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Abstract—In multipath assisted positioning, multipath compo-
nents (MPCs) are exploited for positioning as they are regarded
as line-of-sight (LoS) signals from virtual transmitters. With
simultaneous localization and mapping (SLAM), the locations
of physical and virtual transmitters are estimated jointly with
and relative to the user position. A robust data association
scheme is crucial for the robustness of SLAM. In multipath
assisted positioning, data association refers to the question which
MPCs correspond to which transmitters. We say that a physical
or virtual transmitter is visible to the user if the user is in
LoS to the transmitter. Within this paper, we propose to map
information on the visibility of physical and virtual transmitters
in addition to their locations, and use such information for a
reliable data association. Visibility information may stem from
previous observations of a user, or from a visibility map of the
scenario obtained from another user or a central entity. Our
simulations in an indoor scenario show that information on the
visibility of transmitters considerably improves the positioning
performance by increasing the robustness of data association.

Index Terms—Channel-SLAM, data association, simultaneous
localization and mapping

I. INTRODUCTION

Global navigation satellite systems (GNSSs) are able to
satisfy the positioning performance needs of many services
in areas with a clear view to the sky. In GNSS-denied
scenarios like indoors or in urban canyons, the positioning
performance may drastically shrink due to signal blocking and
multipath propagation, for example. In many such scenarios,
no positioning solution may be obtained at all with GNSSs
(L1

Terrestrial signals like wireless local area network (WLAN)
or cellular signals tend to have a much better coverage in
these scenarios, and they can be used as signals of opportunity
(S00s) for positioning purposes [2f]. However, multipath prop-
agation still deteriorates the performance of systems based on
such signals. The standard approach to cope with multipath
propagation is to try to mitigate the influence of multipath
components (MPCs) on the line-of-sight (LoS) path [3].

The idea of multipath assisted positioning is contrary to such
approaches. Instead of regarding multipath propagation as an
ill, the spatial information contained in MPCs is exploited for
positioning. Each MPC arriving at a user can be treated as
a signal from a virtual transmitter in a LoS condition. If the
location of the physical transmitter and the environment of the
scenario are known, for example by a floor plan, the locations

of the virtual transmitters can be calculated in advance [4]],
(5]

However, neither the environment nor the location of the
physical transmitter is known in the general case where a
user enters an unknown scenario. In this case, the locations
of the physical and virtual transmitters can be estimated
jointly with the user position with simultaneous localization
and mapping (SLAM) [6]-[12]. Therefore, depending on the
scenario, positioning may be possible with only a single
physical transmitter.

The authors of [6] have introduced such an approach named
Channel-SLAM for terrestrial signals, which works in two
stages. In the first stage, a channel estimator estimates the
parameters of the signal components arriving at a receiver.
In the second step, the locations of the physical and virtual
transmitters and the position of the user are estimated with
SLAM using recursive Bayesian estimation [|13]. Thus, map-
ping in Channel-SLAM refers to estimating the locations of
transmitters. Channel-SLAM does not differentiate between
the LoS path and MPCs. Accordingly, there is no differentia-
tion between physical and virtual transmitters.

A robust data association scheme is crucial for long-term
SLAM. Data association tries to answer the question which
measurements belong to which transmitters [14]. In [[15[], [16],
a multiple hypothesis data association scheme based on a
method from [[17] has been introduced for Channel-SLAM.

When multiple users move in the same scenario, for exam-
ple in museums, malls or public buildings, maps of estimated
transmitter locations can be exchanged among users [18].
Information on the locations of transmitters obtained in form
of a prior map may increase the positioning performance and
decrease the convergence time in SLAM.

In addition to the transmitter locations, visibility regions
of transmitters can be stored in a map. A visibility region
describes the area with a LoS condition to a physical or virtual
transmitter. Whether a virtual transmitter is in LoS at a specific
location depends on the location of the physical transmitter
and the scenario. Within this paper, we incorporate visibility
regions into our multiple hypothesis data association scheme
for Channel-SLAM. Additional information on visibility re-
gions can on the one hand increase the robustness of the
data association scheme, and on the other hand decrease the
computational complexity. We expect that the positioning per-
formance increases considerably if information on visibilities
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Fig. 1.  The signal from the physical transmitter Tx is in the first case
reflected at the wall. The corresponding MPC is treated as a LoS signal from
the virtual transmitter vTx1, whose location is the location of Tx mirrored
at the wall. In the second case, the MPC arriving at the user via the point
scatterer is treated as a LoS signal from the virtual transmitter vIx2, which
is located at the scatterer location. The locations of both vTx1 and vTx2 are
independent from the user position.

of transmitters from a prior map is incorporated into the data
association process.

