.
The focus in this paper is on DNI nowcasts with lead
times up to 2 min. GHI forecasts would also be possible
using the same approaches.

The shadow camera system without nowcasting ca-
pabilities is introduced in KunN etal. (2017a). A case
study for a hypothetical shadow camera based nowcast-
ing system is presented in KUHN etal. (2018a). Novel
differential shadow tracking methods for shadow cam-
eras are developed in KunN etal. (2018c) and applied
in KuHN etal. (2018b). As far as we know, there is no
previous work on such systems from other groups and
this is the first time a shadow camera based nowcasting
system is realized.

Given the availability of an elevated position, we
see for example the following possible applications for
shadow camera based systems: (1) In (small) diesel-PV-
hybrid plants, such shortest-term forecasts could be ap-
plied to timely trigger back-up generators (PETERS et al.,
2018) and could thus replace, to some extent, more ex-
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pensive batteries, which are otherwise needed (SALEH
etal., 2018). (2) High-resolution irradiance forecasts on
a valley-scale area (e.g. 314 km? as modelled in KUHN
etal., 2018a) could be used to extract findings from
a limited considered area and apply them to a wider
region. This might potentially be feasible for derived
cloud motion vectors and solar variability classes, which
may be similar over larger distances. (3) Shadow cam-
era based shortest-term forecasts could also improve op-
erations in industrial concentration solar (NOURTI etal.,
2018) and PV power plants (WATSON etal., 2018).
(4) Additionally, shadow cameras systems could pro-
vide reference measurements for e.g. NWP or satellite
derived cloud (shadow) motion vectors, cloud sizes and
cloud dynamics. Finally, such easy-to-operate systems
could be used for solar site assessments.

This publication is structured as follows: In sec-
tion 2, the shadow camera system is briefly introduced.
Furthermore, improvements of the shadow camera sys-
tem in comparison to the version presented in KUHN
etal. (2017a) are explained. In section 3, the implemen-
tation of the nowcasting capabilities into the shadow
camera system is shown. Several competing algorith-
mic approaches are considered. These approaches are
benchmarked against each other in section 4. Moreover,
the shadow camera based nowcasting system is bench-
marked against a state-of-the-art all-sky imager based
nowecasting system. The conclusion is given in section 5.

2 Summary and improvement of the
existing shadow camera system

2.1 Summary of the previously existing
shadow camera system

The hardware and configuration of the shadow camera
system further developed here is originally presented
and validated for current irradiance maps in KUHN et al.
(2017a). The system consists of six downward-facing
cameras, two of which are shown in Figure 1. These
cameras are located at a height of 87 m on CIEMAT’s
CESA-I tower at the Plataforma Solar de Almeria in
southern Spain. From this elevated position, these six
cameras take images of the ground with an image acqui-
sition rate of 15 s (see example image in Figure 2). With
the known exterior and internal orientation, a so-called
orthoimage is generated from the six jpg images. This
orthoimage covers an area of 2 km x 2 km with a spatial
resolution of 5 m X 5 m (temporal resolution: 15 s).
Using two reference orthoimages, corresponding to
similar solar positions but taken when (1) the whole im-
aged area was unshaded (sunny reference orthoimage)
and (2) shaded (shaded reference orthoimage), cloud
shadows are detected and spatially resolved irradiance
maps are derived. For this, additional inputs of a me-
teorological station, namely DNI and diffuse horizon-
tal irradiance (DHI) measurements corresponding to the
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Figure 1: Two of the six shadow cameras on top of an 87 m high
tower (CIEMAT’s CESA-I) tower at the Plataforma Solar de Almeria
in southern Spain.

timestamps of the orthoimages, are used. In-depth ex-
planations of this system, which previously could not
provide forecasts, are given in KUHN etal. (2017a). Ad-
vantages and disadvantages of a hypothetical shadow
camera based nowcasting system in comparison to all-
sky imager based systems were discussed in KUHN et al.
(2017a), section 5. These advantages are briefly summa-
rized here:

1. Overexposed areas around the sun, which appear in
all-sky images, are not a problem for downward-
facing shadow cameras.

2. The derivation of cloud heights, needed for many all-
sky imager systems (KUHN etal., 2018b), is not re-
quired for shadow camera based nowcasting systems.
Thus, this origin of deviations is completely avoided.

3. As the sun light reaches the earth more or less in par-
allel, cloud shadows are 2d projections of the clouds
on the ground. Therefore, shadow cameras, which di-
rectly image the shadows, do not suffer from self-
occlusion effects of clouds. Due to self-occlusion,
cloud coverages as perceived by all-sky imagers in-
crease towards the horizon as gaps between clouds
are occluded by neighboring clouds.

