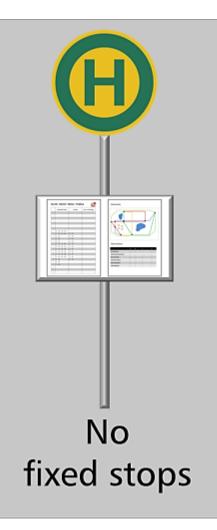
Demand-Responsive Transport vs. Conventional Public Transport

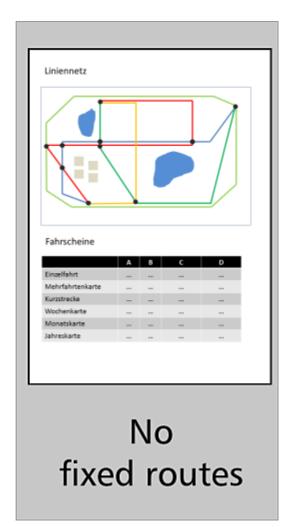
A MATSim study about the rural town of Colditz, Germany

Kathrin Viergutz German Aerospace Center (DLR e.V.) Institute of Transportation Systems, Braunschweig **Clemens Schmidt** Martin Luther University Halle-Wittenberg

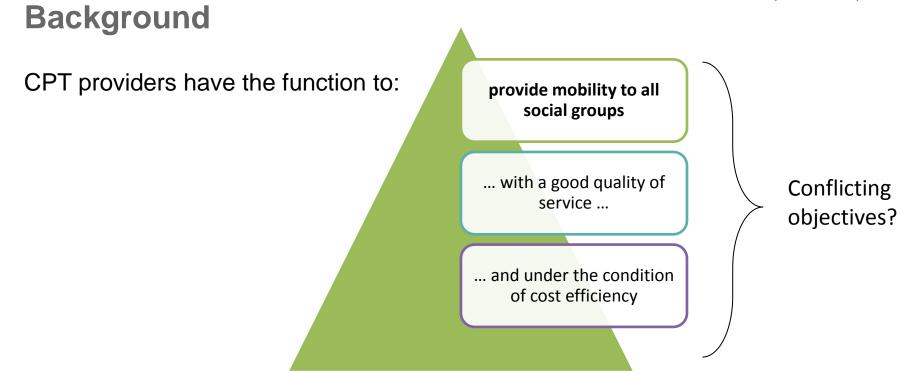
Knowledge for Tomorrow

10th International Conference on Ambient Systems, Networks and Technologies (ANT) April 29 – May 2, 2019, Leuven, Belgium




Demand-Responsive Transport (DRT)

	326 Bahnhof - Rathaus - Friedberg							
	Montag bis Freitag			heitag	Samatag		Sonn- und Feiertage	
1								
	4	19	34	49				
	4	19	34	49	4	34		
	4	34			4	34		
	4	34			4	34		
	4	34			4	34		
1	4	19	34	49	4	34		
1	4	19	34	49	4	34		
1	4	19	34	49	4	34		
•	4	19	34	49	4	34		
1	4		34	49	4			
	4	19	34	49	4	34		
1	-	34			4	34		
	<u> </u>	34			1			
1	4	34						
	_				L			
1								


No

timetable

A big challenge – especially in rural areas.

Is DRT able to cope with the challenges of the rural CPT sector?

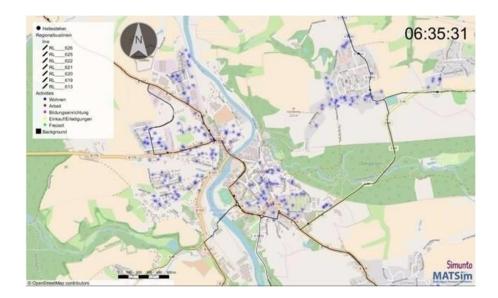
\rightarrow Comparison of DRT vs. CPT services in rural context

