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Abstract: We present an advancement in applications of ultrafast optics in picosecond laser 
ultrasonics - laser-induced comb-like coherent acoustic phonons are optically controlled in a 
In0.27Ga0.73As/GaAs multiple quantum well (MQW) structure by a high-speed asynchronous 
optical sampling (ASOPS) system based on two GHz Yb:KYW lasers. Two successive pulses 
from the same pump laser are used to excite the MQW structure. The second pump light pulse 
has a tunable time delay with respect to the first one and can be also tuned in intensity, which 
enables the amplitude and phase modulation of acoustic phonons. This yields rich temporal 
acoustic patterns with suppressed or enhanced amplitudes, various wave-packet shapes, 
varied wave-packet widths, reduced wave-packet periods and varied phase shifts of single-
period oscillations within a wave-packet. In the frequency domain, the amplitude and phase 
shift of the individual comb component present a second-pump-delay-dependent cosine-
wave-like and sawtooth-wave-like variation, respectively, with a modulation frequency equal 
to the comb component frequency itself. The variations of the individual component 
amplitude and phase shift by tuning the second pump intensity exhibit an amplitude valley 
and an abrupt phase jump at the ratio around 1:1 of the two pump pulse intensities for certain 
time delays. A simplified model, where both generation and detection functions are assumed 
as a cosine stress wave enveloped by Gaussian or rectangular shapes in an infinite periodic 
MQW structure, is developed in order to interpret acoustic manipulation in the MQW sample. 
The modelling agrees well with the experiment in a wide range of time delays and intensity 
ratios. Moreover, by applying a heuristic-analytical approach and nonlinear corrections, the 
improved calculations reach an excellent agreement with experimental results and thus enable 
to predict and synthesize coherent acoustic wave patterns in MQW structures. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Owing to the rapid progress in the field of ultrafast lasers, the excitation and detection of 
short coherent acoustic phonons (CAPs) have become possible and have been intensively 
studied in various materials via ultrafast time-resolved spectroscopy [1–8]. Subsequently, 
CAP manipulation also has undergone active investigations, because of its underlying 
capabilities to upgrade our interests from monitoring to controlling phonon-relevant 
processes/devices, such as heat management in thermoelectric devices [9,10], phase-
transition-memory devices [11,12], chemical potential modulation in crystals [13], effective 
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magnetic field stimulation in ferrite [14], integrated phononic circuitry [15], and acoustic 
nanocavities [16,17]. The straightforward way to manipulating CAPs on a picosecond time 
scale is to do so in tailored nanostructures and materials, since the properties of laser-induced 
coherent picosecond acoustic phonons are strongly dependent on the nature of the constituent 
layers, their thicknesses, and periods of layered structures or thin-films [18]. For example, 
frequencies and frequency differences within the observed triplets of zone-folded acoustic 
phonon modes were studied in GaAs/AlAs superlattices with different combinations of GaAs 
and AlAs monolayers [19]. In addition to the frequency, the acoustic amplitude and phase can 
also be modulated by the choice of layer thickness. In thin GaP films grown on a silicon 
substrate, both the amplitude and the phase of acoustic phonon time traces have been shown 
to vary with the GaP layer thickness in a wide range [20]. Material tailoring offers another 
possibility to adjust the acoustic phonon amplitude and frequency. For instance, InxGa1-xN 
epilayers with various Indium composition x, led to a change of the amplitude of the acoustic 
oscillations proportional to the Indium composition [21]. Apart from the direct influence of 
sample structures and materials, the extrinsic factors such as external electric fields, 
temperature, pressure, and magnetic fields are also crucial to the CAP processes. Because the 
electronic properties of specific samples such as the energy band structure and dielectric 
constants can be tailored by temperature and pressure, additionally, the optical field inside 
materials can be modified by external electric and magnetic fields, leading to variations in 
light absorption and light scattering [22]. In turn, the photo-excited CAP processes are 
perturbed via electron-phonon, phonon-phonon and photon-phonon interactions. Hence, those 
extrinsic factors can also be applicable to tune acoustic phonons. For example, control of the 
CAPs amplitude was demonstrated by introducing external biases in a piezoelectric 
InGaN/GaN multiple quantum wells (MQWs) structure in the range from +2 V to −9 V [23]. 
The CAPs damping and amplitude were modulated by the temperature variation from 4.5 K 
to 300 K in a quantum cascade laser structure [24]. 

Even though the above approaches for CAP manipulation have displayed their feasibilities 
and versatilities, many questions remain open. While these questions could be answered by 
investigating a large number of different sample structures and using a large set of parameters 
for the variation of extrinsic factors, we decide to invest the control over CAP dynamics 
optically. Since CAPs are excited by lasers in ultrafast time-resolved spectroscopy, excited 
CAP features are considerably dependent on optical pulse properties. For example, the 
adjustment of pump light wavelength can result in the phonon pulse shape variation due to the 
altering of optical absorption spectra in a triple-quantum-well structure [25]. The optical 
pump power influence on the CAPs amplitude in a ZnO/ZnMgO MQWs structure, induced by 
the variation of photo-excited carriers and the screening effect, was also examined [26]. On 
the basis of the ultrafast optical single-pulse coherent control of CAP via optical pulse 
parameter modifications, the multiple-pulse optical manipulation of CAPs has arisen 
increasing attention and attained noticeable progress, which enables selective excitation in 
superlattices [27,28], MQW structures [29,30], nanoparticles [31], plasmonic nanostructures 
[32] and aluminum gratings [33], frequency tuneabilities in single quantum well structures 
[34] and thin films [35], and phase shifts in a MQW structure [36]. The multiple pulses are 
normally split from the pump source and adjustable time intervals between them are applied 
by introducing variable delay lines, hence constructive or destructive acoustic phonon 
excitations take place in the structure, depending on the time delay between them. More 
complex phonon control can be realized by simultaneous multi-parameter modulation of 
multiple optical pulses, which can take advantage of the ultrafast optical pulse shaping 
technique that enables user-defined almost arbitrary optical waveforms by a pulse shaper such 
as a spatial light modulator exerted on spectrally decomposed laser pulses [37]. Nonetheless, 
mere double-pump-pulse schemes have already proven their viability to manipulate CAPs by 
control of pump time intervals and pump intensities in semiconductor multilayer structures 
[28–30,36]. We notice several characteristics of the most reported two-pump-pulse optical 
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control systems of coherent acoustic phonons. Firstly, Nd-doped solid lasers pumped 
Ti:sapphire lasers are usually employed as pump and probe sources for pump-probe 
spectroscopy, which leads to high-cost and bulky systems. Secondly, the employed 
Ti:sapphire lasers mostly have a sub-GHz pulse repetition rate, which gives rise to a long time 
window (>1ns) that is not necessary for some CAP processes on the time scale of a few 
hundred ps. In addition, the systems with low repetition rate undergo a tradeoff between the 
scan rate and the temporal resolution [38]. Thirdly, most of the CAPs manipulation 
experiments are conducted in a conventional system where the time delay between the pump 
and the probe pulse is realized by a mechanical delay line, which limits the scan speed (<1 
kHz) and thus the detection sensitivity that increases with the number of measurements 
accomplished in the fixed time interval. Last but not the least, in particular, to the best of our 
knowledge, the reported optically manipulated CAP oscillations [28–30,36] are not periodic 
wave-packet sequences. As an important step towards optically-dependent arbitrary acoustic 
waveform synthesis techniques via Fourier-transform spectral line-by-line shaping, the CAP 
wave-packet sequence deserves thorough investigations by means of double-pump-pulse 
optical manipulations. Zone-folded triplet modes have been previously excited in a 
GaAs/AlAs superlattice and were selectively enhanced or suppressed in a high-speed 
asynchronous optical sampling (ASOPS) system based on a pair of GHz Ti:sapphire lasers 
[28]. However, the acoustic oscillations were induced by unequally-spaced eigenmodes and 
thus non-periodic acoustic wave-packet waves. In addition, the systematic investigation of the 
simultaneous time delay and pump intensity control in the spectral domain was absent. 