The remainder of this paper is organized as follows. Sec-
tion [} introduces the idea of multipath assisted positioning
and Channel-SLAM. In Section [[l, we introduce visibility
regions and how they are incorporated into the data associa-
tion scheme. Simulation results are presented in Section
Section [V] concludes the paper.

II. MULTIPATH ASSISTED POSITIONING
A. Virtual Transmitters

The idea of multipath assisted positioning is to regard MPCs
as LoS signals from virtual transmitters. This idea is visualized
in Fig. [I] The physical transmitter Tx broadcasts the transmit
signal. Neglecting the LoS path, the user receives the signal
via two different propagation paths at two different locations.

First, the signal is reflected at the wall. The reflected signal
component arriving at the user can be regarded as a LoS
signal from the virtual transmitter vIx1. Given the true time
of flight and incoming angle of the signal component at the
user, the location of vTxl is the location of the physical
transmitter mirrored at the surface. In case of a reflected
signal, the physical and the virtual transmitter are perfectly
time synchronized.

Second, the signal arrives at the point scatterer, which
distributes the signal energy uniformly in all directions. The
signal thus arrives again at the user as a MPC, which is
regarded as a LoS component from the virtual transmitter
vTx2. The location of vTx2 coincides with the location of
the point scatterer. In contrast to the case where the signal
is reflected, the physical and the virtual transmitter are not
synchronized in the case of a scattered signal component.
There is an additional propagation delay 7y between the two,
which is their Euclidean distance divided by the speed of light
co. The propagation delay can be regarded as a clock offset,
or an additional propagation distance.

In both of the above cases, the location of the virtual
transmitter does not depend on the position of the user, but

it is static. Furthermore, the two cases can be generalized to
the case where a signal is reflected and/or scattered multiple
times on the way from the physical transmitter to the user [6].

B. Channel-SLAM

The propagation channel we consider is a time-variant
linear multipath channel [[19]]. Therefore, the signal transmitted
by a physical transmitter arrives at the user via different
propagation paths. At the receiver, a linear superposition of
signal components is received. The signal components are
distinguished by their time of arrival (ToA), angle of arrival
(AoA), received signal strength and phase, for example.

The Channel-SLAM algorithm works in two steps. In the
first step, after sampling the received signal at the user
side, the parameters of the signal components are estimated
by a channel estimator. We use the Kalman enhanced su-
per resolution tracking (KEST) estimator [20], which works
in two stages. The inner stage estimates the signal com-
ponents’ parameters snapshot-wise based on the estimated
channel impulse response (CIR). For this estimation, we use
the Space-Alternating Generalized Expectation-Maximization
(SAGE) algorithm [21]], which is a variant of the Expectation-
Maximization (EM) [22f algorithm. The outer stage of KEST
tracks the estimates from the inner stage over time using
Kalman filters. This outer stage inherently tackles the problem
of associating signal components from one time instant to
another. In addition, the number of signal components is
tracked in the outer stage. Within the scope of this paper,
we use only the ToA and AoA estimates from the channel
estimator. Thus, the ToA estimates for the Ntx transmitters at
time instant k£ are stacked in the vector

Ay i]” - (1)

Note that the number of transmitters may change over time
depending on the position of the user. Nevertheless, the time
index k is omitted in Ntx for notational convenience. We
assume that the user is equipped with an antenna array that
is coupled with the user’s orientation. The AoA estimates at
time instant k are stacked in the vector

0, =[01x 9NTX,k]T . 2

In the second step of Channel-SLAM, the position and the
velocity of the user and the locations and clock offsets of the
transmitters are estimated jointly using SLAM. As each signal
component corresponds to one transmitter, the estimates from
the channel estimator serve as measurement input in SLAM.
The measurement vector at time instant % is therefore

di = [d1k

z, = [df 6F]". 3)

Because the transmitters are static in our model, their state
comprises their location in two dimensions and a clock offset
70. Thus, the state vector for the j‘h transmitter at time instant
k is given by

<> [.<i>  <i> _<j>
Trx ke = |Ttx,k Ytk 7ok } . “)



