l‘)

Check for
updates

Repairing Learned Controllers
with Convex Optimization: A Case Study

Dario Guidotti'®™) | Francesco Leofante!, Claudio Castellini?,
and Armando Tacchella®

1 DIBRIS, Universita degli Studi di Genova,

Via all’Opera Pia, 13, 16145 Genoa, Italy
{dario.guidotti,francesco.leofante}@edu.unige.it,
armando.tacchella@unige.it
2 Institute of Robotics and Mechatronics, German Aerospace Center,
Miinchener Strafle, 20, Oberpfaffenhofen, 82234 Weflling, Germany
claudio.castellini@dlr.de

Abstract. Despite the increasing popularity of Machine Learning meth-
ods, their usage in safety-critical applications is sometimes limited by the
impossibility of providing formal guarantees on their behaviour. In this
work we focus on one such application, where Kernel Ridge Regression
with Random Fourier Features is used to learn controllers for a pros-
thetic hand. Due to the non-linearity of the activation function used,
these controllers sometimes fail in correctly identifying users’ intention.
Under specific circumstances muscular activation levels may be misin-
terpreted by the method, resulting in the prosthetic hand not behaving
as intended. To alleviate this problem, we propose a novel method to
verify the presence of this kind of intent detection mismatch and to
repair controllers leveraging off-the-shelf LP technology without using
additional data. We demonstrate the feasibility of our approach using
datasets gathered from human participants.

1 Introduction

In the last few years Machine Learning techniques proved to be successful in
many domains of application such as image classification [1] or speech recogni-
tion [2], with some architectures even claiming to match the cognitive abilities of
humans [3]. Despite this popularity, the usage of Machine Learning (ML) meth-
ods in safety-critical applications is still sometimes limited by the absence of
effective methods to provide formal guarantees on their behavior. In this paper
we focus on one such safety-critical application, where Kernel Ridge Regression
with Random Fourier Features [4,5] is used to learn controllers for prosthetic
hands. In this framework, multi-fingered, self-powered prosthetic hands [6] are
controlled using signals generated from a certain number of surface electromyo-
graphy [7] sensors. Ensuring the correct behavior of the controller is critical to
the safety of the amputee wearing the robotic artifact.
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Although several approaches have been proposed to build ML models enforc-
ing reliable myocontrol [8,9], reliability is still an issue. In particular we tackle
a problem of intent mismatch: whenever a subject increases her muscle activa-
tion, the prosthesis should in turn increase the applied force. However, if the
ML model is a non-linear one, there is no guarantee that this will happen. To
reduce the chance of intent mismatch, we propose an approach that couples a
standard ML-based myocontrol system with a Linear Programming (LP) solver
to automatically repair and improve the learned model without requiring addi-
tional data. This last point is crucial as gathering more data from the subject
to amend the ML model is not desirable: to gather relevant data, the subject
would need to apply a large amount of force leading to muscle strain, fatigue
and frustration.

By leveraging LP technology, we can represent the ML model, as well as the
property of interest, as a set of arithmetic constraints and establish algorith-
mically whether a controller satisfies the given property. If the property is not
satisfied, a LP solver is used to iteratively repair the controller until the resulting
model is mathematically guaranteed to be safe.

To demonstrate the feasibility of our approach, we compare results obtained
with a standard ML-based myocontroller against a myocontroller that was
repaired using our methodology on datasets gathered from human subjects at
the German Aerospace Center. Remarkably, we show not only that LP-based
repair is effective, but it also comes at a reasonably low computational price.

2 Preliminaries

Kernel Ridge Regression with Random Fourier Features. KRR-RFF
with Tikhonov regularization [4] has been demonstrated multiple times in liter-
ature to match most of the requirements of myocontrol [8,9]. Ridge Regression
(RR) builds a linear model of the input space data x of the form f(x) = wTx,
where w is the vector of weights computed as a result of the training phase.
KRR-RFF modifies standard RR by introducing a feature map ® : R — RP

that maps a sample x € R? onto a D-dimensional space as shown in Eq. 1
f(x) =w'e(x)

d(x) = V2cos(2x + B) @)

where €2 is a D x d matrix and 3 is a D-dimensional vector, whose values are
drawn from a normal distribution and a uniform distribution from 0 to 2w,
respectively — we refer the reader to, e.g., [4] for more details.