In this paper, we report on optical manipulation of CAPs by simultaneous tunable time 
delay and pump intensity of the second pump light pulse in a double-pump-pulse ASOPS 
system based on two GHz diode-pumped Yb:KYW lasers. The temporally periodic wave-
packet-like and spectrally comb-like CAPs, are excited and optically manipulated in the 
periodic MQWs of a semiconductor saturable absorber mirror (SESAM). Resembling optical 
waveform synthesis, our result offers the possibility to dynamically shape the periodic 
acoustic wave-packet sequence by an all-optical method. The high detection sensitivity of our 
ASOPS system enables to follow already small changes in the controlled acoustic dynamics 
at a very low incident power of the second pump light. Previously we had reported only on 
CAPs excited in the same sample in a single-pump-pulse configuration [39,40], which only 
presented elementary interpretations of CAPs generation, propagation and detection in the 
MQWs and established a basic understanding of the relevant dynamics. In order to elucidate 
the acoustic modulation taking place in the double-pump-pulse process, we develop a 
simplified theoretical model, which is initially applied to the analysis of the single-pump-
pulse system, and is subsequently advanced to cope with the more complicated double-pump-
pulse situation, and is finally optimized by two approaches. Our to-be-shown research results 
demonstrate how ultrafast optics continues to advance one of its application fields – laser 
ultrasonics. Specifically, our results show the promising ability of a GHz-Yb:KYW-laser 
ASOPS system to optically manipulate complex acoustic phonons. To the best of our 
knowledge, such a system has been applied to investigate the multi-pulse optical coherent 
control of CAPs by ultrafast time-resolved spectroscopy for the first time, which potentially 
stirs new applications and continuing progress in laser ultrasonics. 

2. Experimental set-up and sample 

Double-pump-pulse experiments are performed in the ASOPS system based on two Yb:KYW 
lasers, as shown in the block diagram in Fig. 1(a). The two lasers are working at a pulse 
repetition rate level of 1 GHz, with a small repetition rate difference of 5 kHz stabilized by a 
phase-locked loop (fpump = 1 GHz + 5 kHz, fprobe = 1 GHz), emitting at a central wavelength of 
~1050 nm. The detailed set-up description can be found in our previous report [39]. The 
system performance is characterized in terms of temporal resolution and detection sensitivity. 
The temporal resolution is about 500 ps after considering the increment (~100 ps) over 1-ns 
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time window due to the relative timing jitter between the two lasers. The temporal resolution 
is limited by the laser pulse duration (the pump and probe laser pulse durations are ~210 ps 
and ~280 ps, respectively).The detection sensitivity is close to shot noise limit (noise floor 
can be below ∆R/R = 10−6 in a few seconds). Differing from the original single-pump-pulse 
set-up, the incident pump beam is split into two portions by a pellicle before collinearly 
irradiating the sample in the normal direction. In the path of one of the split beams, a variable 
mechanical delay stage is inserted in order to control the time interval between two pump 
pulses, as illustrated in Figs. 1(b) and 1(c). For the adjustment of the pump intensity of the 
delayed pump pulse, an adjustable neutral density filter (NDF) and a half wave plate (HWP) 
are employed and inserted in the path of the delayed pulse. The NDF is capable of tuning the 
pump power in the range of 0 – 37 mW and the HWP can extend the tunable range from 37 
mW to 69 mW due to the pellicle transmission dependences on polarizations. The probe beam 
is oblique with respect to the sample and its power is fixed at 4.5 mW. The reflectivity 
variation of the sample after its excitation by the pump laser pulse is a function of the time 
delay between the probe pulse and pump pulses, which is monitored by the reflected probe 
light. 

 

Fig. 1. (a) The block diagram of ASOPS system. (b) The double-pump-pulse configuration in 
the measurement box. NDF: neutral density filter. NDF is used to adjust the delayed second 
pump power in the range of 0 – 37 mW. (c) The supplementary double-pulse-pump 
configuration in the measurement box. HWP: half wave plate. HWP is used to adjust the 
delayed second pump power in the range of 37 – 69 mW. (d) The sample structure. The 
multilayered sample is composed of GaAs layers (coral pink areas), In0.27Ga0.73As layers (QW, 
blue areas) and a DBR. 

The sample under investigation is a SESAM structure with multiple In0.27Ga0.73As 
quantum wells (QWs) as saturable absorber ahead of a distributed Bragg reflector (DBR) 
consisting of 23 pairs of GaAs/Al0.95Ga0.05As. The DBR reflects the incident light with a 
reflectance of nearly 100%. Because the photon energy is above the bandgap of In0.27Ga0.73As 
but below the bandgap of DBR constituent materials in the structure, light absorption occurs 
only in the QWs. The structure of the sample is displayed in Fig. 1(d). The sample is grown 
on a GaAs substrate along the [100] direction. Every three QWs and their barriers form a 
triple-QW stack and in total three triple-QW stacks are formed. All QWs have the same 
thickness of 7 nm and all barriers within a triple-QW stack also have the same thickness of 6 
nm. The GaAs layer thickness between two adjacent triple-QW stacks is 112 nm while the 
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thickness of the GaAs cap layer is 55 nm, which is approximately half of the stack-to-stack 
distance. To clarify the notations, dQW denotes the distance between two adjacent QWs, which 
also indicates the wavelength of laser-induced acoustic phonons in QWs; ds denotes the 
thickness of the triple-QW stack; dss denotes the stack-to-stack distance. It will take excited 
longitudinal acoustic phonons a time duration of T = dss/v ≈30.2 ps to travel through adjacent 
triple-QW stacks (v = 4730 m/s in GaAs [41]). Because the periodic MQW structure is of 
great interest for wave-packet-like coherent acoustic phonon manipulations, our following 
acoustic discussions will focus on this region rather than the DBR. All experiments are 
performed at room temperature. 

3. Theoretical modelling 

Once a pump photon is absorbed inside the QW region, electron-hole pairs are excited. 
Hence, the electronic distribution in the QWs is disturbed and thus an initial stress is set up in 
each QW via deformation potential [42]. The detailed stress distribution largely depends on 
the space-time evolution of photo-excited charge carriers and physical properties of the 
structure [2]. However, a detailed microscopic treatment of the electron dynamics is beyond 
the scope of this work. As we will show in the following this does not hinder an already in 
depth understanding of the undergoing acoustic dynamics. 

 

Fig. 2. Illustration of the stress wave initiated in a triple-QW stack (solid curves) and detected 
periodically (dotted lines) in an infinite MQW structure. The profile of a triple-QW stack is 
assumed as (a) Gaussian shape and (b) rectangular shape. 

Based on the structure of the triple-QW stack where the thickness of InGaAs is very close 
to that of the GaAs barrier dInGaAs ≈dbarrier, and the wave-packet-like acoustic oscillations 
displayed in our earlier measurements [39,40], it is reasonable to assume that the stress wave 
generated in each triple-QW stack is a cosine wave enveloped by the profile of the stack. For 
simplicity, we will initially assume that the stack generation profile exhibits a Gaussian 
shape. The launched stress wave propagates simultaneously forward and backward along the 
z-axis which is perpendicular to the QWs (see Fig. 2(a)). Due to the small acoustic impedance 
difference between In0.27Ga0.73As and GaAs, the acoustic reflections on the interfaces are 
neglected in our following analysis. In addition, considering that the counter-propagating 
stress waves have the equivalent impact on the final acoustic response, we will not specify the 
stress wave propagation direction in our mathematical analysis. To begin with, we consider 
the excitation by a single pump pulse in one triple-QW stack. The generated stress wave can 
be expressed as a function of space z and time t 

 ( ) ( ) ( )
2

g 2
QW

2π
, a exp cos ,

2

z vt
f z t z vt

dσ
   −

= − −   
     

 (1) 

where a is a constant, indicating the stress wave amplitude, v denotes the longitudinal acoustic 
velocity in the sample, dQW denotes the QW-to-QW distance. Because the sound velocities are 
nearly equal vInGaAs ≈vGaAs [40], for simplicity in the modelling, we assume that acoustic 
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waves are travelling everywhere in the MQW structure at the speed of v = vGaAs. The standard 
deviation σ in the Gaussian formula can be given as 

 s ,
2 2 ln 2

dσ =  (2) 

where ds denotes the triple-QW stack thickness, defined as the full width at half maximum 
(FWHM) of the Gaussian profile. When the stress waves travel along the z-axis in the sample, 
the vibration perturbs the refractive index and thus the probe light will monitor its 
modifications via photoelastic effect. In our ASOPS system, the probe Yb:KYW laser is 
nearly identical to the pump laser in terms of the central wavelength, the pulse-width, and the 
pulse repetition rate. Thereby, the stress detection sensitivity function is assumed to share the 
same form with the stress generation function, written as a function of z 

 ( )
2

d 2
QW

2π
bexp cos ,

2

z
f z z

dσ
  

= −        
 (3) 

where b is a constant. Equation (3) only represents the detection sensitivity function of a 
single triple-QW stack, for the compact presentation of the following integration calculation. 
The final acoustic waves detected by all triple-QW stacks will be discussed later where 
necessary. The induced temporal signal response can be regarded as the convolution of the 
stress wave generation function and the detection sensitivity function 

 ( ) ( ) ( ) ( ) ( )1 d g d g , d .s t f z f z f z f z t z
∞

−∞
= ∗ =   (4) 

If Eqs. (1) and (3) are substituted into Eq. (4), the following expression is obtained: 
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 (5) 

