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Abstract

In this study, the reaction forces arising in multi-fastener joints subject to different
forms of in-plane loading are investigated. Different approaches are considered with
the goal of designing a tool capable of predicting fastener loads in the context of early
preliminary joint design. A review of the relevant literature on the topic is provided.
The analytical models retained from the literature, as well as models modified or
proposed as part of the study, are presented and discussed. The models accounting
for the deformation of both the connected members and of the fasteners are based
on a one-dimensional discretization of the joint through linear springs. The stiffness
of the fasteners is calculated with empirically based methods. The applicability
of the analytical models to joint design is assessed both in terms of accuracy and
conservatism. The limits of validity of the assumptions underlying the analytical
models are evaluated through comparison with detailed numerical models. Through
3D Finite Element analysis with linear material deformation, the parts composing
the joint and their interactions are modelled. Joint design guidelines stemming from
the findings of the numerical and analytical investigations are suggested.
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1 Introduction

1.1 Context and objective

Composite materials have found extensive application in aviation and space tech-
nology in recent decades, with a potential for lightweight design of both primary
and secondary structures. The vastness of composite applications is reflected in the
variety of technological challenges designers are faced with.

Bolted joints are commonly employed for the assembly of different members in com-
posite or hybrid structures. Joint analysis can be crucial when evaluating a struc-
ture’s safety from failure, which may need to be ensured for very different loading
conditions.

A tool for preliminary joint design is currently under development at the German
Aerospace Center (DLR). Considering an as wide as possible array of loading con-
ditions, the tool will determine at first the reaction forces at each fastener. These
predicted loads will then be used as input to determine the 2D stress distribution
around the bolt holes. Finally, failure of the joint will be evaluated through the
application of failure criteria to the obtained stress distribution.

This thesis study focused exclusively on the prediction of the reaction loads, the first
of the tool’s modules. The key goal was to identify, evaluate and, when possible,
modify existing models for predicting reaction loads in composite bolted joints.

The tool is intended to be used at an early design stage and specifically in early
preliminary design, providing indications regarding the influence on joint failure of
parameters such as member thickness or bolt spacing. The intended use makes it
necessary for the tool to require little time for setup and computation, as well as little
input from the user. Complex analysis practices, such as 3D Finite Element (FE)
modelling, could provide precise information regarding joint failure but would not
be suitable for joint optimization because of their high computational requirements.

Nonetheless, numerical approaches were considered in this thesis study for evalua-
tion of the results obtained with the preliminary design tool. The goal of such a
comparison was to evaluate under what conditions a simpler model, incapable of
reproducing the level of detail of a 3D FE model, could provide reasonably accu-
rate load predictions. The level of accuracy and conservatism of the predictions was
assessed as part of the present study.

1.2 Bolted joints under in-plane loading: an early discussion

Let us consider a bolted connection in which two plates are clamped together by a
single bolt. The nut has been torqued sufficiently so that a non-negligible preload is
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present in the bolt. The bolt has an a shank diameter smaller than the hole diameter
in the plates, so that a certain clearance is present between bolt and hole.

Such an assembly is held fixed at one end of the top plate, while a horizontal load
is applied to the opposite end of the bottom plate, as shown in Fig.1. The behavior
of the joint can be described through a load-deflection curve. Four distinct regions
can be observed in the curve of Fig.1, where the red lines indicate possible linear
approximations of quasi-linear phenomena.

Figure 1: Typical load-deflection curve for a single-bolt joint (Adapted from [1])

Small applied loads correspond to the initial quasi-linear region I (0-1), in which the
external load is reacted by the static friction forces between the parts in contact.
The bolt-torque is sufficient to ensure that no slipping of the plates is possible.
The shear deformation of the plates dominates the overall joint deformation. As a
consequence, the slope of the quasi-linear curve in this region depends strongly on
the elastic properties of the plates for such a shear loading.

When the applied load is large enough for the static friction effects to be overcome,
a displacement of the bottom plate with respect to the top plate is initiated. After
initiation, the slipping of the transition region II (1-2) takes place with little resis-
tance, which results in a significantly flatter load-deflection curve compared to the
previous region.

The transition region ends when contact is established between bolt shank and
plates. In the early bolt load transmittal region III (2-3), the contact area is small
but rapidly increasing with an increase in applied load. The curve becomes nearly
linear when a substantial bolt shank-plates contact is reached. In this phase, the
elastic properties of the plates, as well as of the bolt, dominate the load transfer.
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For cases in which bearing failure is critical, as considered in Fig.1, the non-linear
region after point 3 is the final stage before failure of the joint. Non-linear deforma-
tion of the plates has the potential to modify load distribution in the bolts since, at
different bolts, the plates will reach this stage at different moments, depending on
the distribution in region III.

For metal joints where significant bearing deformation takes place, the load distri-
bution among fasteners can become almost even thanks to the effects of non-linear
member deformation. Since composite laminates often show less significant non-
linear deformation compared to metals, it is sometimes possible to assume that
the load-distribution in a composite joint at failure does not change after the bolt-
transmittal region [4]. However, when non-linear effects are believed to play an
important role in joint failure, they need to be accounted for in the modelling ap-
proach.

While the presented discussion showed a joint subject to tensile loading, a similar
behavior in load transfer would be observable with other forms of in-plane loading
in presence of bolt-hole clearance and preload.
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2 Joint description and properties

2.1 Geometry definitions

Bolted joints transferring loads from one member to another were investigated in
this study. As presented in more detail in Section 3.1, the focus of the study was
on in-plane loading of joints. In the case of shear joints, external in-plane loads are
reacted, at least partially, by the fasteners through shear forces. Lap joints belong
to the family of shear joints and can be divided in single-lap and double-lap joints
depending on the number of connected plates.

Figure 2: Dimensions and numbering for a generic single-lap joint

Fig.2 shows a generic single-lap joint. Two plates A and B of uniform thickness
tA and tB are connected with N fasteners. Both plates have a constant width w.
The fasteners are separated by a distance p, with p1 indicating the spacing between
fasteners number 1 and 2. lend refers to the distance of bolt 1 to the edge of plate
B and of bolt N to the edge of plate A. In later sections, the subscript j is used
to indicate a generic fastener, such that 1 ≤ j ≤ N , and when referring to the
value of parameters at that fastener location, for example for a bolt diameter Dj.
Similarly, the subscript i is used to indicate a generic location in between fasteners,
with 1 ≤ i ≤ N − 1. It can be used to indicate a spacing pi or quantities related
to this distance, such as the local A plate stiffness KA i. It should be noted that a
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value i = 1 corresponds to the position between fasteners 1 and 2, while the position
i = N − 1 is located between fasteners N-1 and N.

A double-lap joint is shown in Fig.3. The top and bottom plates are both referred
to as A plates, while the central plate is called B. In this thesis study, it is always
considered that both the A plates have equal thickness at the same fastener. Bolt
and spacing numbering follow the same pattern previously introduced for single-lap
joints.

Figure 3: Dimensions and numbering for a generic double-lap joint

While the two previously presented joints have uniform plate thickness, lap-joints
can also have different plate thickness at different fasteners. Fig.4 shows a schematic
representation of a stepped-double-lap joint.

Figure 4: Example of stepped-double-lap joint with three fasteners

When discussing shear joints, the total joint is sometimes divided in smaller portions
of fasteners in a line. These portions are defined as “strips”. Fig.5 shows an example
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of a strip composing a double-lap joint, schematically represented. The terms “row”
and “column”are also sometimes employed. While, as “strip”, both refer to the joint
geometry, the direction of the load applied to the structure is implicitly considered.
If the plates that compose the joint were divided in strips, columns would be the
strips parallel to the applied load and the rows would be the strips perpendicular
to it. Considering the joints of Figures 2 and 3, if a load were applied along a line
passing through all the fasteners, then these joints would have N rows and 1 column.
The term “strip” is therefore broader than “row” and “column” and simply refers
to the joint geometry.

Figure 5: Example of a strip, indicated in purple

The numbering and definitions provided in this section are sufficient to fully define
the majority of joint geometries considered in the study and to understand the tool
formulation presented in Chapter 4. Additional information is provided whenever
necessary to avoid ambiguity in the joint geometry definition.

2.2 Clearance and tolerance effects

The effects on load distribution of bolt-hole clearance were taken into consideration
in the thesis study. Table 1 presents the possible clearance values λ with the f7/H10
fitting for bolts of nominal diameter 8 mm, as used in this study, see ISO 286 [5].
Such fitting was indicated as typical for the aerospace industry and considered in
several studies, among which [2]. Clearance is calculated as the difference between
hole and bolt diameters.

Table 1: Tolerance values with an f7/H10 fitting for M8 bolts

Bolt tolmax

[µm]
Bolt tolmin

[µm]
Hole tolmax

[µm]
Hole tolmin

[µm]
λmin

[µm]
λmax

[µm]

-28 -13 0 +58 13 86

The table shows that no clearance smaller than 13 µm or larger than 86 µm is
possible with the f7/H10 fitting. The knowledge of the bolt-hole clearance in a joint
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is of primary importance since it introduces the possibility of bolts not being in
contact with the hole surface, with the effects that were presented in Section 1.2.

Having introduced the bolt-hole clearance values, a clarification regarding joint dis-
placement needs to be made. Considering a generic bolt j subject to uniaxial loading
as presented in Section 1.2, no load is transferred through the bolt until contact with
the hole surface is established. The displacement of the joint induced by the applied
load before bolt-hole contact is established does not correspond to λj. The actual
joint displacement, defined as clj, cannot be exactly known and depends on how the
bolt holes are aligned. It could vary from clj = 0 to clj = 2λj. Fig.6 shows two
scenarios for which λj is the same but clj is different because of the different hole
alignment. In Fig.6(a), after a very small joint displacement clj, contact is estab-
lished on both sides of the bolt, which starts transferring a load in shear. In Fig.6(b),
however, a much larger clj displacement is necessary to be completed before the bolt
can enter the bolt load transmittal region, despite the clearance λj being the same.
Fig.61 in the Appendix shows in detail the evolution of the case of Fig.6(b) before
load transfer through the bolt in shear can take place.

(a) (b)

Figure 6: Examples of different clj due to different hole alignment

In this thesis study, clj was considered equal to the clearance expressed at the
diameter: clj = λj. This represents an average case and is equivalent to consider
the bolt exactly at the center of the hole.

A clearance of 20 µm was considered as a small clearance, while 100 µm corresponds
to the largest possible clearance with the f7/H10 fitting. This choice was made
for simplicity, and without loss of conservatism, based on the values presented in
Table 1. An ideal case of 0 µm and an intermediate value 40 µm were also considered
in the study. To facilitate the description of the clearance conditions in a joint, the
clearance values are indicated in later sections through the λ vector:

λ = {λ1, λ2 · · · ·λN} (1)

Defined here for a generic joint with N fasteners. Bolt numbering definition is
provided whenever necessary.
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Finally, it should be noted that position tolerance, unlike the clearance fit consid-
ered above, cannot increase the actual distance between bolt and hole surfaces. A
clarification is provided through Fig.7.

(a) (b)

Figure 7: Effects of position tolerance on bolt-hole distance

Let us consider two identical plates to be joined with three bolts. Fig.7(a) shows the
locations of the holes. While the location where the holes on the top and bottom
plates are drilled is theoretically the same, the uncertainty due to the manufacturing
process has to be taken into account. Considering a commonly employed tolerance
grade IT6 as per ISO 286, position tolerance values of 13 µm, 16 µm and 19 µm
could be ensured in the part manufacturing for the specified bolt distances. For
simplicity, a 20 µm tolerance is considered and indicated in Fig.7. With such a
position tolerance, the drilling locations are confined within a circle of diameter
20 µm centered at the theoretical drilling location. Therefore, a hole misalignment
of at most 20 µm, shown in Fig.7(b), can be generated with drilling. The red lines
indicate where the hole surface would be for an ideal case of zero position tolerance,
while the orange and blue lines refer to the case of worst misalignment possible.
It is evident from the picture how any misalignment due to manufacturing would
reduce the surface through which the bolt has to pass during assembly, indicated in
green in the picture. The largest possible distance between bolt and hole surfaces
corresponds to the ideal case of zero position tolerance, since the misalignment it
introduces can only reduce bolt-hole clearance.

2.3 Bolt preload

Three levels of bolt preload were considered in the thesis study. The corresponding
values of axial force FN for M8 bolts are presented in Table 2.
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Table 2: Considered bolt preload values and corresponding axial force for M8 bolts

Denomination
Bolt

Torque [Nm]
FN [kN]

Finger-tight 0.5 0.362
Intermediate 8 5
Torque-tight 16 11.4

Finger-tight and torque-tight conditions were already considered in [3]. The same
study provided measurements of the axial force FN for those torque conditions ob-
tained with instrumented fasteners. Intermediate torque was also considered, being
recommended for assembly by the standard ASTM D5961 [6]. The corresponding
FN value was obtained as in [7].

2.4 Material data and material properties calculation

When discussing material properties, the 123 right-handed coordinate system is
used. The 1 direction corresponds to the fiber orientation, while 2 lies in the plane
of the fibers and is perpendicular to 1. The 3 axis is directed perpendicularly to the
plane of the fibers. Following this convention, θ is used to indicate the angle of a ply
with respect to the 1 direction, 90◦ being aligned with 2. The right-handed XYZ
coordinate system is instead used throughout the report to indicate the orientation
of structures.

The material orientations were defined with respect to a coordinate system oriented
as in Fig.8 for all the single-column cases. The 0◦ angle corresponds to the direction
indicated by the X axis, while the Z axis indicates the stacking direction.

Figure 8: Coordinate system definition for material orientation

Whenever necessary, additional information about material orientation is indicated
throughout the report.
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2.4.1 Stiffness properties

HTA/6376, a carbon fiber–epoxy material currently used for primary structures in
the aerospace industry, was considered in this study. The prepreg has a nominal ply
thickness of 0.13 mm and its unidirectional stiffness properties are summarized in
Table 3. The material properties were obtained from [8].

Table 3: Stiffness properties of a unidirectional layer of HTA/6376

E11

[GPa]
E22

[GPa]
E33

[GPa]
G12

[GPa]
G13

[GPa]
G23

[GPa]
ν12

[-]
ν13

[-]
ν23

[-]

140 10 10 5.2 5.2 3.9 0.3 0.3 0.5

The second carbon-epoxy material modelled in the study is M21/T700GC. The
unidirectional stiffness properties for this prepreg, which also has a nominal ply
thickness of 0.13 mm, were implemented as shown in Table 4. These properties
were obtained from the DLR material library. A distinction is made between ply
properties in tensile and compressive loading.

Table 4: Stiffness properties of a unidirectional layer of M21/T700GC

E11

[GPa]
E22

[GPa]
E33

[GPa]
G12

[GPa]
G13

[GPa]
G23

[GPa]
ν12

[-]
ν13

[-]
ν23

[-]

Tens. 125.5 8.33 8.33
4.135 3.5 3 0.3 0.3 0.4

Comp. 102.8 8.26 8.26

The composite layups modelled with the described prepreg materials are presented
in Section 2.5.

Steel plates were modelled with isotropic elastic properties. These properties, in-
dicated as “Generic steel”, were also used to model washers and were reported in
[8]. The same properties were employed for the steel sheets in hybrid laminates.
Laminate hybridization is further discussed in section 2.5. An isotropic material
behavior was also considered in the studies with ASTM A36 steel plates, with prop-
erties obtained from the database of AZoMaterialsi. Material properties for steel are
presented in Table 5.

iazom.com
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Table 5: Material properties for generic steel (left) and ASTM A36 plates (right)

E
[GPa]

ν
[-]

210 0.3

E
[GPa]

ν
[-]

200 0.26

Fasteners and plates were modelled in some cases with isotropic titanium alloy prop-
erties with a purely elastic behavior. The properties, obtained from [8], are shown
in Table 6.

Table 6: Material properties for titanium

E
[GPa]

G
[GPa]

ν
[-]

110 36 0.29

In Section 7.1, fasteners were modelled in a Finite Element model as ASTM A325
bolts in order to allow comparison of numerical results with an empirically based
model developed for such fasteners. The equivalence of this standard of fasteners to
the metric grade 8.8 is established in [9]. The material properties of these fasteners
were taken as equivalent to the metric standard of grade 8.8 and obtained from ISO
898-1 [10]. The implemented values are shown in Table 7.

Table 7: Material properties for ASTM A325 / Grade 8.8 metric bolts

E
[GPa]

σY

[MPa]
σuts

[MPa]
Elongation

[-]
ν
[-]

210 640 830 0.12 0.3

The material deformation for these bolts was modelled as piece-wise linear. The
plastic strain at ultimate elongation was implemented in Abaqus FEA following
the official documentation.ii The bolt shear capacity calculation is presented in the
Appendix (Section 11.5).

2.4.2 Thermal expansion properties

When investigating the loads generated by thermal loading, thermal expansion of
the materials was modelled. The material properties for the considered models are
summarized in Table 8.

iidsk.ippt.pan.pl/docs/abaqus/v6.13/books/gsk/default.htm
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Table 8: Coefficients of Thermal Expansion (CTE) of the considered materials

CTE·106[K-1]

1 Direction 2 Direction

M21/T700GC 0.21 29.8
Steel 17.3 17.3

Titanium 8.6 8.6

The effective properties of an M21/T700GC cured ply were reported in [11], while
the thermal properties for steel were taken from the material database of ASM
Aerospace Specification Metals, Inc.iii The properties corresponding to ASTM Grade
7 titanium and AISI Type 304 stainless steel were selected from the database. These
material properties refer to a temperature of 20◦ C.

2.4.3 Laminate properties calculation in the tool

Global stiffness properties for the laminate are necessary as input for the tool. These
are derived through Classical Lamination Theory (CLT). The values of E11, E22, G12

and ν12 for a single ply are needed as input for the calculation, together with the
fractions of 0◦,±45◦ and 90◦ plies or metal sheets. Tensile or compressive stiffness
properties are used as input depending on the considered joint loading. The outputs
of the theory, programmed in a Python script, are the global laminate stiffness
properties Ex, Ey, Gxy and νxy.
Similarly, the tool calculates the global CTE of a laminate from the single ply
properties. A description of the model for CTE calculation, also based on CLT, is
presented in the Appendix (Section 11.4).

2.5 Composite Layups

Several laminate layups were considered in this thesis study. This was due to both
a need to reproduce results from the literature for comparison and to investigate
relevant aspects of load distribution under different conditions. The layups differed
on the basis of four parameters. A four-entry code of the type X-X-X-X was defined
to avoid confusion when referring to the layups. The X letters are replaced by
letters that specify the four parameters for a certain layup:

• Material
The letter for the material is the first to be indicated in the layup code. Two
prepreg materials were presented in Section 2.4. They both have a nominal
ply thickness of 0.13 mm. Since tensile loading was mostly considered in this
thesis study, when no particular mention is made, tensile properties of the

iiiaerospacemetals.com
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materials are used in the definition of the layup. HTA/6376 is identified by
“H”, while M21/T700GC by “M” for layups to be used with tensile loading.
Only in Section 6.2.3 compression loading is considered and the material in
the layup code is indicated with “M*”

• Joint configuration
This parameter is expressed in second position in the code. It can either be
expressed by “SL” for single-lap joints or “DL” for double-lap joints.

• Layup orientation
The third letter in the code takes either the value “Q” for a (25-50-25)%
quasi-isotropic layup or “D” for a (62.5-25-12.5)% layup with higher stiffness
in the X direction.

• Metal hybridization
The last entry in the code indicates if a laminate is entirely made of a
carbon-epoxy material or if it is partially hybridized with steel sheets.
Hybridized laminates, “H”, differ from those entirely made from CFRP, “C”,
only by the fact that the fraction of 90◦ plies, indicated by the third code
entry is replaced by steel sheets. The letter “m” is used to indicate a metal
sheet in a hybrid laminate.

Keeping in mind the defined layup identification code, the following layups were
considered in this thesis study:

– H-SL-Q-C
– A plate: [45/0/-45/90]5s, 5.2 mm total thickness
– B plate: [45/0/-45/90]5s, 5.2 mm total thickness

– H-DL-Q-C
– A plates: [45/0/-45/90]2s, 2.08 mm total thickness
– B plate: [45/0/-45/90]4s, 4.16 mm total thickness

– M-SL-D-C
– A plate: [0/45/0/-45/0/0/90/0/0/45/0/-45/0/0/90/0]s, 4.16 mm total

thickness
– B plate: [0/45/0/-45/0/0/90/0/0/45/0/-45/0/0/90/0]s, 4.16 mm total

thickness

– M-DL-D-C
– A plates: [0/45/0/-45/0/0/90/0]s, 2.08 mm total thickness
– B plate: [0/45/0/-45/0/0/90/0/0/45/0/-45/0/0/90/0]s, 4.16 mm total

thickness

13



– M*-DL-D-C
This layup was considered in a study of compression loading. It is almost iden-
tical to M-DL-D-C, with the exception that compression and not tensile ply
stiffness properties are used as input for the calculation of the global properties.

– A plates: [0/45/0/-45/0/0/90/0]s, 2.08 mm total thickness
– B plate: [0/45/0/-45/0/0/90/0/0/45/0/-45/0/0/90/0]s, 4.16 mm total

thickness

– M-DL-Q-C
– A plates: [45/90/-45/0]2s, 2.08 mm total thickness
– B plate: [45/90/-45/0]4s, 4.16 mm total thickness

– M-DL-D-H
– A plates: [0/45/0/-45/0/0/m/0]s, 2.08 mm total thickness
– B plate: [0/45/0/-45/0/0/m/0/0/45/0/-45/0/0/m/0]s, 4.16 mm total

thickness

– M-DL-Q-H
– A plates: [45/m/-45/0]2s, 2.08 mm total thickness
– B plate: [45/m/-45/0]4s, 4.16 mm total thickness

The difference between the [45/0/-45/90] and [45/90/-45/0] quasi-isotropic layups
was modelled to allow metal hybridization of the latter laminates. Hybridization
requires no two adjacent metal sheets to be present in the stacking sequence. As a
consequence, the corresponding composite layup cannot have two adjacent 90◦ plies
which would be replaced by metal sheets.
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3 Load cases and literature review

3.1 Load cases

Having introduced the joint geometries considered in the thesis study, the Load
Cases (LC) of interest are presented and numbered in this section.

The tool was designed to account for different forms of in-plane loading, while out-
of-plane loads are of no interest for the intended tool application. As a consequence,
for all cases, the fasteners can only be purely loaded in shear by the external load
and no tensile reactions take place, with the exception of minor secondary effects
due to loading eccentricity in single-lap joints.

The first considered load case is uniaxial loading. Keeping in mind the previous
geometry definitions, a load is applied to an edge of the A plates of a double-lap
joint, while the central plate B is held fixed at the opposite edge. The applied load
is thus transferred to the central plate. A schematic representation is provided in
Fig.9, where the black dots indicate the fasteners. The fastener pattern is arbitrary
here. Also, while double-lap joints are shown here from the top view, the discussion
of this section equally applies to single-lap joints. A distinction is made between
Fig.9(a) and Fig.9(b), where the former represents uniaxial tension (LC1) and the
latter uniaxial compression (LC2). Both forms of loading were investigated in this
study.

(a) (b)

Figure 9: Uniaxial loading of a joint: tension (a) and compression (b)

With the uniaxial loading previously mentioned, the external load is applied along
a line passing through the fastener group center. In the case of shear loading (LC3),
shown in Fig.10, an eccentric load, i.e. not applied along a line passing through the
center of the fastener group, is considered. A rigorous definition of group center
and eccentricity is provided in Section 4.1.5, here it is sufficient to mention that the
fastener reactions depend on the load application point as well as its direction. It
should be noted that, when discussing this load case,“shear” refers to the loading
itself and should not be confused with the fastener shear reactions. As already
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mentioned, any form of in-plane loading, and not just the shear loading of Fig.10,
can generate shear reactions in the fasteners.

Figure 10: Shear loading of a joint

Another considered load case is biaxial loading. In this case, non-eccentric loads are
applied to the A plates of the joint, while the central plate B is held fixed on two
edges against displacement in any direction. A schematic representation of this load
case is shown in Fig.11 with tensile loads applied in both directions. Three more
forms of biaxial loading would also be possible, with compression in both directions
or tension in one direction and compression in the other. The four cases of biaxial
loading are all of interest and are grouped within LC4.

Figure 11: Biaxial loading of a joint

Lastly, thermal loading was also considered in this study. This load case (LC5) refers
to the loads that can arise in some joints subject to a temperature difference between
assembly and operational conditions. To discuss these thermal loads, let us consider
a single-lap joint. For plate A, α is the global CTE along a certain direction, while
β is the global CTE for plate B along the same direction. If the properties of the
plates were different in terms of global CTE, the plates would expand differently in
presence of a temperature difference between assembly and operational conditions.
This could result in the appearance of shear loads at the fasteners due to the different
displacement of the bolt at the top and bottom plates. Equivalent reasoning can be
applied to explain the appearance of such thermal forces for a double-lap joint.
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3.2 Literature review

Several practices are currently employed in the design of bolted connections. They
can be grouped in three families: analytical approaches, experimental testing and
FE modelling. While the last two can provide important insights by capturing
fundamental effects as those generated by bolt-hole clearance and friction, they are
often impractical for optimization, being expensive and time consuming.

While lacking accuracy under certain circumstances, analytical models are rapid
and cost-effective. Regarding uniaxial loading, the earliest analytical study in the
literature is by Tate and Rosenfeld [12], in which a linear spring model for the
analysis of double-lap joints with isotropic materials was presented. The model was
later modified to account for anisotropic materials by Nelson [13]. This kind of
linear models has been extensively used both in academia and in industry. In these
methods, the fastener load distribution is calculated by considering that both the
fastener and the joint members deform when subject to a load. Many following
studies [14][15] are based on the model by Tate and Rosenfeld but they all suggest
different ways to account for the fastener stiffness. M.A. McCarthy [2] introduced
a modification to the spring model that could take into account the presence of
bolt-hole clearance. This model was further developed by C.T. McCarthy [3] to
also consider the effects of bolt torque and friction between the laminates. All the
aforementioned models assume material linearity and cannot take into account non-
linear bearing deformation.

Other kinds of analytical models for uniaxial loading include boundary element
formulations [16] and boundary collocation methods [17][18], which however gave
rise to very limited following literature. This thesis study focused on spring-based
approaches.

No model specifically dealing with in-plane shear loading of composite joints was
identified in the literature. Models for conventional metal structures were therefore
investigated. Two different methods of analysis are presented in the AISC Manual of
Steel Construction [19]: the elastic method and the instantaneous center of rotation
method. The former is based on a well-known work by Reilly [20] and assumes
that a fastener group subject to an eccentric load rotates around the group centroid
with the connected plates being infinitely rigid. The latter, originally formulated by
Crawford and Kulak [21], considers that the eccentric load generates both a rotation
around the group centroid and a translation of the fastener group. The model relies
on an empirical relation to account for bolt deformation. Both models were retained
and investigated.

While a few semi-analytical models [22] based on stress superposition exist to cal-
culate load distribution, biaxial loading was found to be mostly investigated in the
literature with empirical and numerical approaches. The study by Kapidžić [23] was
retained as a reference for numerical modelling of joints subject to biaxial loading.
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The Handbuch Struktur Berechnung (HSB) [24] and Esp [4] propose a modification
to the classical spring-based model for uniaxial loading [12] to predict load distribu-
tion in case of thermal loading as described in Section 3.1. The model was retained
and investigated as part of the thesis study. The investigation on single-bolt joint
by Santiuste [25] was retained for the numerical modelling of composite joints under
thermal loading.

In addition to the already mentioned works by Kapidžić and Santiuste, other relevant
studies regarding the 3D FE modelling of bolted joints were also considered, being
comparison of the analytical tool with numerical models part of the thesis study. The
majority of the considered numerical investigations followed the meshing approach
of Ireman [26]. Ireman himself based part of the modelling approach on earlier
numerical studies on bolt-hole contact by Chen [27][28]. The meshing strategy by
Ireman was retained and partially reproduced. The numerical and experimental
results from [3] were retained for comparison of the numerical results under axial
loading. In addition to these studies, Egan [29] provides a valuable description of
the best practices for FE modelling and experimental testing of composite bolted
joints as of 2018.