This method can be seen as a finite-(D-)dimensional approximation to a RBF-
kernel Least-Squares SVM [10], therefore it can be made arbitrarily accurate by
tuning D; nevertheless, since its kernel is finite-dimensional and can be explic-
itly written, it enjoys most useful properties of Ridge Regression such as, e.g.,
space-boundedness (making it ideal for online learning) and extremely fast train-
ing and testing. On top of this, using a rank-1 update method such as, e.g.,
the Sherman-Morrison formula, it can be made incremental, paving the way to
interactive myocontrol.
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Myocontrol and Intent Detection. Natural, simultaneous and proportional
myocontrol is an instance of (multi-variate) regression. Let S = (X,Y) be a
dataset composed by a set of observation X = {x; | x; € R, i =1,..., N} and
a set of corresponding target values Y = {y; € R™ | ¥x; € X }. Each observation
consists of d features evaluated from a set of sensors and denotes the muscular
activation corresponding to an action (e.g., wrist flexion, power grasp, etc.);
each associated target value, in turn, is a vector of m motor activation values
(currents, torques, ...) for a prosthetic device and corresponds to the desired
action as enacted by the device itself. In practice S is built by gathering, for each
desired action, an adequate number of observations recorded while the subject is
stimulated to perform it; each such observation is then coupled with the target
value enforcing the action by the prosthetic device. For instance, the subject is
asked to power grasp (“make a fist”); once the experimenter verifies that the
signals have reached a stable pattern which is also sufficiently distinct from the
baseline, a representative amount of observations is recorded and associated to
(synthetic) target values denoting maximal activation of all fingers. At the end
of the data gathering phase, S consists of one or more observation clusters for
each action considered, coupled with adequate target values — see, e.g., [11] for
more details.

KRR-RFF builds an approximant function f(x) : R¢ — R™ which best fits S
and offers the best generalization power on so-far unseen data. The approximant
f can be seen as an intent detector: whenever the wearer’s muscles are activated
to enforce a specific action, the prosthesis should behave accordingly. If properly
built out of S, f will smoothly and timely activate every motor of the prosthe-
sis whenever required; minimal and maximal muscular activations, as gathered
from the subject, will correspond to minimal and maximal motor activations;
under plausible assumptions, intermediate activation values too will be correctly
predicted in a monotonically-increasing fashion [4,8,11]. Finally, increasing the
muscle activation beyond the maximal values obtained during data gathering
should correspond to coordinated increased activation of the motors of the pros-
thesis, but this cannot be guaranteed by learning techniques only.

Linear Programming. Linear Programming solves linear problems over a set
of decision variables, a set of linear constraints over these variables and a convez
objective function that is linear in the decision variables [12].

Let x1,...,x, be a set of decision variables, a general linear program can be
written as

minimize Z T
i=1
subject toZaijxi >bj,j €[1,m]
i=1
x; € Ryi € [1,n]
Values c;,a;; and b; are constants that are specified during problem formu-

lation. General approaches to solving LPs include methods such as simplex or
the ellipsoid — for further details see, e.g., [12].
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Verification and Repair of Learned Models. Several approaches have been
proposed to verify different classes of ML models automatically. Even though such
approaches might differ in several aspects, most of them consider trained models,
i.e., they do not intermingle with the learning process, and they seek a transforma-
tion from the ML model to a decision or optimization problem in some constraint
system — see, e.g., [13] for a recent account on the subject. For instance, in [14]
Boolean satisfiability solvers are proposed to verify robustness of Binarized Neu-
ral Networks. Satisfiability Modulo Theories engines are leveraged to verify neu-
ral networks in, e.g., [15,16] and Support Vector Machines in [17]. MILP-based
approaches have been proposed to verify neural networks by, e.g., [18,19], while
a combination of SAT and LP techniques is used by [20] for the same purpose. A
different approach is taken in [21], where abstract interpretation is used to certify
safety and robustness of Deep Neural Networks with ReLLU and max pooling lay-
ers. Repair has received less attention compared to verification, with [15] and [17]
being the only contributions in this direction. However, the repair they propose
involves retraining the ML, model with data generated by solvers.

3 Verification and Repair

In order to enhance the reliability of

the controllers we consider in this work, 20
we propose an automated procedure that 15 -
iteratively brings the controller to a con-

dition where intent detection mismatch 10
does not occur anymore. In the following,

we describe the assumptions on which our Eh

approach rests, show how our ideas can be
formalized into an executable algorithm

and provide experimental evidence to sup- 5 10 20
port the approach we propose. 0

Fig. 1. The heat map representing the
3.1 A Linear Model of Intent value of the approximant for power
Detection grasping fpw, learned using readings

from two sensors.
The data gathering procedure produces a

cluster of samples for each action of inter-
est. An example is shown in Fig. 1, where observations are gathered for three
actions: rest (RE), power grasp (PW) and wrist flexion (FL). For a specific
action, we assume that values of the input space lying on the line joining the
resting cluster and the cluster corresponding to the action of interest denote an
execution of the action with increasing strength (see Fig. 1). This assumption is
justified by physiological reasons: muscle activation remains roughly coordinated
as the action is performed with more force (see, e.g., [22-26]).