In Eq. (5), c1, c2 and c3 are constants. The integral calculation indicates c1 ≅ 0  c2, therefore, 

c1 can be ignored. The final expression in Eq. (5) is associated with the high-frequency 
oscillation which shows a wave-packet-like behavior. Then we will perform Fourier 
transform to s1(t) as follows 
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1 1
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exp 2π d

c exp exp ,
/ 2π / 2π
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f f f f
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∞
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       − +    = − + −                    


 (6) 

where c4 is a constant and f0 = v/dQW, indicating the frequency of acoustic oscillation in the 
triple-QW stack. The result in Eq. (6) implies that the envelope of the acoustic spectrum also 
has a Gaussian shape with the central frequency f0 and the bandwidth ∆BFWHM = (ln 
2)1/2v/(πσ). It is noteworthy that the spectrum is real, which means the spectral phase equals 
zero in the frame of our modelling. So far only a single triple-QW stack is taken into account 
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in the acoustic phonon generation and detection process. However, the triple-QW stack 
spatially repeats with the equal distance dss in the structure, which means the stress waves 
initiated in the triple-QW stack subsequently propagate in both forward and backward 
directions, and are detected in the equally distributed triple-QW stacks at times t = ndss/v = 
nT, where n = 1, 2, 3, … (see Fig. 2(a)). As the illustration indicates, the MQW structure is 
assumed to be infinite along the z- axis, which permits us not to take into consideration the 
reflection on the air/sample boundary and simplifies the calculation. Because the cap layer 
thickness approximately equals half of the thickness of the GaAs layer sandwiched by two 
neighboring triple-QW stacks, the assumption of simply repeated triple-QW stacks without 
the air/sample interface reflection makes sense in our calculation. In addition, it is worthwhile 
mentioning that the stress waves are excited in all triple-QW stacks at the same time although 
only the excitation by a single triple-QW stack is illustrated and analyzed above. The 
combined excitation by all the triple-QW stacks only leads to larger acoustic intensity 
compared to a single triple-QW stack excitation. Finally, concerning the damping of the 
wave-packet sequence potentially induced by defect scattering, the stress wave sign change 
by the reflection on the air/GaAs interface, and the limited number of triple-QW stacks in the 
physical structure, we assume that the time-domain acoustic signal is enveloped by a 
Gaussian shape h(t). Hence, taking into account the temporally periodically repeated wave-
packets, the overall damping and the amplitude magnification, the final acoustic response can 
be expressed as 

 

( ) ( )ss
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5 1
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
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where c5 is a constant and ∆t represents the pulsewidth (FWHM) of the superimposed 
Gaussian envelope. The Fourier transform is then applied to Eq. (7) as follows 

 
( ) ( ) ( )

( ) ( )

ss
1_total 5 1

6 1

c exp 2π d

c ,

n

m

nd
S f s t h t i ft t

v

S f H f m f

∞

=−∞

∞

−

=−∞

∞

∞

 = − − 
 

= − Δ






 (8) 

where c6 is a constant, m is an integer, and ∆f denotes the spectral comb spacing with the 
relation ∆f = v/dss. H(f) represents the Fourier transform of h(t). We then substitute Eq. (6) 
into Eq. (8) and apply a Fourier transformation to h(t), so the final acoustic spectrum in the 
MQW structure analyzed in the single-pump-pulse configuration can be presented as 
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 (9) 

where c7 is a constant. Equation (9) reveals four features of the spectral response. Firstly, the 
amplitude spectrum is composed of comb-like components spaced by ∆f which is determined 
by the triple-QW stack-to-stack spacing and the longitudinal acoustic velocity. The spectrum 
is real. Secondly, the comb spectrum is centered at f0, determined by QW-to-QW spacing 
within a triple-QW stack and the longitudinal acoustic velocity. Thirdly, the comb 
components amplitude is enveloped by a Gaussian shape associated with the acoustic 
generation and detection profile in the triple-QW stack. Equation (9) together with Eq. (2), 
indicates that the bandwidth of the comb spectrum is inversely proportional to the thickness 
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of the triple-QW stack. Lastly, the comb linewidth is related to the acoustic temporal damping 
window duration. 

In the same way, if a rectangular generation and detection profile with width equal to ds in 
the triple-QW stack is assumed (see Fig. 2(b)), the following spectrum can be derived 
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   
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
(10) 

where c8 is a constant. Unlike the spectrum under the assumption of a Gaussian profile, the 
spectrum derived from a rectangular generation and detection profile, shows that the acoustic 
comb components are modulated by the square of a sampling function and thus show a clear 
distinction regarding spectral bandwidth and comb component amplitudes compared to the 
Gaussian assumption. 

We will now move on to the double-pump-pulse situation, performing the analysis in the 
spectral domain. Two key variables are introduced to demonstrate the acoustic manipulation 
by a double-pump-pulse scheme, namely, the time delay ∆T between the first and the second 
pump pulse and the pump power ratio q = P2/P1 where P1 and P2 are the pump power for the 
first and the second beam, respectively. For a given pump laser, the pump pulse intensity is 
proportional to the pump power and slight beam spot size variations induced by divergence 
when ∆T is adjusted are ignored, so the pump power ratio is considered the same as pump 
pulse intensity ratio in our analysis. We start with a brief discussion of the pump power effect. 
As a saturable absorber incorporated in the SESAM structure, the In0.27Ga0.73As QW layers 
lead to a nonlinear reflectivity curve dependent on the incident pulse fluence, because the 
saturation absorption takes place when the initial states for the pump light transitions are 
bleached while the final states are still occupied at high optical pump fluence [43,44]. 
Therefore, the amplitude of photo-excited acoustic phonons potentially does not follow a 
linear relation with the incident pump power as well. However, initially we will assume that 
the phonon amplitude is proportional to the incident pump power for simplicity as follows 

 2 2

1 1

,
A P

q
A P

= =  (11) 

where A2 and A1 denote the amplitude of CAPs excited by the first pump pulse and by the 
second pump pulse, respectively. In Section 4, we will improve our model by nonlinear 
corrections. Secondly, in addition to the varied pump power, the excitation by the sequential 
pump light with changing time intervals ∆T also gives rise to subtle modifications of carrier 
dynamics in the QWs [45], which is interesting for preventing multi-pulsing phenomena or 
for the development of high repetition rate lasers by observing the optical absorption. 
However, we will not further explore its effect on acoustic phonons, but simply neglect the 
potential consequence in the modelling. In the time domain, the double-pump-pulse induced 
acoustic response can be written as 

 ( ) ( ) ( )2_total 1_total 1_total .s t s t qs t T= + − Δ  (12) 

The corresponding acoustic response in the spectral domain is thus derived as follows 

 
( ) ( ) ( ) ( )

( ) ( )
2_total 1_total 1_total

2_total

exp 2π

exp .

S f S f qS f i f T

S f i fθ
= + − Δ

=   
 (13) 

The amplitude spectrum |S2_total(f)| and phase spectrum θ(f) can be expressed as 
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2_total 1_ total 1 4 cos πS f S f q q f T= − + Δ  (14) 

and 

 ( ) ( )
( )

1 sin 2π
tan ,

1 cos 2π

q f T
f

q f T
θ −  − Δ

=  + Δ  
 (15) 

respectively. Equations (14) and (15) indicate that both the acoustic spectral amplitude and 
phase are modulated simultaneously by the pump intensity ratio q and the time delay between 
two successive pump pulses ∆T. Several interesting facts are unveiled as follows. Firstly, 
when q is fixed, the amplitude variation of the spectral comb components is periodic with 
varying ∆T. Moreover, the frequency of the periodic variation is equivalent to the spectral 
frequency f. Secondly, if the comb frequency f = m∆f (m = 1, 2, 3, …) is substituted into Eq. 
(14), the local minimum of the spectral amplitude variation with q can be found at q = 1 for 
the mth comb component where m satisfies m = (2n + 1)/(2∆f∆T) (n = 0, 1, 2, …) and is an 
integer number for the particular values of ∆T. Thirdly, the spectral phase also shows a 
periodic variation dependent on ∆T, when q is fixed. 

In the next section, the experimental CAP results attained in the double-pump-pulse 
ASOPS system will be given, meanwhile, the modelling will be visualized for comparison. 

 

Fig. 3. (a) Original time traces, (b) coherent acoustic phonons, (c) acoustic amplitude 
spectrums, and (d) acoustic phase spectrums when the second pump time delay ∆T varies in 
the range of 0 – 5.6τ (0.5T). The first pump power P1 equals the second pump power P2 of 27 
mW. Curves with ∆T-dependent color represent experimental results and gray curves represent 
modelling results given Gaussian generation and detection functions in individual triple-QW 
stack. Vertical dot black lines in (d) indicate the positions of five comb frequencies. Data are 
shifted vertically for clarity in steps of 2.5 × 10−3 in (a), 1.5 × 10−6 in (b), 1 in (c) and 2π in (d). 
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4. Experimental results and modelling visualization 

For clarification, experimental acoustic waves presented in this section are obtained by 
numerically removing the electronic and thermal exponential decaying background from the 
original reflectivity change (∆R/R) traces via a smoothing average method. Thus the small 
acoustic signal becomes visible and coherent control over acoustic waves can be observed. 