4. The 2d shadows are easier to track than 3d cloud ob-
jects, especially as in most situations ground-based
all-sky imager cannot see the backside of the clouds
and thus cloud shapes must be estimated.

5. Shadow cameras can directly measure the transmit-
tance of a cloud by evaluating its shadow. Due to
inter- and intra-cloud reflections, this is more chal-
lenging in all-sky images.

6. In comparison to all-sky imagers, maintenance and
cleaning is much easier for downward-facing shadow
cameras, especially regarding dust and bird drop-

pings.
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Without correction

Derived vignetting

With correction

Figure 2: Photo from one shadow camera and the correction of the
vignetting effect: jpg image (left), applied vignetting matrix (center)
and corrected image (right).

7. One disadvantage of the used shadow camera con-
figuration is its limited imaged area (2km X 2km),
which is far smaller than areas usually considered
by all-sky imager based systems. This limitation can
be overcome by using distributed shadow cameras,
higher camera resolutions or camera positions with
higher elevations.

Having summarized the advantages of shadow cam-
era based nowcasting systems, we must mention that
shadow cameras require (1) an elevated position and
an area with (2) little non-cloud movements as well as
(3) few shadows of elevated structures in which cloud
shadows can be detected. Using the current configura-
tion, shadows cannot be detected on highly reflective ar-
eas such as mirrors and difficulties in segmenting shad-
ows directly on PV modules are expected. Although the
focus here is on DNI, the shadow camera system can
also derive GHI maps as e.g. validated in SCHENK et al.
(2015).

2.2 Recent adaptions of the shadow camera
system

2.2.1 Normalization and corrections of jpg images

Although off-the-shelf surveillance cameras (Mobotix
M?24 and M25) with overvoltage protection boxes (Ubig-
uiti) are used, lightning appears to be an issue and
camera models had to be exchanged. Also, even same-
model cameras have slightly different chips and ex-
posure times, thus taking differently looking images.
Therefore, we apply normalizations and corrections to
the jpg images. This is done twofold: First of all, vi-
gnetting is determined and corrected (see Figure 2). Vi-
gnetting describes a darkening of the image towards the
edges due to lens effects. In a second step, different cam-
eras’ brightness and contrasts are normalized among the
shadow cameras to achieve a homogeneous orthoimage.

In literature, many approaches to correct vignetting
are proposed (e.g. YU etal., 2004; Kim and POLLEFEYS,
2008; ZHENG etal., 2009; CHo etal., 2014). For our
purposes, we found the approach suggested by ZHENG
etal. (2008) to be feasible. In Figure 2, an example
correction is shown. The vignetting matrix, once derived
for every shadow camera following ZHENG et al. (2008),
is applied to the jpg image, brightening the edges of the
image. The normalization of the jpg images is conducted
by generating look-up tables from pixels seen by two
cameras and thus correcting offsets.
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Figure 3: Flow chart of the previous shadow segmentation, de-
scribed in KunN etal. (2017a): A difference image is calculated
from the current orthoimage and the corresponding sunny reference
orthoimage. By applying thresholds, shadows are segmented. Cer-
tain pixels corresponding e.g. to buildings are excluded from further
evaluation and later interpolated.

2.2.2 Adaptions of the optional segmentation into
shaded and unshaded areas

We investigated three different methods to infer DNI
maps from shadow maps. Two of these approaches are
based on a prior segmentation of the imaged area into
shaded and unshaded areas. The third method directly
calculates DNI values from a set of images.

Figure 3 depicts the flow chart of the segmentation of
the current orthoimage into shaded and unshaded areas
as described in KUHN et al. (2017a): Based on the differ-
ence between the current orthoimage and the sunny ref-
erence orthoimage, a difference image is calculated. By
applying a fixed threshold, this difference orthoimage
is segmented into several classes, including sunny and
shaded (the other classes are subsequently assigned to
these two classes). For the areas classified as unshaded,
the method from HANRIEDER et al. (2016) is used, which
analyses the temporal variation of the Linke turbidity to
derive a clear sky irradiance value. This clear sky model
also takes the changes in the clear sky irradiance due to
the sun’s movements for lead times greater O min into
account. The irradiance values for the shaded areas are
derived from camera images as described in KUHN et al.
(2017a). The approach used shaded and unshaded ref-
erence images as well as corresponding irradiance mea-
surements to derive irradiance from the pixel values of
current shadow cameras’ images.

To improve the robustness of this segmentation, the
approach is adapted. In this adapted approach, differ-
ences images to the current orthoimage are calculated
from both the sunny and shaded reference orthoimage
(lef irnageSunnyZCurrent and Diff. imageShaded2Current)'
Also, the segmentation is reduced to the two relevant
classes (sunny and shaded).



