CALLISTO: a Demonstrator for Reusable Launcher Key Technologies

Etienne Dumont, Shinji Ishimoto, Pascal Tatiossian, Josef Klevanski, Bodo Reimann, Tobias Ecker, Lars Witte, Johannes Riehmer, Marco Sagliano, Sofia Giagkozoglou Vincenzino, Ivaylo Petkov, Waldemar Rotärmel, René Schwarz, David Seelbinder, Markus Markgraf, Jan Sommer, Dennis Pfau and Hauke Martens

DLR, JAXA and CNES

32nd ISTS, Fukui, Japan

20 June 2019
Reusable vertical take-off and vertical landing demonstrator

- Cooperative Action Leading to Launcher Innovation in Stage Toss - back Operations
- Official start in June 2017 during Paris airshow
- Collaboration of three partners (JAXA, CNES and DLR) following the same goals:
 - reducing the cost of access to space
 - increasing the operational flexibility of launch vehicles
- And translated in a root need to be fulfilled by 2022:

 Improve knowledge of and demonstrate key features (technical, economics) for developing and operating a reusable VTVL first stage.

The vehicle: 13.5 m high, 1.1 m diameter, less than 4 tons at lift-off
(for more details see 2019-g-02)
Subsystem overview

- Fair sharing of the tasks considering the experience and know-how of each partner

- Numerous technologies and aspects (including system architecture, aerodynamics, MRO) specific for reusable vehicles

- Other subsystems designed for several reuses (10 flights but many more cycles)

The demonstration of these technologies and aspects on CALLISTO will help:
 - reducing risks for developing future RLV
 - optimising the design

FCS/A aerodynamic flight control system
FDR: flight data recorder
FNS: flight neutralization

G&C: guidance & control
RCS: reaction control system
TVC: thrust vector control
TM/TC: telecommand and telemearure
VEB: vehicle equipment bay
Guidance and Control

Tasks: Achieve **pin-point landing accuracy** despite uncertain flight conditions, i.e.
- Environmental conditions (i.e. wind, atmospheric density)
- Uncertainties in vehicle parameters (i.e. aerodynamics, mass properties)
- Propellant sloshing

Challenges:
- **Feedback control alone shows its limits** to achieve required performance
- Trajectory prediction and **autonomous trajectory (re-)planning required** during flight

Solution Approach:
- Predictive and reactive capability through closed-loop guidance based on **convex optimization**
- Guaranteed robust tracking performance through **structured H_\infty design**
Hybrid Navigation System (HNS)

Tasks:
Provide a navigation solution and a time reference for the whole vehicle, but especially for flight guidance and control purposes.

- Position, Velocity, Attitude, Attitude Rate
- Air Density, Mach Number, Angle of Attack/Sideslip
- Date and Time

Challenges:
- Very high performance requirements which cannot be fulfilled using conventional navigation systems
- Operation of sensors in proximity to an operating rocket engine (sensor ↔ plume interference, vibration)
- Moving landing pad on a floating barge in the open sea

Solution Approach:
- DGNSS, radar altimeter, fusion of signals
On-Board Software and OBC

Tasks:
- **Optimize in real time** the trajectory
- Manage the vehicle
- Accommodate the key design decisions of the avionics system

Challenges:
- Real-Time Computation on several cores
- Support for **distributed subsystem**

Solution Approach:
- Multicore real time computing based on RTEMS and with support of Symmetric Multiprocessing (SMP)
- Test-Driven Development
Landing dynamic and approach and landing system design

Tasks:
- Absorb remaining kinetic energy
- Limit the loads to other structures
- Keep the vehicle in stable conditions also after landing

Challenges:
- Large flight domain
 - Approach velocity
 - Approach attitude
 - Weather conditions (gusts)
- Very high success rate

Solution approach:
- Computer modelled landing dynamic applied to Monte Carlo simulations
- Several test campaigns to validate the design
Deployable structures

Tasks:
• Adapt the vehicle to the **different flight phases**:
 • For aerodynamically controlled phase
 • For the landing
• Be able to be stowed easily to prepare for next flight

Challenges:
• **Lightweight**
• High thermal loads
• High aerodynamic loads
• Short time window to perform the **deployment**

Solution approach:
• 4 pneumatically **deployable landing legs**
• 4 **deployable aerodynamic control surfaces**
• Several test campaign to validate the design
Aerodynamics (1/2)

Tasks:
- Provide an aerodynamic database for the full flight domain of CALLISTO and for all vehicle configurations
 - Fin folded / unfolded
 - Landing legs folded / unfolded
 - Various thrust levels

Challenges:
- Very large flight domain (AoA from 0° to 360°)
- CALLISTO is flying a long time in transonic regions
- High accuracy required
Aerodynamics (2/2)

Solution approach:

• **CFD computations** for the full flight domain with DLR TAU software based on high fidelity Navier Stokes computations and supported by trends based on Euler computations

• **Wind Tunnel Tests**
 • TMK in Cologne
 • Larger Wind Tunnels
 • VMK for data with retro-propulsion
Aerothermodynamic

Tasks:
• Predict aerothermal loads on the vehicle to be able to size the TPS needed to make the vehicle reusable

Challenges:
• Large number of configurations
• Understand retro-propulsion and especially the region close to the base plate
• Model properly the interaction between ground and vehicle for launch, landing and the phase after the landing

Solution approach:
• Aerothermodynamic CFD with DLR TAU software for design of TPS considering reusability requirement
• WTT in VMK for retro-propulsion
• Data from hot firing tests
Conclusion

JAXA, CNES and DLR are developing jointly CALLISTO to pave the way for potential future reusable launch vehicle in Europe and in Japan.

For that purpose numerous **key technologies** are being **developed and matured** in the frame of CALLISTO design and development phases.

By next ISTS in 2021, the **integration of CALLISTO** will have started in Tsukuba and **hot firing tests** in Noshiro will be under preparation.

Demonstration in flight of the **mastering of the key techniques and technologies** will start in 2022 from Kourou.

At ISTS 2023, we should be able to give a first glimpse in the results of the **post flights analysis** and the **lessons learned**.