4.1 Tunable pump delay, fixed pump power 

Previously we have described and discussed CAPs excited in the same MQW structure by a 
single-pump-pulse ASOPS system based on two Yb:KYW lasers, where an acoustic wave-
packet temporal sequence was produced, due to spatially periodically distributed triple-QW 
stacks [39,40]. Aiming to optically coherently controlling the CAPs in this structure, a second 
pump pulse with tunable time delay ∆T and tunable pump power P2 is introduced in the 
experimental set-up. 

Initially, the optical power of the second pump light is kept equal to that of the first one at 
27 mW, meanwhile, the time delay ∆T between two pump pulses is adjustable in the range 
from 0 to 0.5T (5.6τ) which equals 15.12 ps in our case by moving a variable delay stage, 
where T and τ denote the period of the acoustic wave-packet sequence and the period of 
oscillations within the individual acoustic wave-packet, respectively. Consequently, a series 
of distinct coherent acoustic phonons is obtained by tuning only the time delay ∆T and 
displayed by curves with ∆T-dependent color in Figs. 3(a)-3(d) in forms of the original pump-
probe time traces, the subtracted temporal acoustic phonons, and the acoustic spectral 
amplitudes and spectral phases. For comparison, the single-pump-pulse measurements with 
only the first pump beam and only the second pump beam incident are performed, as depicted 
in the first and second curves at the bottom of Figs. 3(a)-3(d). The five equally spaced 
pronounced frequency comb components at f1 = 297.8 GHz, f2 = 330.5 GHz, f3 = 363.2 GHz, 
f4 = 396.4 GHz and f5 = 428.2 GHz are defined as comb1, comb2, comb3, comb4 and comb5 
(from left to right, marked by a black, red, blue, magenta and green symbol in Fig. 3(c)), 
respectively, which will be discussed in terms of acoustic amplitude and phase variations 
throughout Section 4. Compared to the single-pump-pulse acoustic phonons, the double-
pump-pulse acoustic phonons amplitudes are evidently enhanced at ∆T = 0.0τ and suppressed 
at ∆T = 0.5τ for all five comb components. Subsequently, they are also enhanced at ∆T = 1.0τ, 
2.0τ, 3.0τ, 4.0τ while almost cancelled out at ∆T = 1.5τ, 2.5τ, 3.5τ, 4.5τ in the temporally 
overlapping region of the wave-packets excited by the first pump pulse and those excited by 
the second pump pulse. Depending on the time delay ∆T, it is possible to almost extinguish 
certain frequency comb components. For instance, at ∆T = 1.8τ, 2.2τ, 2.8τ, 3.2τ, and 3.5τ, 
comb1, comb5, comb2, comb4, and comb3 are greatly suppressed, respectively. In other 
words, all five comb components can be individually controlled to be present or absent in the 
spectrum by selecting a specific time delay ∆T, which could be very useful for filtering out 
the unwanted acoustic spectral components if required in certain applications. At the specific 
time delay ∆T = 5.6τ ≅ 0.5T, it is noticeable that odd spectral components are suppressed, 
leading to a doubled frequency comb spacing and a reduced temporal wave-packet period to 
T/2. 

Not only the spectral amplitude but also the spectral phase is dependent on the second 
pump time delay ∆T, as shown in Fig. 3(d). In order to eliminate the initial phase caused by 
the temporal range selection (20 – 250 ps) for Fourier transform and other potential 
perturbations in the experiment, the spectral phase resulting from the double-pump-pulse set-
up is displayed as a result of relative spectral phase with respect to that obtained in the single-
pump-pulse set-up. The simultaneous spectral amplitude and phase modulation by tuning ∆T, 
enables a variety of acoustic wave-packet sequences, where the shape, the width and the 
amplitude of the individual wave-packet can be modified flexibly, leading to a quasi-arbitrary 
acoustic wave-packet shaping, as depicted in Fig. 3(b). The maxima corresponding to single-
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period oscillations composing an individual wave-packet experience phase shifts 
approximately from - π to π, depending on ∆T. For example, the oscillation at 35.6 ps is out of 
phase at ∆T = 1.4τ compared to the single-pump-pulse data (the fifth peak in the first wave-
packet in Fig. 3(b)). Based on the theoretical modelling in the last section, the acoustic 
calculation under the assumption of a Gaussian triple-QW generation and detection profile is 
applied in the condition of tunable ∆T and fixed q = 1, as depicted by solid gray (black) 
curves in Figs. 3(b)-3(d). The comparison of experimental curves and calculation curves 
indicates that our modelling achieves good agreement with the experimental results in the 
tunable ∆T range in both the temporal and spectral domain. 

 

Fig. 4. (a) The amplitude of five main frequency comb components at 297.8 GHz, 330.5 GHz, 
363.2 GHz), 396.4 GHz and 428.2 GHz as a function of the second pump time-delay from 0 to 
5.6τ. Solid lines denote the absolute cosine fit for experimental results by y(t) = |cos(πft)|. (b) 
The relation between the modulation frequencies from (a) and the corresponding comb 
component frequencies. 

 

Fig. 5. (a) The phase shift of five main frequency comb components at 297.8 GHz, 330.5 GHz, 
363.2 GHz, 396.4 GHz and 428.2 GHz as a function of the second pump delay from 0 to 5.6τ. 
(b) The relation between the phase modulation frequencies from (a) and the corresponding 
comb component frequencies. 

The slight discrepancy between the experiment and the modelling (~0.3 ps for peaks in the 
first wave-packet and ~5 GHz for spectral comb components) can be attributed to the 
uncertainty of determination of the acoustic velocity in the sample and the nominal QW-to-
QW width and stack-to-stack width. The high baseline shown in experimental amplitude 
spectrum is mainly caused by numerical Fourier transform window. Because the strongest 
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wave-packets are at the beginning of the time delay and the wave-packet sequence has a fast 
decay, a sharp-edged window is used to preserve the main signal so that the spectral 
information will be more reliable although a high baseline can be caused. The baseline can be 
lower if a Gaussian-like window is chosen, however, most visible wave-packets would be 
suppressed in this case, leading to a weak noisy spectrum. Potentially, the high baseline could 
be partly caused by the sample fabrication issues such as inhomogeneities and defects. The 
unexpected spectral phase jump and the irregular phase appearing in the experiment could be 
caused by the experimental noise (the acoustic signal is small beyond the range 
approximately from 290 GHz to 430 GHz, so the phase in those small-signal regimes is easy 
to be disturbed by the noise) and numerical operations. The lateral phase deviation between 
experiments and calculations probably stems from the imperfect accuracy to determine ∆T by 
adjusting the variable translation stage. 

In order to find out how the spectral comb amplitude and phase are quantitatively 
dependent on the second pump delay ∆T, the amplitude and phase of the five main spectral 
comb components are extracted from Figs. 3(c) and 3(d). In Fig. 4(a), ∆T-dependent 
amplitudes of comb1, comb2, comb3, comb4 and comb5, display an apparent cosine-wave-
like variation, with a peak amplitude ratio of 0.40:0.83:0.94:1.00:0.43 and a decreasing period 
of τ1 = 1.23τ, τ2 = 1.11τ, τ3 = 1.01τ, τ4 = 0.93τ and τ5 = 0.86τ, respectively. On the one hand, 
the periodic evolution of individual comb components at different speed permits various 
comb amplitude profiles and the periodic removal of a certain component. On the other hand, 
a complete extinction of all comb components at the same ∆T is not possible. At ∆T = 0.5τ, 
only comb3 is almost completely suppressed and other four comb components remain finite 
although with a small amplitude. The cosine-wave-like behavior can be explained very well 
by Eq. (14) in Section 3, where the spectral amplitude is modulated by a factor |cos(πf∆T)| 
when q = 1, indicating that the amplitude evolution with the time delay ∆T is a periodic 
variation following modulus of cosine with a frequency of f. Importantly, the factor reveals 
that the modulation frequency of this variation for a comb component is exactly equivalent to 
the frequency of the comb component itself. We illustrate the relation of the frequency of the 
five amplitude modulations from Fig. 4(a) and the corresponding frequency of comb 
components in Fig. 4(b) where the linear fit slope is very close to 1, which clearly 
corroborates our above interpretations. Like the spectral amplitude evolution, the spectral 
phase also exhibits a periodic variation, depending on the second pump delay ∆T (see Fig. 
5(a)). However, the phase shift curve for each comb component is sawtooth-wave-like in the 
phase range approximately from –π/2 to π/2. The linear fit with a slope of ≅1 in Fig. 5(b) also 
indicates that the frequency of phase modulation equals the frequency of the corresponding 
comb component. The explanation of the periodic behavior can be found in Eq. (15), where 
the inverse tangent contains a numerator of -sin(2πf∆T) and a denominator of 1 + cos(2πf∆T) 
(when q = 1) which are both periodic waves with a frequency of f as a function of ∆T, leading 
to the periodic phase shift evolution with the period of 1/f for the comb component with a 
frequency of f. At last, by illustrating simultaneous spectral amplitude modulation (see Fig. 
6(a)) and phase modulation (see Fig. 6(b)) in the range of the second pump delay ∆T = 0 – 
5.6τ with tiny ∆T steps, we emphasize several points in the following. 