More precisely, for a generic action a, let x, denote the coordinates corre-
sponding to the average of points belonging to the cluster corresponding to a.
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Performing an action a with increasing strength can be seen as moving along
the line Xxpp + (X —XgE)tq, where t, € R>(' is a parameter proportional to the
muscle activation value. By construction, ¢, = 1 corresponds to the maximum
activation value registered during the data gathering phase. Figure 1 shows an
example for a = PW: for tpy = 0, the subject is at rest; as tpy increases the
subject starts power-grasping moving along xgg + (Xpw —Xgg)tpw. Under this
assumption, absence of intent mismatch for action a can be encoded as follows:

Vig. (X =xpE + (Xa — XgE)ta Ate > 1) = fu(X) > amax (2)

where f,(x) is the value of the approximant function for a applied to the input
x and amq, is the full activation value (e.g., the value corresponding to the
full closure of the hand when the action is PW). Therefore, a mismatch happens
whenever the value of muscular activation ¢, is greater than 1 (i.e., the maximum
value observed during data gathering) and the corresponding motor activation
value predicted by the approximant f is less than amqz.

3.2 The Algorithm

Our repair procedure LP-REPAIR leverages training data and our prior knowl-
edge about the problem in order to modify the parameters of the machine learn-
ing model used in the controller. In particular, LP-REPAIR analyses the initial
model in order to determine if there exists an unsafe point, i.e., an instance of
intent detection mismatch. Such point is considered to create additional con-
straints for an optimization problem which, once solved, gives as solution a new
set of parameters for the machine learning model. This constraint generation
approach is justified by the fact that, in the feature space, the model is a lin-
ear function of the weights as per Eq.(1). The resulting model is guaranteed
to fix activation insofar the unsafe point is concerned. The procedure proceeds
iteratively verifying safety of the modified controller and, possibly, adding a
new counstraint (corresponding to a new unsafe point) to the problem; when the
controller is deemed safe, the procedure ends.

Algorithm 1 shows the pseudocode of LP-REPAIR: X and Y are, respectively,
the inputs and outputs training data of our controller, w is the vector of the
weights of the machine learning model and A is a set of actions of interest.
safetyCheck(. ..) uses a set of points, in the original input space, with uniform
distances along the straight lines of interest in order to find the most unsafe point
for each action, i.e., the point whose output has the highest difference from the
expected value. This function returns a boolean variable safe, (which is false if
an unsafe point has been found) and an unsafe point unsafePoint,.

The procedure Opt(...) defines and solves the optimization problem presented
in Fig. 2, where w; is the i-th component of the vector of the weights, and ¢; is
the variation on the above mentioned component. D is the dimensionality of the
feature space, N is the number of samples in the dataset, and 7 corresponds to

! In practice, the value of t, is upper bounded by operating range of EMG sensors.
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Algorithm 1. Repair procedure
1: procedure LP-REPAIR(X, Y, w, A)

2: safe < False

3: W +— w

4: unsafeSet — ()

5: while not safe do

6: safe «— True

T for each action a € A do

8: (safeq,unsafePoint,) « safetyCheck(X,Y, 0, a)
9: if not safe, then
10: safe — False
11: unsafeSet — (unsafeSet UunsafePoint,)
12: w — Opt(X,Y,w,unsafeSet)
13: return w

the sampling rate which determines the subset of the training set we consider in
the cost function. z7*** is the i-th component of the data-point corresponding to
the center of the rest cluster, and z{“** is the i-th component of the data-point
corresponding to the center of the cluster associated to the activation of a certain
action a. Finally, xzmsaf % denotes the i-th component of the j-th unsafe point.
In more detail, Eq. 3a defines the cost function to be minimized, where: (i) the
first member corresponds to the modification of the parameters of the controllers
(w;), (i) the second member tries to minimize the error on a subset of the training
set, and we do this in order to guarantee that the prediction performances are not
degraded and (%) the third member is a tolerance on the error §. Equations 3b and
3c encode the constraints to guarantee the correct output value respectively for the
center of the rest cluster and the centers of the activation clusters. Finally, Eq. 3d
presents the constraints we use to force the output values of the unsafe points to
be correct, where k is the total number of unsafe points found. It is important

D floor(N/n) D
min» e[+ D> Y= (wi+ ) X[ 46 (3a)
i=1 =1 i=1
D
Z w; + €) wZTESt 0 (3b)
i=1
D
Amaz — Z wz + 67, a,(,ta < Amazx + 6 Va S A (SC)
D
Z (ws + €) unsafe” > Gmaz, Vj=1,...,k (3d)

i=1

Fig. 2. LP model used for repair.
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to highlight that, since all the points we consider in the problem are given, i.e.,
data-points are not variables, we can apply the feature mapping beforehand and
formulate the problem of repairing a non-linear classifier without introducing non-
linear constraints. For this reason, all the data-points in Eq. 3 are data-points in
the feature space, not in the input space.