The state of the user is their position and velocity in two
dimensions each. The user state vector at time instant k is

Tok = [T Yr Ver Uysl - o)

The entire state vector at time instant & is hence

T 7T
xy, = [@us’ ®Trx |
T 6
= |z T m<1>’T m<NTX>T ( )
= |[Luk TX,k TX,k :

We are interested in the minimum mean square error
(MMSE) estimator for the state from time instants zero to k,
xo.;. With z1.; denoting the measurements from time instants
1 to k, the estimator is

To:p = /$0:kp (®o:k|21:1) A0k

In order to obtain the posterior probability density function
(PDF) p (xo.x|21.x), we use Bayesian recursive estimation
[13]]. The posterior PDF is calculated recursively. With the
control input w, which may be obtained from an inertial
measurement unit (IMU), for example, it can be factorized
as

p (wO:k|Z1:k7U1:k) =p (wTX,O:kaqu,U:k‘Zl:ky U1:k)
=p (mu,O:k|z1:k; ul:k)
X P (®1X,0:k | Z1:k5 Tu,0:k)

=p ($u70:k|21:k, ul:k)
Nrx

<j>
X H p (mTX7O;k|mu,0:ka Zl:k) .
Jj=1

(7

In the last step of Eq. (7), we assume independence among
the estimates for the single signal components in the channel
estimator. This implies independence among measurements for
the single transmitters and allows to estimate the states of the
transmitters independently from each other. We use a Rao-
Blackwellized particle filter [23] to solve the SLAM problem.
The posterior PDF of the current user state is thus expressed
as a sum of user particles, where the i particle is denoted by

x> }> and has a weight wy '~ associated to it. Therefore, we
have
Np
_ <i> <i>
P (@il 21k, wrk) = Y wp'”d (wu,k — Ty ) ;8
i=1

where §(-) is the Dirac delta function. The user state is
estimated by a sequential importance resampling (SIR) par-
ticle filter [24]. Given the structure of the Rao-Blackwellized
particle filter, the transmitters’ state is estimated for each user
particle independently from the other user particles. Assuming
independence among the measurements for the transmitters,
each of the Ntx transmitter states is estimated by a particle
filter for each of the user particles. The /" transmitter particle
for the j® transmitter of the i™ user particle is denoted by

:c%é’fc’b and has a weight wy "’ > associated to it. Thus, the
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Fig. 2. Overview of Channel-SLAM. The channel estimator estimates the
parameters of signal components in a first step. In the second step, these
estimates are used as measurement input for SLAM to estimate the location
of the transmitters and the position of the user. Additional sensors such as an
IMU or prior information such as from a map may be fused in SLAM.

Fig. 3. The signal from the transmitter Tx can be received by the user in
Region 1. After the signal is blocked in Region II, it can be observed again
by the user in Region III.

corresponding transmitter’s posterior PDF is expressed as

<i,5> <i>
P(me,k |21k, T o )
Nor ) )
_ <,j,£> <i,5> <i,j,£>
= Z Wy, Y (wTX,k —Trxk ) )
(=1

where N, 1y denotes the number of transmitter particles.
Although N, 1 may vary for different user particles, time
instants and transmitters, we omit the corresponding indices
for notational convenience. In order to decrease the complexity
of Channel-SLAM, we apply a particle reduction method for
the transmitter particle filters. The transmitter state space is
divided into discrete bins, and in every bin only a number
NzliTx of particles is allowed. For transmitters with a small
uncertainty on their state, this method decreases the number of
needed particles and thus the complexity of Channel-SLAM,
while it hardly influences the positioning performance [25].

Fig. 2] gives an overview of the two steps in Channel-SLAM.
In the first step, the parameters of the signal components
are estimated based on the received signal by the channel
estimator. In the second step, these estimates are used as
measurements for the actual estimation of the states of the user
and the transmitters. For this position estimation, additional
sensors such as an IMU may be integrated. Furthermore, prior
information such as from a transmitter map obtained from a
central entity or other users can be exploited.