Firstly, both the spectral amplitude and the spectral phase dependences on ∆T change 
faster when the spectral frequency is higher, leading to numerous amplitude and phase 
combinations for the main five comb components. 

Secondly, our result offers another approach to measure the frequency of acoustic 
phonons, considering that the frequency of the periodic spectral amplitude and phase 
dependences on ∆T for a comb component equals the frequency of the comb component 
itself. 

Thirdly, the amplitude of each comb component is restricted in the range from 0 to 
2|S1_total(f)|, where|S1_total(f)| represents the spectral component amplitude of single-pump-pulse 
acoustic phonons, while the spectral phase is restricted in the range from –π/2 to π/2. The π/2 
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(or -π/2) phase restriction is attributed to the fact that the denominator 1 + cos(2πf∆T) 
periodically equals zero when ∆T satisfies ∆T = (2n + 1)/ (2f) (n is an integer). 

Fourthly, the produced temporal acoustic wave-packet sequences as a consequence of 
simultaneous spectral amplitude and phase modulation demonstrate various interference 
patterns of acoustic phonons, which shape the discrete individual wave-packets, depending on 
the second pump delay ∆T, as shown in Fig. 6(c). 

To sum up, by only adjusting the time delay ∆T between two successive optical pump 
pulses in the range of 0 – 5.6τ, we have experimentally shown that acoustic phonons are 
coherently controlled by periodic comb amplitude and comb phase modulations, leading to an 
almost complete suppression of certain comb components at certain time delays ∆T, which is 
well supported by our theoretical modelling. 

In addition to the second pump delay ∆T, the pump power ratio q is also adjustable in our 
system. Hence, in the following we will explore whether it is feasible to modulate acoustic 
phonons by tuning q at a fixed ∆T. For example, we will examine if the almost extinct comb 
component can be revived by changing q and if the spectral amplitude and phase range can be 
extended compared to the case where q = 1. 

4.2 Tunable pump power, fixed pump delay 

4.2.1 Pump delay ∆T = 0.5τ 

As the first example, we introduce the adjustment of the pump ratio q at the fixed ∆T = 0.5τ 
which gives rise to immense acoustic suppression at q = 1. In the experiment, the power of 
the first pump light is fixed at 27 mW while that of the second pump light is tunable from 3 
mW to 67 mW. The experimental and theoretical results are present in Figs. 7(a)-7(d). The 
experimental results (see curves with q-dependent color) will be discussed first. 

 

Fig. 6. The acoustic calculation based on the assumption of a Gaussian generation and 
detection profile of the triple-QW stack. The pump power ratio is fixed at q = 1 and the second 
pump pulse delay ∆T is adjustable in the range of 0 – 5.6τ . (a) The comb frequency 
component amplitude dependences on the second pump pulse delay. (b) The comb frequency 
component phase dependences on the second pump pulse delay. (c) The corresponding 
variation of coherent acoustic phonons as a function of the second pump pulse delay. 
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Although the acoustics are greatly suppressed at q = 27/27, the spectral comb components 
are not completely wiped out by adjusting the second pump delay ∆T. As indicated in Fig. 
7(c), the complete removal can be realized by fine tuning q in the vicinity of q = 1 neither, 
which can be interpreted with the assistance of Eq. (14) where the amplitude modulation 
factor [(1 - q)2 + 4qcos2(πf∆T)]1/2 exhibits zero value at ∆T = 0.5τ only in the condition of q = 
1 and f = (2m + 1)/τ (m is an integer). Due to the relation 1/τ ≈f3, the factor has a dip only at 
comb3 while the other four comb components can be suppressed to some extent because they 
are in the vicinity of the dip. On the contrary, tuning q enables the suppressed comb 
components to grow gradually back when q > 1 and q < 1 (see Fig. 7(c)). Take comb3 for 
instance, the amplitude ratio at q = 3/27, 27/27, 67/27 is 0.92:0.08:0.88 obtained from the 
experimental results, which proves that acoustic phonons can also be modulated by tuning the 
pump power ratio q. It is worth noticing that the comb amplitude has a minimum at around q 
= 27/27 and displays a saturation feature at high q (see Fig. 7(c)), and the comb phase also 
shows a saturation tendency when q > 27/27 (see Fig. 7(d)). The phase variation with 
frequency is slow, which is caused by the large period 2/τ ≅ 2f3 at ∆T = 0.5τ based on Eq. 
(15). 

 

Fig. 7. Comparison of experimental, Gaussian and rectangular modelling results. The pump 
power ratio q = P2/P1 varies from 3/27 to 67/27 and the second pump delay is fixed at 0.5τ. 
The first pump power is fixed at 27 mW in experiments. (a) Original time traces. (b) Coherent 
acoustic phonons. (c) Acoustic amplitude spectrums. (d) Acoustic phase spectrums. Curves 
with q-dependent color represent experimental results. Gray curves in (b) and (c) represent 
Gaussian modelling results. Sky blue curves in (b) and (c) represent rectangular modelling 
results. Black solid curves in (d) represent modelling results. Vertical dot black lines in (d) 
indicate the position of five comb components. Data are shifted vertically for clarity in steps of 
2.5 × 10−3 in (a), 1.0 × 10−6 in (b), 1 in (c) and 4π in (d). 

In the temporal domain, acoustic phonons also experience interesting alterations (see Fig. 
7(b)). Firstly, the leading part or the trailing part of the individual wave-packet can be 
selectively suppressed. For example, at around q = 21/27, the trailing half part is suppressed, 
while at around q = 35/27, the leading half part is suppressed. Secondly, some single-period 
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oscillations composing the wave-packet undergo a phase shift of π when q is approximately 
larger than 27/27 with respect to those at q = 3/27. At q = 67/27, all oscillations inside the 
wave-packet exhibit a phase shift of π, which means the whole wave-packet sequence is 
delayed by 0.5τ with respect to that at q = 3/27 (see the top curve and the bottom curve in Fig. 
7(b)). For comparison, the acoustic calculations under the assumption of a Gaussian and 
rectangular triple-QW profile are both given in the case of tunable q and fixed ∆T = 0.5τ, 
which are illustrated in Figs. 7(b) and 7(c) by gray curves and sky-blue curves, respectively. 
The phase calculation is illustrated by black curves in Fig. 7(d). As can be seen, the temporal 
acoustic waves and the spectral amplitude and phase in general fit well with the experimental 
results. 

However, at high q, the calculation of the temporal acoustic amplitude and the spectral 
amplitude obviously surpasses the corresponding experimental amplitude, because a linear 
relation between pump power and acoustic amplitude is assumed in the calculation. Hence, in 
the following a nonlinear factor k0 for spectral comb components, which should make pump-
power-acoustic-amplitude relation more realistic, will be introduced to improve our 
modelling. 

Moreover, the assumption of a Gaussian triple-QW detection and generation profile yields 
a spectral bandwidth of 89.5 GHz, which is smaller than the experimental bandwidth of 109.6 
GHz, leading to a comparatively smaller amplitude for comb1 and comb5 in the single-pump-
pulse experiment. The assumption of a rectangular one produces a spectral bandwidth of 
127.6 GHz in the single-pump-pulse experiment, which is larger than the experimental 
bandwidth, leading to additional dominant comb components. In addition, the overall 
normalized component-to-component amplitude ratios show a discrepancy between the 
calculation and the experiment (experiment: 0.4:0.86:0.96:1:0.5, Gaussian: 0.2:0.6:1:0.8:0.3, 
rectangular: 0.4:0.8:1:0.9:0.5). Although a rectangular stress envelope is theoretically 
expected, the finite detection and generation bandwidth can smear out the rectangular shape, 
which potentially accounts for the deviation between the modelling and experiment results 
regarding the spectral bandwidth and envelope. Because the double-pump-pulse modelling is 
based on the single-pump-pulse analysis, the effect from the imperfect generation and 
detection function is also impinged upon the double-pump-pulse acoustic phonons, as 
illustrated in Figs. 7(b) and 7(c) at low q. Hence, we will also improve the spectral envelope 
in the following by a heuristic-analytical method. 