Related work

- Flexible transportation solutions in rural context known as
 - community car since the 1960s in England (Ryley et al. 2014)
 - paratransit since the 1970s in the USA (Ronald et al. 2015)
 - **Anrufbus** since the 1980s in Germany (König/Grippenkoven 2017)
 - so-called informal transport in the developing world (Cervero 2000).
- DRT wants to provide an universal solution by offering on demand mobility to everyone everywhere at any time; can be imaged as something in between a traditional bus and a taxi (Navidi et al. 2017).
- Urban MATSim studies (Bischoff et al. 2018 / Bösch et al. 2018) on the usage of DRT instead of CPT services predict
 - cost benefits for providers,
 - smaller travel times for customers,
 - enhanced spatial accessibility.

Methodology

Analysis of three scenarios:



- Simulations of these scenarios undertaken with activity-based, microsopic, multi-agent simulation framework **MATSim** (Horni et al. 2016).
- MATSim version 0.0.10 and its drvp (Maciejewski 2016), drt (Bischoff et al. 2018) and pt (Rieser 2016) modules were used.
- A synthetic MATSim model for the greater rural region of Colditz was programmed, according to demographics, labor and mobility statistics.

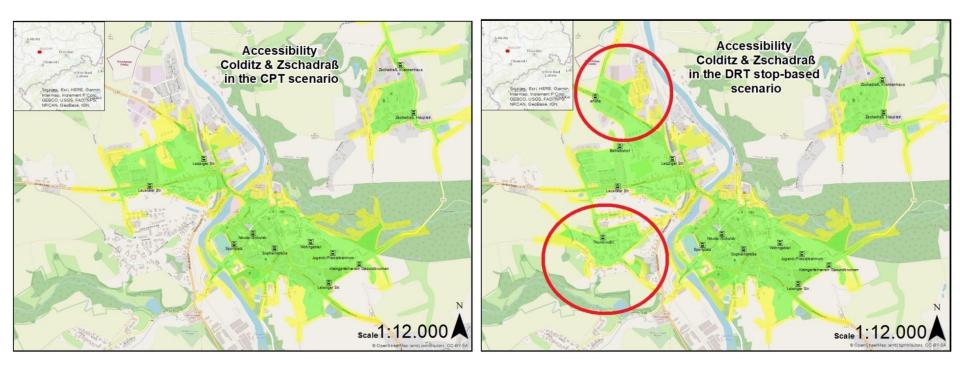
Colditz Case Study

Simulated synthetic MATSim model in the core town of Colditz:

- 360 agents
- 4% public transportation modal split (target value)
- agent's activities (day schedule)
- on Tuesday, the 12th June 2018.

Colditz Case Study

- 100 Iterations and each iteration allowed
 - 10% of agents to adapt their times within a range of 30min,
 - 10% of agents to alter their routes and
 - the remaining 80% of agents to keep their best scored plan.
- Agents are willing to walk 600m at most to the next bus or DRT stop.
- Only DRT simulations with an overall request rejection rate <5% were evaluated, to assure quality of service.



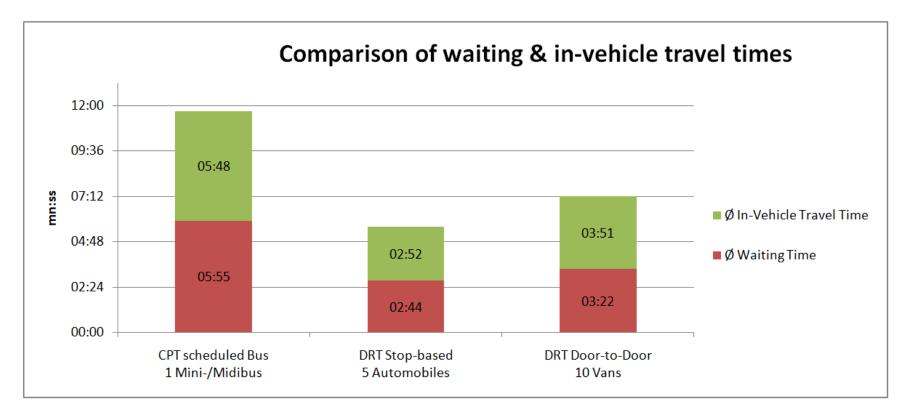
Green accessibility polygons = 400m range