Meteorol. Z. (Contrib. Atm. Sci.)
PrePub Article, 2019

Corrections / Shadow Irradiance e

P. Kuhn etal.: Shadow camera based nowcasting system 5

Figure 4: Flow chart of the shadow camera based nowcasting system. Based on camera images and meteorological data, the current
irradiance map is derived. With additional tracking of cloud shadow motion vectors, future irradiance maps are predicted.

Preprocessing of
input data

i

Application of
tracking approach

Timestamp t =1

Resulting cloud
motion vectors

Timestamp t =2

Figure 5: Flow chart of a tracking process: Firstly, input data must be preprocessed, e.g. by applying normalization and corrections to the
jpg images or shadow segmentation. Afterwards, the tracker is applied, which derives cloud motion vectors.

The new segmentation algorithm segments a pixel
in the current orthoimage to be unshaded if the dif-
ference between this pixel and the corresponding pixel
in the sunny reference orthoimage is three times
larger than the difference to the shaded orthoimage
(3 x Diff. irna'geSunnyZCun'ent < Diff. irnageShaded2Current)'
This ratio was determined empirically. Otherwise, the
pixel is classified as shaded. Unlike the previous algo-
rithm, this approach does not depend on a fixed thresh-
old but is relative to both reference orthoimages.

Besides this adapted approach, the calculation of ir-
radiance maps without prior shadow segmentation based
on eg. 16 in KUHN et al. (2017a) for all pixels is studied.
This equation derives irradiances from current camera
images by comparing them to reference images and cor-
responding DNI and DHI measurements.

3 Development of a shadow camera
based nowcasting system

Using the initial shadow camera system and the adap-
tions described in section 2, a forecasting capability is
implemented into the system. In Figure 4, the work
flow of this shadow camera based nowcasting system
is shown: Required inputs are the images taken by
the shadow cameras and additional measurement data
from a meteorological station. Corrections and normal-
izations might be applied on the jpg images (see sec-
tion 2.2.1). Afterwards, shadows are segmented in the
current orthoimage (see section 2.2.2). With methods
described in KunnN etal. (2017a), irradiance maps are
generated. In this publication, we will focus on DNI
maps. The system can also produce GHI maps (shown
in KUHN etal., 2017a).

In order to predict future irradiance maps, cloud
shadows are tracked and the derived shadow motion vec-
tors are used for extrapolating future shadow positions.
This is explained in section 3.1. We will specifically look
at global (section 3.1.1) and local tracking methods (sec-
tion 3.1.2), using several trackers.

3.1 Considered tracking approaches

Figure 5 shows the general work flow for tracking: First
of all, the input data must be preprocessed, e.g. by gen-
erating difference images. Then the tracking approach is
applied, which finally leads cloud motion vectors.

Many tracking approaches are presented in the liter-
ature (YILMAZ et al., 2006; YANG etal., 2011; Wu etal.,
2015). Based on the results of the Visual Object Track-
ing Challenge (KrisTaN etal., 2017), we confine our-
selves to the Kernelized Correlation Filter- (KCF, HEN-
RIQUES etal., 2015), Staple- (BERTINETTO etal., 2015)
and the Discriminative Correlation Filter with Chan-
nel and Spatial Reliability (CSR-DCF, LUkEziIc etal.,
2017) tracker.

The KCF-tracker as developed by HENRIQUES et al.
(2015) uses as inputs a bounding boxes around an ob-
ject in the current frame. In the following frame, areas
within the image are assigned a probability of contain-
ing this object using ridge regression and a circular ma-
trix containing virtual images of the translated object.
This circular matrix can be Fourier transformed, which
significantly reduces computational costs.

The Staple-tracker (BERTINETTO etal., 2015) uses
both circular matrices and histograms to detect ob-
jects and their corresponding bounding boxes. Both ap-
proaches individually derive probabilities, which are af-
terwards combined with a manually specified weighting
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Binary difference
orthoimage
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Figure 6: Working principle of the global tracking method: A series of three grayscale orthoimages, taken 15 s apart, is used to derive cloud
motion vectors by subtracting concurrent orthoimages. The difference images are then segmented into binary difference images, which are
used as inputs for the applied trackers to determine one global cloud motion vector. The same principle is used in the local tracking method
to provide inputs for trackers deriving individual cloud shadow motion vectors.

factor a. As the histogram of an imaged object is less de-
pendent on deformations, this additional input may out-
perform in certain situations approaches based on cir-
cular matrices. In the Visual Object Tracking challenges
2015-2017, the Staple-tracker yielded better results than
the KCF-tracker at higher computational costs.

The CSR-DCF-tracker (LUKEzIC etal., 2017) com-
plements the KCF-tracer by estimating the reliability
both of individual pixels and of features. The this way
weighed probabilities are combined to determine the po-
sition of the tracked object with the highest likeliness.