While the previously introduced analysis practices are the most commonly employed,
it is worth mentioning here another category of analysis. In the 1970s and 1980s,
efforts were made by the American aerospace and defense industry, funded by the
United States Air Force, to develop analytical or semi-analytical techniques to allow
the analysis of mechanically fastened composite structures. Under the Compos-
ite Joint Analysis Program, these methods resulted in the formulation of several
computer codes. Snyder [30] presented the features of each code and tested their ca-
pabilities. Three codes can be used in the analysis of multiple bolted joints: JOINT
[31], A4EJ [32] and SAMCJ [33][34]. The earliest of the three, JOINT, was de-
veloped by the Douglas Aircraft Company. Its reliance on empirical test data was
found to severely limit its application. A few years later, A4EJ was also developed
by the Douglas Aircraft Company as a tool capable of analyzing multi-row joints
accounting for the non-linear behavior of the fasteners, as well as of the adherends.
The code is based on continuum mechanics techniques. SAMCJ is a test data-
independent code developed by the Northrop Corporation. The code has a finite
element based formulation. The three codes can model both single-lap and double-
lap joints subject to uniaxial tension, compression or in-plane loading, as well as
thermal loading. It should be noted that both [4] and [30] suggest employing A4EJ
for advanced and non-linear multi-fastener analyses. Despite these codes being now
in the public domain [35], difficulties of availability make it impossible to directly use
them for comparison. The results obtained with some of these codes have however
been reported and were considered for comparison of later studies, as in Poon and
Xiong [36].
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4 Joint modelling in the tool

4.1 Retained models

Some of the models from the literature could be directly implemented in the tool
to evaluate load distribution with one or more of the considered load cases. These
models are presented in this section. Further discussion and analysis on these models
is presented in Chapter 6.

The models that were modified in this study before being implemented in the tool
are described in Section 4.2. Alongside these models, proposed approaches to ex-
tend the application of the retained models are presented. The thermal loading
model is presented in Section 4.1.3 and not there since its formulation, but not the
modelling approach, was modified. Similarly, the uniaxial loading model for single-
column joints of Section 4.1.2 is presented among the retained methods since it was
generalized for any number of bolts, and not just three, but its modelling approach
remained the same. Also the results from the modified models were analyzed and a
discussion is presented in Chapter 7.

4.1.1 A note on spring model formulations

All the spring-based methods considered in the thesis study are based on the same
joint discretization, shown in Fig.12 for a single-lap-two-bolt joint and presented
in more detail in Section 4.1.2. However, these methods can be divided in two
groups depending on the problem formulation: those expressed in terms of member
flexibility and those formulated through direct stiffness.

Figure 12: Example of single-lap joint discretization

In the case of the former group, the problem is expressed through a series of dis-
placement compatibility equations. As shown by the red arrows in Fig.13(a), it is
possible to express an equation for each pair of adjacent fasteners in terms of member
deflection δ and flexibility C. A matrix problem can therefore be assembled under
the form:
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C ·R = P (2)

Where, for a joint composed of N fasteners, C is an N×N compliance matrix, while
R and P are the fasteners’ reactions vector and loading vector respectively.

Alternatively, the problem can be expressed by solving equilibrium equations at each
node, thus obtaining the nodal displacements x. The matrix problem corresponding
to the discretization of Fig.13(b) is expressed in the form:

K · x = L (3)

Where K is the stiffness matrix of the problem and L the loading vector. Unlike the
flexibility matrix C, the size of the stiffness matrix K is n×n, where n=2N+1. The
fastener reaction can be retrieved as the product of its stiffness and the difference in
displacement between the corresponding top and bottom node. It should be noted
that the loading vector here is expressed differently than P .

(a) (b)

Figure 13: Flexibility formulation (a) and direct stiffness formulation (b)

To maintain coherence throughout the discussion, all the models in this thesis study
were expressed in terms of direct member stiffness. Being the modelling approach
equivalent, the two formulations yield identical results, with purely formal differ-
ences.

4.1.2 Uniaxial loading model for single-column joints

The model from M.A. McCarthy [2] was retained from the literature and generalized.
This model allows to calculate the load distribution in a single-column joint where a
non-zero bolt-hole clearance can be specified. It is both applicable to single-lap and
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double-lap configurations, for tension (LC1) loading as well as compression loading
(LC2). While the formulation proposed by the authors only considers a 3-row joint,
the model was generalized for this thesis work to consider any number of fastener
rows. It should be noted that the model is an extension of what was introduced by
Tate and Rosenfeld [12], in which no bolt-hole clearance was considered. None of
these studies takes into account the effects of bolt preload and friction. They can
therefore be employed for predicting load distribution in finger-tight joint.

Fig.14 shows the discretization of a single-lap joint’s bottom and top plates, A and
B respectively, fastened by N bolts. A horizontal load P is applied to one end of
plate B while the opposite end of plate A is held fixed. The joint was discretized
by introducing two nodes at every fastener location, one node for each plate. An
additional node is placed at the free end of plate B where the load P is applied.

The stiffness KB i indicates the stiffness of plate B at a generic spacing i. The same
applies to KA i for plate A. The stiffness KF j refers to the stiffness of a generic
fastener j in case of a difference in the displacement of the corresponding top and
bottom nodes.

It is considered that only a purely horizontal node displacement is possible, with
the positive direction indicated in Fig.14 by the coordinate systems x1 to x2N+1. It
follows that all the stiffnesses are defined considering such a horizontal displacement.

Figure 14: Definition of the quantities for the uniaxial loading model of
single-lap-single-column joints

The springs are used to model either the stiffness of a portion of a plate or of a
fastener in shear. The plate stiffness between adjacent fasteners at a location i is
defined as:

KA i =
ExAtA iw

pi
and KB i =

ExB tB iw

pi
, 1 ≤ i ≤ N (4)

With tA i and tB i being the effective thickness of the plates over the fastener separa-
tion pi and plate width w. These quantities were introduced in Figures 2 and 3. The
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thickness of a plate is calculated as the average thickness between the two adjacent
fasteners, as suggested in HSB 21031-01 [24]. The plates’ longitudinal direction is
aligned with the axis of loading of the joint, so that the relevant moduli of elasticity
are ExA and ExB . Several models to account for fastener stiffness KF i exist and
they are discussed in Section 4.1.4. Lastly, KA end and KB end are calculated with
the corresponding distance l end.

The stiffness values are therefore all known and they are used to express the forces
acting on each node as a function of the nodal displacement. It is then possible
to calculate the force balance at every node. Fig.15 shows free body diagrams of
a generic node k + 1, belonging to the top plate B, and the neighbouring node k,
located on the bottom plate A.

Figure 15: Force balance with classical model (left) and clearance model (right)

On the left-hand side of Fig.15, the nodal force balance with a classical spring-
based model, such as considered by Tate and Rosenfeld [12], is shown. The balance
modification proposed by M.A. McCarthy in [2] to account for bolt-hole clearance
is shown on the right-hand side. The balance is expressed for a generic fastener j.
Based on the geometrical definitions of Section 2.1, the plate stiffness on the right of
the node can be expressed with the subscript j, while the stiffness on the left with
j − 1. The difference between the two methods lies in the fact that a delay in load
take-up is introduced for a fastener with non-zero clearance, so that the reaction
force is given by:

F j =

{
0 for 0 ≤ xk+1 − xk ≤ clj

KF j(xk+1 − xk − clj) for xk+1 − xk > clj
(5)

With the delay term clj as defined in Section 2.2. Since only a displacement in the
X direction is possible in the model, Fj is purely directed along X. For loadings such
that a fastener reaction can have more than one component, a distinction is made
between the reaction along X and Y, defined as FX j and FY j respectively.

22



Considering the free body diagrams for the clearance model, the following equilib-
rium equations can be written:

−KB j · xk−1−KF j · xk + (KB j +KB j-1 +KF j)xk+1−KB j-1 · xk+3 = KF j · clj (6)

−KA j · xk−2− (KA j-1 +KA j +KF j)xk −KF j · xk+1−KA j-1 · xk+2 = KF j · clj (7)

Such equations can be written for all nodes, with the nodal displacements as un-
knowns. Care needs to be taken when considering the equilibrium at nodes 2, 2N-1
and 2N+1, being the forces acting on the nodes slightly different with respect to the
other locations.

To simplify the discussion, a stiffness matrix and load vectors corresponding to an
N=3 joint are presented below. However, their generalized forms were derived and
can be found in the appendix. The system of equations can be written in matrix form
as K · x = L, with the loading vector L composed by the terms of the equilibrium
equations independent from x:

K =



KA end +KA 2 +KF 3 −KF 3 −KA 2

−KF 3 KF 3 +KB 2 0
−KA 2 0 KA 2 +KA 1 +KF 2

0 −KB 2 −KF 2

0 0 −KA 1

0 0 0
0 0 0

0 0 0 0
−KA 2 0 0 0
−KF 2 −KA 1 0 0

KB 2 +KB 1 +KF 2 0 −KB 1 0
0 KA 1 +KF 1 −KF 1 0

KB 1 −KF 1 KB 1 +KB end +KF 1 −KB end

0 0 −KB end KB end



L =



−KF 3 · cl3
KF 3 · cl3
−KF 2 · cl2
KF 2 · cl2
−KF 1 · cl1
KF 1 · cl1

P


x =



x1

x2

x3

x4

x5

x6

x7


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The above system of equations can be solved to obtain the nodal displacements. The
fastener reactions are then derived from Eq.5. It is to be noted that the problem is
non-linear because of bolt-hole clearance, which introduces zones where no reactions
are generated in the fasteners. When solving for a certain load value P, the applied
load is incrementally stepped up from zero.

As stated above, the model is equally applicable to single-lap and double-lap joints.
The former case was shown in the above discussion for simplification. The model
can be easily modified to account for double-lap joints by considering a factor 2
when calculating the stiffness of plate A:

KA i =
2ExAtA iw

pi
, 1 ≤ i ≤ N (8)

The same factor is to be considered when calculating KA end. This approach is
justified under the assumption that the thickness of the top and bottom A plates is
equal.

Finally, the overall joint displacement was defined as the sum of the individual
displacements of all the bolts composing the joint. The bolt displacement is equal
to the difference in displacement between the top and bottom nodes, as already
introduced in Eq.5 where the displacement is compared to the bolt clearance. The
overall joint displacement can be used when showing in a graph the evolution of the
bolt reactions for different applied loads.

4.1.3 Thermal loading model for single-strip joints

As presented in Section 3.1, modelling thermal loads generated by a temperature
gradient ∆T in a joint with different expansion properties was considered as part
of this study (LC5). An analytical model to calculate these thermal loads was
presented in HSB 21031-01 [24] and by Esp [4] for a single-strip joint. However,
these models are expressed in terms of member flexibility and not direct stiffness,
see Section 4.1.1. No model formulation in terms of direct member stiffness was
identified in the literature. Having the model for uniaxial loading been formulated
in terms of stiffness, the thermal loading model was re-formulated as part of this
study to maintain consistency and to facilitate a combination of the two models if
desired.

The thermal loading model re-formulation was derived for a three-bolt-single-lap
joint, shown in Fig.16, and then generalized to any number of fasteners.
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Figure 16: Definition of quantities for thermal loading model of single-strip joints

As a first step, equations representing the displacement of the first and last node
due to thermal expansion are written as:

x1 = α · lend ·∆T (9)

x7 = x6 + β · lend ·∆T (10)

Where α and β are the global CTE values in the X direction for plate A and B
respectively. It should be noted that the expansion properties of composite materials
can be significantly different in different directions, see Table 8. The computation
of the global properties for a laminate is described in the Appendix (Section 11.4).
The letters α and β were used rather than CTEX A and CTEX B to simplify the
notation.

A condition is also imposed on the reactions of the fasteners. Because of the internal
nature of thermal forces, the sum of the bolt reactions is set equal to zero:

F1 + F2 + F3 = 0 (11)

In addition to Equations 9 to 11, four more equations representing nodal force bal-
ances complete the linear system of 7 equations to determine 7 unknown nodal
displacements. This system can be expressed in terms of the stiffness matrix of the
structure K and of a thermal loading vector Lther. Because of the lengthy alge-
braic manipulation required to express the linear system in this form, a summary
is presented in the Appendix (Section 11.3). With the described algebraic develop-
ment, the linear system can be expressed similarly to the model in Section 4.1.2 as
K · x = Lther, where the thermal loading vector is equal to:
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Lther =



(KA end · lend −KA 2 · p2)α
−KB 2 · β · p2

(KA 2 · p2 −KA 1 · p1)α
(KB 2 · p2 −KB 1 · p1)β

KA 1 · α · p1

(KB 1 · p1 −KB end · lend)β
KB end · β · lend


∆T

A generalized formulation for any number of fasteners is provided in the Appendix
(Section 11.3). The model is equally applicable to double-lap joints by considering
the appropriate value for the stiffness of the A plates with Eq.8. This also applies
to KA end.

4.1.4 Fastener flexibility

The stiffness of the fasteners needs to be computed to compose the stiffness matrix
for the uniaxial loading model of Section 4.1.2 and the thermal loading model of
Section 4.1.3. Several models exist to account for fastener flexibility, equivalent to
the inverse of the fastener stiffness in shear. These flexibility models are expressed
in terms of plate thickness tA and tB. It should be noted that these correspond to
the plate thickness values at the fastener location, which may not be the same for
different fasteners, if the plate thickness is not constant.

The fastener flexibility formulations presented in this section were all experimentally
derived. A comparison of the retained formulations is presented in Section 6.2.

- Tate and Rosenfeld [12]:

Single-lap:

1

KF

=
1

tAExA
+

1

tBExB
+

1

tAEF
+

1

tBEF

+
8(t3B + 5t2BtA + 5tB t2A + t3A)

5EFπD4
+

32(tB + tA)(1 + νF )

9EFπD2
(12)

Double-lap:

1

KF

=
1

tAExA
+

1

2tBExB
+

1

tAEF
+

1

2tBEF

+
8t3B + 16t2BtA + 8t2t

2
A + t3A

3EFπD4
+

8(2tB + tA)(1 + νF )

3EFπD2
(13)
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Where EF and νF represent the fastener’s modulus of elasticity and Poisson ratio.
In both Eq.12 and Eq.13 the first two terms model the contribution to the flexibil-
ity from the bearing deformation for plates A and B. The third and fourth terms
consider the bearing deformation of the fastener, while the fifth and sixth terms its
deformation in bending and shear respectively.

- Nelson [13]:

Single-lap:

1

KF

=
2(tB + tA)

3GFAF
+

[
2(tB + tA)

tBtAEF
+

1

tA
√
ExAEyA

+
1

tB
√
ExBEyB

]
(1 + 3βN) (14)

Double-lap:

1

KF

=
2tB + tA
3GFAF

+
8t3B + 16t2BtA + 8tBt

2
A + t3A

192EF IF
+

2tB + tA
tBtAEF

+
1

tB
√
ExBEyB

+
2

tA
√
ExAEyA

(15)

Where GF , AF and IF represent the fastener’s shear modulus, cross section area
and section modulus. The last two are calculated from the nominal diameter of the
fastener. Having the model proposed by Nelson been derived from the work of Tate
Rosenfeld, the equations take a similar form. The first term on the right hand side of
Eq.15 takes into account the effects of bolt deformation in shear, while bolt bending
is accounted for by the second term. The term βN represents the bending moment
fraction which is reacted by non-uniform contact stresses in the laminates. It can
range from 0.5 for countersunk fasteners to 0.15 for protruding head bolts.

- Huth [14]:

1

KF

=
b

ψ

(
tA + tB

2D

)a(
1

tAEA
+

1

ψtBEB
+

1

2tAEF
+

1

2ψtBEF

)
(16)

Where the value of ψ is equal to 1 for single-lap joints and 2 for double-lap joints.
The other coefficients depend on the materials of the connected members and are
presented in Table 9.
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Table 9: Coefficients for Huth’s fastener flexibility formulation

Joint type a b

Bolted metallic 2/3 3
Riveted metallic 2/5 2.2

Bolted graphite-epoxy 2/3 4.2

- Boeing (as reported in [14]):

Single-shear:

1

KF

=
2( tAD )

0.85

tA

(
1

EA
+

3

8EF

)
+

2( tBD )
0.85

tB

(
1

EB
+

3

8EF

)
(17)

Double-lap:

1

KF

=
1.25( tAD )

tA

(
1

EA
+

3

8EF

)
+

1.25( tBD )

tB

(
1

EB
+

3

8EF

)
(18)

- Douglas (as reported in [14] and [37]):

Single-lap:

1

KF

=
5

EFD
+ 0.8

(
1

EAtA
+

1

EBtB

)
(19)

Double-lap

1

KF

=
5

EFD
+ 0.8

(
1

EAtA
+

1

2EBtB

)
(20)

4.1.5 Elastic method for shear loading

The model from Reilly [20], sometimes referred to as elastic method, was retained
to predict bolt reactions in a joint subject to shear loading (LC3). The model was
retained in the version presented in [38] to account for differently sized fasteners.

With the elastic method, a joint eccentrically loaded by a force P is assumed to
rotate around the fastener group centroid (CG), as shown in Fig.17(a) for a joint
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with 6 bolts. Considering infinitely rigid plates fastened by N bolts, the location of
CG is calculated as:

xCG =

∑N
j=1Aj · xj∑N
j=1 Aj

and yCG =

∑N
j=1Aj · yj∑N
j=1Aj

(21)

(a) (b)

Figure 17: Joint deformation with elastic method (a) and definitions (b)

Where Aj is the section area of a generic fastener j, located at coordinates xj and
yj at a distance rj from CG, as shown in Fig.17(b).

A purely vertical load P applied at a point along the line at xP from CG generates
a counterclockwise moment around CG calculated as:

MCG = −P · xP (22)

Once MCG is known, the fastener reactions to the applied moment FM j can be cal-
culated. It should be noted that the forces FM j are only the reactions generated by
the moment around CG and are not in equilibrium with P along Y. These reactions
are considered to act perpendicularly to rj, so that:

FM j = MCG
Aj · rj∑N
j=1Aj · r2

j

(23)

The horizontal and vertical components of the fastener reactions are then calculated
considering the respective projections of FM j and the external load P:
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FX j = −P Aj∑N
j=1Aj

+
(xj − xCG)

rj
FM j , FY j =

(yCG − yj)
rj

FM j (24)

Knowing the horizontal and vertical components, the fastener reactions are easily
obtained as:

Fj =
√
F 2
X j + F 2

Y j (25)

4.1.6 Original instantaneous center of rotation method

While this model was not implemented in the tool, its description is necessary to
understand the proposed modified model presented in Section 4.2.2.

Unlike with the elastic method, in the Instantaneous Center of Rotation (ICoR)
method it is considered that an eccentric load P generates a rotation around CG as
well as a translation of the joint. This is equivalent to a rotation around a certain
Instantaneous Center (IC) shown in Fig.18(a).

(a) (b)

Figure 18: Joint deformation with ICoR method(a) and definitions (b)

The location of the IC depends on the bolt group geometry and load orientation. For
a generic joint with N bolts, the original ICoR method assumes that joint failure
is due to bolt failure in shear for the bolt furthest from the IC. The method is
based on the work by Crawford and Kulak [21] in which, for a generic fastener j, an
experimental relation between bolt deformation ∆j and bolt force Fj was developed:
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Fj = RN(1− eτ∆j)ζ (26)

Where RN is the bolt shear capacity, see Appendix (Section 11.5), while τ and ζ
are regression coefficients. They are defined as ζ = 0.55 and τ=0.3937 when ∆j

is expressed in millimeters. The relation was developed for ASTM A325 bolts and
ASTM A36 steel plates but is applicable to various bolt sizes and steel grades [39].
The bolt deformation ∆j is defined as the relative displacement between bolt head
and nut, equivalent to δF j

or δF j+1
in Fig.13(a). The bolt force-deformation relation

is shown in Fig.19, where the red dot indicates failure conditions, at ∆j=8.636 mm,
and the black dots the bolt deformations that will be considered in the investigations
of Section 7.1.1.
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Figure 19: Load-deformation relation for ASTM A325 bolts

The method assumes that bolt failure arises at the bolt furthest from the IC, for
which r=rfar and ∆far=8.636 mm, while the bolt deformation for the other bolts is
linearly proportional to the distance from the IC. The bolt forces, acting perpendic-
ularly to the bolt-IC distance rj, are calculated as:

∆j =
rj

rfar

∆far =
rj

rfar

(8.636) (27)

To summarize, the method is based on four assumptions:

1. The fastener group rotates around the IC

2. Bolt failure takes place at the fastener furthest from the IC
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3. Bolt forces act perpendicularly to the radius of rotation and are linearly pro-
portional to the distance of the bolt from the IC

4. The connected parts remain rigid during the rotation

In other terms, it is assumed that, for a fixed geometry, at least one bolt deforms
such that its ∆ is equal ∆far and the problem is solved to find a critical load P
generating failure. Such a method can only be used to determine load distribution
in a joint for bolt failure conditions.

In this formulation, ∆far is known before starting the computation, while IC and P
are to be found. The problem is solved iteratively by updating a guess for the IC
position. At each guess, all rj values are calculated with Eq.27 and the bolt forces
with Eq.26. The force equilibrium equation in the Y direction is solved for the
applied load P. With this value, the respect of the equilibrium of moments is verified
for the IC guess. If the equilibrium of moments is respected within the defined
tolerance, the IC guess is considered as correct, otherwise it is updated. Tolerance
definition is presented in more detail in Section 4.2.2.

4.2 Modified methods and proposed approaches

Some models, while based on existing models in the literature, were modified as part
of this thesis study and are presented in this section. Additionally, two approaches
based on retained models are proposed to take into account biaxial loading and
uniaxial loading of multi-column joints.

4.2.1 Bolt preload model for uniaxial loading

An extension to the uniaxial loading model to account for bolt preload was proposed
by C.T. McCarthy in [3]. It was assumed that bolt preload variations among different
fasteners were sufficiently small to consider equal preload conditions for all bolts.

In this model, a delay due to friction is introduced in the K · x= L system from
Section 4.1.2, thus reproducing the load-deflection behavior already introduced in
Section 1.2.

Since no bolt displacement can take place before the end of the quasi-linear region
I, the bolts are not loaded in shear and the applied load is only transferred through
friction between the plates. Being the plates and not the bolts subject to loading,
the bolt stiffness KF is replaced by a measure of the shear stiffness of the plates
proposed by C.T. McCarthy. In this way, the K · x= L problem is solved with a
modified K matrix until slipping takes place. The sticking-to-slipping transition is
enforced through Coulomb friction law:
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Fcrit = µFN (28)

Where FN represents the bolt axial force due to preload and µ is the friction coeffi-
cient between the laminates.

When the reaction at a fastener Fj exceeds the critical friction force, slipping takes
place. At that point, the shear stiffness of the plates is replaced by the bolt stiffness
and the problem is solved as already described in Section 4.1.2.

To model the shear stiffness of the plates, C.T. McCarthy proposed a method based
on the out-of-plane properties of the laminates. These properties cannot be calcu-
lated by assuming a purely 2D laminate behavior with CLT as described in Section
2.4.3. Being a simple laminate property derivation from CLT a requirement for the
tool, a modification to this model was proposed in this thesis study to comply with
these requirements.

With the proposed model modification, it is assumed that slipping takes place for
all bolts when the applied load load P exceeds the slip resistance of the joint [40]:

Rs = µFN ·N · nl (29)

Where N is the total number of fasteners and nl represents the number of slip
surfaces, equal to 1 for single-lap joints and 2 for double-lap joints. With this model,
the only reaction present in the joint before slipping is due to friction. After slipping
is triggered, the load transferred by the joint in friction remains constant and the
bolts start reacting part of the applied load at the same time. The bolt reactions
are then calculated by solving the K · x= L problem, already described in Section
4.1.2 for a three-bolt joint. A modification to the last term of the loading vector
is necessary to model the fact that only the part corresponding to the difference
between the applied load and the slip resistance generates a load reacted by the
bolts:

L =



−KF 3 · cl3
KF 3 · cl3
−KF 2 · cl2
KF 2 · cl2
−KF 1 · cl1
KF 1 · cl1
P −Rs


The impact of such a modification is believed to be small since it does not affect the
prediction of the total load transferred by the joint through friction. In fact, while
with the formulation by C.T. McCarthy not all bolts reach Fcrit simultaneously,
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the sum of the friction forces when slipping has taken place at all bolts is equal to
the slip resistance of Eq.29. To evaluate the validity of the modified model, it was
implemented for the comparison of the tool results with the FEM in Section 6.2.

Any model to capture the effects of bolt preload is inevitably based on the knowl-
edge of frictional interactions between the plates. Accurately estimating the friction
coefficient is an important step in ensuring accurate results. A coefficient of 0.42 was
employed in [3] for laminates with HTA/6376 45◦ plies in contact. The same value
was used in the analyses of this thesis study, even though it might not be accurate
in some cases. However, from this point of view, the FE models and the analytical
model of the tool are equally affected by the uncertainty. While the considered fric-
tion coefficient might not be accurate, employing the same value for both models is
sufficient to guarantee a fair comparison, which was the goal of the study.

4.2.2 Modified instantaneous center of rotation method

The original ICoR method was modified in this thesis study to allow load distribution
calculation under LC3 for conditions other than bolt failure. Assumption 2 in Section
4.1.6 is no longer considered but it is still assumed that this bolt, indicated by the
subscript high, has the highest ∆ in the bolt group. Therefore, Eq.27 is re-derived
as:

∆j =
rj

rhigh

∆high (30)

With this formulation, ∆high can have any value from 0 mm to failure conditions.
Unlike with the original ICoR method, P is known and is an input for the calculation
of the loads generated at all bolts. In order to simplify the solution to the problem,
it is assumed that a load P with no X component is applied to the joint. When
such a purely vertical load is considered, it is known a priori that the IC lies on the
line passing through CG and perpendicular to P [19]. As a consequence, only the
X component of the IC needs to be determined, while the Y position is known. An
eventual X component of P could be taken into account with the model for uniaxial
loading of Section 4.1.2. The study of the validity of a superposition of these effects
is left for future studies.

The iterative approach for the modified formulation is more complex than with the
original ICoR method. In fact, while ∆far is known with the latter, ∆high is unknown
in the modified formulation. Therefore, both a guess for xIC and ∆high are made in
this case, with rj and Fj calculated with Eq.30 and Eq.26. As already mentioned,
Fj is directed perpendicularly to the axis of rotation. The component along Y of
this force is defined as FY j. From the forces computed with the double guess, it is
possible to define the following term:
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F new
Y high = P −

∑
j 6=high

FY j (31)

Corresponding to the Y component of the force bolt high would need to have to
respect the equilibrium of forces along Y. The total force at bolt high, F new

high, can be
calculated through simple trigonometry. By inverting the bolt deformation Eq.26,
the bolt deformation corresponding to the calculated force can be expressed as:

∆new
high =

1

τ
ln
(

1−
(F new

high

RN

) 1
ζ
)

(32)

Lastly, the IC point that would generate equilibrium at these conditions is calculated:

xnewIC = xP −
1

P

(
F new
high · rhigh +

∑
j 6=high

(FY j · rj)
)

(33)

Eq.32 and Eq.33 would give the same results of the guessed values ∆high and xIC
if the guesses were perfectly exact. A solution for the modified ICoR method is
therefore found by minimizing an error term based on the difference between the
guessed and the “new” values:

err∆ = 2 ·
∆high −∆new

high

∆high + ∆new
high

(34)

errx = 2 · xIC − xIC
new

xIC + xnewIC

(35)

The minimization is calculated through the SciPy optimize function in Python using
Sequential Least SQuares Programming (SLSQP). SLSQP is an iterative method for
constrained nonlinear optimization of a function of one or more variables. Within
the main optimization process, the method solves a sequence of smaller optimization
problems, with each of them optimizing a quadratic model of the objective based
on a linearization of the constraints. In the calculation, ∆high is limited between
0 mm and 8.636 mm, while xIC can only assume negative values with the defined
X axis orientation. The solutions from the optimization function are accepted if
the fastener reactions respect both the equilibrium along Y and the equilibrium of
rotations around IC within a certain tolerance defined as in Eq.36 and Eq.37.

Ycheck =

∑N
j=1 Fj − P

P
(36)
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Mcheck =

∑N
j=1 Fjrj − P (xP − xIC)

P (xP − xIC)
(37)

Both Ycheck and Mcheck can be set to the desired value, equal to 10% in the case of
this thesis study.

As will be further discussed in Sections 7.1.1 and 7.1.2, the modified ICoR method,
not assuming bolt failure in the joint, can be used to estimate load distribution.
In this sense, the applicability of the method is broader than with the original
ICoR method, allowing studies that would not have been possible with the original
method.