 

Fig. 8. (a) The experimental comb component amplitude dependences on the pump power 
when only the second pump beam is incident on sample (filled symbols). The pump power 
varies from 3 mW to 67 mW. The amplitude curves of five comb components are individually 
fit linearly from 30 mW and exponentially from the beginning. Solid lines represent the linear 
fit and dot lines represent the nonlinear fit. The nonlinear factor k0 (f, q) is the ratio between 
the nonlinear fit and the linear fit. (b) Nonlinear factor curves k0(f, q) for five comb 
components in the range of pump power ratio q = P2/P1 from 3/27 to 67/27. 
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In order to determine the value of the nonlinear factor k0, experiments with only the 
second pump incident on the sample are performed in the range of the pump power from 3 to 
67 mW with steps of 4 mW. As shown in Fig. 8(a) (filled symbols in five colors), the acoustic 
spectral amplitude has a nonlinear relation with the incident pump power, which intrinsically 
stems from the saturation absorption in the QWs of our sample and thus a nonlinear 
reflectivity curve. An exponential fit is applied to the experimental data for five comb 
components, starting from the lowest pump power (see dot lines in Fig. 8(a)), meanwhile, a 
linear fit is applied to the experimental data starting from 30 mW (see solid lines in Fig. 8(a)). 
The nonlinear factor k0 is a result of ratio between the exponential fit and the linear fit ranging 
from 30 mW to 94 mW of the single pump power, as depicted in Fig. 8(b). Such a fitting 
range is selected, because in the two-pulse-pump experiments the total incidence P1 + P2 
ranges from (27 + 3) mW to (27 + 67) mW. The nonlinear factor k0 can be thus expressed as a 
function of f and q 

 ( ) ( ) ( ) ( )
( ) ( )( )

1 1 0

0
0 0

exp 27(1 ) /  
, ,

  27 1  

A f q t f A f
k f q

a f b f q

+ +  =
+ +
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where A1(f), t1(f) and A0(f) are exponential fitting parameters at f = f1, f2, f3, f4, f5, while a0(f) 
and b0(f) are linear fitting parameters at f = f1, f2, f3, f4, f5. The nonlinear factor is then 
multiplied with the amplitude spectrum Eq. (14) to correct the exceeded acoustic amplitude at 
high pump power induced by a linear relation assumption. 

 

Fig. 9. Comparison of experimental and heuristic-analytical results after nonlinear corrections 
in the range of q from 3/27 to 67/27 at ∆T = 0.5τ. (a) Time domain coherent acoustic phonons 
and (b) corresponding acoustic spectrum series. Curves with q-dependent color represent 
experimental results and gray lines represent the results after nonlinear corrections. Data are 
shifted vertically for clarity in steps of 1.0 × 10−6 in (a) and 1 in (b). 

The improvement of the generation and detection function is indirectly achieved by using 
the experimental single-pump-pulse comb amplitude |S1_exp(f)| featured by the comb 
components ratio 0.4:0.86:0.96:1:0.5 at 27 mW instead of using the derived |S1_total(f)| or 
|S1R_total(f)| in Eq. (14). By combination of the nonlinear factor k0 corrections and heuristic-
analytical envelope corrections, the improved results are produced and displayed in Figs. 9(a) 
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and 9(b) (gray curves). In consequence, the acoustic phonons obtained from the improved 
modelling fit well with the experimental acoustic phonons in the entire q range in both the 
temporal and spectral domain. In Fig. 10(a), the amplitude of individual comb components 
dependences on q after improvement by above two approaches (open symbols) in general 
achieves a better agreement with experimental amplitude (filled symbols) than Gaussian-
based calculations after nonlinear factor corrections (dot lines) and rectangular-based 
calculation after nonlinear factor corrections (cross signs). A few data points obtained from 
the heuristic-analytical method show slightly larger deviations from experimental data at low 
q than those obtained from the rectangular modelling do, however, this will not affect the 
general improvements. The improved spectral amplitude is restricted by k0(f, q)|S1_exp(f)|[(1 - 
q)2 + 4qcos2(πfτ/2)]1/2. Because the cosine term is close to zero at ∆T = 0.5τ for all five comb 
components, the determination factor of the spectral amplitude can be regarded as k0(f, 
q)|S1_exp(f)(1 - q)|, which is smaller than 2|S1_exp(f) | for all considered q. 

In Fig. 10(b), the comb phase shift dependences on q demonstrate that, firstly, the phase 
shift for all spectral comb components ranges approximately from 0 to π (or – π to 0); 
secondly, the phase shift sign of comb1 and comb2 is opposite to that of comb4 and comb5; 
thirdly, comb3 exhibits an abrupt phase change from ~0 to - π at around q = 1 (a few 
experimental data points are discarded for comb3 due to their unexpected jump to the positive 
side. This perhaps stems from the incorrect sign determination in the numerical phase 
extraction. This also could be attributed to the inaccuracy of ∆T adjustment, which causes 
phase shifts from the desired value and thus a sudden jump when the phase is close to the 
wrapped phase “cliff” π (-π) (see Fig. 7(d)).); lastly, the phase saturation at high q can be 
understood with the help of Eq. (15) where the right side term can be also written as tan−1{-
sin(2πf∆T)/[1/q + cos(2πf∆T)]}. Because 1/q approaches zero when q is large enough, the 
term can be approximated as tan−1[–tan(π)] at ∆T = 0.5τ ≅ 0.5f3 for comb3, implying -π phase 
at high q. Due to fi/f3 ≈1 (i = 1, 2, 4, 5), the phase for four other comb components is close to 
π (or -π) at high q. 

 

Fig. 10. (a) The comb component amplitude dependences on the pump power ratio q = P2/P1 at 
∆T = 0.5τ. Filled symbols connected by solid lines represent experimental results. Open 
symbols connected by solid lines represent heuristic-analytical results after nonlinear 
corrections. Cross symbols connected by solid lines represent rectangular modelling results 
after nonlinear corrections. Dot lines represent Gaussian modelling results after nonlinear 
corrections. (b) The comb component phase dependences on the pump power ratio q = P2/P1 at 
∆T = 0.5τ. Filled symbols represent experimental data and dot curves represent calculation 
data. Gray straight lines are only for marking purpose. 
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4.2.2 Pump delay ∆T = 2.8τ, 3.0τ, 3.2τ 

In addition to ∆T = 0.5τ, we also perform acoustic phonon manipulation by tuning the pump 
power ratio at ∆T = 2.8τ, 3.0τ, 3.2τ for demonstration. When q = 1, the factor |cos(πf∆T)| 
modulates the spectral amplitudes (see Fig. 4(a)). Then the following statements can be 
concluded: at ∆T = 2.8τ, comb2 can be greatly suppressed because of the dip of comb2 at 
2.5τ2 = 2.78τ; at ∆T = 3.0τ, comb1 and comb5 can be both greatly suppressed because of one 
dip of comb1 at 2.5τ1 = 3.08τ and one dip of comb5 at 3.5τ5 = 3.01τ; at ∆T = 3.2τ, comb4 can 
be greatly suppressed because of one dip of comb4 at 3.5τ4 = 3.26τ. τi (i = 1, 2, 3, 4, 5) is the 
period of the cosine-wave-like amplitude dependences on ∆T for the comb component with 
the frequency fi (i = 1, 2, 3, 4, 5), which were already defined in Section 4.1. 

 

Fig. 11. The original time traces (left), coherent acoustic phonons (middle) and FFT spectrum 
series (right) when the second and the first pump power ratio varies from 3/27 to 67/27. (a) ∆T 
is fixed at 2.8τ. (b) ∆T is fixed at 3.0τ. (c) ∆T is fixed at 3.2τ. Curves with q-dependent color 
represent experimental results and gray curves represent heuristic-analytical results after 
nonlinear corrections. Data are shifted vertically for clarity. 

 

Fig. 12. The first wave-packet of acoustic phonons when the pump power ratio varies from 
3/27 to 67/27 (the data are the same as those in Figs. 11(a)-11(c), but smaller steps are used for 
the vertical shift). The second pump delay is (a) ∆T = 2.8τ, (b) ∆T = 3.0τ, (c) ∆T = 3.2τ. 
Vertical dot gray lines indicate the peak positions in the case of ∆T = 3.0τ at the pump ratio q = 
3/27 (red). The colored curves from red to magenta represent experimental data from q = 3/27 
to 67/27 (same as those curves in Figs. 11 (a)-11(c)). The gray curves represent heuristic-
analytical results after nonlinear corrections. 
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As illustrated in Figs. 11(a)-11(c), when ∆T keeps fixed, all the previously suppressed 
comb components can be gradually revived by decreasing q or increasing q from q = 1, 
meanwhile, other comb components in general experience a monotonically increasing 
variation when q is increased from the lowest to the highest value. It is worth mentioning that 
even at the lowest q = 3/27 (the second pump power is only 3 mW) the modulation made by 
introducing the second pump is still totally visible. At the lowest q, the normalized 
component-to-component amplitude ratios at ∆T = 2.8τ, 3.0τ, 3.2τ are 0.38:0.63:0.85:1:0.41, 
0.34:0.75:1:0.95:0.35, 0.36:0.89:1:0.8:0.38, respectively. The capability to reveal an acoustic 
manipulation at a very low pump power can be attributed to the high detection sensitivity of 
our ASOPS system. 