For all trackers, feasible configurations are derived
by scrutinizing an example day (2015-09-19), specif-
ically looking at Histogram of Oriented Gradients-
features (HOG, DaLaL and TricGs, 2005) and the
grayscale orthoimage. For the KCF- and the Staple-
tracker, the most promosing results were obtained by
HOG-features. For the CSR-DCF-tracker, both HOG-
features and the grayscale orthoimage are used. The
used settings are specified in the appendix. The imple-
mentations of the trackers can be found in VisuaL OB-
JECT TRACKING CHALLENGE 2017 (2017).

The CSR-DCF- and the Staple-tracker are able to
detect size variations in the tracked objects. However,
due to the limited imaged area such scaling has negative
impacts on the results and is deactivated in both trackers.

3.1.1 Global tracking method

For the global tracking method, one cloud shadow mo-
tion vector for all cloud shadows visible in the area im-
aged by the shadow camera system (2 km X 2 km) is de-
rived. The working principle is shown in Figure 6. This
differential approach uses three concurrent orthoimages,
each taken 15 s apart. Subtractions lead to difference im-
ages, which serve as inputs for tracking algorithms.
Both the KCF- and the CSR-DCF-tracker are able to
derive a cloud motion vector from these two grayscale

differential input orthoimages. The Staple-tracker was
found to struggle if the derived bounding boxes are
partially outside the imaged area. Thus, for the global
tracking method, only the KCF- and the CSR-DCF-
tracker are used. A Kalman-filter considering data from
previous timestamps is applied to the derived motion
vectors to exclude outliers and to increase robustness.

3.1.2 Cloud shadow individual tracking method

In contrast to the global tracking method, which derives
one general cloud motion vector for all cloud shadows
visible in the imaged area, the cloud shadow individual
(local) tracking method determines, if possible, individ-
ual shadow motion vectors.

For this tracking method, both inputs from the differ-
ential approach based on three concurrent orthoimages
(similar to the approach used for the global tracking)
and inputs based on the difference image between the
current orthoimage and the sunny reference orthoimage
are used. In Figure 7, the working principle of the local
tracking method using the sunny reference orthoimage is
shown. Within certain inputs (here: difference image of
the current and the sunny reference orthoimage), noise is
removed and shadows are detected. These detected ob-
jects serve as the base of the used tracker, with which ob-
jects are re-detected in the following input image. Based
on the detected bounding boxes, cloud shadow motion
vectors (indicated by white arrows) are estimate. These
motion vectors are, if possible, individually Kalman-
filtered with data from previous timestamps correspond-
ing to the same cloud shadows, and finally used to gen-
erate nowcasts.

If shadows are visible in the imaged area for the first
time, no individual motion vector can be determined and
the global motion vector (see section 3.1.1) is assigned
to such shadows.
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Remove noise Detect shadows Tracker base Tracker result

Input

Figure 7: Working principle of the shadow individual (local) tracking method using the sunny reference orthoimage: Individual shadow
motion vectors are tracked based on shadows detected by subtracting the current (timestamp #,) and previous orthoimage (timestamp #,)
with the corresponding sunny reference orthoimages. Differential images of three concurrent orthoimages can also be used as an input as

shown for the global tracking method in Figure 6.

Irradiance map t, with cloud

MNowecasted irradiance map

srﬁdow. motion vectors

t

t

Figure 8: Working principle of the implemented nowcasting capability: From derived motion vectors and the current irradiance maps, future

irradiance maps are forecasted. White areas in the nowcasted irradiance maps correspond to areas for which no forecast is possible.

3.2 Generation of nowcasted irradiance maps

Having determined the cloud shadow motion vectors,

Table 1: Qualitative assessment of meteorological situation on days
included in benchmarking periods of 16 and 22 days.