4.2.3 Limitations of the current method minimization

The current iterative approach to find load distribution with the modified ICoR
model allowed to calculate the results analyzed in Sections 7.1.1 and 7.1.2. These
results were obtained after brief computations, not exceeding 30 seconds. However,
it should be noted that the programmed iterative approach with the SciPy mini-
mization function has not been optimized. For some joint geometries and loading,
no solution can be found. This is a limit of the optimization problem definition
and not a physical phenomenon. The existence of a unique solution, or at least
of a group of solutions satisfying the required tolerance, is always ensured, as long
as no bolt force exceeds the maximum reaction possible from Eq.26. In that case
no load distribution could be calculated as the joint would already be at failure
conditions. Improving the minimization problem definition would ensure to always
obtain a solution when existing, with the implication that the applied load exceeds
the minimum value to generate bolt failure when no solution is found.

To guarantee a fast computation of the reactions with the tool for shear loading, the
elastic method was implemented. The modified ICoR method was programmed in
a separate Python script.

4.2.4 Uniaxial loading model for multi-column joints

The uniaxial loading model for single-column joints of Section 4.1.2 was defined to
predict load distribution in single-column-multi-row joints subject to LC1 or LC2.
With the goal of extending the applicability of the tool, an approach is proposed to
also consider multi-column joints.

A uniaxial tensile load is applied to the top and bottom plates of a double-lap joint,
while the central plate is held fixed. The former plates are colored in red and the
latter in yellow in Fig.20.
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Figure 20: Single-column approach for a multi-column joint

While a double-lap joint is shown in the picture, the discussion of this section equally
applies to single-lap configurations. It is considered that the bolt pattern is such
that a division of the joint in different columns of equal width is possible. Each
column has a width equal to w/ncol, where ncol indicates the number of columns in
the joint. For this division to be applicable, the distance between fasteners in a same
row needs to be the same for all rows. However, the spacing between rows does not
need to be constant. The application of the tool is nonetheless restricted to cases
where the spacing between rows, although not necessarily constant, is the same in all
columns between the same two rows. Fig.21 shows an example of different spacing
between rows which is however equal for all column between the same two rows.

Figure 21: Example of admissible bolt spacings with the single-column approach

The approach shown in Fig.20 is to consider each column as independent, with an
applied load of P/2 in the considered case. More generally, each column of a joint
made of ncol columns would be subject to P/ncol. Each column is then analyzed
through the models presented in Section 4.1.2 and 4.2.1. This was defined as the
“Single-column approach”.

The justification of the proposed approach on the basis of numerical investigations is
presented in Section 7.2. Based on the findings of these studies, the uniaxial loading
model for multi-column joints can be employed in the tool to also consider cases of
non-zero bolt-hole clearance and non-zero preload.
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4.2.5 Biaxial loading model of a joint

An approach to calculate the reactions in a joint subject to biaxial loading LC4 is
also proposed. Two loads PX and PY are considered to act on a joint as shown in
Fig.22. The two loads are directed perpendicularly to the surface on which they
are applied. The suggested approach, defined as “Superposition approach” is to
consider a combination of the effects in the two spacial directions, first calculated
independently.

As mentioned when presenting the models for uniaxial loading, the terms “row” and
“column” are used to indicate a part of the geometry of a joint but also implicitly
refer to the uniaxial nature of loading. For this reason, it was possible to refer to a
“single-column approach” to calculate load distribution in a multi-column joint in
the presence of a uniaxial applied load. In this section, biaxial loading of a joint is
discussed. The terms “row” and “column” are therefore dropped to avoid confusion.

Figure 22: Superposition approach for a generic joint

A joint with constant bolt spacings in both directions, as in Fig.22, is considered.
The fact that the distance between fasteners remains constant allows to consider
that all the green strips in the X direction have equal width, as well as all the blue
strips along Y have the same width. In the context of biaxial loading, “width” refers
to the dimension of a strip in the direction perpendicular to the line of the fasteners
in the strip. While the spacings are constant, they do not need to be equal along X
and Y, so that the width of the green strips can be different from the width of the
blue strips. The number of fasteners in the joint along the X direction is indicated
by nX , while nY is the number of fasteners along Y.

The effects of the load along the X direction are calculated at first. The load PY is
ignored and the reactions FX j solely due to PX are calculated with the model for
uniaxial loading of a joint presented in Section 4.2.4. To do so, the joint is divided
in strips as shown in green in Fig.22 and by taking ncol = nY .

The reactions FY j along Y are calculated in a similar way by ignoring PX and
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employing the model for uniaxial loading from Section 4.2.4 with ncol = nX . In this
case, the division in strips is made as shown in blue in Fig.22.

In the two previous steps, the reactions along X and along Y due to PX and PY

were calculated separately for each fastener. The total fastener reactions due to the
biaxial loads are calculated with the superposition approach by the combination:

Fj =
√
F 2
X j + F 2

Y j

Which has been previously introduced as Eq.25 for a generic fastener j. Fastener
numbering for multi-strip joints is provided when necessary. The biaxial loading
model based on the superposition approach was implemented in the tool. The limits
of its applicability and its accuracy are discussed in Section 7.3. No bolt-preload
and no clearance can be specified in the analysis of biaxial loading with the tool.
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5 Joint FE modelling

5.1 Definitions for FE modelling

All the FE models created in this thesis study were made of the same mechanical
components: plates, washers, bolts and nuts. The term “component” will be used
to refer to these mechanical entities. The number of these components or their
dimensions in a joint vary depending on the considered case but they were always
modelled with three parts created in Abaqus FEA. The term “part” refers to the
virtual geometry modelling a fraction or an entire component. Part names will be
indicated in italic to distinguish them from the components, which are written in
normal characters. The three parts employed in the FE models are:

• Plate: This part corresponds to a single layer of elements to model a complete
plate. More than one part is necessary to model an entire component, such as
plate A or B as presented in Section 2.1. The number of parts depends on the
plate thickness. Plate has a thickness of 1.04 mm, corresponding to 8 plies of
nominal thickness 0.13 mm considered in this thesis study. The part is shown
in Fig.23(a).

• Bolt and nut : As the name suggests, this part models at the same time a single
bolt with the nut. This part is shown in Fig.26(a).

• Washer : Washers are modelled separately from the bolts and nuts. This part
is shown in Fig.25b(a)

5.2 FE modelling of the components

This section presents how the components of the joints were modelled using the
parts introduced in Section 5.1. Part partitioning for meshing and the considered
edge seeding for the mesh sensitivity analysis are also discussed. Figures 27 and 28
show examples of two complete FE models for a single-lap and a double-lap joint.

5.2.1 Modelling of the plate components

A complete plate is modelled as a stack of Plate parts, see Fig.23. In a single Plate
part, 8 plies are modelled in an 8-node quadrilateral continuum shell element SC8R.
Three-dimensional solid elements C3D8 were also considered. The rationale for the
element choice is presented in more detail in Section 5.7. As mentioned, more than 1
ply was modelled in a single SC8R element. While single-ply modelling was employed
for similar loading conditions of single-lap joints, for example in [41], these studies
focused on material damage and required finer mesh than for the investigation of
load distribution. With the goal of obtaining a FE model with a reasonably low
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computational time, and following the same approach of other studies in the relevant
literature [2][3], single-ply modelling was discarded to model 8 plies in each element.
Considering these relevant studies, the same ratio between the number of plies in an
element and the element thickness was maintained.

Figure 23: Plate modelling: (a) Plate part, (b) Stack of Plate parts

The part geometry of Fig.23 was partitioned as shown in Fig.24(a) to obtain the
desired mesh. In the same picture, three edges were highlighted with different colors
to indicate that the edge seeding along these edges was modified in the sensitivity
analysis of Section 5.6. Table 12 presents the meshes that were employed and the
corresponding seeding along the key edges. Fig.24(b) shows an example of a mesh for
a plate in single-lap configuration. For all meshes, the region of finer mesh around
the bolt was defined within a circle of diameter 18 mm, i.e. 2.25 times the nominal
bolt diameter. This dimension was kept equal for all cases of the mesh sensitivity
study.

(a) (b)

Figure 24: Plate mesh: Geometry partitions (a), Resulting mesh (b)
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A similar mesh was employed in most of the studies found in the literature on
numerical modelling of composite bolted joints, the first example being Ireman [26].
The number of divisions for edge seeding necessary for the mesh to capture the
investigated phenomena was determined through the sensitivity study, which can be
found in Section 5.6, as already mentioned.

5.2.2 Modelling of the washer components

Standard washers, as per ISO 7092 for M8 bolts, were modelled with a part called
Washer having the following dimensions:

• Outer diameter: 15 mm

• Inner diameter: 8.4 mm

• Thickness: 1.6 mm

(a) (b)

Figure 25: Washer mesh: (a) Geometry partitions, (b) Resulting mesh

Fig.25b shows the geometry partitions and the edges along which the mesh was
modified, according to the divisions of Table 14, in the sensitivity analysis.

5.2.3 Modelling of the bolt and nut components

The bolts and the nuts were modelled as a single part called Bolt and nut and
with a simplified geometry that considers the bolt head and the nut as cylinders of
equal diameter and height. Only metric bolts with an 8 mm nominal diameter were
numerically modelled in the thesis study. The portion of bolt extending beyond the
nut was not modelled since it has no influence on the shear stiffness of the bolt or
on its bending behavior.
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(a) (b)

Figure 26: Bolt and nut mesh: (a) Geometry partitions, (b) Resulting mesh

Bolt and nut has the following dimensions:

• Bolt head diameter: 14 mm

• Bolt head height: 5 mm

• Bolt shank diameter: 8 mm

The bolt length is always set as equal to the sum of the thickness of the plates
composing the joint. The seeded edges for this part are shown in Table 16.

5.2.4 Clearance modelling

As presented in Section 2.2, the bolts are assumed to be centered in the bolt hole
in the thesis study. Different values of clearance were presented and considered.
To account for the clearance λj at a certain bolt, the hole diameter in the plate is
modelled as larger by λj than the nominal diameter of the bolt. The bolt is modelled
with its nominal diameter independently of clearance.

5.3 Contact interactions

The FE models being composed of several parts, contact interactions needed to be
defined. They apply equally to all the numerical models created in the thesis study
and can be grouped on the basis of the contact surfaces:

• Plate parts: As described in Section 5.2.1, a complete plate is modelled as a
stack of Plate parts. At the surfaces where the parts meet, tie constraints were
imposed.
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• Washer - Bolt: For every washer, one face is in contact with a plate, while the
other face is in contact with a bolt head or a nut. At the latter surface, tie
constraints were imposed to ensure equal displacements of the two parts. No
condition was imposed at the internal surface of the washer which is not in
direct contact with the bolt. No contact would be possible through deformation
for the considered loadings and no interaction was defined.

• Washer - Plate: At the washer face in contact with the plate, hard contact was
imposed in the normal direction. Displacement was allowed in the tangential
direction with penalty friction formulation and a friction coefficient of 0.3, the
washer surface having been defined as slave. This value was reported in [8] for
steel washers in contact with composites. It was assumed that the orientation
of the ply in contact with the washer has a negligible effect on the friction
coefficient and the same value was taken for all simulations.

• Bolt - Hole: When a load is transferred from one plate to another through
a bolt, contact takes place between the bolt itself and the hole surface in
the plate. Throughout the length of the bolt, at the contact surface, a hard
contact was defined for the normal behavior. Tangential sliding was allowed
with friction coefficient 0.1 also taken from [8] for bolt-composite contact and
accounting for the reaming of the hole surfaces. Also due to the effects of ream-
ing, the same coefficient was also used when modelling metal plates. Friction
was modelled with penalty friction formulation with the bolt surface selected
as slave.

• Plate - Plate: The contact interaction between plates was modelled through
the penalty method and hard contact in the normal direction. Considera-
tions regarding the friction coefficient for this interaction have already been
presented in Section 4.2.1.

For all these cases, surface-to-surface contact is employed as discretization method.
A finite sliding formulation was used in the modelling of the three sliding interac-
tions, thus avoiding the limitations of a small-sliding assumption.

As already mentioned, the tangential behavior of the sliding interactions was mod-
elled with the penalty friction method [42]. This method models contact between
two surfaces by allowing penetration of one into the other. From penetration, con-
tact pressure is calculated through a specified penalty stiffness. The default stiffness
value was not modified in the study and the method allowed for a reasonably rapid
convergence of the solutions.

5.4 Boundary conditions

The boundary conditions for the FE models with the different forms of loading
are presented in this section. No symmetry was imposed on the model alongside
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the boundary conditions. It should be noted that the double-lap model could have
been modelled with only half the elements by imposing a symmetry with respect
to the central plane of the joint. This would be possible since the protruding-head
bolts were also considered as symmetric with respect to this plane. Originally, also
countersunk fasteners, which do not show this symmetry, were to be investigated.
With the goal of developing a numerical model that could be easily adapted to
different bolt geometries, a model with no symmetry was created. Countersunk
fasteners in the end were not considered but the numerical model was not modified
to include symmetry, given the already reasonably short computational time.

5.4.1 Bolt preload implementation

For all numerical simulations, some level of bolt preload was considered. The possible
values were introduced in Section 2.3.

Bolt preload was defined as a “Bolt load” in Abaqus FEA by applying an axial force
at the central cross section along the bolt length. Also the alternative approach
to define preload employed by McCarthy [2] was considered. With this approach,
orthotropic thermal expansion properties are defined for the washers so that only a
deformation in the direction of the bolt axis is possible. Applying a certain temper-
ature increase generates an expansion of the washer, which induces an axial force
in the bolt, thus generating clamping of the plates. No significant difference was
observed between the two preload implementations, at least for finger-tight torque
conditions. Since the “Bolt load” command allowed for a more straightforward
definition, it was used in the numerical models.

Bolt preload was always defined at the first step of the solution, with all the other
loads being applied at later steps.

5.4.2 Uniaxial load application (LC1-LC2)

Uniaxial loads were imposed in the numerical model by specifying a displacement
of the end surface of a plate. Displacement-controlled modelling was also employed
in the studies retained from the literature for comparison, see Section 5.7. Figures
27 and 28 show the boundary conditions for a single-lap and double-lap joint re-
spectively. On the surfaces defined as “Pinned End” no displacement was possible
in any direction, while rotations were allowed. On the opposite side of the joint, on
the surface defined as “Loaded End”, a displacement along X was imposed.

By defining a displacement of one end of the joint, a load was applied indirectly on
the corresponding surface. A zero displacement was imposed in the other two direc-
tions but rotations were not constrained. A positive X displacement was specified
for tensile loadings, while a negative displacement was imposed to generate joint
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compression. The load was applied in the second step of the solution, after bolt
preload.

Figure 27: Boundary conditions for tensile load application with a single-lap joint

Figure 28: Boundary conditions for tensile load application with a double-lap joint

The same approach was used for all considered cases of uniaxial loading, indepen-
dently of the joint geometry or number of columns.

5.4.3 Shear load application (LC3)

Similarly to uniaxial loading, displacement was restricted in the three spacial di-
rections on one end of the central plate. The shear load is implemented with a
“Concentrated force” command in Abaqus, with the force being applied on the end
surface of the A plates. The shear load was applied in the second step of the solu-
tion, after bolt preload. Shear loading was studied for a double-lap joint geometry
as shown in Fig.45 in Section 7.1, where further details about boundary conditions
are provided.
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5.4.4 Biaxial load application (LC4)

Since boundary condition formulation was observed to play a vital role in the study
of biaxial loading, a detailed discussion on the topic is presented in Section 7.3.1,
while here only a brief summary is given. An example of a joint subject to biaxial
loading is shown in Fig.52.

Similarly to uniaxial loading, biaxial loading was modelled by imposing joint dis-
placement while constraining two edges of the plates. The loads were applied at two
successive steps of the solution. Therefore, bolt preload was modelled in the first
step, the load along X was applied in the second and in the third and last step a
load was generated by imposing a displacement along Y. The FE models are linear
both in terms of material deformation and of geometry, being only a zero clearance
considered with biaxial loading. The load application order is considered to have
no influence in this case and the loads were applied separately to verify the load
distribution after the application of the first uniaxial load. The load application
order should be carefully considered in cases of non-zero clearance in which it could
significantly influence load distribution.

5.4.5 Thermal load application (LC5)

Joints subject to thermal loads were modelled by imposing a zero displacement in all
directions on the “Pinned End” surface. Temperature differences were imposed on
the parts composing a joint when defining a temperature step with the “Predefined
field” command. Fig.29 shows an example of a numerical model of joint subject to
thermal loading, with the parts subject to the temperature step indicated in orange.

Figure 29: Boundary conditions for thermal load application with a double-lap
joint
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Bolt preload was applied in the first step of the analysis and the temperature step
in the second, while the cooling between curing and assembly conditions was not
included in the model, following the approach by Santiuste [25]. Ignoring cooling is
equivalent to assume a stress-free state of the laminates at joint assembly conditions,
which may be inaccurate in some cases. These effects should be taken into account
if a precise estimation of bolt reactions were to be calculated with the FE models. It
should be noted that such effects could not be captured with the analytical model for
thermal loading. In this study, cooling was ignored to verify if, at least for favorable
comparison conditions, reasonable agreement could be found between numerical and
analytical models.

5.5 Extraction of the forces

The first step of the post-processing phase was the extraction of the monitored forces
from the FE model. The forces were extracted through “Free Body Cuts”, which
display the resultant forces transmitted across a selected surface of the FE model.
Resultant forces are calculated as the integral of the internal forces in an element
over a selected section.

The total applied load is known in case of LC3, since it is directly applied as a
concentrated force. However, with displacement-controlled modelling, as with LC1,
LC2 and LC4, the applied load was not known before the numerical calculation. In
these cases, the applied load value was extracted from the FE model with a free
body cut by selecting the surface on which the displacement had been imposed.

The internal face of a plate hole was selected as integration surface to calculate the
shear force acting on each bolt. Fig.30 shows how the surface was selected at the
central plate B for a double-lap joint. Due to the equilibrium of the forces applied
on the bolt by the plates, selecting the two hole surfaces of the A plates would lead
to the same force value. For the same reason, in the case of single-lap joints, the
hole surface of plate A or of plate B can be indifferently selected.

(a) (b)

Figure 30: Extracted forces (a) and surface selection for bolt reactions (b)
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Since some level of bolt preload was modelled as already discussed, the joint models
reacted to external loads also through friction and not only with bolt reactions. The
friction force was calculated as the difference between the total applied load and the
sum of the bolt reactions, therefore assuming the absence of any forces other than
friction and bolt reactions.

5.6 Mesh sensitivity study

A mesh sensitivity study was carried out to demonstrate the independence of the
numerical results from the meshing of the parts. The results obtained with the
converged meshes were then compared to relevant studies from the literature. The
mesh convergence study was therefore conducted for the same joint design as in [2]
and [3] for comparison purposes.

Considering the large number of simulations carried out in this thesis study, the
indications about meshing drawn from the sensitivity study were applied to the
following simulations. In this way, such a study did not need to be repeated for each
case.

5.6.1 Approach and joint geometry

The study was carried out for both a single-lap and and a double-lap joint, with
layups H-SL-Q-C and H-DL-Q-C respectively. The joint geometries are summa-
rized in Tables 10 and 11. Both for double-lap and single-lap configurations, λ =
{80, 10, 10} conditions were considered. This way, the effects of a longer delay in
load take-up at bolt 1, where a larger clearance was defined, could be monitored.
As in the retained studies, finger-tight torque conditions were modelled.

Table 10: Single-lap joint geometry for mesh sensitivity study

N D w p1 p2 lend tA tB
[-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

3 8 48 36 36 56 5.2 5.2

Table 11: Double-lap joint geometry for mesh sensitivity study

N D w p1 p2 lend tA tB
[-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

3 8 48 36 36 56 2.08 4.16
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Independent mesh refinements were applied to each of the three previously intro-
duced parts. It was thus determined the minimum level of refinement needed to
capture the relevant phenomena.

At first, four different meshes for Plate were considered, from P1 to P4 according
to Table 12. While the mesh for Plate was refined, the meshes for Bolt and nut
and Washer were kept unchanged at BN2 and W2 respectively, see Table 14 and
Table 16. Once a suitable mesh for Plate had been identified, it was used for all the
following simulations. The second step was to only modify the mesh for Washer and
select a suitable one. Lastly, the meshes for Plate and Washer were not modified
while a satisfactory Bolt and nut mesh was identified. The approach to the mesh
sensitivity study can be summarized as follows:

I. Identified suitable Plate mesh while keeping Bolt and nut and Washer meshes
unchanged.

II. Identified suitable Washer mesh while keeping Bolt and nut and Plate meshes
unchanged.

III. i Identified suitable Bolt and nut mesh while keeping Washer and Plate meshes
unchanged.

To evaluate the suitability of a mesh through successive refinements, the change
in applied load P, bolt reactions, load distribution and computational time were
monitored. The bolt reactions F1, F2 and F3 were not individually reported in the
results, however they were monitored through a term defined as F sum =

∑N
j=1 Fj,

the sum of the reactions Fj. The difference between P and Fsum corresponds to
the load transferred by the joint through friction, which is small in the considered
cases because of the finger-tight torque conditions. The load fraction at a bolt j was
defined as:

fj =
Fj
Fsum

(38)

Tables 13, 15 and 17 show the monitored values for the double-lap case. The same
approach was adopted to evaluate the results with a single-lap joint, which are
presented in the Appendix (Section 11.6).

5.6.2 Mesh sensitivity study for a double-lap joint

The four meshes employed for Plate in the refinements of point I are presented in
Table 12.
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Table 12: Meshes for Plate employed in the sensitivity analysis

Divisions
green edge

Divisions
yellow edge

Divisions
blue edge

Number of
elements

Refine.
factor

Mesh P1 6 6 4 546
Mesh P2 8 8 6 920 1.68
Mesh P3 10 10 8 1390 1.51
Mesh P4 12 12 9 1812 1.3

The predictions obtained with P2, P3 and P4 were all reasonably close, as shown in
Table 13. The coarsest mesh, on the other hand, led to a significantly higher Fsum

prediction, as well as rather different load distributions.

Table 13: Monitored variables for Plate mesh refinements in double-lap

Mesh P [kN] Fsum [kN] f1 [%] f2 [%] f3 [%]
Simulation
time [min]

P1-W2-BN2 21.5 20.8 23.2 34.9 41.9 11.5
P2-W2-BN2 19.6 18.9 16.5 39.7 43.9 12.5
P3-W2-BN2 19.9 19.2 17.6 38.9 43.4 22.7
P4-W2-BN2 19.5 18.5 17.1 39.3 43.6 72.9

To extend the evaluation of mesh convergence for Plate beyond the study of load
distribution, the evolution of the bypass stress at the central bolt was monitored.
Fig.31 shows the curves for σ11 as a function of the distance from the hole center.
The plate surface is shown in grey for clarity. The values for the curves were ex-
tracted from the top surface of the top plate of the joint. These curves confirm the
observations drawn from the load distribution study, with P2, P3 and P4 leading to
similar estimations and P1 showing sensibly different results for any point along Y.
At the plate edge, y=24 mm, the stress with P1 is 1.18 times larger than with P2,
while the curves for meshes P2, P3 and P4 predict very similar values.

Based on the conclusions of the load distribution and bypass stress analyses, P2 was
chosen as a suitable refinement for the mesh of Plate, because of its accuracy and
low computational time. The relative Fsum change between the chosen mesh and the
successive refinement is of 1.56%. With this mesh, 32 elements are used around the
plate holes to capture plate deformation and contact with the bolt.
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Figure 31: σ11 as a function of the Y position on the top plate at bolt 2

The meshes employed in the second refinement, concerning only Washer, are de-
scribed in Table 14. The results with the refinements of step II are presented in
Table 15.

Table 14: Meshes for Washer employed in the sensitivity analysis

Mesh
Divisions

yellow edge
Divisions
red edge

Divisions
orange edge

Number of
elements

Refine.
factor

W1 2 2 32 128
W2 4 4 48 768 6
W3 5 5 60 1500 1.95

All the predictions were extremely close, showing that the mesh of Washer does
not affect significantly the load distribution. It is however to be noted that, despite
a refinement factor of 6 between P2-W1-BN2 and P2-W2-BN2, the computational
time remained almost unchanged. The expected increase in computational time
due to the increase of mesh elements was balanced by a better definition of the
washer-laminate contact surface. Mesh W2 was chosen for the successive simulations
because of the equivalent computational time with respect to W1 and the superior
contact modelling it ensured.
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Table 15: Monitored variables for Washer mesh refinements in double-lap

Mesh P [kN] Fsum [kN] f1 [%] f2 [%] f3 [%]
Simulation
time [min]

P2-W1-BN2 19.6 18.9 16.5 39.7 43.9 12.1
P2-W2-BN2 19.6 18.9 16.5 39.7 43.9 12.5
P2-W3-BN2 19.6 18.9 16.5 39.7 43.9 17.8

The third and last step of the sensitivity analysis was to refine Bolt and nut, pre-
viously defined as point III. The three meshes that were employed are presented in
Table 16iv.

Table 16: Meshes for Bolt and nut employed in the sensitivity analysis

Mesh
Divisions
red edge

Divisions
yellow edge

Divisions
pink edge

Number of
elements

Refinement
factor

BN1 8 5 2 1024
BN2 10 (8) 7 2 1816 (1667) 1.77 (1.63)
BN3 10 (8) 10 4 3728 (3456) 2.05 (2.07)
BN4 (8) (12) (4) (4352) (1.26)

Table 17 presents the results obtained with the refinements of Bolt and nut. The
predictions obtained with BN1, BN3 and BN4 differed from the results of BN2.
This difference is observable both for load distribution and Fsum. After analyzing
the results for the considered case, as well as those for other clearance conditions,
mesh BN2 was selected because of its superior agreement with the relevant literature.
This comparison is presented in Section 5.7. The relative Fsum change between the
chosen mesh and the successive refinement is of 3.57%.

Table 17: Monitored variables for Bolt and nut mesh refinements in double-lap

Mesh P [kN] Fsum [kN] f1 [%] f2 [%] f3 [%]
Simulation
time [min]

P2-W2-BN1 20.3 19.5 19.6 37.9 42.6 15.1
P2-W2-BN2 19.6 18.9 16.5 39.7 43.9 12.5
P2-W2-BN3 20.3 19.6 19.7 37.7 42.6 27.4
P2-W2-BN4 20.8 20.1 20.1 37.6 42.2 25.8

ivThe values in brackets indicate the number of divisions with the double-lap joint, if the value
is different from the divisions with the single-lap joint. The difference was made to always satisfy
the constraints on mesh density of master and slave surfaces at the bolt-hole contact regions. It
should be noted that the total joint thickness with single-lap and double-lap configurations is not
equal, see Tables 10 and 11. Mesh BN4 was only considered for double-lap configurations
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5.7 Finite element comparison with literature

After the mesh sensitivity analysis, the FE models for double-lap and single-lap
joints were compared to the results obtained in [2] and [3] respectively. While
joint geometry and material properties were the same for both studies, finger-tight
conditions were modelled in the former and torque-tight conditions in the latter.
The preload was therefore modified in the FE models to allow comparison with the
literature. Tables 18 to 21 summarize the comparison of the results.

As previously mentioned, both SC8R and C3D8 elements were considered for mod-
elling composite plates. Therefore, simulations for double-lap joints were conducted
by replacing SC8R elements with C3D8 for modelling the composite laminates. It
was assumed that the refinements that led to convergence of the models with SC8R
elements would also be suitable for C3D8 elements. It should be noted that the
results from [2] were obtained with continuum composite elements with MSC.Marc
(Element 149), while C3D8 elements available in Abaqus were employed in [3].