Yellow accessibility polygons = 600m range

Case Study Results

Societal perspective

Case Study Results


Operator perspective

	CPT scheduled Bus	DRT Stop-based	DRT Door-to-Door	
Vehicle(s)	1 Mini/Midibus	5 Automobiles	10 Vans	
Capacity	min. 12 Places	min. 4 Places	6-14 Places	
VKM (km)	200	644	838	
Rides	93	458	512	
Agents	59	206	215	
Empty runs	51%	37%	34%	

Service expansion

Case Study Results

• Customer perspective

Conclusion

- DRT services are a useful transportation solution from customers' and societies perspective.
- Simulation results confirm MATSim studies on the usage of CPT vs. DRT services in urban context (Bischoff et al. 2018 / Bösch et al. 2018):
 - rural DRT services **reduce waiting & traveling times** for customers
 - rural DRT services enhance accessibility of a region
 - rural DRT services charge CPT providers with additional costs & efforts
- Recommendation: Future rural DRT (MATSim) simulation studies should model DRT as line-based services, which are flexible in time and their stopping along (semi-fixed) core routes.

References

Bischoff/Führer/Maciejewski, Impact assessment of autonomous DRT systems, Transportation Research Procedia (2018) 1–8. URL: https://svn.vsp.tu-berlin.de/repos/public-svn/publications/vspwp/2018/18-04/BischoffFuehrerMaciejewski2018DRTCottbus.pdf.

Bösch/Becker/Becker/Axhausen, Cost-based analysis of autonomous mobility services, Transport Policy 64 (2018) 76–91. doi:10.1016/j.tranpol.2017.09.005.

Cervero, Informal Transport in the Developing World, Technical Report, Nairobi, 2000. URL: http://mirror.unhabitat.org/pmss/getElectronicVersion.aspx?nr=1534&alt=1.

Horni/Nagel/Axhausen, The Multi-Agent Transport Simulation MATSim, Ubiquity Press, London, 2016. doi:10.5334/baw.

Infras. (2018). Handbook Emission Factors for Road Transport (HBEFA) - Online Version. URL: http://www.hbefa.net/e/index.html

König/Grippenkoven, From public mobility on demand to autonomous public mobility on demand – Learning from dial-a-ride services in Germany, Logistik und Supply Chain Management 16 (2017). URL: <u>https://elib.dlr.de/104956/</u>.

Maciejewski, Dynamic Transport Services, in: The Multi-Agent Transport Simulation MATSim, 2016, pp. 145–152. doi:10.5334/baw.23.

- Navidi/Ronald/Winter, Comparison between ad-hoc demand responsive and conventional transit: a simulation study, Public Transport 10 (2017) 147–167. doi:10.1007/s12469-017-0173-z.
- Rieser, Modeling Public Transport with MATSim, in: The Multi-Agent Transport Simulation MATSim, 2016, pp. 105–110. doi: 10.5334/baw.16.

Ronald/Thompson/Winter, Simulating Demand-responsive Transportation: A Review of Agent-based Approaches, Transport Reviews 35 (2015) 404–421. doi:10.1080/01441647.2015.1017749.

Ryley/Stanley/Enoch/Zanni/Quddus, Investigating the contribution of Demand Responsive Transport to a sustainable local public transport system, Research in Transportation Economics 48 (2014) 364–372. doi:10.1016/j.retrec.2014.09.064.

Thank you for your attention

Kathrin Viergutz Deutsches Zentrum für Luft- und Raumfahrt Institute of Transportation Systems Kathrin.viergutz@dlr.de

Clemens Schmidt

Martin Luther University Halle-Wittenberg

Knowledge for Tomorrow