future irradiance maps are nowcasted by applying these Day Qualitative assessment
motion vectors for the corresponding cloud shadow 2015-09-19 scattered, thick clouds
bounding boxes to the current irradiance map. Due to 2015-09-23 scattered, mainly thin clouds
the limited imaged area, the area for which forecasts can 2015-09-24 scattered to overcast, thick clouds
be derived shrinks with higher lead times. The working 2015-09-26 scattered, thin clouds
principle is shown in Figure 8. If the current orthoimage 2015-09-30 scattered to overcast, thick clouds
is segmented into shaded and unshaded areas, the clear 2015-10-03 overcast with breaks in the clouds
sky irradiance also used in KUHN etal. (2017b) is as- 2015-10-04 scattered, thin and thick clouds
signed to the unshaded areas. The irradiance values for 2015-10-05 scattered to overcast, thick clouds
the shaded areas are calculated from camera measure- 2015-10-06 scattered, th}n and th%Ck clouds
R . 2015-10-07 scattered, thin and thick clouds
ments as described in KuHN etal. (2017a) and translated 2015-10-08 scattered. thick clouds
based on cloud shadow motion vectors. 2015-10-27 scattered, thin and thick clouds
2015-10-28 scattered, thin clouds
2015-11-01 overcast with breaks in the clouds
4 Evaluations and results 2015-11-03 scattered, thin and thick clouds
2016-01-14 overcast with breaks in the clouds
The evaluation of the shadow camera based nowcasting additional days for WobaS-2cam-comparison
system is twofold: (1) In a first step, different config- 2015-09-08 few thick clouds
urations such as tracking and segmentation approaches 2015-09-09 scattered, thin and thick clouds
of this system are compared to each other on 16 days. 2015-09-10 scattered, thin clouds
(2) In a second step, the thus determined optimal config- 2015-09-11 scattered, thin and thick clouds
uration is compared to an state-of-the-art all-sky imager 2015-09-15 few thin clouds
2015-09-18 few thick clouds

based nowcasting system (WobaS-2cam) on 22 days. Vi-
sualizations of all days included in the benchmarks can
be found in GARSCHE (2018). A qualitative assessment
of all days is provided in Table 1. Timestamps with solar
elevations below 15° are excluded due to the sun shin-
ing directly into the cameras’ lenses for these situations
(a mask was added later-on).
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4.1 Evaluation approach and applied
deviation metrics

Commonly, validations of solar nowcasting systems are
conducted using conventional deviation metrics such
as root-mean-square deviations (RMSD), mean-absolute
deviations (MAD) and bias (eq. 4.1-4.3) compared to
reference irradiance measurements from pyranometers
or pyrheliometers, e.g. on 1-min temporal averages. Rel-
ative values are derived from absolute values and the av-
erage DNI as measured by the reference pyrheliometers.

N
1
RMSD = N Z(prediction,- —reference;)?  (4.1)
i=1
| &
MAD = N leredictioni — reference; 4.2)
i=1
&
bias = N Z(predictioni — reference;) 4.3)
i=1

However, as many authors have pointed out, conven-
tional deviation metrics are not perfectly suited to val-
idate forecasting systems (e.g. GILLELAND etal., 2009;
ScHMIDT etal., 2016; VALLANCE etal., 2017; REMUND
etal., 2017): A 1-min ramp, whose amplitude was cor-
rectly predicted, but two minutes too early, results in a
so-called ‘double-penalty’ (GILLELAND etal., 2009) and
the RMSD of this nowcasting system is far higher than
the RMSD of a system which did not detect a ramp at
all. However, for many industrial applications, a warn-
ing being too early might be better than no warning at
all. This holds for instance in hybrid PV plants, in which
the backup-generator needs time to ramp up.

Therefore, besides RMSD and MAD, we also con-
sider the Temporal Distortion Index (TDI, Frias-
PAREDES etal., 2016) and the Ramp Tool and Metric,
which is adapted from the wind energy sector for our
solar purposes (BIANCO etal., 2016).

The TDI is calculated as follows: A cost matrix is
determined by the absolute difference of all predictions
and all reference irradiance measurements. The differ-
ences of the temporally matched predictions and mea-
surements are on the diagonal of this nX n matrix with n
being the number of predictions and measurements. The
number of predictions and measurements does not have
to be the same but is assumed to be this way to simplify
discussions. All elements of this cost matrix outside the
diagonal combine measurements with predictions made
for another timestamp.

Through this cost matrix, the optimal path is found
via dynamic programming. The optimal path is the
path with the smallest sum of accumulated deviations.
Boundary conditions apply (e.g. jumps are not allowed).
The TDI is the area between the diagonal of the cost ma-
trix and the optimal path. The greater the TDI, the bigger
are the temporal offsets between the reference measure-
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Figure 9: Positions of the pyrheliometers used in this evaluation
inside the orthoimage.

ments and the predictions. The TDI is given as a per-
centage of the maximum possible temporal offset.

The comprehensive Ramp Tool and Metric (RT & M)
is introduced in Bianco etal. (2016) to validate wind
forecasts. Here, it is adapted for solar forecasts and
1-min temporal averages. This tool is freely available on
the internet (CIRES/NOAA, 2018) and uses three ramp
definitions simultaneously to derive a ramp score:

(1) The fixed-time interval method (Fixed Time),
which determines ramps by the start and end values
within a fix sliding time window, (2) the minimum-
maximum method (Min-Max), which calculates ramps
within a sliding time window between the local min-
imum and maximum and (3) the explicit derivative
method (Derivative), which derives the ramps in a slid-
ing time window based on the derivative form of the
time series. A score is calculated based on the number
of detected ramps as well as their temporal and irradi-
ance alignment. The time window used here is 1 min.