III. DATA ASSOCIATION AND MAPPING

In Channel-SLAM, the term mapping refers to the estima-
tion of the states of the physical and virtual radio transmitters
as in Eq. @) In addition to these states, information on the



locations with a LoS condition to a transmitter, i.e., where a
transmitter is visible and where not, can be stored in a map.
Fig. 3] illustrates such visibility regions. The user moves on
its trajectory. In Region I, the signal from the transmitter Tx
can be received, i.e., the transmitter is visible. In Region II,
the signal from Tx to the user is blocked, while in Region
I, the signal can be received again. Within this section, we
expand Channel-SLAM by estimating information on visibility
regions in a map and integrate it in our data association scheme
proposed in [15]. Data association in Channel-SLAM refers
to the question which measurement corresponds to which
transmitter. For example, in Fig. [3] the user has to correctly
assign the signal received in Region III to the transmitter TX,
whose signal was received already in Region I.

A. Data Association in Channel-SLAM

As the user moves through the scenario, the channel estima-
tor may detect new signal components, i.e., new transmitters.
When such a new signal component is detected, it may be
associated with a transmitter that had been observed before.

We denote the set of transmitters that the user had observed
before, but not any more at the current time instant k, by
T';.. The association variable n; denotes the association of the
transmitter initialized at time instant k£ with the transmitter
ng € Yg. In [15], we have presented a multiple hypothesis
tracking data association scheme for Channel-SLAM based
on the method in [17]]. Each user particle takes association
decisions on its own, and thus carries one hypothesis for the
correct associations. A set of association decisions up to time
instant k — 1 for the i™ user particle is stored in the variable
’fl<i>.

k—1

Given the measurements zj at the current time instant k,
we can calculate the marginalized likelihood pf’ni of the
measurement for the i particle assuming that the newly
detected transmitter corresponds to the transmitter n; € Y.
This likelihood is calculated as [15]

<i> _ F<i> o <i>
pz,n;c =Pp (zk'|nk‘7 N1, mu,k ) zl:k‘,—l)
Np,Tx
o <i,np 0> <i,ng,L> A E> ) <i>
= E : Wy p (zk|mTX,k s TV M7, Ty )
=1
(10)
In addition to the above marginalized likelihoods p5 >, we

define a likelihood pif which represents a likelihood that no
association is made, i.e., that the newly detected transmitter
is indeed a new transmitter that has not been observed by the
user before. A hard association decision for the i user particle
is then sampled from the the likelihoods pj<i> = p:?, where
j € {0U Y} If no association is made, the new transmitter
is initialized based on the corresponding measurement in zj.
Otherwise, the transmitter can be initialized with the state
estimate of the associated transmitter ng, which is likely
to have a smaller uncertainty than a transmitter that has to
be initialized based on the measurement. Thus, with correct
associations, we expect a shorter convergence time and a better
positioning performance.

Fig. 4. Hexagonal grid to store information on visibility regions of
transmitters in an occupancy grid map. Each hexagon is assigned a unique
index.

Wrong association decisions can lead to a divergence of
the filter. Particles with wrong association hypotheses will
have a small likelihood as the user moves, and therefore their
weights decrease. Such particles are unlikely to be resampled
in the resampling step of the particle filter. Hence, the filter
inherently eliminates wrong association decisions. However,
association ambiguities due to the geometry of the scenario
may lead to a deterioration of the performance of Channel-
SLAM in terms of accuracy and complexity.

B. Mapping of Visibility Regions of Transmitters

In order to increase the robustness of our data association
scheme described above, we include visibility regions of trans-
mitters. Due to a possibly high uncertainty in a transmitter’s
state, for example due to a high geometrical dilution of
precision (GDoP), we do not use a parametric approach based
on the transmitter’s location to describe visibility regions.
Instead, we store visibility information in a location-based map
[26]]. In particular, we use a hexagonal grid as in Fig. [

The probability that the j® transmitter is visible in hexagon
h is in general unknown. We denote the random variable for
this probability by Vh<j ~. The set of the random variables for
the Ntx transmitters’ visibilities in hexagon h is denoted by
M}, which is

My, = {V,;=1> L vy (1)

A hexagonal visibility map M is defined by the set
{M,,..., My, }, where N, is the number of hexagons in
the map. The probability where a transmitter is visible and
where not needs to be estimated by a user traveling through
the scenario. Therefore, Eq. is expanded as

P (:BO:]C? M‘Zl:lm ul:k)

= p(To:x|2z1:8, wi:k) P (M |T0:k5 2128, W1:k) (12)