 

Fig. 13. Frequency comb component amplitude and phase dependences on the pump power 
ratio q. (a) The second pump delay is fixed at 2.8τ. Top: comb component amplitude 
dependences on q. Middle: comb component phase shift dependences on q. Filled symbols 
denote experimental data, while solid lines denote heuristic-analytical results. The numbers 1, 
2, 3, 4, 5 are used to address five comb components defined in Section 4.1. Bottom: spectral 
phase in the q range from 3/27 to 67/27 in steps of 4/27. Curves with q-dependent color 
represent experimental results and solid black curves represent heuristic-analytical results after 
nonlinear corrections. Vertical dot black lines indicate the position of five comb components. 
Phase spectrums are vertically shifted for clarity in steps of 4π. (b) The second pump delay is 
fixed at 3.0τ. (c) The second pump delay is fixed at 3.2τ. 

In the time domain, acoustic sequences composed of wave-packets with a variety of 
profiles are produced. Because the wave-packet generated by the first pump and that 
generated by the second pump light are nearly half-overlapped and have a constructive 
interference at around ∆T = 3.0τ, the wave-packet remains a Gaussian-like shape whose width 
is effectively prolonged, showing up to 8 single-period oscillations within each wave-packets. 
Apart from the amplitude, the rise time of the wave-packet profile leading edge and the fall 
time of the wave-packet trailing edge can be tuned by q. The comparison of the improved 
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modelling based results (gray curves in Figs. 11(a)-11(c)) with experimental results (curves 
with q-dependent color in Figs. 11(a)-11(c)) demonstrates an excellent agreement in the 
tunable q range at ∆T = 2.8τ, 3.0τ, 3.2τ in both the temporal and spectral domain. In order to 
find out the subtle temporal pulse phase shift caused by tuning q, acoustic sequences are 
shifted vertically in smaller steps (see Figs. 12(a)-12(c)). It is noticeable that the fourth 
oscillation at 32.9 ps and the fifth oscillation at 35.65 ps have a positive phase shift 
(maximum 0.15π (4th) and 0.26π (5th)) at ∆T = 2.8τ, a negative phase shift (maximum −0.11π 
(4th) and −0.26π (5th)) at ∆T = 3.2τ, while a zero phase shift at ∆T = 3.0τ, by tuning q. At ∆T 
= 2.8τ and 3.2τ, the maximum phase shift of single-period oscillations cannot reach π by 
tuning q, while that can be achieved at ∆T = 0.5τ by tuning q. 

The spectral amplitude and phase dependences on the pump power ratio q for the five 
main spectral comb components at ∆T = 2.8τ, 3.0τ, 3.2τ are displayed in Figs. 13(a)-13(c). In 
terms of the spectral amplitude dependences on q, the following points can be summarized. 

Firstly, the amplitude dependences on q for some comb components are non-monotonic 
while those for some other comb components monotonically increase with q. The selection of 
comb component with a quadratic-function-like shape whose valley is at q = 1, depends on 
the factor [(1 - q)2 + 4qcos2(πf∆T)]1/2 which indicates that the zero minimum only exists at q = 
1 and f = (2m + 1)/(2∆T) (m is an integer). Therefore, at ∆T = 2.8τ ≅ 2.8/f3 and m = 2, the zero 
minimum can be found approximately at f = 5f3/5.6 ≈f2 (see the top of Fig. 13(a)); at ∆T = 
3.0τ ≅ 3.0/f3 and m = 2, 3, the zero minimum can be found approximately at f = 5f3/6 ≈f1 and f 
= 7f3/6 ≈f5 (see the top of Fig. 13(b)); at ∆T = 3.2τ ≅ 3.2/f3 and m = 3, the zero minimum can 
be found approximately at f = 7f3/6.4 ≈f4 (see the top of Fig. 13(c)). In order to explain the 
local minimum point in the range of 0 ≤ q ≤ 1, we have to rely on the general local minimum 
expression of q = -cos(2πf∆T), which indicates that the minimum exists in the range 0 ≤ q ≤ 1 
when f∆T satisfies (4n + 1)/4 ≤ f∆T ≤ (4n + 3)/4 (n is an integer). For example, the comb1 
amplitude at ∆T = 3.2τ has a minimum at q = 0.73 (see the top of Fig. 13(c)). When the 
minimum is located in the range -1 ≤ q ≤ 0 under the condition (4n + 3)/4 ≤ f∆T ≤ (4n + 5)/4 
or 0 ≤ f∆T ≤ 1/4 (n is an integer), we will observe a monotonically increasing amplitude 
behavior of some spectral comb components. For example, the comb3 amplitude dependence 
on q has a consistently rising tendency at ∆T = 2.8τ, due to the fact that the minimum of the 
quadratic function locates at q = −0.31 (see the top of Fig. 13(a)). 

Secondly, the maximum amplitude is restricted by the expression k0(f, q)|S1_exp(f)|[(1 - q)2 
+ 4qcos2(πf∆T)]1/2 ≤ 2.6|S1_exp(f)|, which means that in Figs. 13(a)-13(c), unlike the case in 
Section 4.1 and the case at ∆T = 0.5τ, the comb component amplitude can exceed 2|S1_exp(f)| at 
high q and proper f∆T. For example, the maximum of comb3 amplitude at ∆T = 3.0τ is larger 
than 2|S1_exp(f3)| ≈2A3(q = 3/27) (A3(q) denotes the amplitude of comb3, see the top of Fig. 
13(b)). 

In terms of the spectral phase dependences on q, the following points can be summarized. 
Firstly, at ∆T = 2.8τ, 3.0τ, 3.2τ, the phase shift of all comb components shows a saturation 

effect at high q, which can be explained in the similar way to the case at ∆T = 0.5τ. 
Secondly, only a certain comb component can reach π or -π phase shift, which is 

determined by whether the condition 2f∆T ≈2n + 1 (n is an integer) in tan−1[–tan(2πf∆T)] is 
satisfied. For example, comb2 at ∆T = 2.8τ can reach π due to 2 × 2.8f2τ ≈5 (see the middle of 
Fig. 13(a)); comb5 at ∆T = 3.0τ can reach approximately –π due to 2 × 3.0f5τ ≈7 (see the 
middle of Fig. 13(b)); comb4 at ∆T = 3.2τ can reach up to approximately –π due to 2 × 3.2f4τ 
≈7 (see the middle of Fig. 13(c)). However, the abrupt phase change around q = 1 takes place 
only when the relation of f and ∆T satisfies 2f∆T = 2n + 1 (n is an integer) perfectly. 

Thirdly, the modelling agrees also well with the experiment in the whole tunable q range 
at ∆T = 2.8τ, 3.0τ, 3.2τ in terms of spectral phase (see figures in the second line and the third 
line of Figs. 13(a)-13(c)). The phase variations with the varying frequency at ∆T = 2.8τ, 3.0τ, 
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3.2τ are faster than that at ∆T = 0.5τ, because the corresponding variation periods f3/2.8, f3/3.0 
and f3/3.2 along frequency axis based on Eq. (15) are smaller. 

 

Fig. 14. (a) Original time traces, (b) coherent acoustic phonons, (c) acoustic amplitude 
spectrum and (d) acoustic phase spectrum when the second pump delay is fixed at 5.6τ (0.5T) 
and the pump power ratio varies from 3/27 to 67/27. The first pump power is fixed at 27 mW 
in experiments. Curves with q-dependent color represent experimental results. Gray (black) 
curves represent heuristic-analytical results after nonlinear corrections. Vertical dot lines in (d) 
indicate the position of five comb components. Data are vertically shifted for clarity in steps of 
2.5 × 10−3 in (a), 1.8 × 10−6 in (b), 1 in (c), and 4π in (d). 