4.2 Impact of the normalization of the jpg
images on the nowcasts

Differences between the jpg images acquired by the
shadow cameras are adapted by (1) applying a vignetting
correction and (2) by normalization based on look-up
tables (see section 2.2.1). In Figure 10, nowcasts using
this normalization (SC-normalization) are compared to
nowcasts without it, which is the so-called standard
approach (SC-standard). For the nowcasts, the global
tracking method with the CSR-DCF-tracker is used for
both configurations.

For lead times of O min, only minor differences can
be seen between the two implementations for the RMSD
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~+rel. RMSD [%] SC - standard
_ #T - +-rel. RMSD [%] SC - normalization
| =rel. MAD [%)] SC - standard
~#=rel. MAD [%] SC - normalization
=#-rel, bias [%] SC - standard
| -#®-rel, bias [%] SC - normalization
~% —-TDI [%] SC - standard
~#-TDI [%] SC - normalization

]
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Deviations DNI [%]
2 a

Lead time [min]

Figure 10: Comparison of deviations of nowcasts with and without
using jpg image adaptations. Adaptations are based on the correction
of the vignetting effect and normalization between the cameras.
Here, the previous segmentation approach and the global CSR-DCF-
tracker are used. Other approaches lead to similar results.

and the MAD in Figure 10. However, normalization
reduces the RMSD and the MAD for higher lead times
as well as the bias in general. The temporal distortion
index (TDI) is similar for both approaches.

The reason for the reduced deviations for larger lead
times originates from clouds being shifted into parts of
the orthoimage imaged by other cameras. For the nor-
malized images, the tracking of clouds becomes easier
as the images, due to the normalization, are more alike.
This effect is not visible for lead time O min as the cor-
responding irradiances are derived from images of the
same camera and normalization between cameras is thus
irrelevant.

In Figure 10, a moderate bias which rises with the
lead times is present. This could indicate a bias in the
cloud dynamics at PSA towards melting instead of form-
ing clouds or a bias of the derived cloud shadow motion
vectors towards lower speeds. Future work will study
these hypotheses. With the found results, normalization
is applied in the following.

4.3 Evaluation of nowcasts with different
shadow segmentation approaches

In section 2.2.2, several approaches to use (or not use)
shadow segmentation are explained. The nowcasts ob-
tained with these approaches are compared to each other
in Figure 11 and 12. In Figure 11, the previous seg-
mentation (SC-previous segmentation) as used in KUHN
etal. (2017a) is compared to a differential approach (SC-
differential approach) described in section 2.2.2, yield-
ing only minor differences.

In Figure 12, the differential segmentation is com-
pared to an approach which does not apply shadow seg-
mentation (SC-no shadow segmentation). If the imaged
area in the current orthoimage is segmented into shaded
and unshaded areas, a clear sky model is used for the
unshaded areas. If no such segmentation is applied, the
irradiance values for all pixels are derived from camera
measurements as explained in section 2.2.2.

P. Kuhn etal.: Shadow camera based nowcasting system 9

16 days, AVG: 1 min
307 T I ! | =rel. RMSD [%:] SC - previous segmentation
-+-rel. RMSD [%] SC - differential segmentation
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-#-rel. MAD [%] SC - differential segmentation
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20| -#-rel, bias [%)] SC - differential segmentation
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~0-TDI [%] SC - differential segmentation

Deviations DNI [%]
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Figure 11: Comparison of deviations of nowcasts using the previous
segmentation approach and the differential segmentation explained
in section 2.2.2 using the global CSR-DCF-tracker.

16 days, AVG: 1 min

=trel. RMSD [%] SC - differential segmentation
++-rel. RMSD [%] SC - no shadow segmentation
| ==rel. MAD [%] SC - differential segmentation
=+=regl, MAD [%] SC - no shadow segmentation
=#-rel, bias [%] SC - differential segmentation

| #=rel, bias [%] SC - no shadow segmentation
=+=TDI [%)] SC - differential segmentation
=&-TDI [%] SC - no shadow segmentation

Deviations DNI [%]

Lead time [min]

Figure 12: Comparison of deviations of nowcasted irradiance
maps using the differential segmentation approach and without any
shadow segmentation as well as a global CSR-DCF-tracker. In this
approach, the irradiance of all pixels are derived from camera mea-
surements. If shadow segmentation is applied, areas derived to be
unshaded are assigned to have the clear sky irradiance value.