= P(mO:k|Z1:k,U1:k)P(M|330:k7Zl:k) (13)
Ny,

= p(o:k|21:k> U1:k) H p (Mp|xo:k, 21:1) (14)
h=1
Ny Nrx

=p (w0:k|21:k,u1:k) H H p (Vh<j>‘m0:k’ zl:k)~ (15)
h=1 j=1

The distribution of the visibility map M in Eq. is
conditioned on both the user trajectory xo.;; and the history of
measurements z;.,. The measurement history is only needed
to indicate which transmitters have been visible at which



time step, whereas the actually measured values are not used
to estimate the visibility map. Following Eq. (I2), the map
estimation problem can be separated from Channel-SLAM. In
addition, due to the hexagonal structure of the map and the
independence among visibilities for single transmitters, it can
be broken down to Nj, Nx subproblems as in Eq. (@) Thus,
we map visibilities of each transmitter for each single hexagon.

Each user particle stores a list of hexagons that it has visited.
For notational convenience though, we drop the user particle
index ¢ in the variables introduced the following. In each
hexagon, we store two counters for each transmitter in the
scenario. For hexagon h in the hexagon list of a user particle,
the counter Vh<,g ~ counts the number of times that a signal
from transmitter J has been received in this hexagon, i.e., that
the 5™ transmitter was visible, between time instants zero and
k. Likewise, the counter V<] ~ counts the number of times
that transmitter 5 was not V1s1ble The counters of hexagon h
are updated at time instant k in one of the following two cases.
In the first case, the user particle leaves a hexagon and enters
hexagon h. If transmitter j is visible, thf is increased by
one, and otherwise Vhf,g ~ is increased by one. In the second
case, the user stays in hexagon h between time instants k — 1
and k, but the visibility of one or more transmitters changes
from not visible to visible or vice versa. If transmitter j is
such a transmitter, either V<J ~ or V<7 ~ is increased by one
depending whether the transmitter is now visible or not.

As the user moves through the scenario, each user particle
creates an estimate for the visibility map M as described
above. We assume that p (Vh<j>\aco ky 21: k) follows a Beta
distribution with parameters V,f,g 7+ u<] ~ and V}f,g 7+ D,fj ”,
where V,fj > and 17;] > are prior counts, which can be used to
incorporate prior knowledge on visibility regions and to tune
the trust into the user observations on visibilities. The PDF
of a Beta distribution B (x; p,q) with parameters p and ¢ is
defined by

B(xap7Q) = xp(]'_

)1 (16)

B (p,q)

for x € (0,1), and B(x;p,q) = 0 otherwise. The Beta
function normalizes the Beta distribution, and it is defined by

I'(p)T(q)
B(I%Q) = m7

where T (-) is the Gamma function.

a7

C. Data Association with Visibility Regions

For associating a newly detected signal component with a
previously observed transmitter, we have two different sources
of information. The first one is the actual measurement, i.e.,
ToA and AoA, for the signal component together with the
location of the user particle and the estimates for previously
observed transmitters’ states. This information can be ex-
ploited as shown in Subsection [[II-A] The second one is the
information on visibilities of transmitters in the hexagonal vis-
ibility map as in Subsection [[TI-B] together with corresponding
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Fig. 5. Top view on the urban simulation scenario with one physical

transmitter marked by the red triangle labeled Tx. The two user tracks start
at SI and S2 and end at E1 and E2, respectively. Bold black lines represent
reflecting walls, whereas black dots represent point scatterers.

the user particle location. If a user comes back to a previously
visited hexagon, the information in the hexagon on which
transmitters were previously visible and which were not can
be used.

. . > .

To fuse both sources, th¢ likelihoods piﬁlk in Eq. l|
are weighted by a factor p,ffk which incorporates visibility
information. We define p<’> as the expectation value of

p (V=" @k, z1:1) for the 7 user particle, which is

prsr =E[p (V" [wo, z1:4) |

V<nk> + V<nk>

V<71k>+yh<nk>+v<nk>

(18)

19)

—<np>"
+ vy

Finally, the
from

particle samples its association decisions

<> _

<i>
pnk

<i>
- pz %

X PR (20)

where ny, € {0U T}, and p<’> =1

In the above method, we assume that at most one transmitter
is initialized at every time step. In [16]], we have proposed a
method based on a greedy algorithm to drop this assumption.
In addition, the paper shows how to incorporate the informa-
tion on transmitters contained in prior maps obtained from
different users, for example, in the data association scheme. It
is straightforward to also adapt the data association algorithm
with hexagonal visibility maps to the case where prior maps

including visibility information are available.