4.2.3 Pump delay ∆T = 0.5T 

At last, the acoustic phonon manipulation by tuning q at ∆T = 0.5T (5.6τ) is demonstrated, as 
illustrated in Figs. 14(a)-14(d). Because the second pump delay is half of the wave-packet 
period, the acoustic wave-packets generated by the first pump light temporally are well 
separated with those generated by the second pump light (see Fig. 14(b)), which enables not 
only the wave-packet sequence period reduction from T to T/2 but also the modulation of the 
amplitude ratio of adjacent wave-packets. The amplitude ratio between the first wave-packet 
(centered at 30.25 ps) and the second wave-packet (centered at 45.4 ps) ranges from 1:0.27 to 
1:2.07 by tuning q from 3/27 to 67/27. In the spectral domain, the simultaneous extreme 
suppression of comb1, comb3 and comb5 is achieved at q = 1. This can be understood from 
Fig. 4(a) where A1(4.5τ1) ≅ A3(5.5τ3) ≅ A5(6.5τ5) ≅ 0 (Ai(∆T) denote the amplitude of the comb 
component combi (i = 1, 3, 5) at the second pump pulse delay ∆T) can be satisfied at the same 
second pump delay ∆T = 5.6τ. The suppression of all odd comb components can also be 
interpreted from the perspective of the frequency modulations revealed by us theoretically in 
Section 3. The spectral modulation factor |cos(πfT/2)| can be written as |cos[πm∆f/(2∆f)]| 
because the wave-packet period ∆T is the inverse of comb spacing ∆f and the acoustic comb 
frequency is determined by f = m∆f (m is an integer), which means that only the odd 
frequency comb components can be suppressed (m = 2n + 1, n is an integer) when the factor 
equals zero. If we count from the beginning of frequency axis, comb1, comb3 and com5 are 
the 9th, the 11th and the 13th frequency components (f1/∆f ≅ 9, f3/∆f ≅ 11, f5/∆f ≅ 13). Like the 
cases where ∆T = 0.5τ, 2.8τ, 3.0τ, 3.2τ, at ∆T = 0.5T, the suppressed comb components can 
also be gradually revived by either decreasing q or increasing q from q = 1. However, as can 
be observed (see Fig. 14(c)), the normalized component-to-component amplitude ratio cannot 
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be totally recovered even at the lowest q or the highest q, differing from the ∆T = 0.5τ case 
where the normalized component-to-component amplitude ratios at low q and high q are very 
close to that of acoustic phonons generated by the single-pump-pulse set-up. The spectral 
phase is periodic along the frequency axis. The period remains the same at 2∆f regardless of 
the variation of q, while the maximum phase is adjustable from 0 to π by tuning q (see Fig. 
14(d)). Compared to all periodic acoustic phase dependences on frequency that we have 
discussed so far (∆T = 0.5τ, 2.8τ, 3.0τ, 3.2τ), the one at ∆T = 0.5T exhibits the fastest 
variations. As proved in Figs. 14(b)-14(d), the modelling results (gray curves) agree well with 
the experimental results (curves with q-dependent color) at ∆T = 0.5T. 

 

Fig. 15. (a) Comb component amplitude and (b) comb component phase shift dependences on 
pump power ratio q, when the second pump delay is fixed at 5.6τ (0.5T). Filled symbols denote 
experimental data, while solid lines denote heuristic-analytical results. The numbers 1, 2, 3, 4, 
5 are used to address five comb components defined in Section 4.1. 

As for individual spectral line modulations, the amplitudes of comb1, comb3, and comb5 
dependences on q are of non-monotonic shape, while those of comb2 and comb4 are 
monotonic with increased q (see Fig. 15(a)). Because fi/∆f (i = 2, 4) is an even number, the 
upper amplitude levels of comb2 and comb4 are approximately restricted at 2.6|S1_exp(f)| based 
on the expression k0(f, q)|S1_exp(f)|[(1 - q)2 + 4qcos2(πf/(2∆f))]1/2 at q = 67/27, while the 
amplitudes of comb1, comb3, and comb5 are limited approximately below 1.1|S1_exp(f)| due to 
the fact that the cosine term falls to zero when fi/∆f (i = 1, 3, 5) is an odd number. The above 
statement is an explanation of why the suppressed comb components cannot be totally 
recovered by tuning q (see Fig. 14(c)). The q-dependent spectral phase shift of individual 
comb components shown in Fig. 15(b) reveals that, interestingly, all odd comb components 
experience the similar phase variation which displays a leap at around q = 1 as well as a 
tendency of approaching to π at high q, while all even comb components undergo the similar 
variation which displays an almost constant zero phase shift. The explanation can be found in 
Fig. 14(d), where phase-frequency relation exhibits a constant 2∆f period, leading to odd 
comb components at peak of the sawtooth-like curve and even comb components at the 
middle of slope (zero phase). It also makes sense to interpret the phase curves by use of Eq. 
(15), where the numerator -qsin(2πf/(2∆f)) equals zero at fi (i = 2, 4) due to the fact that fi/∆f (i 
= 2, 4) is an even number, leading to a zero phase for even comb components in the whole 
tunable q range, while the denominator 1 + qcos(2πf/(2∆f)) equals zero at q = 1 and fi (i = 1, 3, 
5) due to the fact that fi/∆f (i = 1, 3, 5) is an odd number, leading to a phase of π/2. When q is 
high enough, the phase for comb components at fi (i = 1, 3, 5) is approaching tan−1[–
tan(2πf/(2∆fi))] (i = 1, 3, 5) which is approximately wrapped to π. 

To sum up, the CAP manipulation by tuning the pump power ratio q at a fixed second 
pump delay ∆T = 0.5τ, 2.8τ, 3.0τ, 3.2τ, 0.5T (5.6τ) has been discussed. The experimental 
results prove the full capability of our system to shape the acoustic periodic wave-packet 
sequences by tuning q at a fixed delay ∆T that ranges up to 0.5T. Moreover, the improved 
modelling by introducing nonlinear corrections and a heuristic-analytical method, matches 
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very well with the experiment in the q range from 3/27 to 67/27 and in all considered ∆T up 
to 0.5T. The proposed modelling enables us to reasonably explain all the intriguing 
experimental features including the restriction range, the minimum point determination rule, 
and the comb component selection rule in acoustic amplitude and phase variations. 

Theoretically, the demonstration of acoustic manipulations in the ∆T-q space by 
simultaneous adjustment of the second pump delay ∆T and the pump intensity ratio q, can be 
directly available based on our modelling, indicating that it is possible to synthesize a variety 
of acoustic wave-packet sequences with desired characteristics by tuning q and ∆T. 

5. Conclusion 

Acoustic manipulation via coherent optical control in a MQW structure is demonstrated by a 
double-pump-pulse configuration in an Yb:KYW based ASOPS system operating at 1 GHz. 
By tuning the delay of the second pump pulse with respect to the first pump pulse and the 
pump intensity ratio, it is possible to modulate the amplitude and the phase of comb-like 
coherent acoustic phonons excited in a MQW - saturable absorber of a SESAM structure. 
Abundant experimental results prove that the periodic acoustic wave-packet sequence can be 
flexibly shaped in terms of wave-packet amplitudes, wave-packet profiles, wave-packet 
periods, wave-packet widths, and single-period oscillation phase shifts, which refers to a 
quasi-arbitrary acoustic waveform synthesis by combining various amplitude and phase 
modulations. The acoustic manipulation by fine tuning the second pump delay within the half 
wave-packet period is investigated, which reveals a periodic variation of both the spectral 
amplitude and phase. Meanwhile, the acoustic modulation by fine tuning the pump intensity 
ratio results in spectral amplitude variations with a zero valley and spectral phase variations 
with a phase leap only at certain second pump pulse delays when the pump intensity ratio is 
around 1:1. Moreover, we can proceed from a very low pump power for acoustic 
manipulations, which benefits from the high detection sensitivity in our Yb:KYW lasers 
based high-speed ASOPS system. The experimental acoustic manipulation can be well 
explained in a wide range by a simplified model, enabling us to understand critical spectral 
features such as the periodicity, the minimum points of amplitude, the selection rule of 
suppressed comb components, and the upper boundary of the phase and amplitude, and to 
predict the acoustic phonon shaping where the experiments are absent. More optical 
parameters in our system could be potentially tuned such as the pump wavelengths, the pump 
polarization and the pump pulse shape, in order to further enhance the already achieved level 
of control. 

The possibility to optically tailor acoustic wave-packets and acoustic combs in the GHz 
range by ultrafast lasers is a prerequisite for advanced laser-enabled coherent phonon 
applications (e.g. acoustic pulse shapers, acoustic field filters, tunable saser). The result of our 
acoustic manipulation also implies that, acoustic frequencies can be obtained via the spectral 
amplitude or phase variation period by tuning the second pump delay, and that the unwanted 
acoustics induced by back-side pump light reflections can be eliminated via destructive 
interferences by sending the second pump pulse to the sample at a proper time delay and 
pump intensity. From a general point of view, our research results demonstrate that the 
progress in ultrafast optics keeps driving the progress in its applications such as picosecond 
laser ultrasonics including spectroscopy based on the laser-monitored coherent acoustic 
phonons. 
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