Figure 12 indicates that for lead times up to 75s
the approach without shadow segmentation is less prone
to deviations in comparison to the differential or the
previous segmentation approaches. Beyond lead times
of 75, the segmentation approaches show marginally
less deviations for MAD, TDI and RMSD. This can
be explained by optically thin clouds, whose shadows
are prone to be classified as unshaded areas, but can
be determined to have irradiance values corresponding
to bright shadows if no shadow segmentation is used.
However, as optically thin clouds at high altitudes often
have different motion vectors in comparison to lower
clouds, forecasts tend to be less accurate once these
optically thin clouds are detected. In addition to that, due
to camera instabilities, not using shadow segmentation
increases the noise levels in the irradiance maps. These
effects might explain the behavior seen in Figure 12. In
general, not using shadow segmentation is determined to
be the better approach and is thus used in the following.
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Table 2: Overview of the benchmarked tracking configurations.

tracking inputs tracker
global 3 concurrent CSR-DCF
orthoimages KCF
local 3 concurrent CSR-DCF
orthoimages KCF
Staple
local current, previous CSR-DCF
and corresponding  KCF
sunny orthoimage  Staple

4.4 Evaluation of tracking algorithms

Here, we benchmark a total of eight tracking approaches
on 16 days. These tracking approaches are (1) the
CSR-DCF-tracker and (2) KCF-tracker, used to derive
one global cloud shadow motion vector for the whole or-
thoimage (global tracking method). The (3) CSR-DCF-,
(4) KCF- and (5) Staple-trackers are used to derive in-
dividual motion vectors for each shadow (local tracking
method). All these approaches (1-5) are based on the
differential approach, using difference images of three
concurrent orthoimages. These difference orthoimages
serve as inputs for the two global and three local track-
ers. For the local trackers, besides this differential ap-
proach, images calculated from subtractions of the cur-
rent and previous orthoimages with their corresponding
sunny reference orthoimages are additionally studied as
inputs for the trackers (approaches 6-8). Table 2 pro-
vides an overview of the benchmarked tracking config-
urations.

Figure 13 depicts the deviations obtained with the
CSR-DCF-tracker and the KCF-tracker for the global
tracking method without shadow segmentation. Using
the global approach, the irradiance map for lead time
Omin is taken as-is with minor deviations arising due
to uncertainties in picking reference orthoimages, which
are caused by minor server delays. For the local ap-
proach, clear sky irradiances are assumed for every pixel
for which no cloud shadow was detected. Thus, the irra-
diance maps and deviations for lead time O min can be
slightly different. These differences are considered to be
irrelevant.

For lead times larger than Omin, the KCF-tracker
shows larger RMSD and MAD than the CSR-DCF-
tracker. However, the bias found using the KCF-tracker
is smaller. Similar comparisons find the CSR-DCF-
tracker outperform the KCF-tracker for local track-
ing methods, considering individual cloud speeds (not
shown). By a small margin, the CSR-DCF-tracker is out-
performed by the Staple-tracker (not shown). If differ-
ence images calculated from the current and previous
orthoimages and the corresponding sunny reference or-
thoimages are used as input data for the trackers, the
KCF-tracker shows the smallest deviations of all shadow
individual tracking methods.
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Figure 13: Comparison of deviations of nowcasts obtained with
the CSR-DCF-tracker and the KCF-tracker for the global tracking
method without shadow segmentation.
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Figure 14: Comparison of deviations of nowcasts of the best global
and best local tracking method.

Figure 14 compares the best global tracking method
(differential approach combined with the CSR-DCF-
tracker) with the best local tracking method (KCF-
tracker applied on difference images to the sunny ref-
erence orthoimage). The global tracking method shows
smaller deviations than the local tracking method but
higher TDI for some lead times. This is caused by
(1) the global tracking having more data for tracking,
which makes deviations less likely. As the predictions
are based on determined cloud shadow motion vectors,
small deviations in the measured velocities and direc-
tions lead to deviations which increase with lead times.
(2) Secondly, multi-layer cloud situations with overlap-
ping shadows on the ground are found to be especially
challenging for local tracking methods. Global tracking
approaches, although only deriving one general motion
vectors, yield less deviations in such complex situations.
This is attributed to the larger database of global cloud
shadow motion vectors in comparison to shadow indi-
vidual motion vectors, which enables Kalman-filtering
of outliers.

Similar challenges are present for all-sky imager
based nowcasting systems. Hypothetically, shadow cam-
era systems imaging larger areas might better cope with
such multi-layer situations due the increased amount of
available data for (individual) cloud tracking.
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Figure 15: Comparison of deviations of nowcasts of the all-sky im-
ager based nowcasting system WobaS-2cam and the shadow camera
based nowcasting system.