IV. SIMULATIONS

We evaluate our data association method by simulations
in an indoor scenario. The top view of a mall with one
physical transmitter labeled Tx and depicted by the red triangle
is shown in Fig. [5] The physical transmitter continuously
broadcasts a signal of 100 MHz bandwidth which is known to
the users. The signal is reflected by walls that are represented
by the thick black lines, and scattered by point scatterers



depicted by black dots. The users know the location of neither
the physical transmitter nor the walls and scatterers. For the
simulations, we incorporate reflection and scattering of orders
one and two. Hence, we have single and double reflections
and/or scattering. At each user position, the CIR is created
by ray tracing. The received signal is created by limiting the
CIRs to the 100 MHz bandwidth and adding white Gaussian
noise of constant power.

There are two different user tracks in the scenario. The
i" user walks along their track from the starting point S; to
the end point E; with a constant speed of 1m/s. Both users
record a snapshot of the received signal every 10ms. They
are equipped with antenna arrays consisting of nine elements.
With the KEST estimator, the ToAs and AoAs of each detected
signal component are estimated in each snapshot. In addition,
we assume that each user carries an IMU with them. From
the IMU, however, we integrate only the heading information
from the gyroscope into our movement model and do not use
acceleration measurements.

The starting positions and headings of the users are assumed
to be known in the simulations. The user particle filter uses
1000 particles, whereas the number of particles for the trans-
mitters is adapted to the current certainty on the transmitter’s
state. A transmitter with a lower uncertainty on its state can
be represented with a smaller number of particles. Thus, the
number of particles of the transmitters differs depending on
the corresponding user particles, transmitters and time instants.

We assume the users have obtained a prior map of trans-
mitters of the scenario from one or more other users or a
central entity. The map consists of two parts. The first part
is an estimate of transmitter states, i.e., locations and clock
offsets. We fill the map with the physical transmitter and the
virtual transmitters whose states are calculated based on the
floor plan of the scenario. We include virtual transmitters up
to an order of two, i.e., single and double reflections and/or
scattering. The transmitter state PDFs in the map are unbiased
towards the true transmitter locations and follow a Gaussian
distribution with a variance of 3m? in each spatial dimension,
and a variance of 1 m? in their additional propagation distance.
The second part is a hexagonal map on transmitter visibility
areas. For each hexagon h, the prior counts v, and 7y in
Eq. are set as follows. If a transmitter is visible from
the center of the hexagon, v, = 1 + ¢, and v, = €,, where
€, = 0.01. Otherwise, v, = ¢, and v, = 1 + €,. The side
length of the hexagons is 2m.

Two cases are compared for each user in the following.
In both cases, newly detected transmitters may be asso-
ciated with transmitters from the prior map or previously
observed transmitters. In the first case, the user applies the
data association scheme from [16], which is summarized in
Subsection and does not incorporate any information on
transmitter visibility areas. It solely relies on the information
on transmitter locations. This case will be referred to as plain
DA. In the second case, the information on visibility areas
is incorporated in addition into the estimation process as
explained in Subsection This case will be referred to
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Fig. 6. The MAE of the estimated locations of the two users versus the

traveled distance. The blue curve is the MAE if no visibility information is
used for data association (plain DA), while for the red curve the visibility
regions for transmitters are incorporated (vis. DA).

as vis. DA.

The results of the simulations in terms of positioning perfor-
mance are shown in Fig. [§] The results are averaged over 200
runs. The mean absolute errors (MAEs) of the user positions
are plotted against the traveled distance in blue if no visibility
information is used from the prior map (plain DA), and in
red if this information is exploited (vis. DA). As the starting
locations and headings of the users are known, the initial
MAE is zero. In the beginning of the tracks, the positioning
performances are equal in both cases. As the user starts to
move, associations of newly detected signal components can
be made with transmitters from the prior map. We observe
that then the MAE is in the most cases significantly smaller
if visibility information is incorporated.

V. CONCLUSION

A reliable data association scheme is crucial for long
term robust SLAM. Within this paper, we have extended
our previous data association scheme for Channel-SLAM by
integrating visibility information of transmitters. When a user
walks through the scenario, they collect information on the
visibilities of transmitters, and use such information for data
association. In addition, maps of transmitter locations may
be shared among users. We have shown by simulations that
augmenting such maps by transmitter visibility information
improves the robustness of our data association scheme and
thus the positioning performance of a user receiving a prior
map.
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