Table 18: Double-lap FEM comparison for λ = {10, 10, 10} [2] (Finger-tight)

Fsum [kN]
Rel. difference
literature [%]

f1 [%] f2 [%] f3 [%]

Literature 21.1 36.7 26.6 36.7
SC8R 20.9 -1.41 37.0 26.4 36.6
C3D8 20.7 -2.18 37.1 26.3 36.7

Table 19: Double-lap FEM comparison for λ = {80, 10, 10} [2] (Finger-tight)

Fsum [kN]
Rel. difference
literature [%]

f1 [%] f2 [%] f3 [%]

Literature 18.8 16.3 39.8 43.9
SC8R 18.9 0.12 16.5 39.7 43.9
C3D8 18.8 -0.24 16.3 39.5 43.8

The comparison with the results from the literature for double-lap configuration, also
obtained through displacement-controlled loading, was carried out for an imposed
displacement of 0.4 mm. Good agreement between literature and FE models can be
observed in Tables 18 and 19. The relative difference with respect to [2] in terms of
total load transferred by the bolts is 1.41% and 2.18%, both considered reasonably
close. Load distributions are also close, with a largest difference of 0.4% at bolt 1
with C3D8 elements.
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Table 20: Single-lap FEM comparison for λ = {10, 10, 10} [3] (Torque-tight)

Fsum [kN]
Rel. difference
literature [%]

f1 [%] f2 [%] f3 [%]

Literature 39.5 37.0 27.6 35.4
SC8R 40.2 1.82 37.6 26.4 35.9

Table 21: Single-lap FEM comparison for λ = {10, 160, 10} [3] (Torque-tight)

Fsum [kN]
Rel. difference
literature [%]

f1 [%] f2 [%] f3 [%]

Literature 36.1 46.5 7.8 45.6
SC8R 36.2 0.36 47.8 6.6 45.5

The comparison with the literature for single-lap configuration was carried out for an
imposed displacement of the loaded end of 1 mm. Also these results were obtained
through displacement-controlled loading. Only SC8R elements were employed in the
numerical models with single-lap configuration but, once again, the results retained
from the literature had been obtained with C3D8 elements.

Also in this case, the models showed a good agreement with the retained literature,
with variations of Fsum smaller than 2%. The load distributions were also similar,
the largest discrepancy being 1.3% at bolt 1 in Table 21.

5.8 Conclusions on numerical modelling approach

Based on the results of the sensitivity study for double-lap joints, a suitable mesh
was identified. Although not discussed in this chapter, a similar approach was
applied to the selection of the P2-W2-BN2 mesh for single-lap joints, which was
deemed as suitable for load distribution evaluation. The retained meshes for single
and double-lap joints were also evaluated through comparison to relevant numerical
studies.

Regarding the element choice for the laminates, SC8R elements showed better agree-
ment with the literature compared to C3D8 elements, which might be partially due
to the fact that the sensitivity analysis was carried out with SC8R elements. The
former were chosen for modelling all the composite plates in the thesis study. The
fully metal plates of Sections 7.1.1 and 7.2 were modelled with solid elements. SC8R
elements were employed to model both single-lap and double-lap joints. While with
the latter configuration no out-of-plane plate deformation takes place, the eccentric-
ity of the load lines with single-lap joints induces plate bending. SC8R elements,
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assuming plane stress state, cannot account for through-the-thickness stresses, which
may limit their application to cases in which out-of-plane effects are significant. It
should be noted that the comparisons of Table 20 and Table 21 were made with a
source in which plates for single-lap joints had been modelled with solid elements
C3D8, observing good agreement. In those cases, the out-of-plane effects showed to
have small impact on load distribution.

It is worth mentioning that SC8R are the only elements in Abaqus FEA with a
built-in progressive damage model for composites, which might prove useful if the
numerical models created for this study were used in the future with a need to extract
such information. However, since the sensitivity analysis was not carried out to
evaluate the mesh accuracy in modelling progressive damage, further evaluations of
mesh suitability would first be necessary. It should also be carefully noted that SC8R
are susceptible to hourglassing when damage is triggered, making them unsuitable
for modelling near-failure behavior, especially when delamination is involved [23].
Employing solid elements in this case can avoid the issues deriving from the use of
SC8R elements.

When joint geometries other than those considered in this section were modelled,
the same number of mesh divisions was reproduced to guarantee suitability of the
mesh. While the thickness of the plates considered in the sensitivity study was not
modified in successive studies, it would be possible to adapt the mesh to thicker or
thinner laminates. Suitability is assumed not to change if the same ratio of plate
thickness to though-the-thickness divisions were ensured. The same proportionality
should be ensured for bolt divisions.

Finally, while axial tension was considered in the sensitivity study, it is believed that
the mesh suitability would not be affected in cases of compression due to loading
similarity, at least when no structural instability is investigated. Additionally, having
the mesh sensitivity analysis proven the capability of the selected meshes to capture
the plate deformation around bolts, the indications derived from the analysis were
applied when modelling shear and biaxial loading.

However, mesh suitability was not directly assumed for thermal loading and different
numerical models were compared to evaluate whether the refinements were sufficient
to capture thermally induced material deformation. Further considerations were
made as discussed in Section 6.3.2.
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6 Investigations on the retained models

6.1 Validation study for fastener flexibility

Several fastener flexibility formulations were considered in this thesis study and were
implemented in the tool. In this section, the analytical model for uniaxial loading is
used to predict load distribution with different flexibility formulations. To evaluate
the accuracy of each formulation, the load distribution prediction is compared to
experimental data retained from the literature. Only the accuracy of the flexibility
formulations is discussed, while the validation of the analytical model itself is carried
out separately in Section 6.2.

First, the load distribution in a single-lap joint was computed. The prediction was
compared to experimental results from [3], obtained through instrumented bolts for
finger-tight torque conditions and λ = {10, 10, 10}. The layup of the composite
plates is H-SL-Q-C, while the joint geometry is summarized in Table 22.

Table 22: Single-lap joint geometry for fastener flexibility validation

N D w p1 p2 lend tA tB
[-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

3 8 48 36 36 56 5.2 5.2

The results of the comparison are presented in Fig.32. To compare the analytical
predictions to the experimental measures, only the portion of graph in between 12 kN
and 15 kN is shown for clarity, as all the curves are rather close. It should be noted
that the linearity of the deformation, together with the considered case of equal
clearance at all bolts, ensure that the load fractions f1, f2 and f3 are independent
of the applied load. Comparing the results at any applied load value would lead to
equal results.

Figure 32: Fastener flexibility comparison to experimental data for single-lap
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The comparison of the different flexibility formulations shows that Huth and Nelson
lead to the most accurate results. The latter formulation, with the bolt shape factor
βN set to 0.15, is the closest to the experimental values. This is in good agreement
with the conclusions by Nelson [13], who identified 0.15 as the optimal value of
the coefficient for protruding-head bolts for similar plate thickness to bolt diameter
ratios. All the other flexibility formulations lead to less even load distributions, with
overpredictions of the reactions at the external bolts. The relative difference between
experimental data and the curve for the most loaded bolt with the formulation by
Nelson is -1.62%, the difference having been normalized over the analytical value
from Nelson. For the central bolt 2, the relative difference is 1.44%.

The same comparison was carried out for a double-lap joint with geometry as pre-
sented in Table 23. Finger-tight torque was also considered here, with clearance
conditions λ = {0, 0, 0}. While these values are only theoretically possible, Lawlor
[43] approximated these conditions by imposing a high quality hole tolerance H6,
obtained with especially manufactured reamers. The laminate layup for the joint is
H-DL-Q-C.

Table 23: Double-lap joint geometry for fastener flexibility validation

N D w p1 p2 lend tA tB
[-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

3 8 48 36 36 56 2.08 4.16

Through the comparison of the curves in Fig.33, it is possible to observe that all
fastener flexibility formulations predict a more even load distribution than the exper-
imental curves. The closest prediction is observed with Huth, for which the relative
difference at the highest loaded bolt is -4.3%, while it is 10.8% at the central bolt.
Also here the relative difference was normalized over the analytical value. The for-
mulation by Boeing leads to results very close to Huth, while the other formulations
show less accurate predictions.

In the case of single-lap joints, the two most accurate flexibility formulations were
observed to overpredict the reaction at the central bolt and underpredict the reac-
tions at the external bolts. This resulted in more even load distributions compared
to the experimental data. The opposite behavior was observed with all the flexibility
formulations for the double-lap configuration. If the largest reaction is considered for
joint design, a tendency to predict excessively even load distributions can lead to non
conservative predictions of the largest reaction. A discussion on the conservatism of
the overall analytical approach is presented in Section 6.2.
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Figure 33: Fastener flexibility comparison to experimental data for double-lap

The fastener flexibility formulation by Huth was employed in the analytical studies
presented in other sections because of the good agreement with experimental data,
both with single-lap and double-lap joints.

6.2 Analytical model evaluation for axial loading

A very high level of detail can be reproduced with the 3D FE models, modelling
factors such as washer-laminate contact or bolt head shape. All these details cannot
be kept into account in the analytical models. Of course, an accurate prediction of
complex phenomena can be achieved only if the details the analytical model neglects
have little impact on load distribution.

To evaluate the accuracy of the analytical model, therefore ensuring that the ig-
nored aspects are of secondary importance compared to bolt flexibility, preload and
clearance, load distribution predictions were compared to results from numerical
models.

The retained model for uniaxial loading of single-column joints, presented in Section
4.1.2 was considered in this section in connection with the proposed method to
account for bolt preload, introduced in section 4.2.1. Load cases LC1 and LC2 were
therefore investigated in the case of a single-column joint, while an extension to
multi-column joints under these loadings is discussed in section 7.2.

6.2.1 Comparison study for double-lap joints under tensile loading

A double-lap joint with three bolts was considered in the comparison studies. The
joint dimensions are summarized in Table 24, while the FE model’s geometry can
be found in the Appendix (Fig.62). Intermediate torque was considered to evaluate
the capability of the analytical model to predict joint forces in presence of non-
negligible bolt preload. Three different clearance conditions were investigated: λ =
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{40, 40, 40}, λ = {40, 100, 40} and λ = {100, 40, 40}. With the first case of clearance
conditions, the analyses were carried out for two different layups: M-DL-D-C and
M-DL-Q-C. Only the former was employed in the second and third cases. It should
be noted that these conditions are all within the tolerance limits for the f7/H10
fitting.

Table 24: Double-lap joint geometry for model evaluation in tensile loading

N D w p1 p2 lend tA tB
[-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

3 8 48 36 36 36 2.08 4.16

Being the thickness of the A plates exactly double that of the central plate B, and
being the layup properties identical in orientation and material, the stiffness of plates
A combined is equal to the stiffness of B. Moreover, in the considered joint geometry
p1 and p2 are equal, with a constant plate width w. As a consequence, the reactions
predicted by the model at bolt 1 and 3 are exactly the same for all the considered
cases.

The study was carried out through a comparison of the force predictions from FE
models and the analytical models. The fastener flexibility formulation by Huth was
employed in this study. The definitions introduced in Section 1.2 are used in the
analysis of the phenomena. Unlike in Fig.1, the friction component of the joint reac-
tion is plotted separately from the bolt forces. The friction curve is calculated from
Eq.29 considering that friction reaches a maximum when joint slipping is triggered
and that it remains constant afterwards.

It is important to note that a direct comparison of force-displacement curves from
the different models would be impossible, since they adopt different definitions of
displacement. In the analytical model, as presented in Section 4.1.2, the joint dis-
placement is calculated by summing for all fasteners the difference between top and
bottom node displacement. There is no equivalent displacement in the FE models,
in which displacement was imposed at the free edge of the plates. To allow a com-
parison between models, force-applied load curves are studied. The applied load,
previously defined as P, in the tool is equal to the sum of all the bolt reactions plus
the fraction of load reacted by friction. Broadly speaking, these could be interpreted
as force-displacement curves which have been normalized to the same displacement.
While never explicitly mentioned, it is believed the same approach was adopted by
other studies in the literature [2][3].
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Figure 34: Force prediction comparison for λ = {40, 40, 40} with M-DL-D-C (left)
and M-DL-Q-C (right)

Fig.34 shows the comparison for the case of equal clearance λ = {40, 40, 40}. Good
agreement between the models can be observed, especially regarding the slope of the
curves in the bolt load transmittal region. The analytical model overpredicts the
largest friction reaction by 8.7%. While the knowledge of this force is not directly
relevant if only bolt forces are of interest, the modelling of joint friction indirectly
affects the load distribution when bolt reactions appear. In fact, an accurate predic-
tion of load distribution can only be ensured if the critical load initiating slipping
is correctly estimated. It should be noted that friction is modelled through the
Coulomb model, only taking into account bolt preload and laminate friction, which
were considered equal for all cases in the comparison study. Therefore, the applied
load at which slipping appears is always the same, about 12 kN. If the analytical
model predicted a late slipping compared to reality, for some values of applied load
the bolts would be assumed to carry no load while reactions would in fact be present.

For the considered clearance conditions and with both layups, the prediction of the
applied load at which bolt reactions appear is reasonably accurate. Since the slope
of the curves after the transition region is also well captured by the implemented
fastener flexibility, the prediction remains consistent for all applied loads. At the
highest considered applied load value, the largest relative difference between the
results from the two models was observed for bolt 1 to be roughly 7% with both
layups, the difference having been normalized over the prediction from the FE model.
Since no significant difference in behavior between the two layups was observed, the
following analyses were carried out only for M-DL-D-C.

The graph for the λ = {40, 100, 40} case is shown in Fig.35. Also for these conditions,
the critical load initiating plate slipping is rather well predicted, with a slight delay
of the analytical model with respect to the FE model. The analytical prediction for
the first two bolts to react the applied load, bolts 1 and 3, follows closely the FE
model’s results. Bolt 2 shows an interesting behavior, which can be understood by
investigating the bolt-hole contact and looking back at the early discussion presented
for a single-lap joint in Fig.1.

61



Figure 35: Force prediction comparison for λ = {40, 100, 40} with M-DL-D-C

The analytical model is defined to assume that in the transition region II, the trans-
ferred load remains the same. In other terms, when slipping starts at point 1, a bolt
cannot transfer any additional load until contact is established with both plates as
shown in the picture for region III. In reality, even with a contact with just one
plate as in the picture for region II, the bolt can transfer loads in shear. In fact,
due to the clamping of the plates and frictional contact between the washers and
the plates, a resistance opposes a relative motion of the bolt towards the yellow
plate. Since this motion does not take place immediately because of friction, the
bolt can transfer load in shear until the transferred load is sufficient to overcome
these frictional effects. Therefore, in Fig.35, the FE model’s curve shows an early
load take-up at bolt 2 compared to the analytical model because the bolt starts
transferring load in shear before completing a 100 µm displacement. Section views
of the joint are presented in large size in the Appendix (Section 11.7) to illustrate
the different stages of bolt contact in the considered case. Around 27 kN of applied
load, bolt 2 is only in contact with the central plate B, while at 42 kN, the bolt is
in contact with all plates.

To summarize the behavior of bolt 2, at about 18 kN of applied load, a first contact
between the bolt and the central plate is established. Until the applied load reaches
27 kN, bolt 2 is capable of transferring the load in shear without being in contact
with the A plates. At 27 kN, the applied load is large enough to induce the relative
motion of the bolt towards the A plates. Until this second contact is established,
no additional load can be transferred and the FE model’s curve remains flat. At
contact, the 100 µm displacement is completed and the numerical and analytical
curves adhere very closely. At 50 kN, the largest discrepancy between models is
observed for bolt 1, with the analytical model underpredicting the reaction by 5.4%.
The fact that also in this case, after full contact has taken place, the slopes of the
curves are in good agreement, is proof that Huth’s flexibility formulation can capture
accurately the bolt reaction deformation.
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Figure 36: Force prediction comparison for λ = {100, 40, 40} with M-DL-D-C

Generally, the considerations for the previous clearance conditions apply to the case
of λ = {100, 40, 40} shown in Fig.36. Comparing the two models at an applied load
of 16 kN, allows to observe once again the slight delay in load take-up of the analytical
model. After this point, the curve from the FE model for bolt 1 shows a behavior
already described for bolt 2 in the previous analysis. For large applied loads, the
curves from the FE model are in good agreement with the analytical model in terms
of slope. At 34 kN of applied load, bolt 1 shows the largest discrepancy, 18.2%,
while the underprediction of the largest joint reaction at bolt 3 by the analytical
model is 3.2%.

The fact that a reaction takes place at bolt 1 here before a full 100 µm displacement,
leads the analytical model to give a highly non-conservative prediction for that bolt.
This equally applies to bolt 2 in the previous analysis. It should however be noted
that this early take-up only takes place at bolts where a large clearance introduces a
delay in comparison to the most loaded bolts. Therefore, if only the largest reaction
in the joint were considered for design, a good level of accuracy of the analytical
prediction would be ensured even when the load at bolt 1 is underpredicted.

The accuracy of the analytical model heavily relies on how much the assumptions
made in its formulation hold for a real joint. The accuracy of the assumptions
can of course vary for different clearance conditions or applied load. The study in
this section underlines the need to respect the fundamental assumptions in order to
closely predict load distribution.

The first assumption is that no slipping of the plates can take place until a certain
critical load is applied. An underestimation of this load would lead to the prediction
of an early load take-up by the bolts, thus overpredicting the bolt reactions. On
the other hand, an overestimation of the critical friction load would lead to an
underprediction of the bolt reactions. This point was rather well respected by the
analytical model through Coulomb friction law, with a tendency to overestimate the
critical friction force.
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The second assumption is that reactions in bolts appear at the end of the transition
region when a sufficient difference in displacement between top and bottom nodes is
ensured. The fact that the reaction is zero until that moment leads to a modelling
of clearance as a simple source of delay in load take-up, which applied well to λ =
{40, 40, 40}. However λ = {40, 100, 40} and λ = {100, 40, 40} show a more complex
frictional behavior. Having the assumption been validated for the first case, it
should be possible to generalize that the assumption would hold equally well with
similar cases where λ1 = λ2 = λ3. As long as no contact is established at any
bolt, it is possible to safely consider all bolt reactions to be zero, the amount of
delay due to clearance not influencing this conclusion. For cases of very diverse
clearance at different bolts, this assumption could be less accurate. Generally, the
more homogeneous the clearance, the more safely the assumption can be considered
to hold.

The third critical point is that it is possible, when bolt-hole contact has been estab-
lished, to reduce the problem to a simple 1D model accounting for stiffness properties
of plates and fasteners in the loading direction. In this sense, the results have shown
to confirm the assumption through the correct prediction of the slopes in the bolt
transmittal region. They also indicate that the estimation of the global stiffness
properties of the laminates with CLT was accurate.
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Figure 37: Friction coefficient influence on load distribution for λ = {40, 100, 40}

Finally, a consideration on conservatism is necessary. As discussed, the analytical
model was capable of predicting the bolt reactions with good accuracy at times,
with larger discrepancies in other cases. However, the prediction has always proved
to be non conservative compared to the results from the FE model. As already
mentioned, the delay introduced by the overestimation of the critical friction load
led to an underprediction of the bolt reactions. A measure to compensate this
inaccuracy could be to take the friction coefficient to be smaller than its actual
value. This would lead to an early load take-up by the bolts thus compensating
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for friction model’s inaccuracy. Such an approach could be justified only because
the slopes in the bolt load transmittal region are correctly predicted. An example
of how the delay induced by the friction coefficient influences load distribution is
shown in Fig.37. The graph, for a case already shown in Fig.35, shows that, with
a reduction of the friction coefficient, load take-up at all bolts takes place earlier.
The prediction for the most loaded bolt is conservative for all the considered applied
load values and could also be the case beyond 50 kN thanks to the good prediction
of the slopes in the bolt load transmittal region.

By adopting such an approach and taking the friction coefficient to be 77% of the
value implemented in the numerical models, the analytical model would give con-
servative predictions at the most loaded bolt for all the previously presented cases
at the highest considered applied load. From a visual study of the numerical curves,
and considering the fact that the correct slope in the bolt load transmittal region is
predicted, it is possible to approximate that reducing the friction coefficient to 77%
of its value should also be close to guarantee conservatism for all applied loads.

Adapting the plate-plate friction coefficient could then be a way to compensate the
delay introduced by the imprecisions of the Coulomb model. The limit is intrinsic in
the friction law, attempting to model the complexity of frictional interactions with
a simple relation. To avoid these uncertainties, it is sometimes assumed that no
preload is present, as done by Esp [4], thus ensuring conservative predictions. Such
an approach is also possible with the tool but the sacrifice in terms of accuracy would
be considerable. If, through detailed investigations on sticking-to-slipping transition
in bolted joints, a more precise definition of the friction coefficient to be employed
were obtained, the tool could lead to a compromise between the needs for accuracy
and conservatism.

6.2.2 Comparison study for single-lap joints under tensile loading

In Section 6.1 the prediction obtained with the analytical model for a single-lap joint
was compared to experimental data for different fastener flexibility formulations.
Good agreement was found, especially with formulations by Nelson and Huth. This
experimental comparison serves as a first validation of the analytical model but only
low bolt preload and no clearance were considered. A comparison between analytical
model and FE models was carried out for two additional cases: λ = {0, 40, 0}
with finger-tight and intermediate torque. These conditions allow to also take into
account the effects of clearance and preload. Huth’s fastener flexibility formulation
was implemented in the analytical model.

The joint geometry presented in Table 25 is considered in both cases, with a M-SL-
D-C layup and λ = {0, 40, 0} clearance conditions. In the first comparison, whose
results are shown in Fig.38, finger-tight torque conditions were modelled.
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Table 25: Single-lap joint geometry for model evaluation in tensile loading

N D w p1 p2 lend tA tB
[-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

3 8 48 36 36 36 4.16 4.16

Figure 38: Force prediction comparison for λ = {0, 40, 0} with M-SL-D-C and
finger-tight torque

For this case, the two models lead to similar predictions. The curves of the most
loaded bolts are in good agreement and also the slopes for the three bolts are very
similar with the two models. The biggest discrepancy is found at the central bolt
2, for which the analytical model predicts an early load take-up, thus leading to an
about 15% relative difference at 15 kN. As already mentioned, when a discrepancy
between models for a curve is introduced by a difference in the load take-up moment,
the relative error is maximum for small forces. It then becomes smaller as the force,
in this case F2, increases, since the slopes are correctly predicted. The last aspect
worth mentioning is a slight overestimation of the FE model prediction for the
friction curve with respect to the analytical model. This is further analyzed in light
of the results of the second analysis of this section for intermediate torque conditions.
The comparison between models is presented in Fig.39.

The graph shows all the trends that were observed for the finger-tight torque case:
accurate predictions for the most loaded bolts, early take-up at bolt 2 and friction
curve overestimation with the FE model. The magnitude of the variations, however,
appears to be larger. To correctly interpret the results, the first aspect to consider
is the critical friction force. According to the FE model, around 6 kN of applied
load, bolts 1 and 3 start reacting in shear, since the critical friction load has been
overcome. This is in good agreement with the analytical model, which predicts the
critical friction value to be 6.3 kN. It was already observed for double-lap joints
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in Section 6.2.1 that the Coulomb model leads to a slight overprediction of the
critical friction which, in a way, poses an upper bound to loads transferable by
static friction. However, in Fig.39, the curve for the friction force from the FE
model keeps increasing after shear reactions have appeared at bolts 1 and 3. This is
probably a limit of the strategy for force extraction from the numerical model rather
than the actual behavior of friction forces, as there is no reason to believe they would
increase further. In fact, the frictional curve is calculated as the difference between
the applied load and the fastener reactions. The reactions themselves are extracted
as the forces the plates are exerting on the bolts. This approach is reasonably
accurate with double-lap joints, since only the plates transfer a significant load to
the bolts, but is more prone to inaccuracies with single-lap joints. In fact, while for
a double-lap joint an applied load generates a purely in-plane plate deformation, a
single-lap joint also deforms in bending because of the eccentricity of the load lines.

Figure 39: Force prediction comparison for λ = {0, 40, 0} with M-SL-D-C and
intermediate torque

Fig.40 shows an example of single-lap joint deformation for the considered boundary
conditions. This difference in deformation leads to the appearance of reactions along
the loading direction at the plate-washer interface. These forces are not accounted
for in the fastener reactions with the current force extraction approach and end up
contributing to the friction force, which appears to be still growing, even if the critical
friction value has already been reached. The fact that these forces are transferred
by friction at the washers explains why these effects are negligible for small preload
and larger for intermediate torque conditions.

Figure 40: Typical single-lap joint deflection for uniaxial tensile loading
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Coming back to the evaluation of the analytical model and just looking at the
fastener reactions at low preload, reasonable agreement can be found between the
two models, especially for bolts 1 and 3. It is important to keep in mind that the
analytical model for single-lap joints was evaluated by comparison with experimental
data in Section 6.1 but for finger-tight torque conditions. To extend the evaluation
of the single-lap model to also large preload conditions, and without applicable
experimental data, the force extraction from the FE model needs to be improved.
Due to a lack of time, no further numerical studies on single-lap joints with highly
torqued bolts were carried out so that no alternative force extraction method was
investigated. It should however be possible to improve the extraction method by
directly extracting frictional effects through integration of the tangential forces at the
contact surfaces. The shortcomings of the current approach, based on the difference
with the total applied load, could then be avoided.

6.2.3 Compressive loading modelling justification

The tool was designed to predict load distribution in a joint for both uniaxial com-
pression and tension. The only distinction made by the tool in the two cases is in
the global stiffness properties of the laminates.

To evaluate if it is possible to model the two different cases by simply adapting the
material properties, the tool prediction for a single-column joint with 3 fasteners is
compared to numerical results for the same joint. The joint geometry was already
introduced in Table 23, while the layup of the plates is M*-DL-D-C. Finger-tight
torque conditions were defined for the three bolts. Since the frictional behavior of
the joint is not dependent on the displacement direction, the conclusions for high
bolt preload with tension loading equally apply here. The fastener formulation from
Huth was employed with the analytical model.

Figure 41: Force prediction comparison for λ = {0, 0, 0} with M*-DL-D-C
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The first considered case is with λ = {0, 0, 0} clearance conditions and the force
prediction comparison is shown in Fig.41. For equal clearance conditions at all
bolts, the curves obtained from the two models show very good agreement. The
similarity of the slopes confirms the accuracy of the fastener formulation and of the
global stiffness calculation approach. At about 20 kN of total applied load, the load
distribution obtained with the FE model is f1=36.3%, f2=27.2%, f3=36.5%, while
with the tool is f=35.7% at bolts 1 and 3 and f2=28.5%. The relative differences are
-2.2% at the most loaded bolt and 5.6% at the central bolt. The relative differences
here are smaller than in a case of equal clearance in the experimental validation of
tensile loading previously discussed.

The second considered case is λ = {0, 40, 0} and the corresponding results are shown
in Fig.42. Also in this case, the slopes of the curves are similar, which leads to a
rather good agreement in terms of load distribution. At about 20 kN, the load
fractions predicted by the tool are f=41.8% at bolts 1 and 3 and f=16.5% at bolt
2. The forces extracted from the FE model lead to a load distribution of f1=42.3%,
f2=15.0% and f3=42.7%. The relative difference between numerical and analytical
models is of -1.2% at the most loaded bolts and 9.1% at the central bolt.

Figure 42: Force prediction comparison for λ = {0, 40, 0} with M*-DL-D-C

The differences between the two models are comparable to what was observed for
tensile loading in the study on fastener flexibility of Section 6.1. In that case,
the analytical model was observed to predict a more even distribution than the
experimental data, as is the case here with respect to a numerical model.

Considering these results, it was concluded that the adopted approach for compres-
sive loading shows an accuracy comparable to what was previously evaluated for
tensile loading. Due to the similarity of the two loadings, only the latter is consid-
ered in the next sections, as it is believed that the two would show similar trends,
both for single-lap and double-lap joints. It should however be noted that when
modelling compression loading, unlike with tension, structural instability can be
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triggered before the connected members or the bolts reach material non-linearity.
The onset of buckling would influence load distribution but the tool would not be
able to keep this phenomenon into account.

6.2.4 Conclusions on uniaxial loading modelling

Considering the achieved level of accuracy, reasonable for preliminary design, it was
concluded that the details not accounted for by the analytical model can be ne-
glected in a first approximation. A rigorous approach to quantify the impact of
these neglected factors would be to carry out extensive parametric studies with nu-
merical models. The influence of each parameter could be investigated individually
to assess when phenomena that are ignored by the analytical model become relevant.
Through these studies it would then be possible to set precise applicability limits of
the assumptions underlying the analytical model.

6.3 Thermal loading modelling

In this section, investigations are presented to identify the factors influencing load
distribution in presence of thermal loading and to quantify their impact. Being
aware of the importance of these factors is especially relevant in the case of the
analytical model for thermal loading. In fact, the model cannot account for some of
the aspects that showed to have a fundamental impact on load distribution in other
loading scenarios, such as bolt preload or the presence of clearance at a certain fas-
tener. Moreover, a purely one-dimensional deformation due to thermal loading is
considered by the analytical model, thus ignoring any other in-plane deformations.
Another potentially relevant factor neglected by the analytical model is the expan-
sion or contraction of washers and bolts, with only plates considered as thermally
deformable.