4.5 Benchmarking the shadow camera system
against a state-of-the-art all-sky imager
based nowcasting system

In Figure 15, the best configuration of the shadow cam-
era based nowcasting system (global tracking method
based on a differential approach from three concurrent
orthoimages in combination with the CSR-DCF-tracker
without additional shadow segmentation) is compared
on 22 days to the state-of-the-art WobaS-2cam system,
which is an all-sky imager based nowcasting system us-
ing two upward-facing cameras. WobaS-2cam provides
a set of nowcasts with lead times of 0, 1, 2, ...15min
every 30s. To compare the two systems, WobaS-2cam
forecasts with lead times of O min, 1 min and 2 min are
compared to shadow camera based forecasts of the same
lead times and timestamps. Working principles of this
system are explained in NoURI et al. (2019).

For lead times of Omin, the deviations found for
DNI and the shadow camera system (RMSD: 10.2 %,
MAD: 6.7 %) are lower than the deviation of WobaS-
2cam (RMSD: 15.1 %, MAD: 9.2 %), meaning that the
base of the shadow camera nowcasts is more accu-
rate. Noteably, the bias found for the shadow cam-
era system (3.3 %) is smaller than the bias of WobaS-
2cam (6.7 %). Similar patterns are found for lead times
of 2min, with the shadow camera system yielding
15.6 % RMSD and 9.6 % MAD while WobaS-2cam re-
sults in 22.0 % RMSD and 14.8 % MAD.

The shadow camera based nowcasting system
achieves a higher score using the Ramp Tool & Metric
(B1anco etal., 2016): The higher score visible in Fig-
ure 16 indicates more accurate ramp predictions in com-
parison to the WobaS-2cam system for all considered
lead times. Detailled studies revealed that the largest
differences in deviations between the two systems oc-
cure for days with variable cloud transmittances, which
are more accurately measured by the shadow camera
system. Therefore, the advantages of a shadow camera
based nowcasting system in comparison to all-sky im-
ager based systems (discussed in section 2.1) seem to
result in smaller deviations and improved forecasts.
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5 Conclusion and outlook

We presented a novel approach to derive solar shortest-
term forecasts using downward-facing cameras, taking
images of the ground. From these images, irradiance
maps are derived and future irradiances are predicted up
to 2 min ahead by tracking cloud shadows. To the best
of our knowledge, this is the first time such a system is
achieved.

Several algorithmic approaches to implement this
novel concept are benchmarked. A configuration using a
global tracking method based on a differential approach
from three concurrent orthoimages in combination with
the CSR-DCF-tracker without additional shadow seg-
mentation is found to yield the least deviations in com-
parison to pyrheliometer measurements. This setup is
compared to a state-of-the-art all-sky imager based now-
casting systems and found to outperform it. Reasons for
this achievement as well as limitations of shadow cam-
era based systems are discussed.

Main limitation of the current system is its small
imaged area of 2 kmx 2km. Frequently, cloud shadow
sizes are larger than this area. Furthermore, due to the
speed of clouds, tracking can often only be conducted
on a few concurrent images and cloud dynamics are
difficult to model. Therefore, we plan to install a new
shadow camera system on a near-by mountain ridge.
This planned shadow camera system could have an im-
aged area of about 100 km?.

Shadow cameras might enable research in a multi-
tude of fields, including (1) studies of cloud dynamics,
(2) long-term measurements of cloud motion vectors,
which might be relevant for the validation of NWP or
satellite products, and (3) solar shadow camera based
nowcasts for the next minutes. Furthermore, (4) sta-
tistical effects such as the aperture problem, relevant
for many speed estimating systems, can be investigated
(as demonstrated in KuHN etal., 2018c). To sum it up,
shadow cameras appear to have great potential for a
number of fields both in research and industry.
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Figure 16: Comparison of deviations of nowcasts of the all-sky imager based nowcasting system WobaS-2cam and the shadow camera
based nowcasting system using the Ramp Tool & Metric (Bianco etal., 2016).

Table A.1: Used parameters for the KCF-tracker.

Parameter Value
Kernel type Gaussian
Feature type HOG
HOG Cell Size 4
Padding 1.5
Lambda le-4
Output Sigma Factor  0.01

Table A.2: Used parameters for the CSR-DCF-tracker.

Parameter Value

Kernel type Gaussian
Feature type HOG und Gray
HOG Cell Size 4

Padding 1

Use scale false

Output Sigma Factor 1

Appendix

Parameters of the trackers In Tables A.1-A.3, a list
of the used tracker parameters is given. The implemen-
tations provided by the Visual Object Tracking Chal-
lenge 2017 (KRISTAN etal., 2017) are used. Parameters,
which are not specified here, are not relevant for our ap-
plication and do not have an impact on the tracking re-
sults. Specifically, parameters affecting scaling are not
applied. Moreover, parameters which become relevant
after more than two images are not used as the tracking
conducted here is always based on two frames.
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