3.3 Experimental Results

A prototypical implementation of our approach was tested? on 18 datasets, each
consisting of 320 samples, gathered from human subjects. The actions of inter-
ests are rest, power grasp, wrist flexion and wrist extension. In all our tests our
procedure managed to terminate successfully, e.g. it managed to bring the con-
troller to a safe configuration. In Fig. 3a we show an example of how the output
of the controller for power-grasping is modified by LP-Repair. As it can be seen,
at the last iteration, the output is greater than one® for all admissible values of
t above aqz-

In Fig.3b we show the quantities of interest in our analysis: the sampling
rate (S.R.) is the rate at which we pick samples from the training data to use
in the cost function. D is the parameter which determines the dimension of
the feature space. MSE-o (resp. MSE-1) is the mean square error computed on
the training set before (resp. after) the repair process. Time corresponds to the
CPU time needed for the repair process (in seconds). MSE and time values are
both computed as means on 18 datasets. We do not display the last three rows
of the Table when the sampling rate is 100 because the repair procedure did
not complete successfully, i.e., none of the 18 datasets yields a successful repair
due to conditioning problems reported by the LP engine. We have chosen to
compare MSEs before and after repair in order to verify that our repair process
does not degrade the performances of the controller substantially. As it can be
seen from Fig. 3b, the time complexity of the problem grows monotonically with
the sampling rate and the dimension of the feature space, but on average, the
runtime of the repair procedure is always less than 3 CPU minutes. In particular,
for values of D which are relevant from an engineering point of view, i.e., those
that yield MSE errors of less than 0.1%, we notice that the repair procedure is
feasible for all the sampling rates considered, and that the final accuracy, albeit
decreased, is still viable for practical applications. This is more evident as D
increases because as the representativity increases the repair process can modify
the controller without decreasing too much the accuracy of the prediction.

2 We implemented our procedure using Python version 2.7. and the libraries sklearn
and cvzopt for learning and optimization respectively. The default solver of cvzopt,
i.e., conelp, was used — see [27] for more details. All the experiments are capped
at 10min of CPU time and 4 GBs of memory; experiments ran on a Ubuntu 18.04
machine equipped with a quad-core i5 Intel CPU running at 2.60 GHz.

3 Notice that for power-grasping amae is equal to one.
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- S. R.| D IMSE-o|MSE-r| Time
Original Model . .
1st round }8 }0 0.0140 | 0.4370 6'96:5‘
2nd round 50 | 0.0020 | 0.0040 | 18.456s
3 — 3rdround 10 |100{ 0.0012 | 0.0025 | 39.752s
10 |150( 0.0008 | 0.0019 | 68.984s
10 |200( 0.0007 | 0.0019 |103.650s
10 |250( 0.0006 | 0.0015 |138.009s
10 {300 0.0005 | 0.0012 |179.034s
/\ 50 | 10| 0.0146 | 0.5177 | 4.880s
50 |50 | 0.0021 | 0.0282 | 14.988s
1 50 [100| 0.0011 | 0.0151 | 26.941s
50 [150] 0.0009 | 0.0216 | 41.134s
50 |200{ 0.0007 | 0.0195 | 61.431s
50 |250] 0.0006 | 0.0134 | 83.657s
50 |300{ 0.0005 | 0.0157 110.448s
100 | 10 | 0.0157 | 0.9239 | 4.041s
100 | 50 | 0.0019 | 0.0648 | 13.461s
-1 0 1 2 3 4 5 6 7 100 |100{ 0.0011 | 0.0517 | 25.440s
trw 100 |150{ 0.0009 | 0.0349 | 36.183s

(a) (b)

N

fow

Fig. 3. Results for power-grasping.

4 Conclusion

Our paper provides empirical evidence that convex optimization techniques can
be used to repair machine learned controllers for prosthetic hands insofar as
detection mismatch is concerned and controllers are learned using KRR-RFF.
The key factors of our successful evaluation are (i) a physiology-rooted modeling
of intent detection mismatch along regions that conjoin data clusters correspond-
ing to actions to those corresponding to rest conditions and (i7) a formalization
of the repair problem based on feature space rather than input space. The former
allows us to mathematically define intent detection mismatch, while the latter
allows us to solve the problem using a linear program, rather than a non-linear
one. The main feature of our method is that it repairs the controller without
requiring additional data to be gathered. This is very important in applica-
tions involving human subjects, where additional data acquisition can be time-
consuming, expensive or just plain impossible. While our method is effective on
a specific case study, we expect that our findings can help approach the problem
in different contexts where KRR-RFF is viable, as well as provide guidance to
the repair of controllers learned with different methods: our future work includes
furthering research along these directions.
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