Through the numerical investigations, the impact of the aforementioned factors was
evaluated. For some relevant cases, a comparison between the results from the
numerical models and the prediction from the model implemented in the tool is
presented and discussed. The analytical model for the considered load case was
presented in Section 4.1.3.

Considering the intended application of the tool, the most severe conditions for
thermal loading correspond to a temperature decrease from 25◦ C to -55◦ C and an
increase from 25◦ C to 110◦ C. These scenarios correspond to temperature differences
of ∆T=-80 K and ∆T=85 K respectively. The studies carried out for the case
∆T=85 K, presented in this section, were deemed sufficient to evaluate the retained
model.
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6.3.1 Numerical modelling of CFRP plates with thermal loading

When computing load distribution under thermal loading, the computations of the
FE models are based on the unidirectional properties of the prepreg material. An
accurate estimation of the expansion properties for the entire laminate is fundamen-
tal to accurately predict load distribution under thermal loading. A suitable mesh
of the composite plates is therefore necessary.

The numerical studies on thermal loading were carried out with a mesh as described
in Section 5.6 with continuum shell elements. The modelling choice could not be
directly compared to similar studies from the literature since no source specifically
dealing with load distribution with composite joints under the considered loading
was identified. However, Santiuste [25] numerically investigated the variation of
the axial force due to preload in case of thermal loading in a composite joint. The
modelling approach in the study was considered to be relevant to the case for thermal
loading treated in this section.

Each ply in the composite plates was modelled by Santiuste individually with C3D8
elements. Adopting this kind of single-ply modelling would have required to com-
pletely re-evaluate mesh convergence and to compare the model against other rele-
vant results. Such an approach was not possible due to time constraints. However,
before proceeding with any study employing SC8R elements, a comparison of the
two approaches was made in terms of global laminate CTE.

Two laminates were considered with both approaches. The laminates are rectan-
gular plates of length l0=100 mm and 10 mm of width. The plate thickness varied
depending on the layup. The comparison between the two approaches was made
by estimating the global CTE of the laminates from the plate deformation due to
thermal expansion. A ∆T=60 K temperature increasev was applied to the plates,
pinned at one end as shown in the Appendix (Fig.65). The laminate average dis-
placement along X at the free end ∆lX was measured to estimate from the numerical
models a global expansion coefficient along X, CTEX:

∆lX = l0 · CTEX ·∆T → CTEX =
∆lX
l0 ·∆T

(39)

This extraction of CTEX was not intended to provide an accurate estimation of the
value for the considered laminates but it rather served as a mean to evaluate the
differences between the two approaches when modelling thermally induced deforma-
tion.

vThis arbitrary value was used in the early numerical studies on thermal loading. The com-
parisons between numerical and analytical models were carried out with the relevant temperature
differences
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Part of the side view of the rectangular plate is shown in Fig.43 for the two ap-
proaches. The 0◦ ply direction was oriented along X, while Z was used to specify
the stacking direction.

(a) (b)

Figure 43: Partial side view of the plate for CTE comparison: (a) Continuum shell
element, (b) Single-ply modelling

With both FE models, two hybrid M21/T700GC layups were considered. The ma-
terial properties, among which CTE1 and CTE2, have already been introduced in
Section 2.4. Taking advantage of part of the code introduced in Section 2.5, the
laminates can be defined as:

• Q-H: [45/m/-45/0]s

• D-H: [0/45/0/-45/0/0/m/0]s

Where “m” indicates a metal sheet of thickness equal to that of composite plies in
a hybrid laminate.

A temperature increase was applied to the rectangular plate as previously described.
The values of CTEX resulting from the extracted ∆lX displacements are presented in
Table 26. With both the SC8R and the C3D8 models, the results for a quasi-isotropic
laminate were calculated with three gradually refined meshes. For refinement factors
between 1.5 and 2, no relative change of ∆lX larger than 1.5% was observed. The
reported results were all calculated with the most refined meshes.

Table 26: Comparison of CTEX with the two considered models

CTEX·106[K-1]

FEM SC8R FEM C3D8

Q-H 8.55 8.75
D-H 3.99 3.86

The CTEX values computed with the two approaches are fairly close, as shown
in Table 26. A 2.3% relative difference is present for the Q-H laminate, while a
slightly larger relative difference, equal to 3.4%, is observed for the D-H laminate.
Interestingly, the CTEX prediction with SC8R elements is larger than with C3D8
elements for the Q-H laminate but smaller for the D-H laminate. Additionally, by
modifying the layups, the two models were observed to equally predict CTEX=CTE1

with only 0◦ plies and CTEX=CTE2 with all 90◦ plies.
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Without a comparison with other relevant sources, it is not possible to draw a
conclusion regarding which approach is more accurate. Nonetheless, it is possible to
observe that the differences in terms of CTEX prediction are small in the considered
cases. Laminates such as Q-H and D-H were employed in the analyses of Section
6.3.5.

Before these numerical calculations, a brief mesh sensitivity study was also carried
out for the mesh of a joint with SC8R elements to further increase the confidence
on the numerical approach. The sensitivity analysis is presented in Section 6.3.2.

According to the Composite Materials Handbook [44], as reported by Esp [4], the
analytical approach is “relatively accurate for [...] CTE properties”. To evaluate the
level of accuracy of this model, a comparison was carried out with FE models. In
the comparison, constant material properties corresponding to ambient temperature
conditions were assumed with both analytical and numerical models. In reality, ex-
pansion properties, and material properties in general, are temperature-dependent.
If constant properties are assumed, values should be defined to represent as closely
as possible the properties over the entire temperature range. While considering
constant properties corresponding to ambient temperature may lead to inaccurate
reaction predictions, the conclusions regarding model comparison are unaffected. In
fact, the same properties are used as input for the analytical and the numerical
models. It should be noted that in a FE model it would be possible to define differ-
ent material properties for different temperature values, thus better capturing the
physics of the entire temperature range. In this sense, detailed FE modelling shows
clear advantages over an analytical approach.

6.3.2 Mesh suitability for thermal loading modelling

As mentioned in Section 5.8, mesh suitability was not directly assumed for thermal
loading. Based on the findings of the mesh sensitivity analysis for uniaxial loading,
a simplified approach to evaluate the independence of the results of simulations for
LC5 was adopted.

To model a double-lap joint as described in Table 27, two levels of refinement were
considered in the sensitivity study for thermal loading. The mesh for Plate and Bolt
and nut was refined, while it was left unchanged for Washer, which showed to have
very little relevance in earlier investigations. The divisions for edge seeding of the
two meshes correspond to P2-W2-BN2 and P3-W2-BN3 and the meshes are shown
in the Appendix (Figures 66 and 67).

Titanium A plates and steel B plate were considered in the jointvi. The sensitivity
analysis was carried out with a 50 N preload for each bolt. Imposing a very small

viThe CTEs for titanium and steel were taken as equal to 2 · 10−6 K−1 and 1 · 10−6 K−1 here.
Since convergence, and not the reactions, was of interest, the correctness of the properties was not
relevant. In the comparison with the analytical model, the values from Section 2.4.2 were used
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bolt preload was observed to facilitate the convergence of the numerical solutions. It
was thus kept in all cases where nominally no preload was considered and, being the
axial force about a sixth of the force in case of finger-tight torque conditions, this
preload was believed to negligibly affect the behavior of the joint. The boundary
conditions with LC5 were presented in Section 5.4.5.

Table 27: Double-lap geometry for mesh sensitivity study with LC5

N D w p1 lend tA tB
[-] [mm] [mm] [mm] [mm] [mm] [mm]

2 8 40 32 56 2.08 4.16

A 60 K temperature increase was applied to the joint, leading to equal reactions, but
of opposite direction, in the two bolts. With the coarser mesh, a 2.91 kN reaction was
observed, while the force was 2.89 kN with the finer mesh. A small -0.7% change
of the monitored variable was therefore observed for a significant refinement and
the results were considered as independent of the mesh. P2-W2-BN2 was therefore
employed in the following numerical studies.

Having identified an appropriate level of mesh refinement, comparison studies be-
tween the results from the tool and from the numerical model were carried out.

6.3.3 Comparison study for different bolt spacings

A first comparison was made for different bolt spacings. The key parameters of the
double-lap geometry considered in the comparison study are summarized in Table
28.

Table 28: Double-lap geometry for comparison study of Section 6.3.3

N D w tA tB
[-] [mm] [mm] [mm] [mm]

2 8 48 2.08 4.16

The spacing p1 between the two bolts was varied, taking values of 3D, 7D and 9D.
A spacing between fasteners of 3D corresponds to the smallest spacing considered
in joint design at DLR with hybrid laminates, as reported by Fink [45].

In the study presented in this section, metal plates composing the joint were mod-
elled, with titanium A plates and a steel central B plate. The material properties
correspond to those described in Section 2.4. Considering isotropic plates allowed to
only compare the results from the tool to the predictions of the numerical models for
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cases in which the global laminate CTEX was exactly known. No uncertainty due to
CTEX estimation by the tool is present for such a case. The influence of laminate
layup on bolt reactions, and the accuracy of the CTEX prediction by the tool, is
analyzed separately in Section 6.3.5. Also, no preload or bolt-hole clearance were
considered in the study of this section. These represent the conditions for which
the tool is the closest to the numerically modelled joint and for which the highest
agreement between the models was expected to be observed.

The bolt reaction prediction from the tool and from the numerical models are pre-
sented for the three bolt spacings in Table 29 for a temperature increase ∆T=85 K.
Only F1 is indicated since, for the considered conditions, equal reactions appear at
the two bolts. The reaction F2, while being equal in magnitude to the reaction F1,
is, of course, oriented in the opposite direction.

Table 29: FEM-Tool comparison under LC5 for different spacings

F1 [kN]

OOO FEM OOO OOO Tool OOO

O p1=3D O 1.05 1.27
O p1=7D O 2.70 2.55
O p1=9D O 3.27 3.07

Looking at the results of the comparison, a moderate agreement between models
can be observed. For the smallest considered bolt spacing p1=3D, the reaction
predicted by the tool is 21.4% larger than the reaction from the numerical model.
However, the prediction of the tool is not always conservative. For p1=7D, the
reaction calculated with the tool is 5.9% smaller than the reaction extracted from
the numerical model. Also for the largest considered spacing p1=9D, the analytical
prediction is not conservative, in this case by 6.5%.

Overall, the predictions from the two models are fairly close. Both models indicate
that the bolt reactions generated by thermal loading increase with bolt spacing. This
was expected since, considering a linear thermal expansion as modelled in Eq.26, the
elongation or contraction of the portion of plate between the fasteners is dependant
on the bolt spacing. The larger the spacing, the larger the plate deformation, which
in turn generates larger bolt reactions.

It is important to note once again that the conditions considered in these section
were such that the factors neglected by the tool could not influence load distribution.
For these favorable conditions, the agreement between models is moderate and the
predictions by the tool not always conservative.

75



6.3.4 Comparison study for different clearance conditions

With the joint considered in Section 6.3.3 for p1=3D, a study on the effect of bolt-hole
clearance was carried out. A temperature increase of ∆T=85 K was implemented
also in this comparison study.

Four different clearance conditions were implemented in FE models and compared
to the prediction from the tool. All the defined clearance values are within the
limits of the f7/H10 fit. Being the tool unable to take into account clearance, the
same prediction is given by the tool for all possible clearance conditions. The bolt
reactions for the comparison study are shown in Table 30.

Table 30: FEM-Tool comparison under LC5 for different clearance conditions

FEM Tool

OF1 [N]O OF2 [N]O OF1 [N]O OF2 [N]O

λ = {0, 0} 1050 -1050

1270 -1270
λ = {40, 40} 10.3 -10.3
λ = {0, 40} 13.5 -31.9
λ = {0, 100} 13.7 -31.9

By looking at the comparison between the two models, the tool is observed to provide
very inaccurate predictions for any joint in which a non-zero clearance is present.

By not taking into account clearance, the tool translates any plate deformation
into a source of bolt shearing. In presence of a temperature difference, the plates
composing the joint deform differently and push, or pull, on the bolts. In reality,
clearance allows the plates to deform, at least partially, without being in contact with
the bolts. Therefore, not all plate deformation induces a shear load on the bolt since,
as long as no bolt-plate contact is established, the plates deform freely. By not taking
this phenomenon into account, the tool is unable to accurately predict bolt reactions.
The bolt forces from the FE models are two orders of magnitude smaller than the
predictions of the tool. As was already observed for uniaxial loading of a joint,
clearance has the potential to greatly influence load distribution. It should be noted
that the difference in reaction between F1 and F2 with λ = {0, 40} λ = {0, 100}
corresponds to the load transferred by the joint through friction. A roughly 40 N
friction load is in agreement with Eq.29 for the considered axial force.

By looking at the results of Table 30, it is clear that the case of zero clearance
represents the case with highest reaction prediction for a 2-bolt joint, since the
entire plate deformation generates bolt loads. Any type of clearance will reduce
these loads. Assuming no clearance in a 2-bolt joint, however, is not sufficient
to guarantee conservatism of the tool, as was already seen in Table 29 for bolt
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spacings of 7D or 9D. Moreover, the fact that the reactions in a joint are maximum
when considering no clearance cannot be generalized for joints with any number of
fasteners.

Table 31: Double-lap geometry for comparison study of Section 6.3.4

N D w p tA tB
[-] [mm] [mm] [mm] [mm] [mm]

5 8 48 24 2.08 4.16

Let us consider a 5-bolt-double-lap joint as described in Table 31, where an equal
spacing p is present between all fasteners. The joint is shown in Fig.44(a). The
plate is composed of titanium A plates and a central plate B made of steel. If for
some fasteners clearance were larger than for others, some fasteners would enter into
contact with the plates sooner than others. If the difference in clearance between
fasteners were sufficiency large, some of them would not be in contact with the plates
altogether. The results of Table 30 have already shown that, for clearance values
within f7/H10 tolerances such as λ = {40, 40}, it is possible for the interaction
between bolts and plates to be so moderate that almost no loads appear. This was
observed in a numerical model also accounting for bolt expansion. Two of such cases
were considered with no contact assumed to take place at bolt 2, case (b), and bolts
2, 3 and 4, case (c). If no bolt-plate contact is present, the joint can be modelled, in
first approximation, as if the fasteners with large clearance were missing. The two
cases are shown in Fig.44(b) and (c). The loads arising in such joints were calculated
with the tool for a temperature increase ∆T=85 K.

Figure 44: Joint geometry for the analytical investigation on clearance with LC5
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It was already observed in Table 29 how increasing the distance between fasteners
could increase the reactions due to thermal loading. The goal of the study was
to evaluate if a similar behavior could be observed in cases (b) and (c), where the
large clearance at some bolts led the actual distance between two adjacent bolts in
contact with the plate to be increased. The interest was to better understand the
physical behavior of the joint rather than correctly estimating the loads and the tool
was deemed capable of providing this kind of insight. The results of the analytical
calculations are summarized in Table 32.

Table 32: Results of the analytical investigation on clearance with LC5

F1 [kN] F2 [kN] F3 [kN] F4 [kN] F5 [kN]

Case (a) 3.46 1.53 0 -1.53 -3.46
Case (b) 4.02 0.441 -1.23 -3.23
Case (c) 3.73 -3.73

The results of the analytical investigation confirm the assumption that an increase
of the distance between adjacent fasteners in contact with the plates can in fact lead
to an increase of bolt loads. In case (a), bolts 1 and 2 are separated by a distance of
3D. If the clearance at bolt 2 were such that contact were not established with the
plate despite thermal expansion, bolts 1 and 3 would actually be the two adjacent
bolts, separated by 6D. In this case, the maximum reaction in the joint increases by
14%. Similarly, in case (c) the largest bolt load in the joint increases by 7.2%.

Once again, the analytical study was carried out with the goal of improving the
understanding of the physical behavior of the joint, rather than to precisely quantify
loads. The findings of the study underline the dangers of neglecting the effect of
clearance to predict bolt loads in thermal loading.

6.3.5 Comparison study for different laminate layups

For the study on the effects of laminate layup on bolt reaction, the joint presented
in Section 6.3.3 for p1=3D was considered again. The joint was subject to a ∆T=85
K temperature increase. The joint is composed by both metal plates and composite
laminates.

The central B plate was modelled as a laminate and four different layups were con-
sidered. They are M-DL-D-C, M-DL-D-H, M-DL-Q-C and M-DL-Q-H. As described
in Section 2.5, the hybrid layups differ from their purely composite counterparts for
the 90◦ plies replaced by steel sheets. The top and bottom A plates were modelled
as made of titanium. The results of the comparison between tool and numerical
models are shown in Table 33.
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Table 33: FEM-Tool comparison under LC5 for different layups

F1 [kN] CTEX·106[K-1]

OOO FEM OOO OOOTool OOO OO Tool OO

O M-DL-D-C O -1140 -399 4.98
O M-DL-D-H O -745 -470 4.71
O M-DL-Q-C O -897 431 13.8
O M-DL-Q-H O -23.7 229 10.6

The agreement of the two models is very bad. The FE models always predict a
negative reaction at bolt 1, meaning that the expansion of the titanium plates is
larger than for all the four laminates. However, this is not the case with the analytical
model implemented in the tool. This difference of bolt reactions is largely due to
the difference of the CTEX prediction.

For M-DL-Q-H, a rough estimation of the equivalent CTEX considered by the FE
model was given in Table 26 for plates modelled with SC8R elements. The ana-
lytically computed CTEX of 10.6 · 10−6 K-1 is 19.3% larger than the estimation for
the FE model. When evaluating CTE with an analytical method based on CLT, a
discrepancy of this order of magnitude was already observed by Raghava [46] with
experimentally measured values. This level of discrepancy leads to a very different
reaction prediction from the two models. Being the CTE of titanium 8.6 · 10−6 K-1,
the difference in CTE estimation between tool and FEM leads the former to con-
sider the laminates to expand more than titanium with the quasi-isotropic laminates.
This is not the case with the numerical models.

With the laminates for which the two models predict equally directed bolt reactions,
the prediction by the tool would be non-conservative, if the numerical models were
to be validated. It should be noted that the prediction from the analytical tool
for small bolt spacings p1=3D and metal plates, see Table 29, was larger than the
prediction from the FE model. While more studies would be necessary to verify if
this would always be the case for isotropic plates, the results from Table 33 show that
a smaller prediction from the tool is given with the two composite layups M-DL-D-C
and M-DL-D-H.

The results from Table 33 can also provide useful insight on laminate hybridization.
Due to the highly questionable accuracy of the analytical results, only the bolt
reactions from the FE model are considered in this discussion.

Hybridization can be used to reduce thermal loads in case of a joint composed by
plates with different thermal expansion coefficients. In this sense, the potential of
hybridization can be observed in the force reduction witnessed by replacing a M-
DL-D-C laminate with M-DL-D-H. In this case, a 34.6% reduction of the bolt loads
is calculated by the numerical models. By hybridizing the quasi-isotropic layup
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M-DL-Q-C, the reduction of the thermal loads is even larger, with the M-DL-Q-H
laminate leading to almost no bolt load due to thermal deformation. This result can
be interpreted by looking at the CTEX estimation with SC8R elements for such a
laminate in Table 26. This value is very close to the CTE of titanium, so that all
the plates in a joint with the M-DL-Q-H laminate deform almost equally.

While the beneficial effect of hybridization was shown, it is important to note that, in
some cases, it could lead to larger bolt loads than with a purely composite laminate.
This is due to the fact that the material of plates A, titanium here, has a smaller
CTE than the steel used for layup hybridization. For moderate fractions of steel in
the layup, as in M-DL-Q-H, hybridization can almost nullify thermally induced bolt
loads. However, increasing the steel fraction beyond would only lead to larger loads.
For small steel fractions, the laminate would expand less than the titanium plates,
while the opposite would take place at large steel fractions.

6.3.6 Effect of bolt preload

Bolt preload was expected to have a beneficial effect in reducing bolt reactions
due to thermal loading. In fact, if friction is sufficiently high to avoid, or at least
reduce, plate deformation, a smaller reaction in shear takes place at the bolts. To
verify this, a double-lap joint was numerically modelled with the dimensions as
summarized in Table 34. In this case, a three-bolt joint was considered to also
discuss the dependence of load distribution on the fastener number. Plates A were
modelled with titanium, while the central plate with steelvii.

Table 34: Double-lap geometry for investigation on bolt preload with LC5

N D w p1 p2 lend tA tB
[-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

3 8 48 36 36 36 2.08 4.16

Applying a temperature increase of 60 K led to 1.85 kN reactions when a negligible
bolt preload was applied, as shown in Fig.35. For intermediate torque conditions,
the reactions at the external bolts were reduced, as anticipated, by 35%.

Table 35: Effect of preload on bolt reactions under LC5

Preload [kN] F1 [kN] F2 [kN] F3 [kN]

0.05 -1.85 0.00009 1.85
5 -1.37 0.00087 1.36

viiThe same remark of footnote v applies here
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These results show an agreement in terms of behavior of the analytical and numerical
models. In fact, the analytical model is designed in such a way that a zero reaction
always appears at the central bolt if N is odd. The numerical results also show the
reaction at bolt 2 to be several orders of magnitude smaller than the reactions at bolts
1 and 3. For an even number of bolts, the analytical model predicts the reactions to
be symmetrically increasing, in magnitude, with respect to the central point of the
joint. Of course, they are oriented in opposite directions. All the numerical models
investigated for N=2 showed this kind of symmetry and it is therefore believed that
it would be equally observed with FE models for even N values larger than 2. As
already observed in Section 6.3.4, these considerations apply to cases in which no
bolt-hole clearance is present.

These findings underline how neglecting preload can be considered a conservative as-
sumption, representing the worst case scenario in terms of bolt forces. Additionally,
even if a precise estimation of bolt preload could be ensured for assembly condi-
tions, preload could change greatly and in unpredictable ways in case of thermal
loading. Ignoring preload could be a conservative approach allowing to ignore the
uncertainties generated by temperature differences.

6.3.7 Conclusions on thermal loading modelling

When neglecting clearance and bolt preload, the investigations on a double-lap joint
with two bolts and isotropic plates showed the analytical model to provide mod-
erately accurate predictions. Conservative and non-conservative results were both
obtained for cases of different bolt spacings, with predictions becoming less conser-
vative as spacing increased, with the considered geometries.

The presence of clearance in a joint was observed to greatly influence bolt loads.
The tool, being incapable of accounting for this effect, inaccurately predicted the
bolt reactions. The inaccuracy nonetheless led to conservative reaction calculation
for a joint with two bolts. Through an analytical investigation, the risks of a non-
conservative prediction deriving from neglecting clearance for a joint with more than
two bolts were underlined.

The above conclusions were drawn for joints composed of isotropic metal plates. The
presented limits do not, therefore, take into account the accuracy of CTE estimation
for the laminates. The uncertainty in the estimation of thermal expansion laminate
properties was observed to greatly affect the agreement of the tool with the numerical
models.

The beneficial effect of bolt preload was also stressed. Models not accounting for
bolt preload with thermal loading give non-accurate but conservative predictions.

In conclusion, the investigated model for computing thermal loading is not con-
sidered sufficiently accurate, nor conservative, for joint design. The main factors

81



affecting both accuracy and conservatism of the model were observed to be clear-
ance and the laminate global expansions property estimation. Due to the inaccuracy
of the analytical model, no approach for modelling a combination of thermal and
mechanical loadings was investigated. Also, the conclusions on the inaccuracy of the
analytical model drawn for a temperature difference of ∆T=85 K rendered useless
an investigation on the case ∆T=-80 K.

Finally, the potential of laminate hybridization to reduce bolt loads due to thermal
loading was highlighted. Care should however be taken when considering hybridiza-
tion of joints composed of both metal and composite laminates. If the metal sheets
used for laminate hybridization have expansion properties different from those of the
metal plates, hybridization can increase bolt loads due to thermal loading in some
cases.

The lack of comparable studies in the available literature prevented the validation
of the numerical models for thermal loading. The independence of the results from
the level of refinement of the considered meshes was nonetheless demonstrated.
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7 Investigations on the modified models

The numerical and analytical studies on the modified models presented in Section
4.2 are collected in this chapter.

7.1 Investigation on the models for shear loading analysis

Two models were considered to predict the load distribution in a bolted joint subject
to shear loading (LC3) and were presented in Sections 4.1.5 and 4.2.2. To evaluate
their applicability to joint design, a comparison study with the results from a FE
model was carried out. Since both models do not take into account bolt preload,
the comparison was made for finger-tight torque conditions. For the same reason,
clearance conditions of λ = {0, 0, 0, 0} were considered.

7.1.1 Comparison for steel plates and bolts

The joint geometry and shear loading considered in the comparison study of this
section is shown in Fig.45. It is a double-lap joint composed of ASTM A36 steel
plates with thickness tA=2.08 mm and tB=4.16 mm.

Figure 45: Joint geometry and bolt numbering for studies with shear loading

The four bolts employed in the connection, of 8 mm nominal diameter, are modelled
with ASTM A325 bolt properties as described in Section 2.4. In the same section, the
properties of the plates were presented. Such material properties correspond to the
conditions for which the experimental data the original ICoR method relies on were
derived. This material choice was made to allow for a fair comparison of the models.
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Again, with the goal of allowing comparison between models, plastic deformation of
the bolts was allowed in the FE model, since the modified ICoR method takes into
account plastic deformation of the bolts. Plate deformation is considered to remain
linear. The applicability of the modified ICoR method to composite structures is
discussed in Section 7.1.2.

The comparison of the predicted loads between models was carried out for different
values of the applied load P. The load only has a component along Y and is applied
on the edge of the two A plates at a distance of 56 mm from bolts 3 and 4. Half the
load is applied to the top A plate and half to the bottom A plate, so that the overall
force P in the four considered cases was equal to 2 kN, 35 kN, 40 kN and 47.7 kN.
They correspond to the dots shown on the curve of Fig.19, with ∆high values of 0.01
mm 2.86 mm, 4.71 mm and 8.636 mm. Different stages of bolt deformation were
thus kept into account.

The results at a generic location j are analyzed through the total bolt reaction as
defined in Eq.25. The results for the ∆high=4.71 mm case are presented in Table
36. The complete results for the other cases can be found in the Appendix (Section
11.9), while key points are summarized in Table 37 and Fig.47.

Table 36: Bolt loads comparison for ∆high=4.71 mm (P=40 kN)

FE model Modified ICoR Elastic

F [kN] f [%] F [kN] f [%] F [kN] f [%]

Bolt 1 28.9 23.9 30.4 23.5 26.2 20.3
Bolt 2 28.6 23.6 30.4 23.5 26.2 20.3
Bolt 3 32.0 26.4 34.2 26.5 38.3 29.7
Bolt 4 31.7 26.2 34.2 26.5 38.3 29.7

The results in Table 36 show a good agreement between the modified ICoR method
and the FE model in terms of load distribution, with maxima at bolt 3 of 26.5% and
26.4% respectively. The elastic method leads to slightly less accurate results, with
variations of about 3.5%, both for the minimum and maximum f values. Both the
elastic and the modified ICoR models give conservative predictions of the maximum
fastener reaction. In this regard, the modified ICoR method is more accurate than
the elastic method.

Looking at the results from the FE model in Table 36, it can observed how the
reactions at the bolts close to the applied load P, bolt 1 and 2, are very close. They
are respectively 28.9% and 28.6%. The same can be observed for bolts 3 and 4,
which are further away from the load application point and have load fractions of
32.0% and 31.7%. This is not only true for ∆high=4.71 mm but is confirmed by
the data from all other cases reported in the Appendix. This aspect is of great
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importance, since both the analytical models were defined in such a way that the
reaction prediction is the same for all bolts at the same distance from the center
of the considered rotation. These numerical results show that it can be reasonably
assumed that the instantaneous center of rotation for a joint loaded in shear as shown
in Fig.45 is located along the line passing through the fastener group’s centroid
and perpendicular to P. The assumption of rigid rotation of the joint is further
investigated in Section 7.1.2. A typical von Mises stress contour plot for the four
bolts is shown in Fig.46. The largest stresses in the picture correspond to the
locations where the external load is mostly being transferred from the external A
plates to the constrained central plate. The joint rotation induced by the eccentric
load is discussed in Section 7.1.2 and with Fig.48 for CFRP plates but it can already
be witnessed here. In fact, looking at bolts 3 and 4, the stress fields look rather
similar but show an angular offset indicating that the bolt reactions are not oriented
in the same directions for the two bolts.

Figure 46: Von Mises stress contour plot for bolts 4,3,1 and 2 from left to right

Table 37 presents a summary of the results for all cases of load P which can be used
to discuss accuracy and conservatism of the analytical methods. The ratios between
the largest reaction extracted from the FE model and the largest reaction predicted
by the modified ICoR method are reported in the second column. Similarly, the
third column reports the maximum load from FE model divided by the maximum
reaction calculated with the elastic method. Lastly, the largest reaction predicted
by the ICoR method was divided by the largest reaction calculated with the elastic
method and was reported in the fourth column.

The second column shows the accuracy of the modified ICoR method to increase
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as the bolt deformation becomes larger. The method leads to mostly conservative
predictions, with the only exception for the bolt failure case ∆high=8.636 mm, with
a discrepancy with the FE model of 1%. Apart from this underprediction, the
method shows remarkable accuracy in predicting bolt failure. With the exception of
this case, the modified ICoR method showed to conservatively predict the reactions
at all bolts and for all ∆high values.

Table 37: Ratios of the maximum predicted reactions

∆high [mm] FEMmax
Mod. ICoRmax

[-] FEMmax
Elasticmax

[-] Mod. ICoRmax
Elasticmax

[-]

0.01 0.804 0.806 1.00
2.86 0.924 0.834 0.903
4.71 0.928 0.829 0.893
8.636 1.01 0.816 0.807

When only considering the highest reaction in the joint, the predictions obtained
from the elastic method are always conservative, with quite significant overpredic-
tions between 16.6% and 19.4%. It should however be noted that, while the elastic
method has shown conservatism when looking at the most loaded bolt, it also un-
derpredicts the load at the least loaded bolts. An example of such underprediction
can be found in Table 36, where the load at bolt 1 extracted from the FE model
is 28.9 kN against 26.2 kN calculated from the elastic method. As previously men-
tioned, the modified ICoR method was observed to lead to conservative predictions
for the least loaded bolts at every ∆high value.

The fourth column quantifies how much the reactions calculated with the modified
ICoR method are smaller than those from the elastic method. For very small bolt
deformation, ∆high=0.01 mm, the two models provide almost identical maximum
reaction estimations. This is no longer the case for larger bolt deformations, with
an about 10% difference already at ∆high=2.86 mm, reaching almost 20% at bolt
failure conditions ∆high=8.636 mm.

These results have great importance when considering the use of the tool for joint
design. In fact, even in the case of a joint for which bolt shear failure is not critical,
with bearing failure of the plate for example, the highest accuracy of the modified
ICoR method would have a significant potential for better joint design. If the plate
were expected to fail when the bolt deformation is still very small, the elastic method
or the modified ICoR method could be used almost interchangeably to predict the
largest reaction. However, for an intermediate bolt deformation, such as ∆high=2.86
mm, a 10% smaller load could be considered thanks to the modified ICoR method,
leading to a more lightweight design.

While the prediction of the largest reaction is almost equal with the two methods at
small bolt deformation, the two methods being almost interchangeable in this sense,
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the differences in terms of load fractions are always quite significant, as shown in
Fig.47. The continuous lines indicate the evolution of the maximum of the four f
values, f3=f4, as a function of ∆high, while the dashed lines represent the minimum
values, f1=f2. Based on these results, the analytical models were compared to the
FE model.
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Figure 47: Comparison of load fraction evolution for the shear loading models

Looking at the curves for the elastic method in Fig.47, no change in load distribution
is observable, with f=20.3% at bolts 1 and 2 and f=29.7% at bolts 3 and 4. This is
a consequence of the fact that with the elastic method the load fraction at a certain
fastener is dependent on the joint geometry and load application point but not on
the load magnitude. Therefore, increasing P does not affect the load distribution, as
Fig.47 shows. The model always overpredicts the load fraction at the most highly
loaded bolts and underpredicts it for the least loaded ones. These inaccuracies
are about 14% for small bolt deformation and increase as ∆high gets closer to the
bolt failure value of 8.636 mm. This increase in inaccuracy is dependant on the
appearance of load re-distribution due to plastic deformation of the bolts, which
cannot be taken into account by the elastic method.

Similarly to the elastic method, the modified ICoR method tends to overpredict
the load fraction at the most loaded bolts and underpredict it for the least loaded
fasteners. Unlike the elastic method, however, this method can account for load re-
distribution due to plastic deformation of the bolts. For increasingly deformed bolts,
the load distribution from the modified ICoR method gets closer to the prediction
from the FE model. At ∆high=8.636 mm, the two distributions are almost identical,
the largest discrepancy being 0.1% at bolts 2 and 4, see Table 59.
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A 4-bolt-double-lap joint was considered for the study of this section. An extension
to single-lap joints of the conclusions drawn above is justifiable by the fact that,
both the elastic method and the original ICoR method are formulated indifferently
for single or double-lap joint configurations, the bolt allowable in shear being the
only parameter influenced by such a distinction. The original ICoR method can also
be equally employed for different bolt patterns, thus not limiting the conclusion of
this section to 2-by-2 joints. Generally, the respect of the assumptions underlying
the ICoR method, presented in Section 4.2.2, is of higher importance than joint
configuration and bolt group geometry.

Finally, although omitted in this section, the AISC Manual of Steel Construction
[19] suggests the use of safety factorsviii with both the elastic method and the original
ICoR method. If the modified ICoR method were to be employed for joint design
in the future, further studies would be necessary to first establish suitable factors of
safety.

7.1.2 Applicability of the modified ICoR method to CFRP

The analyses of Section 7.1.1 showed that the modifications to the original ICoR
method allow to extend its applicability to predicting load distribution in steel joints
at conditions for which bolt failure is not assumed. In this section, the applicability of
the modified ICoR method to other plate materials, specifically CFRPs, is discussed.
It is particularly important to verify the respect of the assumption that the connected
parts remain rigid also for materials with moduli of elasticity smaller than steel.

It should be noted that the method is not directly dependent on the material prop-
erties of the plates. However, the empirical data for bolt deformation of Fig.19 are
indirectly influenced by the plate deformation. Evaluating the magnitude of this
influence is a key point of this section.

No information about the original ICoR method’s applicability to materials other
than steel was found in the literature, having the method been developed for civil
engineering applications. Segui [39] mentions that it can be used with little error
for steels of different grades. However, the stiffness properties of steels of different
grades are rather similar and this consideration cannot be directly extended to the
case of CFRPs.

To investigate the effects of reducing the plate modulus of elasticity, a series of FE
studies were carried out as shown in Table 38. These studies were repeated only
modifying the plate modulus of elasticity for the same joint geometry presented in
Fig.45 and for an applied load P=35 kN. Also in this case, λ = {0, 0, 0, 0} conditions
were modelled. These analyses considered fictitious plate materials with moduli

viiiTwo different approaches (ASD and LRFD) are possible to evaluate strength allowables, see
Specification for Structural Steel Buildings [47]
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of elasticity equal to 90%EA36, 75%EA36 and 40%EA36, where EA36 is the Young’s
modulus for ASTM A36 steel plates presented in Section 2.4.

The results presented in Table 38 indicate that the fastener reactions seem to be
only slightly affected by the variation of the plate modulus of elasticity. The largest
change in load distribution takes place at bolts 1 and 2, with a variation of 0.3%.
Overall, the reactions at the least loaded bolts increase while the reactions at the
most loaded bolts become smaller.

Table 38: Influence of the modulus of elasticity of the plates on load distribution
for ∆high=2.86 mm (P=35 kN)

FEM 90%EA36 FEM 75%EA36 FEM 50%EA36

F [kN] f [%] F [kN] f [%] F [kN] f [%]

Bolt 1 25.3 23.8 25.4 23.9 25.6 24.1
Bolt 2 25.0 23.5 25.1 23.6 25.4 23.8
Bolt 3 28.1 26.4 28.1 26.4 28.0 26.3
Bolt 4 27.9 26.3 27.9 26.2 27.7 26.0

Reducing the Young’s modulus of the plates, despite obviously influencing the overall
joint displacement, seems to have very little impact on the load distribution. The
applicability of the method to CFRPs was then evaluated through a comparison
of the model prediction with results from FE models. Two layups were considered
to investigate if the difference in modulus of elasticity of composite materials in
different directions could influence the accuracy of the analytical prediction.

The plate geometry of Fig.45 was considered once again. A 15 kN shear load was
modelled, corresponding to a bolt deformation prediction by the modified ICoR
method of ∆high=0.409 mm. Two laminate layups were considered in the study,
M-DL-D-C and M-DL-Q-C, with the 0◦ ply orientation aligned with X and Z as
stacking direction. The global stiffness properties of the plates, derived through
CLT, are presented in the Appendix (Table 60). The in-plane moduli of elasticity
of the quasi-isotropic laminate are about a quarter of the value for A36 steel plates.
A comparison of the results is presented in Table 39.

The load distribution from the numerical models for the two composite layups is
shown in the second and third column of the table. The modified ICoR method
cannot account for different plate properties and its load prediction is presented in
the fourth column. Additionally, the results from the elastic method for equivalent
conditions were reported in the Appendix (Table 61).
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Table 39: Bolt loads comparison with CFRP plates for ∆high=0.409 mm (P=15 kN)

FEM [M-DL-D-C] FEM [M-DL-Q-C] Modified ICoR

F [kN] f [%] F [kN] f [%] F [kN] f [%]

Bolt 1 10.9 24.0 11.2 24.2 10.5 22.2
Bolt 2 10.8 23.8 11.1 24.0 10.5 22.2
Bolt 3 11.8 26.1 11.9 25.8 13.2 27.8
Bolt 4 11.8 26.1 12.0 25.9 13.2 27.8

According to the results from the FE models, the load distribution with a quasi-
isotropic laminate M-DL-Q-C is more homogeneous than with M-DL-D-C, which
has higher stiffness along the X direction. The variations with the two layups were,
however, very slight, never exceeding 0.2%. The largest reaction appears at bolt 4 for
the M-DL-D-C layup. The modified ICoR method conservatively overpredicts this
load by 10%, while the overprediction is of 11.9% with the quasi-isotropic layup for
the same fastener. The reactions at bolt 1 are underpredicted by -3.7% and -6.25%
with M-DL-Q-C and M-DL-D-C respectively. Overall, a rather good agreement
of the prediction from the modified ICoR method and the numerical results was
observed. It should be noted that, while also leading to a conservative estimation
of the largest reaction, the elastic method is less accurate than the modified ICoR
method in estimating the largest reaction, with a 20% overprediction for the quasi-
isotropic layup.

To further investigate the applicability of the method to CFRPs, the bolt displace-
ment was monitored. In fact, the ICoR method assumes the rigidity of the connected
parts in order to justify a rotation around a point defined as the IC. To verify that
the assumption of rigid rotation is respected for a considered CFRP joint, the dis-
placement for all bolts was extracted from the FE model for M-DL-D-C. Considering
the bolt displacement as the hole surface average displacement at the central plate,
the displacement values shown in Table 40 were extracted.

Table 40: Bolt displacement from FE model with M-DL-D-C

Bolt 1 Bolt 2 Bolt 3 Bolt 4

X displacement [mm] -0.139 0.133 0.179 -0.171
Y displacement [mm] -0.457 -0.442 -0.806 -0.822

A representation of the displacement vectors is shown in Fig.48, where proportional-
ity between vector components was maintained. Considering the vector directions,
perpendicular lines were drawn to evaluate if the four bolts were rotating around a
common center. The lines corresponding to bolts 1 and 2, the closest to the rotation
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center, meet at x=-66 mm, y=20.1 mm, while the intersection for bolts 3 and 4, the
two further away from the center of rotation, is at x=-61 mm, y=19.3 mm.

The difference in prediction for the Y coordinate of the center of rotation is of 0.8
mm, only 2% of the bolt group height. This small discrepancy justifies in this case
the assumption that, for an applied load P with no component along X, the center of
rotation is located on a line perpendicular to P and passing through the bolt group
centroid. For the bolt pattern of the modelled joint, the centroid is located at x=16
mm, y=20 mm.

The difference between the two intersections over X is of 5 mm. This variation is also
rather small, about 8% of the distance between either one of the two intersections
and the fastener group centroid.

Overall, for the considered laminate material and layup, the results show that it is
possible to assume with little error the existence of a common center of rotation of
the joint. It is important to note that the material properties considered in this case
are significantly different from those of steel plates, with which the experimental
data for the ICoR method were derived.

Figure 48: Joint rotation under shear loading with M-DL-D-C

The comparison with FE models, as well as the considerations regarding the rigidity
of the connected plates, indicate that CFRP joints behave similarly to steel joints,
at least as long as the fundamental assumptions are respected. With the considered
geometry and loading, the modified ICoR method could be used to conservatively
estimate the largest reaction in the joint. Given the similarities between CFRP
and steel joints, the accuracy of the prediction with the former can be expected
to increase in cases of more relevant bolt deformation. In fact, as the results of
Section 7.1.1 showed, the agreement of the modified ICoR method with numerical
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results increased with bolt deformation, which here was considered as very low, with
∆high=0.409 mm. The best agreement was observed at bolt failure conditions, with
almost identical load distribution predictions. Already for small bolt deformation
considered here, the method allowed for a significantly more accurate prediction
compared to the elastic method.

The analyses of this section consider linear deformation of the plates and no damage
modelling in the laminates was implemented in the FE models. The applicability of
the modified ICoR method to bearing critical joints at failure conditions, where the
material non-linearity could affect the rigidity assumption for the plates, was not
investigated. Further studies on the matter could provide significant insights while,
as an approximation, it may be assumed that the joint deforms rigidly until failure
arises.

It was demonstrated that, when respecting the hypothesis of plate rigidity, the
modified ICoR method could be used with the experimental data from [21] to analyze
load distribution in joints with A325 or metric 8.8 bolts. The applicability of the
original method was extended to different plate materials. For the material and
geometric conditions considered for comparison, the influence of laminate layup
showed to be negligible. These considerations are of primary importance if the
model were to be employed with different bolt materials or grades. In fact, after
having derived similar empirical relations for fasteners other than metric 8.8, it
would not be necessary to derive several relations for different plate materials or
laminate layups. The small relevance of these factors when plate rigidity is ensured
would allow the application of a relation for one fastener material to different plates
and laminates.

7.2 Single-column approach justification for uniaxial load-
ing

The analytical model evaluated in Section 6.2 was shown to provide a good prediction
of the load distribution in multi-row-single-column joints subject to uniaxial loading.
With the goal of broadening the applicability of the tool, a strategy for the analysis
of multi-column joints is proposed in this study as presented in Section 4.2.4. Based
on the results of numerical studies, considerations regarding the applicability of the
proposed approach, also in presence of clearance and bolt preload, are presented in
this section.

7.2.1 The case of perfectly tight bolt holes

A uniaxial tensile load was considered to be applied to a double-lap joint. Such
a joint has identical columns with equal spacings between fasteners in the loading
direction. Moreover, for all bolts, the bolt shank diameter is exactly equal to the
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bolt hole diameter, so that λ = {0, 0, 0, 0}. Lastly, all the bolts share the same
preload value. Such a joint is perfectly symmetric, both in geometry and loading
conditions, with respect to the center line along which the load P is applied.

With the single-column approach, the two columns would be analyzed independently.
This approach would be justified not only if the stress distribution in the two columns
were equal but if the stress distribution generated around a hole in a single-column
joint by an applied load P/2 were equal to the stress distribution generated by P in
a two-column joint.

This condition is assumed to be verified if the columns are sufficiently distanced
for the stress distribution around the holes not to influence each other. In order to
verify this assumption for highly distanced columns, a numerical study was carried
out. Such a study also had the goal of verifying if the no-influence assumption is
applicable for the smallest fastener spacings commonly considered in joint design.

Based on the work by Fink [45], typical minimum values of column width to bolt
diameter ratios of 4 are employed at DLR for CFRP joints. Values of 3 would be
possible in case of hybrid laminates. A factor of 4 is then considered for minimum
bolt pitch.

A double-lap joint with top and bottom generic steel plates and a composite central
plate was considered in the numerical study. The plates are assembled with 4 tita-
nium bolts with a nominal diameter of 8 mm. Two different laminate layups were
modelled for the central plate: M-DL-D-C and M-DL-Q-C. Finger-tight torque con-
ditions were modelled for all the bolts. The geometry of the central plate is shown
in Fig.49(a). It should be noted that the load P is a graphic representation and
not an actual boundary condition of the model. The load is indirectly generated by
imposing a displacement of the plate edge, as described in Section 5.4.2.

Figure 49: Two columns or 2-col approach (a) and single-column or 1-col approach
(b) for λ = {0, 0, 0, 0}

The distances of bolts 1-2 from the left plate edge and of bolts 3-4 from the right
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plate edge were taken as equal to the geometry from the mesh sensitivity study for
consistency and given the similarity in dimensions. The bolt pitch along X was set
to the minimum value indicated by Fink for M8 bolts.

For both layups, the numerical study was carried out by modelling the joint in
Fig.49(a) for different values of the parameter α. The load distributions for these
two-column models were compared to those obtained by a single-column numerical
model as in Fig.49(b). To verify the no-influence assumption with the numerical
study, the loads F1 and F2 in the two-column models were expected to be equal
and close to F1 obtained in the single-column joint. Similarly, F3 and F4 in the
two-column models were expected to be equal and close to F4 in the single-column
joint.

The results of the numerical studies are presented In Tables 41 and 42, where Fsum

indicates the sum of the fastener reactions. As was the case for the mesh sensitivity
study, the fraction of load transferred by friction is small due to low preload, which
is reflected in the small difference between P and Fsum. For the two-column joints
the values f1, f2, f3 and f4 indicate the fastener reactions as a percentage fraction
of Fsum. The values reported with brackets refer to single-column joints. These
values were divided by two to facilitate the load distribution comparison with the
two-column joints.

Table 41: Load distribution with M-DL-D-C and λ = {0, 0, 0, 0}

Joint P [kN] Fsum [kN] f1 [-] f2 [-] f3 [-] f4 [-] ux [-]

1-col 18.4 17.9 (28.1) (21.9)

2-col α = 4 34.3 33.4 28.3 28.3 21.7 21.7 0.2
2-col α = 5 36.8 35.9 28.1 28.1 21.9 22.0 0.2
2-col α = 7 40.6 39.7 27.9 27.9 22.1 22.1 0.2
2-col α = 12 43.9 43.1 27.9 27.9 22.1 22.1 0.2

Table 42: Load distribution with M-DL-Q-C and λ = {0, 0, 0, 0}

Joint P [kN] Fsum [kN] f1 [-] f2 [-] f3 [-] f4 [-] ux [-]

1-col 14.0 13.5 (30.1) (19.9) 0.2

2-col α = 4 26.0 25.0 30.7 30.7 19.3 19.3 0.2
2-col α = 5 28.2 27.3 30.1 30.1 19.9 19.9 0.2
2-col α = 7 32.2 31.2 29.3 29.3 20.7 20.7 0.2
2-col α = 12 37.3 36.4 28.7 28.7 21.3 21.3 0.2

The applied load was obtained by imposing a displacement at the free end of the
plates ux of 0.2 mm. It should be noted that, since the two-column joints do not
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all have exactly the double of the joint stiffness of the single-column joint, imposing
the same displacement does not generate a load P in the two-column cases which is
exactly the double of the single-column case. A rigorous approach would have been
to apply to each case a ux such that P in the double-column joint were precisely
the double of P in the single-column joint. However, considering the linearity of
the material deformation and the absence of clearance, the load distribution was
expected to be almost independent from the applied load, once the slip-critical force
had been overcome. Therefore, the applied loads were considered sufficiently close
to the desired values to be acceptable. A stricter modelling approach was observed
in the analysis of Section 7.2.2, where imprecisions in the applied load would greatly
affect the results.

For both layups and for all column spacings, the results validate the no-influence
assumption. Looking at f1 in Table 41, very small variations between single-column
and two-column can be observed, the maximum deviation being +0.2% for α = 4
and -0.2% for α = 7 and α = 12. Equal variations can be observed for f4. The
symmetry of the problem is reflected in the symmetry of the results, with f1 equal
to f2 and f3 equal to f4. It is therefore not necessary to focus on f2 and f3 for both
tables. The variations in Table 42 are larger, with a maximum of 1.4% at α = 12.

In both tables, particularly good agreement was observed between the single-column
case and the two-columns case for α = 5. Firstly, this is due to the fact that, for
such an α value, the column spacing is still large enough for the stress distributions
of the two columns not to influence each other. In addition to this, the load P for
the considered α is almost exactly the double of the load in the single-column case,
thus rendering the two cases as precisely comparable as possible.

It is of great importance that, for the smallest spacing between columns considered
α = 4, the load fractions f1 and f4 are very similar to the single-column case, with
a maximum discrepancy of 0.6% with M-DL-Q-C. Considering the load distribution
in the two columns separately would lead to a reasonably accurate prediction even
for the smallest spacing considered in joint design.

In both tables can also be observed how the variation between single-column and two-
columns models increases for an increase of columns spacing. This is considered to
be a consequence of the modelling imprecisions linked to the imposed displacement,
not an actual phenomenon. An additional factor that could justify this increase in
variation is the influence of the plate edge on the stress distribution. In fact, for an
increase of α, the 20 mm distance in Fig.49(a) was not modified, so that the bolt
holes get relatively closer to the lateral edge of the plates. The influence of these
effects could have been avoided by scaling this distance together with α, thus keeping
the same ratio for all cases. Such an approach would have made the modelling more
complex and, since the results were only slightly influenced, the modelling approach
was not changed.

95



7.2.2 The case of different bolt-hole clearance

In the analysis of Section 7.2.1, an ideal scenario was considered. Together with
equal preload conditions, no bolt-hole clearance was assumed to exist at every fas-
tener location. A numerical study was performed to evaluate the shortcomings of
the single-column approach in case of a non-zero clearance in the joint. The same
joint geometry was considered, with the only exception of a 100 µm bolt-hole clear-
ance modelled at fastener 2. The clearance conditions in this study were therefore
λ = {0, 100, 0, 0}. The previously introduced approach of repeating the analysis for
different α values was adopted.

Figure 50: Two columns or 2-col approach (a) and single-column or 1-col approach
(b) for λ = {0, 100, 0, 0}

Introducing the clearance as described could potentially lead to serious inaccuracies
with the single-column approach shown in Fig.20. In fact, in a real 4-bolt joint, as
soon as the load P is large enough to overcome the friction effects due to preload,
reactions appear at bolts 1,3 and 4. However, no reaction takes place at bolt 2 until
the applied load is sufficient to generate a joint displacement such that the bolt-hole
clearance is taken-up. Unlike the scenario considered in Section 7.2.1, such a load
distribution introduces a moment in the joint, which is then reacted by the same
three bolts through force components along the Y axis of Fig.50. The FE model is
capable of capturing this effect but that would not be the case for a tool modelling
each column as individual. The goal of the numerical analysis was to quantify the
inaccuracy of the single-column approach for a pessimistic scenario, in which a large
clearance is present at one of the bolts.

Tables 43 and 44 show the results of the numerical investigation. Two single-column
FE models as shown in Fig.50(b) were employed to obtain the reactions at bolts 1
and 4 separately from 2 and 3. These two numerical models were equal in geometry

96



and loading, with the only exception of the clearance at bolt 2 in one FE model. The
results of these simulations were reported in the Appendix (Section 11.10). From
these results, the first line of the tables was calculated. The additional information in
the Appendix provides clarification about how the load distribution for the single-
column approach was calculated. Based on those results, the reader can simply
interpret the values f1 to f4 as the load fraction at the respective fastener for an
applied load of about 42 kN in Table 43 and 32 kN in Table 44. For the 1-col cases,
these values should not be intended as fractions of Fsum, which was indicated in
brackets to avoid possible misinterpretations.

Table 43: Load distribution with M-DL-D-C and λ = {0, 100, 0, 0}

Joint P [kN] Fsum [kN] f1 [-] f2 [-] f3 [-] f4 [-] ux [-]

1-col 21.3 (20.8) 28.1 11.3 38.7 21.9 0.3

2-col α = 4 42.2 41.3 33.8 6.5 33.8 25.9 0.28
2-col α = 5 41.8 40.9 33.0 6.5 34.7 25.9 0.26
2-col α = 7 42.2 41.3 32.4 6.7 35.1 25.9 0.24

Table 44: Load distribution with M-DL-Q-C and λ = {0, 100, 0, 0}

Joint P [kN] Fsum [kN] f1 [-] f2 [-] f3 [-] f4 [-] ux [-]

1-col 15.9 (15.5) 30.1 8.9 39.6 19.9 0.3

2-col α = 4 31.8 30.8 38.1 3.9 33.8 24.2 0.28
2-col α = 5 31.8 30.9 36.1 4.4 35.4 24.2 0.26
2-col α = 7 31.0 30.0 34.8 3.3 36.9 25.0 0.225

As anticipated, the introduction of a clearance breaking the horizontal symmetry of
the joint can have a significant impact on the load distribution.

For the highly directional laminate of Table 43, the two-column models showed the
reaction along the X direction at bolt 3 to be the largest, followed by bolt 1, 4 and 2.
The single-column approach manged to predict correctly this order of importance.

In the case of the quasi-isotropic laminate of Table 44, for α = 4 and α = 5, the
reaction at bolt 1 is larger than at bolt 3. This effect was not predicted by the
single-column approach, which always predicted the largest reaction at 3. It should
be noted that, in both Table 43 and 44, the reaction at bolt 1 can be observed
to become less prominent when increasing α, while the reaction at 3 showed the
opposite trend.

Generally, the single-column approach tended to underestimate the reactions at
bolt 1 and 4 and overestimate the reactions at 2 and 3. Considering both composite
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layups, the largest difference in prediction between single and multi-column approach
was 8% for α = 4 at bolt 1 with the quasi-isotropic laminate.

It is of great importance to note that, despite larger inaccuracies with respect to
Section 7.2.1, the largest reaction predicted by the single-column approach was al-
ways larger than the largest reaction extracted from the multi-column models. This
aspect, together with the quite pessimistic clearance conditions in the considered
joint, could qualify the single-model approach as conservative.

As mentioned, the clearance conditions of the joint were considered as pessimistic.
This is partly due to the fact that the 100 µm clearance corresponds to the largest
possible value for typical joint fitting tolerances, as presented in Section 2.2. In
addition to that, unlike in the considered case λ = {0, 100, 0, 0}, bolts 1, 3 and 4
would also have a non-zero clearance in reality. The presence of bolt-hole clearance
at other locations would generate a beneficial delay in load-take up at those bolts
too, not just at 2. The more similar the clearance at the four bolts, the more
accurate the prediction of the single-column approach. In fact, if the exact same
clearance value were present at every bolt, the rotational effects considered in this
section would not appear. The discussion of Section 7.2.1 would equally apply to
such a case, with a simple delay in load take-up, equal for all bolts.

Table 45: Y reactions with M-DL-D-C and α = 5

Joint F1 [kN] F2 [kN] F3 [kN] F4 [kN]

1-col
X 11.7 4.7 16.1 9.13

Y

2-col α = 5
X 13.5 2.65 14.2 10.6

Y 0.247 0.426 -0.736 -0.0761

It has already been mentioned that the rotational effects generated by the non-
symmetric clearance were reacted by the bolts through forces along the Y direction.
Such forces cannot be kept into account by the single-column approach. Table 45
shows an example of the predicted reactions by single and multi-column approaches.
The reactions along Y can be easily observed to be of a smaller order of magnitude
compared to the reactions along X. A factor of about 20 separates these reactions at
bolt 3, where the largest loads were observed. These effects can be ignored, at least
in a first approximation, and do not influence the considerations on conservatism of
the single-column approach.
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7.2.3 Conclusions on single-column approach

On the basis of the results of Section 7.2.1, the single-column approach is considered
suitable to model multi-column joints subject to uniaxial loading in case of perfectly
tight bolt holes. Satisfactory accuracy was observed for all values of bolt spacing
commonly considered in joint design.

Similarly, the use of the single-column approach with clearance, investigated in Sec-
tion 7.2.2, showed to give conservative results if joint design is made considering the
reaction at the most loaded bolt. The appearance of reactions to balance rotational
effects was observed to be of negligible importance. This kind of study was therefore
allowed with the tool.

Lastly, the effects of bolt preload were not investigated. If preload were the same in
every column, then using the single-column approach would pose no problem as every
column would behave exactly in the same way. If preload were different at different
bolts, the sticking-to-slipping transition behavior could be affected. However, this is
equally true for single-column and multi-column joints subject to uniaxial loading.
The assumption of equal preload at all bolts made in the preload model for single-
column joints was extended to the multi-column case. Thus, the analysis of multi-
column joints was defined in the tool with equal preload at all bolts.

Figure 51: Example of bolt pattern not investigated for tool analysis

The joint considered in the numerical studies had four bolts but the conclusions
are believed to be applicable to cases of different number of rows and columns.
In fact, it was shown that, even with the minimum spacings in the two directions
considered in joint design, the no-interference assumption of the stress states holds.
This conclusion does not depend on the number of fasteners but on the fact that the
bolts are sufficiently far not to influence the stress distribution around each other.
It is worth mentioning again that equal bolt spacings in the loading direction were
assumed in every column.

Fig.51 shows an example in which this assumption is not respected. The applica-
bility of the tool to this kind of load pattern was not investigated. It is possible
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that the single-column approach would lead to predictions with a level of accuracy
comparable with the case of equal spacings, at least if a minimum distance between
all fasteners were ensured. Once again, it is important to ensure the non-influence
of stress distributions around the bolts. Symmetry of the bolt pattern with respect
to the line along which P is applied could also play a role in the validity of the
no-influence assumption. However, without sufficient data, it is impossible to draw
a conclusion regarding these speculations. Having uniaxial loading of such a joint
not been sufficiently investigated, it was not included in the cases handled by the
tool.

7.3 Biaxial loading modelling

As introduced in Section 4.2.5, the tool is capable of predicting load distribution
in joints subject to biaxial loading through a superposition of the reactions for two
uniaxial loadings.

In this section a discussion of the results for load distribution obtained with super-
position is presented. For all cases, tension loading was considered in both loading
directions. On the basis of the discussion in Section 6.2.3, it is assumed that differ-
ent combinations of compression loading can be equally modelled by superposition.
Therefore, the discussion for tension loading in both directions is assumed to apply,
at least in first approximation, to cases of compression-compression loading and to
tension loading in one direction and compression in the other.

With the goal of evaluating the feasibility and accuracy of the superposition ap-
proach, only cases of zero bolt-hole clearance and no preload were considered. A
discussion on their effects on load distribution with biaxial loading is presented in
the end of this section.

7.3.1 The importance of boundary conditions definition

Fig.52 shows the mesh for a FE model of a joint subject to biaxial loading. The
geometry was adapted from the joint considered for shear and uniaxial loading, such
as in Fig.45. The plates were modified to allow for the introduction of a tensile
load PY and boundary conditions at the central plate BCY. As in previous studies,
the central plate was modelled with M-DL-Q-C layup, with the 0◦ ply orientation
aligned with X and Z as stacking direction. The titanium top and bottom plates
were modelled with an isotropic elastic material behavior. The four titanium bolts
have a nominal diameter of 8 mm.

The considered cross geometry does not correspond strictly to the geometry of the
entire joint, as it was considered that the plate portion surrounding the fasteners
does not need to be fully represented. The arms of the cross were introduced for the
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application of boundary conditions. A similar approach was used by Kapidžić [23]
for modelling thermal loading perpendicular to the axial loading direction.

It is important to note that the presence of boundary conditions along two different
surfaces, BCX and BCY, introduced a fundamental difference with respect to cases of
uniaxial loading. A zero displacement along X and Y was imposed on a single edge
for uniaxial loading, as shown in Fig.28. Any point of the yellow central plate not
belonging to the surface where these boundary conditions had been applied was free
to move in any direction. If also in the biaxial loading case no displacement along
X and Y were imposed on both BCX and BCY in Fig.52, the plate deformation
along a single direction would be significantly different from the case of uniaxial
loading. This effect clearly has an impact on the accuracy of any prediction based
on superposition.

Figure 52: Boundary conditions definition and mesh for FE model of a joint under
biaxial loading

To evaluate the impact of the boundary conditions definition on load distribution,
two FE models with the two different definitions were compared. Both have a geom-
etry as shown in Fig.53 and were subject to the same tensile loads, with PY=0.78PX.
Only these loads were considered in this analysis but the effects of the applied load
on load distribution are discussed in detail in Section 7.3.3. The edge length s is
equal to 40 mm for all cases considered in this section unless otherwise specified.

In the first FE model, whose results are presented in Table 46 under the name 1D
BCs, the boundary conditions on the surfaces BCX and BCY were different. On the
former surface, no displacement along X and Z was imposed, while on the latter only
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the displacement along Y was set to zero. As a consequence, only on BCX a force
reaction in the X direction was present, while a reaction along Y could only take
place at BCY. Since on each boundary condition surface reactions could appear in
only one direction, these conditions were named 1D BCs.

Figure 53: Joint geometry and bolt numbering for a joint under biaxial loading

The other FE model similarly had boundary conditions at both BCX and BCY,
but with no displacement possible along X and Y on both surfaces. Additionally,
on the former surface no displacement along Z was also imposed to avoid rigid
body motions. In Table 46, the load distribution with this FE model is indicated
as 2D BCs since, on both surfaces, reactions appeared in two directions with the
implemented boundary condition formulation. The reaction forces along X and Y
were extracted both from BCX and BCY and compared to the applied loads PX and
PY. The terms Xre and Yre are used to indicate the fractions of the PX and PY

loads respectively which were reacted on a surface where boundary conditions had
been applied. The definition of load fraction fj from Eq.38 was maintained, bearing
in mind that a fastener reaction Fj can have components FX j and FY j in the two
spatial directions and that the total reaction is given by Eq.25.

Looking at Table 46, the largest variation in terms of load fraction takes place at
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bolt one, with a variation of 1.8%. The variation at bolts 2 and 3 is roughly 1%,
while bolt 4 is almost unaffected. As already mentioned, the boundary conditions
definition in 2D BCs changes the central plate displacement and the location where
it reacts the applied loads. It should be noted that in the considered geometry the
plate edge is located at a distance from the fasteners roughly equivalent to the bolt
spacing.

Table 46: Load distribution with different boundary conditions

f1 f2 f3 f4 BCX BCY

[%] [%] [%] [%] Xre [%] Yre [%] Xre [%] Yre [%]

1D BCs 27.6 25.4 27.1 19.9 100 0 0 100
2D BCs 29.4 24.7 26.1 19.8 84.5 30.4 15.5 69.6

Only load fractions and not force reactions were reported in the table. It is important
to note that a direct comparison of the two cases is possible since, for the same
applied loads PX and PY, the load transferred by the bolts is the same and does
not depend on the definition of the boundary conditions. The sum of the fastener
reactions in any of the two directions is the same in both cases. However, the
boundary conditions have an influence on how the central plate deforms, which can
have an impact on how the same transferred load is distributed among the fasteners.
A comparison of the central plate displacement with the two modelling approaches
is shown in Fig.54.

(a) (b)

Figure 54: Central plate displacement with 1D BCs (a) and 2D BCs (b)

2D BCs boundary conditions correspond to the reality of a joint which is pinned at
the considered locations. However, the effect on plate displacement from boundary
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conditions definition cannot be captured by a model based on superposition. In the
studies of the next sections, boundary conditions as in 1D BCs are considered, to
evaluate feasibility and accuracy of the superposition approach without the influ-
ence of additional effects. Boundary conditions as in 1D BCs correspond to a case
in which the plate edges are sufficiently distant from the fasteners not to greatly
influence load distribution. For sufficiently far away edges, the two approaches are
expected to lead to the same results. A parametric study on the impact of edge
distance is presented in the Appendix (Section 11.11)

7.3.2 Superposition approach evaluation

A joint with four bolts was considered in the previous section for a numerical study.
The same joint was considered again for comparison of the tool’s prediction obtained
from superposition of uniaxial loadings along X and Y with numerical models. To
evaluate if the accuracy of the superposition approach increases with bolt spacing,
the comparison between tool and FE model was performed for three different joint
geometries but equal bolt diameters.

The tool considers individual strips to evaluate bolt reactions as shown in Fig.20.
In the joint geometry of Fig.53, the strips have a width of 40 mm for loads in the
X direction and 32 mm for loads along Y. This corresponds to a normalized strip
width of 5D and 4D respectively. These values are close to the minimum spacings
considered in joint design at DLR as presented in Section 7.2.1. The two additional
joint geometries considered in this section are based on a scaling of the first joint
geometry. A linear scaling factor SF is defined such that for SF=1 the joint geometry
corresponds to the joint of Fig.53. All the dimensions were scaled in the same way,
so that, for example, the plate width of 80 mm with SF=1 becomes 160 mm with
SF=2 and 240 mm for SF=3. A summary of the strip width for the three geometries
is provided in Table 47. Scaling the entire geometry avoids the risk of edge effects
influencing the analysis as was observed in Section 7.2.1.

Table 47: Summary of strip width for the considered joint geometries

Normalized strip width

Load along X Load along Y

SF=1 5D 4D
SF=2 10D 8D
SF=3 15D 12D

For all cases, the imposed displacements resulted in forces of about PX=23 kN and
PY=18 kN, so that PY=0.78PX. The global elastic properties of the laminate were
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derived with CLT and are summarized in Table 60. Table 48 shows the results for
the three geometries with the two models.

The geometries were defined solely with the goal of validating the assumption that
the superposition approach is more accurate for large bolt spacing. Therefore, the
fact that a strip width of 12D or 15D might be too large for the design of a real joint
was deemed as unimportant.

Table 48: Load distribution comparison for three joint geometries subject to
biaxial loading

f1 [%] f2 [%] f3 [%] f4 [%]

SF=1
Tool 25.2 27.8 25.0 22.0

FEM 27.6 25.4 27.1 19.9

SF=2
Tool 25.3 27.8 24.9 22.0

FEM 27.1 25.2 26.7 21.0

SF=3
Tool 25.3 27.8 24.9 22.0

FEM 26.9 25.2 26.5 21.3

Looking at the comparison of the two models in Table 48, a few remarks can be
made.

Both models predict the smallest reaction to take place at bolt 4. The difference
in load fraction at this bolt ranges from 2.1% at SF=1 to 0.7% at SF=3. The tool
leads to a prediction of the smallest reaction at bolt 4 since it is the least loaded
bolt when considering both uniaxial loading along X and along Y.

The tool also leads to similar reactions at bolts 1 and 3, which is due to the similar
bolt spacing in the two directions. In fact, bolt 1, together with 2, has the largest
reaction for loading along X but the smallest for loads along Y. For bolt 3 the
opposite is true. If the bolt spacing in the X and Y directions were the same,
instead of 32 mm and 40 mm for SF=1, the reactions f1 and f3 would be the same in
biaxial loading. For all geometries, the FE model confirms the reaction at bolt 1 to
be similar to but larger than the reaction at bolt 3. The discrepancy with the tool
is always larger at bolt 1, with a tool underprediction going from 2.4% with SF=1
to 1.6 with SF=3.

The most evident difference between the two models involves the reaction at 2. In
fact, the results from the tool, unlike the prediction from the FE model, always show
this load fraction to be the largest, as bolt 2 is the most loaded both in the uniaxial
loading along X and along Y. As a consequence, the largest reaction predicted by the
tool, while always being larger than the largest reaction from the numerical models,
is not observed at the same location.
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Generally, the results show a tendency of the accuracy of the superposition approach
to increase for larger strip width. In fact, the average absolute differenceix between
the predictions at the four bolts with the two models decreases from 2.26% with
SF=1, to 1.81% with SF=2 and finally 1.66% with SF=3.

The results of this section showed the level of accuracy of the superposition approach
for a joint loaded with PX=23 kN and PY=18 kN. Before drawing any conclusion
on the validity of the superposition approach for biaxial loading, an analysis on the
role of the applied load was necessary and is presented in Section 7.3.3.

7.3.3 Load influence on the accuracy of biaxial superposition

In the evaluation study of the superposition approach, applied loads were considered
such that PY=0.78PX. Considering how the tool was designed to predict reactions
with biaxial loading, the magnitude of the tensile load along one direction is only
relevant when compared to the applied load in the other direction. In fact, due to
the linearity of the geometry and materials, increasing PX would lead to a larger
displacement along X but equal load distribution. The same would take place for
the reactions with a load increase along Y. Therefore, if PX and PY were increased,
or reduced, by the same factor, the load fractions along X and along Y would be
equally affected. Being the total load fractions f1 to f4 a composition of the fractions
along X and Y, they would also remain the same.

To confirm this behavior of the tool, the load distribution obtained from two FE
models with different applied loads is analyzed here. The two models consider
the same joint geometry, already modelled in Section 7.3.2 for SF=1. While the
magnitude of the applied loads in the two models is different, their ratio is the same
and equal to PY=0.93PX, as shown in Table 49.

Table 49: Effects of applied load on load distribution with biaxial loading

PY/PX [-] PX [kN] PY [kN] f1 [%] f2 [%] f3 [%] f4 [%]

0.93 18.9 17.6 27.1 25.4 27.7 19.7
0.93 9.53 8.88 27.3 25.5 27.7 19.5

A comparison of the load fractions at the four bolts confirms the validity of the
behavior of the tool, as no variation larger than 0.2% is observed. Despite the
differences already discussed in Section 7.3.2, both the tool and the numerical models
are indifferent to changes in applied load as long as the same proportionality is
kept. Once again, the problem is linear both in terms of geometry and of materials,
because of the strictly elastic behavior of the deformed parts. Having this assumption

ixCalculated as 1
4

∑4
k=1(|fTool

k − fFEM
k |)

106



of linearity been confirmed for the considered case, it is believed that repeating
a similar study for applied load ratios other than PY=0.93PX would lead to the
same conclusions. As a consequence, for fixed joint geometry, the only parameter
influencing the accuracy of the superposition approach is the ratio of the applied
loads PX and PY, while their absolute magnitude has no role.

Therefore, load distribution for different values of the PY/PX ratio was calculated
with both the tool and FE models. The considered ratios were 0.09, 0.14, 0.44, 0.78
and 0.93. The results are presented in the graph of Fig.55.

For small values of PY/PX, the loading scenario is close to a case of uniaxial loading
over X. Load distributions similar to those observed in Section 7.2.1 for a strictly
uniaxial case are expected to be observed here. As the ratio increases towards one,
the reactions in the Y direction become increasingly more relevant. The analysis
was limited to the domain of PY/PX between 0 and 1, since considering a case where
PY is 2 times larger than PX, for example, would show the same trends observed at
PY/PX=0.5 when PX is 2 times larger than PY.

Figure 55: Comparison of load fraction predictions with superposition approach
and FE model

The results of Fig.55 confirm the anticipated behavior for small PY/PX values, with
a load fraction f1 similar to f2 and f3 similar to f4. As the load ratio increases, the
reactions at the four bolts change. The tool and the FE models show the same
trends for bolts 1, 3 and 4, with the first and the last decreasing and the second
increasing, but do not predict the same magnitude of change. Bolt 3 shows the
clearest example in this regard: the load fraction at PY/PX=0.09 is very similar,
with a 0.5% difference, and both curves increase with PY/PX. However, the curve
from the tool is steeper, so that at PY/PX=0.93 the difference is 2.2%. The load
fraction for bolt 2 has a trend with the numerical results that is not fully captured
by the superposition approach. In fact, the analytical model predicts an almost
constant load fraction f2, while the results from the FE model show a decrease
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until PY/PX=0.78, when the curve stops decreasing at 25.4%. The reduction of f2,
together with f1 and f4, in the numerical curves, is balanced by the already mentioned
steep increase of f3.

Generally, the predictions of the two models are reasonably close, with an average
absolute difference going from 0.7% at small load ratios increasing to 1.72%, 2.26%
and 2.34% at PY/PX equal to 0.44, 0.78 and 0.93 respectively. However, the inaccu-
racy of the tool is sufficient to lead to an erroneous prediction of the largest reaction
location. In fact, the tool always predicts the largest reaction to take place at bolt
2. This is due to the fact that, considering the loadings both along X and along Y,
it is in the most loaded row. When combining the loads in the two directions to
calculate the total reaction with Eq.25, F2 is always the largest reaction. A possible
explanation for this can be found in the modelling of the deformation direction. For
uniaxial loading, the plates are known to deform in the direction of loading. Global
laminate stiffness properties can be calculated and implemented in the tool knowing
the exact deformation direction. In case of biaxial loading, the plate deformation
is neither oriented along X nor Y. Fig.54 showed the bolt displacement in a case
with PY/PX=0.78 to take place in a direction somewhere in between the X and Y
axes. As a consequence, the material properties on which the computation of the
tool is based becomes more and more inaccurate. A proof of this could be found in
the difference between fFEMj − fToolj which, for any value of j, is strictly increasing
with the ratio PY/PX. In other terms, the more biaxial effects become relevant, the
larger the discrepancies.

Considering the maximum reaction predicted by the two models, the tool is conser-
vative at PY/PX equal to 0.78 and 0.93 with relative differences of 1.05% and 0.75%.
For smaller load ratios, the relative difference is larger, with a value of 4.46% at
PY/PX=0.14.

The results presented here refer to a joint geometry with a scaling factor SF=1, so
that the bolt spacings over X and Y of 5D and 4D are roughly equivalent to the
minimum values considered for joint design at DLR. Based on the results of Section
7.3.2, the same trends can be expected to be observed for larger bolt spacings but
with a larger accuracy of the tool. As already mentioned, the average absolute
difference of load fractions drops from 2.26% to 1.66% for PY/PX=0.78 going from
SF=1 to SF=3.

7.3.4 Conclusions on biaxial loading modelling

Overall, for the considered conditions, the superposition approach for biaxial loading
led to fairly accurate predictions. The accuracy was observed to be only dependant
on the applied load ratio PY/PX. The average absolute difference between the predic-
tions from the tool and the numerical models is about 0.7% for quasi-uniaxial loading
and increases as PY/PX gets closer to 1, with a value of 2.34% at PY/PX=0.93.
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It was also concluded that increasing the distances between fasteners leads to more
accurate tool predictions. For bolt spacings comparable to the minimum values
considered in joint design, the average absolute difference of load fractions is equal
to 2.26%.

The distance between the fasteners and the plate edges where boundary conditions
are applied was also observed to influence load distribution. The considerations
presented in this chapter apply to joints in which the plate edges are sufficiently
distant from the fasteners not to greatly influence load distribution. A parametric
study to estimate the impact of edge distance is presented in the Appendix (Section
11.11).

The predictions of the largest reaction in a joint was observed to be non-conservative
in some cases. In addition to this, the fact that the tool incorrectly predicts the
location of the largest bolt reaction raises concerns regarding the ability of the tool
to fully capture the physical behavior of the joint with biaxial loading. Further
investigations with different bolt patterns and plate materials are necessary to reach
a definitive conclusion. In further studies, the impact of clearance should also be
taken into account to evaluate the magnitude of the uncertainty it introduces.
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8 Parametric studies

With the goal of providing a better understanding of the influence of key parameters
on load distribution in bolted joints, parametric studies were carried out and are
presented in this section. The trends observed in the results provide useful informa-
tion in the context of joint design. The results of these studies are purely analytical
and not derived from numerical models.

8.1 Parametric study on the uniaxial loading model

In this section are presented the results and the analysis of the studies on the ge-
ometric parameters affecting load distribution for uniaxial loading. As the tool is
designed to analyze each joint column individually, the parametric studies are lim-
ited to a single-row joint. Extending the analysis to multi-column joints would not
provide a better insight on the joint behavior.

A double-lap joint with three bolts is considered in the parametric studies. On the
basis of model similarity, it is assumed that the same trends observed for a double-lap
joint would be witnessed in the case of a single-lap configuration. The analyses were
carried out for two different layups: M-DL-D-C and M-DL-Q-C. Only finger-tight
torque conditions were considered since the analytical model considers preload as a
source of delay in load take-up, which would have no influence on load distribution.

For all cases, a single parameter was modified at once. The non-modified parameters
were kept as defined in the baseline geometry, presented in Table 50. The load
distribution for an applied tensile load P=29.5 kN is the only monitored quantity in
the parametric studies.

Table 50: Baseline geometry for parametric studies of Section 8.1

N D w p1 p2 lend tA tB
[-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

3 8 48 36 36 36 2.08 4.16

As previously mentioned, when modelling a joint with the plates A having a com-
bined stiffness equal to the stiffness of plate B, and with p1 = p2, the reactions
predicted by the model at bolt 1 and 3 are exactly the same.

8.1.1 Effects of joint geometry on load distribution

As the effects of bolt-hole clearance on load distribution are analyzed in Section
8.1.2, the clearance conditions for the present parametric studies is λ = {0, 0, 0}.
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The results of the parametric studies are presented in Fig.56, where the load fraction
curves are differentiated on the basis of the layup with letters “Q” and“D” for M-
DL-Q-C and M-DL-D-C respectively.

The first modified parameter is the bolt pitch. Fig.56(a) shows the distribution
evolution, where p=p1=p2. At baseline conditions the ratio p/D is equal to 4.5. An
increase of bolt pitch leads to increasingly loaded external bolts, while the central
bolt load fraction drops from 30% to about 24% with both layups. The change in
load distribution due to bolt pitch variation appears to be linear.

Fig.56(b) shows the influence of variations of the w/D ratio on load distribution.
Unlike in the previous analysis, an increase of plate width tends to even the load
distribution, with the highest bolt load fraction dropping of about 3%. Interestingly,
for large plate width to bolt diameter ratios, the load distribution becomes less and
less sensitive to width increments. Increasing the width of a joint to even the load
distribution would not be a fruitful approach for already large plate width to bolt
diameter ratios, as the trend appears to reach saturation.

(a) (b)

(c) (d)

Figure 56: Influence of geometric parameters on load distribution with LC1

The distance of the first and last fastener from the plate edge lend is the third
parameter that was investigated. Fig.56(c) clearly shows how this quantity has no
influence on the load distribution. The model for uniaxial loading could be easily
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redefined not to take into account the end length, which anyway has very little
impact on the model’s prediction.

For the last parametric analysis of this section, the joint thickness was modified. The
thickness change is expressed through the thickness factor ct, defined as the ratio
between the plate thickness at baseline conditions and the modified plate thickness.
The same thickness factor is applied to plates A and plate B at the same time.
The results of this study are presented in Fig.56(d). It should be noted that the
joint thickness at baseline conditions is 8.32 mm, roughly equivalent to the bolt
diameter. The thickness factor ct can therefore be interpreted with little error as
the ratio between the joint thickness and the bolt diameter. It is important to note
from these results that changing the thickness of a thick laminate has almost no
influence on the load distribution. The curves are almost flat for ct larger than 2,
with changes in load distribution at bolts 1 and 3 smaller than 1% when doubling
the thickness factor from 2 to 4. With thin joints, changing the joint thickness has a
more significant impact on load distribution, with a tendency of the load to increase
at the external bolts for thinner joints. For a change in thickness from ct=0.5 to
ct=1, the load fractions f1 and f3 decrease from 36.7% to 35.6%.

Having analyzed the results from the four studies on geometric parameters, it is
possible to conclude that layup orientation has no apparent role on how much these
parameters influence load distribution. For the two considered layups, the load dis-
tribution was observed to be affected equally, both in terms of trend and magnitude
of the impact. In all the four studies and all parameter values, the exterior bolts were
more loaded with M-DL-Q-C than with M-DL-Q-C. This is a direct consequence of
the smaller global laminate stiffness in the loading direction with the former layup.

8.1.2 Effects of clearance on load distribution

The results of a study on the influence of bolt-hole clearance on load distribution
are presented and discussed. A double-lap joint of geometry as described in Table
50 was considered for two different laminate layups: M-DL-D-C and M-DL-Q-C.
Finger-tight torque conditions were modelled for the bolt preload, with an applied
tensile load P=29.5 kN.

Different combinations of clearance conditions were considered, as summarized in
Tables 51 and 52. All the values were chosen within the limits guaranteed by the
f7/H10 fitting for 8 mm diameter bolts, as presented in Section 2.2. Even without
investigating larger clearances, possibly resulting from manufacturing errors, signif-
icant variations were observed. As previously mentioned, for the conditions of the
modelled geometry and materials, the reaction at bolt 1 is always equal to the re-
action at bolt 3. For this reason, the study of both cases such as λ = {100, 20, 20}
and λ = {20, 20, 100} would be redundant and was avoided, the reactions at bolt 1
and bolt 3 being simply inverted.
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Table 51: Influence of clearance conditions on load distribution with uniaxial
tensile loading with M-DL-D-C

λ1 [µm] λ2 [µm] λ3 [µm] f1 [%] f2 [%] f3 [%]

20 20 20 35.6 28.7 35.6
100 20 20 28.1 33.2 38.7
20 100 20 40.1 19.7 40.1
20 100 100 43.2 24.2 32.6
100 20 100 31.1 37.7 31.1
70 30 70 33.4 33.2 33.4
100 100 100 35.6 28.7 35.6

Table 52: Influence of clearance conditions on load distribution with uniaxial
tensile loading with M-DL-Q-C

λ1 [µm] λ2 [µm] λ3 [µm] f1 [%] f2 [%] f3 [%]

20 20 20 35.9 28.2 35.9
100 20 20 31.3 31.0 37.7
20 100 20 38.7 22.6 38.7
20 100 100 40.5 25.4 34.1
100 20 100 33.1 33.8 33.1
70 30 70 34.5 31.0 34.5
100 100 100 35.9 28.2 35.9

For λ = {20, 20, 20} and λ = {100, 100, 100}, identical load distributions are ob-
served for both layups. This derives from the assumption of the analytical model
that clearance simply introduces a delay in load take-up by the bolt. The only dif-
ference between the two cases, being applied force and load distribution equal, is the
joint displacement, becoming larger for larger clearance. This load distribution is
the same that would be obtained from a spring-based model for uniaxial loading that
does not take into account clearance, which would assume implicitly λ = {0, 0, 0}

It should be noted that, for these cases of equal clearance at all bolt locations,
the bolts start reacting the applied load at the same time and therefore the load
distribution does not vary with the applied load. When different clearances are
present in the joint, as in λ = {100, 20, 20}, the load distribution depends on the
applied load. Fig.57 shows this evolution of the load distribution as a function of
joint displacement for M-DL-Q-C. The largest displacement corresponds to the case
P=29.5 kN reported in Table 52.

The conditions λ = {100, 20, 100} are of great interest since, while the clearance
values are within the limits prescribed by the tolerances, the load distribution con-
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(a) (b)

Figure 57: Bolt reactions and load fractions as a function of joint displacement
with λ = {100, 20, 20} clearance conditions

tradicts a common belief about bolted joints. As M.A. McCarthy [2] and Esp [4]
mention, the external fasteners, in this case 1 and 3, are often assumed to carry the
largest fraction of the load. However, both with M-DL-D-C and M-DL-Q-C, the
central bolt is the most loaded, by more than 6% in the case of the former layup.
These results highlight the risks of neglecting the effects of bolt-hole clearance during
joint analysis.

Further confirmation of the importance of clearance modelling comes from the anal-
ysis of λ = {20, 100, 100}. For both layups, the largest reaction of all the parametric
study appears at bolt 1 with 43.2% and 40.5% of the applied load for M-DL-D-C
and M-DL-Q-C respectively. It has already been mentioned that the load distribu-
tions at cases such as λ = {20, 100, 100} correspond to the prediction of a model
not accounting for clearance. For M-DL-Q-C this model would therefore estimate
a maximum 35.9% load fraction while a value of 40.5% would still be possible with
the f7/H10 fitting. Similarly, not modelling clearance with M-DL-D-C could lead to
an underprediction up to 7.6%. The use of a higher quality hole tolerance, such as
H8 or H9, would of course reduce the uncertainty.

8.2 Parametric study on the modified ICoR method

A parametric study was also carried out with the modified ICoR method. The
baseline geometry in this case is equivalent to the joint presented in Fig.45. For
the analyses, a coordinate system centered on the bolt group centroid was adopted.
Table 53 presents the key quantities for the parametric study referred to the baseline
geometry. During the parametric studies, all the quantities that were not being
modified were kept equal to the values in the table. Here eX indicates the distance
of the load application point from the bolt group centroid CG. The properties of
the fasteners were kept as described in previous analyses with the modified ICoR
method.
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Table 53: Baseline geometry for parametric studies of Section 8.2

N D pX pY eX

[-] [mm] [mm] [mm] [mm]

4 8 32 40 72

Three cases were considered by modifying the values of the pitch distances pX , pY
and of the applied load P. The impact of these parametric variations on the position
of the instantaneous center IC and ∆high was monitored. Since IC is known to
always be located on the line passing through CG and perpendicular to P, only the
X component xIC is reported.

Figure 58: X direction bolt spacing influence on xIC and ∆high

The first parameter to be modified was pX and the variations were monitored through
the dimensionless quantity eX/pX . The trend for the xIC curve can be interpreted by
recalling the definition of the ICoR method. In fact, it is assumed that an eccentric
load generates both a translation and a rotation around CG, which is equivalent to
a rotation around IC. The translation can be seen as a rotation around a point set
at infinity, in this case in the negative X direction. When eX/pX is close to zero, the
load P is almost applied at CG. As a consequence the generated translation along
Y is much more relevant than the rotation around CG. The joint appears to be
rotating around a point at infinity and -xIC tends therefore to large values. In the
opposite case of a very large eX/pX ratio, P is applied far away from the bolt group,
generating a significant rotation around CG and less relevant Y translation. As the
joint almost only rotates around CG, -xIC tends to zero. This behavior is confirmed
by the blue curve in Fig.58, which is strictly decreasing for an increase in eX/pX .
Despite this trend, a rotation purely around CG cannot be reached, and -xIC cannot
reach zero, as bolt failure is triggered around eX/pX=4, as shown by the red curve.
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Figure 59: Y direction bolt spacing influence on xIC and ∆high

A similar interpretation can be given for the parametric study of Fig.59. For equal
loading conditions, an infinitely tall bolt group, with large pY and small eX/pY , would
resist to rotation better than bolt group with small spacing in the Y direction. In
the former case, translation is more relevant than rotation and -xIC tends to infinity.
On the other hand, a bolt group with small eX/pY would rotate more easily, so
that -xIC tends to small values. This tendency can be observed as the blue curve is
decreasing for an increase in eX/pY .

The increase of the blue curve with the final increase of eX/pY is probably not due
to a physical phenomenon but to the imprecisions of the analytical model. In fact,
xIC and ∆high are calculated through an iterative process in which initial guesses are
updated and verified after each iteration. If the guesses led to a solution satisfying
equilibrium within the defined tolerance, they are accepted as correct. This means
that different solutions within these boundaries could be found, with small variations
of xIC and ∆high. For the last point on the blue curve, -xIC=10.2, even if imprecise,
was accepted since within the tolerance. An ideal curve for an almost zero tolerance
of the ICoR method would be strictly decreasing. Obviously, reducing the tolerance
would lead to a more complex and lengthy calculation.

Figure 60: Applied load influence on xIC and ∆high
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No study was directly carried out by modifying eX for a constant bolt group geom-
etry. However, it is believed that indications regarding this case can be drawn from
the investigations for different spacings pX and pY and constant eX because of the
similarity of the joint geometry.

Lastly, the applied load P was varied as shown in Fig.60. The red curve shows the
obvious behavior of increasing with P. Without changing the load application point,
a larger load leads to larger reactions in the bolts. For a sufficiently large P, around
46 kN, the shear capacity of the fastener furthest from the IC is reached and bolt
failure is triggered.

The trend of the blue curve can also be easily justified. In fact, for the same
bolt group geometry and load application point, a larger load P generates a larger
translation along Y, thus pushing -xIC towards infinity. Interestingly, the curve
appears to be linear.
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9 Design guidelines

This chapter provides a series of guidelines for joint design based on the findings of
the investigations carried out as part of the thesis study. A distinction is made for
the load cases defined in Section 3.1. For each load case, the applicability of the
models implemented in the tool is discussed. Considerations regarding the limits of
the models, their accuracy and conservatism are also presented.

9.1 LC1 modelling with single-column joints

When considering single-column joints subject to tensile loading, the tool calcu-
lates load distribution through the uniaxial loading model for single-column joints
presented in Section 4.1.2 combined with the bolt preload model for uniaxial load-
ing from Section 4.2.1. The two methods were investigated through a comparison
with numerical models, taking into account the effects of bolt-hole clearance and
bolt preload. The conclusions presented here are considered to equally apply to
single-lap and double lap joints, unless otherwise specified.

All the investigations confirmed that it is possible to interpret both bolt preload
and clearance as sources of delay in load take-up by the fastener. In case of equal
clearance at all bolts, the delay equally affects all bolts. The observations for a single
case of equal clearance, such as in Fig. 34, can therefore be generalized to any case
of equal clearance at all bolts or no clearance at any bolt. In such cases, the tool has
shown to predict reactions rather accurately and with a level of accuracy comparable
for all fasteners. The predictions at all bolts are slightly non-conservative because
of the limits of the considered flexibility formulation, but only in double-lap joints,
and of the implemented preload model.

In fact, all the retained fastener flexibility formulations for double-lap joints were
observed to predict excessively even load distributions. As a consequence, the tool
has a tendency to overpredict the reactions at the central fasteners in a column and
to underpredict the reactions at the exterior bolts. Being the latter the most loaded
in the joint, at least with equal clearance or no clearance at every bolt, this leads
to a slightly non-conservative prediction of the largest reaction. This tendency was
confirmed by a comparison of the results from the tool to experimental data from in-
strumented bolts. This tendency towards excessively even distributions is, however,
not present with single-lap joints for which an analogous experimental comparison
showed a conservative tendency to overpredict the reactions of the external bolts.

The second source of non-conservatism is the inaccuracy of the bolt preload model
which was always observed to overpredict the maximum force the joint can transfer
by friction. If a joint were designed to transfer loads, at least partially, through
shearing of the bolts, the overestimation of the slip resistance would lead to non-
conservative bolt reaction predictions. The reason for this is the fact that the delay
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of bolt load take-up would be overestimated by the tool. This delay is reflected in
a constant and non-conservative difference between the actual bolt reaction and the
prediction of the tool.

This limit of the model for bolt preload is intrinsic to the considered friction law and
equally affects all joints, independently of the geometry or the presence of clearance.
A solution proposed in this study is to employ a reduced coefficient of friction.
Considering a friction coefficient in the tool equal to 77% of the value implemented in
the FE models led to conservative predictions of the largest reaction for all considered
cases. While without further studies it is difficult to generalize if such a scaling factor
would be sufficient, the approach of reducing the friction coefficient has obvious
potential to ensure conservative results. Taking this idea to the extreme would
be to neglect friction altogether to ensure conservative results, as done by Esp [4].
However, such a choice would lead to conservative but highly inaccurate predictions,
which would then lead to overdesign of the joint. Finding a middle ground could
guarantee a compromise between the needs for accuracy and conservatism.

It was previously mentioned that, in a case of equal clearance at all bolts or no
clearance at any bolt, the shortcomings of the preload method and of the flexibility
formulations were a source of inaccuracy. Despite this, the predictions at all bolts
were observed to be slightly non-conservative but with a comparable level of accu-
racy. In a case of different clearance, this was observed not to be the case. When
studying cases with a significantly larger clearance at one bolt, as in Figures 35 and
36, the behavior in the transition region of the bolt with larger clearance was ob-
served to be more complex than what the tool predicted. This was shown to be due
to the fact that the tool cannot take into account the friction between plates and
washers which becomes relevant in presence of larger clearance at one bolt. This
limit of the model prevents the tool from providing an accurate and conservative
prediction of the reaction at the bolt with the largest clearance, at least for a cer-
tain range of applied loads. It was however observed that the reactions in the most
loaded bolts were not affected by this phenomenon.

The fact that the reaction at the most loaded bolt could always be accurately pre-
dicted is extremely relevant for joint design. In fact, if compensation of the inaccu-
racy of the preload model is ensured, the tool can be used to conservatively predict
the largest reaction in a joint independently of clearance or of the amount of preload.
The fact that this conclusion is independent of clearance is important because the
actual values of clearance at a bolt are unknown due to the uncertainty introduced
by tolerances. With these conclusions in mind, joint design can then be performed
conservatively for the largest reaction predicted by the tool.

All the considerations above are believed to apply to double-lap and single-lap joints,
with the exception of the case of single-lap joints with high bolt preload. A definitive
conclusion on the accuracy of the tool in this case could not be reached because of
the shortcomings of the approach to extract forces from the FE model and the lack
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of experimental data for validation.

Finally, it should be noted that the model implemented in the tool considers equal
axial forces due to bolt preload at every fastener. This was assumed in the original
study on which the implemented bolt preload model was based [3]. The assump-
tion was justified by the use of instrumented bolts to measure the axial force due
to preload, thus ensuring high precision in the axial force estimation. If preload
control in the joint to be designed were performed with a less accurate method, an
uninvestigated uncertainty in preload could be present in the joint, which the tool
would not be able to keep into account. As a reference, instrumented bolts and
bolt elongation measurements introduce a preload uncertainty in the order of ±5%,
preload indicating washers of ±10%, while with torque measurements the uncer-
tainty is larger than ±25% [48]. Preload relaxation is another source of uncertainty
of the axial force in a bolt. While these uncertainties cannot be directly accounted
for by the tool, it is possible to adopt a conservative approach when defining the
coefficient of friction.

9.2 LC1 modelling with multi-column joints

Being the approach for multi-column joints based on the model for single-column
joints, the considerations previously discussed also apply here.

In this case, despite the one-dimensional nature of loading, asymmetries in the joint
with respect to the line along which the load is applied can result in rotational
effects on the joint. In this regard, it was observed that the rotation induced by
large clearance is negligible.

Before employing the tool for load distribution calculation, it is necessary to eval-
uate if the considered bolt pattern respects the assumptions made in the tool def-
inition. A bolt pattern such that a division in columns is possible should always
be implemented for calculation. Different column widths were considered and the
assumptions underlying the multi-column approach were observed to hold also for
small spacings. The minimum distances considered in joint design need however to
be respected, as discussed in Section 7.2.

Additionally, the considered bolt patterns were such that all bolts were sufficiently
far from the plate edges not to be affected by their presence. For some joint geome-
tries the emergence of these edge effects was observed but not quantified and care
needs to be taken when evaluating load distribution for such cases.

9.3 LC2 modelling

The study of uniaxial compression loading of single or multi-column joints is possible
with the tool. The modelling approach is to consider compression and tension equiv-
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alently but considering the appropriate stiffness properties for each case. Therefore,
the conclusions regarding tensile loading of single and multi-column joints also apply
in this case. This approach was justified by the analyses of Section 6.2.3.

It should however be noted that compression loading has some peculiarities that
cannot be ignored in some cases. Specifically, compression loading can lead to struc-
tural instability, while that is not the case with tensile loading. For thin joints, the
critical force triggering buckling could be smaller than the load leading to static joint
failure, be that bearing failure or other forms. The tool would not be able to predict
this kind of failure, nor to account for potential influences on load distribution at
the onset of instability.

9.4 LC3 modelling

Two analytical models were considered and investigated in the study for joints sub-
ject to shear loading: the elastic method and the modified ICoR method.

Conservatism of the original ICoR method and of the elastic method is ensured by the
use of proper factors of safety. It should be noted that neither of them consider the
effects of clearance, so that the use of factors of safety is essential. Both methods,
as well as the modified ICoR method defined in this thesis study, conservatively
neglect bolt preload, thus assuming that no friction between the connected parts
can alleviate bolt loads.

The comparison of the elastic method and of the modified ICoR method with nu-
merical models was carried out for cases of zero bolt-hole clearance and without
factors of safety. For such conditions, the modified ICoR method was observed to
be more accurate than the elastic method for all considered cases. The difference
in accuracy, both in terms of load distribution and largest reaction prediction, was
observed to be maximum at large bolt deformation but significant also for interme-
diate bolt deformation. The difference is due to the possibility to take into account
load re-distribution due to bolt plasticity with the modified ICoR method.

While less accurate, the elastic method was observed to always overpredict the
largest reaction in a joint subject to shear loading. However, it should be noted that
the reactions at the least loaded bolts were constantly underpredicted. Conservative
joint design with this model is possible only if made for the largest reaction in the
bolt group.

The modified ICoR method was observed to lead to conservative predictions for all
bolts in most cases. The only observed underprediction, of about 1% of the force
reaction, was observed for bolt failure conditions. As bolt deformation becomes
smaller, the prediction of the method for the largest reaction in the joint becomes
more and more conservative.
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The applicability of the modified ICoR method to composite joints was demon-
strated. The available empirical data allow the use of the method for different plate
materials and for steel bolts with properties equivalent to grade 8.8. The use of the
method for fasteners of different materials would require the derivation of more em-
pirical relations. Nonetheless, it was demonstrated that a single empirical relation
is necessary for a fastener material and is applicable to joints with different plate
materials or laminate layups.

An extensive study on the effects of clearance on the prediction of the modified ICoR
method would define what factors of safety should be considered for joint design.
These future studies on models not accounted for clearance are also briefly discussed
in Section 10.2.

Due to the limits of the current mathematical implementation of the modified ICoR
method, the elastic method was implemented in the tool to calculate load distri-
bution in case of shear loading. The modified ICoR method was programmed in a
separate Python script.

9.5 LC4 modelling

In evaluating the superposition approach for biaxial loading, the results showed fairly
good accuracy for the considered joint geometry with no clearance. The fasteners
were assumed sufficiently far from the plate edges not to be influenced by the applied
boundary conditions. The validity of such assumption should be evaluated, also
through the results of the conducted parametric studies, if predictions based on
superposition were to be employed for joint design.

The investigations on biaxial loading, however, also raised concerns regarding the
possibility of completely and correctly modelling through superposition the phenom-
ena taking place. A definitive conclusion on the applicability of such approach was
not drawn. Further studies on different geometries and bolt patterns would allow a
more complete understanding to then express a conclusive judgment. If these studies
indicated that superposition can predict load distribution with reasonable accuracy
when clearance is not present, it would then be possible to evaluate what factors
of safety should be considered for safe joint design despite the uncertainty due to
tolerances.

9.6 LC5 modelling

The investigations on the considered model demonstrated its inadequacy to accu-
rately and conservatively predict reactions due to thermal loading.

Accounting for bolt-hole clearance and accurately estimating the expansion prop-
erties of the plates were shown to be the two necessary aspects to conservatively
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predict bolt reactions. In case of isotropic plate materials, only the first aspect
hinders accurate and conservative predictions. Bolt preload was also observed to
have a significant impact on the behavior of the joint with thermal loading. While
neglecting its effects leads to inaccurate estimations of bolt reactions, the inaccuracy
was observed to be conservative.

Concerning composite laminates, if a more accurate estimation of the thermal expan-
sion properties of the plates could be ensured, either through numerical studies or
experimental measurements, clearance would be the only source of non-conservative
predictions. In this case, it may be possible to employ the analytical model, ne-
glecting clearance, with proper factors of safety. As was the case for the analytical
models for LC3 and LC4, an estimation of these factors would necessitate extensive
numerical studies for several joint geometries and clearance conditions.

Without such information, numerical models should be employed to evaluate load
distribution in case of thermal loading. The high level of detail of 3D FE models
allows to account for all the fundamental parameters driving load distribution with
such loading. It would thus be possible to model the dependence of the material
properties on temperature, the influence of bolt expansion or contraction and of the
difference between curing and assembly conditions. This approach may not be fully
suitable for early stages of preliminary design but, as the results of the investigations
show, any model ignoring the fundamental aspects of load distribution with thermal
loading is of no use for reaction prediction.

Finally, laminate hybridization can sometimes significantly reduce bolt loads in case
of thermal loading. In some of the considered cases, bolt reactions were almost
nullified by simply replacing some of the composite plies with metal sheets.
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10 Conclusion

10.1 Summary

Following a review of the literature on load distribution in multi-fastener joints
subject to in-plane loading, relevant studies on analytical approaches were retained.
Alongside these studies, numerical studies were retained to serve as reference for
the numerical models employed in this thesis work for comparison of the analytical
results.

An analytical model for the calculation of load distribution in single-column joints
subject to uniaxial loading was retained from the literature. It was implemented in
the tool in combination with a model accounting for bolt preload. Employing the
two models to predict load distribution was observed to lead to results applicable for
joint design. The modification of the preload model to comply with the requirements
for the tool was observed not to hinder the applicability of the approach to single-
column joints with uniaxial loading. The significant impact of clearance on load
distribution was highlighted.

On the basis of the results for single-column joints, an approach for multi-column
joints subject to uniaxial loading was proposed. The findings of numerical investi-
gations indicated the possibility of considering each column as independent even in
presence of clearance leading to joint asymmetry and rotational effects.

The predictions of a model for thermal loading were evaluated through a series of
separate studies on the parameters considered to mainly influence load distribution
for such loading. In order to guarantee conservative predictions, the necessity of ac-
counting for clearance, together with the need for a precise estimation of the thermal
expansion properties of the materials, was underlined. In its current formulation,
the analytical model was considered not capable of conservatively predicting loads
induced by thermal loading.

The model retained from the literature for shear loading could conservatively predict
the largest bolt loads in a joint. A higher level of accuracy was obtained with a
modified method for shear loading based on empirical data on bolt deformation.
None of the two models takes clearance into account and both are to be used with
proper factors of safety.

An approach for modelling multi-fastener joints subject to biaxial loading was pro-
posed. Fairly good accuracy was observed for the considered joint geometry. For a
fixed geometry, the accuracy of the predictions was shown to solely depend on the
ratio of the loads applied in the two directions. The results raised nonetheless con-
cerns regarding the validity of such an approach which should be addressed through
further investigations.
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10.2 Outlook

In analytical studies with non-negligible preload, small variations of preload between
the bolts were assumed thanks to the use of precise control measurements. If an
assembly procedure with larger uncertainty were to be employed, an evaluation of
the impact of differences in preload would be necessary. In fact, such uncertainty
might have dangerous effects, not allowing a smooth evolution from quasi-linear
region to transition region, potentially invalidating the assumptions at the basis of
the analytical models.

Regarding shear loading, the modified ICoR method was observed to have a clear
potential to improve the prediction of the elastic method implemented in the tool.
Its applicability is currently limited by the definition of the minimization problem
on which the method is based. Improvements in this regard could be easily achieved.

Single-lap joints were considered in this study and numerical models were created for
comparison with studies in the literature. A comparison with the analytical models
was also carried out. However, due to time constraints, it was not possible to employ
them for studies on the peculiarities of single-lap configurations. In particular, the
influence on load distribution of secondary bending effects due to the eccentricity of
the load lines should be investigated. As previously mentioned, numerical studies on
single-lap joints may need the adoption of a different approach for force extraction.

Also, despite the possibility to define stepped joints in the models for uniaxial load-
ing, no investigation specifically on their particularities was carried out. A study on
this kind of with variable thickness would increase the confidence in the analytical
results for these geometries.

In the thesis study, linear deformation of the plates was considered without inves-
tigating plate failure. In the vicinity of bearing failure conditions, material non-
linearity could affect load distribution without the analytical models being capable
of capturing these effects. Studies on the topic could provide significant insights to
correctly model load transfer in such conditions with the tool.

Finally, the great influence of even small clearance on load distribution was high-
lighted throughout the thesis study for different joint geometries and loadings.
Higher level of accuracy was observed for the models capable of accounting for a
known value of clearance. However, due to the uncertain nature of tolerances, it is
not possible to exactly estimate what clearance conditions to consider as input for
these models. Taking advantage of the very short computational time of the ana-
lytical models, it would be possible to define an algorithm that, for fixed geometry
and loading, would repeat the load distribution calculation for many combinations
of clearance conditions within the considered tolerances. The output of such a cal-
culation would be a list of reactions in the joint for the corresponding clearance
conditions. Joint design could then be made for the largest reaction possible or for
the average reaction considering all clearance conditions. Such a study would also

125



be perfectly feasible with 3D FE models but it would require much longer compu-
tations. In this sense, the advantage of an analytical model compared to detailed
numerical approaches is clear.

The described numerical approach would however be necessary for those models
which cannot take into account clearance. Through a series of studies with different
clearance conditions, repeated for several joint geometries, the maximum discrep-
ancy possible between numerically computed results and analytical predictions not
accounting for clearance could be estimated. From the findings of such studies, it
would then be possible to define factors of safety to be employed in connection with
the analytical models not accounting for clearance.
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11 Appendix

11.1 Joint displacement and bolt-hole clearance

Figure 61: Bottom joint displacement due to uniaxial load: No load (a), single
bolt-hole contact (b), double bolt-hole contact (c)
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11.2 Generalized problem formulation for Section 4.1.2

11.2.1 K matrix

The generalized definition of the stiffness matrix for a joint with N fasteners is
provided below. The matrix has an n×n size, where n=2N+1. With the exception
of rows 1, 2, n-2, n-1 and n defined below, the other rows are defined in pairs as
written in rows k and k+1. In both cases, k is to be replaced by the odd row number.
All the unspecified matrix components are equal to zero.

Row 1:

K1, 1 = KA end +KA N-1 +KF N

K1, 2 = −KF N

K1, 3 = −KA N-1

Row 2:

K2, 1 = −KF N

K2, 2 = KF N +KB N-1

K2, 3 = −KB N-1

Row k:

Kk, k − 2 = −K
A N-

(k − 1)

2

Kk, k = K
A N-

(k − 1)

2

+K
A N-

(k + 1)

2

+K
F N-

(k − 1)

2

Kk, k + 1 = −K
F N-

(k − 1)

2

Kk, k + 2 = −K
A N-

(k + 1)

2

Row k+1:

Kk + 1, k − 1 = −K
B N-

(k + 1)

2
+ 1

Kk + 1, k = −K
F N-

(k + 1)

2
+ 1

Kk + 1, k + 1 = K
B N-

(k + 1)

2

+K
B N-

(k + 1)

2
+ 1

+K
F N-

(k + 1)

2
+ 1
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Kk + 1, k + 3 = −K
B N-

(k + 1)

2

Row n-2:

Kn− 2, n− 4 = −KA 1

Kn− 2, n− 2 = KA 1 +KF 1

Kn− 2, n− 1 = −KF 1

Row n-1:

Kn− 1, n− 3 = −KB 1

Kn− 1, n− 2 = −KF 1

Kn− 1, n− 1 = KB 1 +KB end +KF 1

Kn− 1, n = −KB end

Row n:

Kn,n− 1 = −KB end

Kn,n = KB end

11.2.2 L vector

Similarly to the definition of the stiffness matrix, the load vector L is defined by
pairs of components. The generic definitions for k and k+1 apply to any row with
k values between 0 and n-2 included. The last vector component is equal to the
applied load the corresponding node.

Row k:

Lk = −KF N-k+1 · clN-k+1

Lk + 1 = KF N-k+1 · clN-k+1

Row n:

Ln =P
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11.3 Additional calculations for thermal loading model

As mentioned in Section 4.1.3, the thermal loading model was derived with a direct
stiffness formulation. This section provides a more detailed explanation concerning
how the model was derived in the proposed formulation. The formulation was de-
rived for a joint with three fasteners and was then generalized to any number of
bolts. The equations of this section refer to the joint discretization of Fig.16.

Equations representing the displacement of the first and last node due to thermal
expansion are written at first:

x1 = α · lend ·∆T (40)

x7 = x6 + β · lend ·∆T (41)

As a second step, because of the internal nature of thermal forces, the sum of the
fastener reactions is set equal to zero:

F1 + F2 + F3 = 0 (42)

Nodal equilibrium equations are then written:

KA 2(x3 − x1) = KA 2 · α · p2 + (F2 + F3) (43)

KA 1(x5 − x3) = KA 1 · α · p1 + F3 (44)

KB 2(x4 − x2) = KB 2 · β · p2 − (F2 + F3) (45)

KB 1(x6 − x4) = KB 1 · β · p1 − F3 (46)

This constitutes a linear system of 7 equations to determine 7 unknown nodal dis-
placements x. Through a combination of the equations, it is possible to express the
problem in the form K · x = Lther, where x are the nodal displacements due to
the thermal loads expressed in Lther and K is the stiffness matrix of the structure.
Since the algebraic steps after equation combination are very lengthy, only the end
results are shown.

The sum of Eq.42 and Eq.43 yields:
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(KF 3 +KA 2 +KA end)x1 −KF 3 · x2 −KA 2 · x3

= KA end · α · lend∆T −KA 2 · α · p2∆T (47)

Considering Eq.42 minus Eq.45:

−KF 3 · x1 + (KF 3 +KB 2)x2 −KB 2 · x4 = −KB 2 · β · p2 ·∆T (48)

Subtracting Eq.44 from Eq.43:

−KA 2 · x1 + (KA 2 +KA 1 +KF 2)x3 −KF 2 · x4 −KA 1 · x5

= KA 2 · α · p2 ·∆T −KA 1 · α · p1 ·∆T (49)

The difference between Eq.45 and Eq.46 leads to:

−KB 2 · x2 −KF 2 · x3 + (KB 2 +KB 1 +KF 2)x4 −KB 1 · x6

= KB 2 · β · p2 ·∆T −KB 1 · β · p1 ·∆T (50)

The equation for node 5 can be obtained directly from Eq.44:

−KA 1 · x3 + (KA 1 +KF 1)x5 −KF 1 · x6 = KA 1 · α · p1 ·∆T (51)

Also here the equation can be directly obtained, in this case from Eq.46:

−KB 1 · x4 −KF 1 · x5 + (KB 1 +KF 1 +KB end)x6 −KB end · x7

= KB 1 · β · p1 ·∆T −KB end · β · lend ·∆T (52)

Finally, the last equation is obtained by simply multiplying Eq.41 by KB end:

−KB end · x6 +KB end · x7 = KB end · β · lend ·∆T (53)

Equations 47 to 53 are written in such a form that the components of the thermal
loading vector Lther can be easily identified on the right-hand side of the equations.
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The left-hand side is related to the structure of the joint and is not dependent on
the considered load. It is equivalent to the product K · x, which was already found
for the uniaxial loading model and defined in Section 4.1.2.

In case of a joint with a generic number of fastenrs N, the proposed model can be
easily adapted. The equations corresponding to the nodes 1, 2, n-2, n-1 and n are
derived from equations 47, 48, 51, 52 and 53 respectively by adapting the subscripts
for N fasteners. All the other equations take either the form of Eq.49, for plate
A nodes, or Eq.50, for plate B nodes. With these modifications, the generalized
thermal loading vector can be expressed as:

Lther =



(KA end · lend −KA N−1 · pN−1)α
−KB N−1 · β · pN−1

(KA N−1 · pN−1 −KA N−2 · p2)α
(KB N−1 · pN−1 −KB N−2 · p2)β

.

.

.
(KA 2 · p2 −KA 1 · p1)α
(KB 2 · p2 −KB 1 · p1)β

KA 1 · α · p1

(KB 1 · p1 −KB end · lend)β
KB end · β · lend



∆T
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11.4 Calculation of the global CTE for a laminate

The coefficient of thermal expansion of a laminate is calculated from the CTEs of
the ply material as given in Section 2.4.2.

This is done by considering the effects of hygrothermal loads which induce a “free
strain” when no mechanical loads are applied. The first step is to calculate the
hygrothermal loads for an isolated ply in the material system 123. In case of zero
moisture gradient and non-zero temperature gradient ∆T , the free strains due to
hygrothermal loads are:

εHT1 = CTE1 ·∆T
εHT2 = CTE2 ·∆T

γ12 = 0rrrrr

(54)

From the previously calculated strains, the strains in a rotated system are:

εHTX = εHT1 · v2 + εHTY · w2

εHT2 = εHT1 · w2 + εHTY · v2

γXY = 2
(
εHT1 − εHT2

)
vwe

(55)

With v = cosθ and w = sinθ. Since thermal stresses are internal stresses, hygrother-
mal loads NHT are self-equilibrated and can then simply be determined from the
laminate’s rotated stiffness matrix Q and the free strains:


NHT
X

NHT
Y

NHT
XY

 =

q∑
k=1

[Q]k


εHTX

εHTY

γHTXY

 · tk (56)

With q being the total number of plies of thickness tk each. Knowing the effective hy-
grothermal loads, the laminate’s coefficients of thermal expansion can be calculated
as:

CTEX =
1

∆T

[
a11 ·NHT

X + a12 ·NHT
Y

]
CTEY =

1

∆T

[
a12 ·NHT

X + a22 ·NHT
Y

] (57)

Where a11, a12 and a22 are components of the laminate’s a matrix, obtained from

abd=ABD−1. The temperature gradient, already applied in Eq. 54, is arbitrary.
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11.5 Bolt shear capacity calculation

ASTM A325 bolts were employed in the study on bolt shear deformation on which
the instantaneous center of rotation method is based. The same approach to derive
bolt shear capacity used in the reference study was employed in the thesis study for
consistency.

A distinction is made in [47] based on the bolt threads, which could either be included
or excluded from the shear planes. In this study, it was conservatively assumed that
threads are never excluded from the shear plane, thus calculating a smaller bolt
shear capacity. For this case, the bolt capacity is calculated as:

RN = 0.45 · nl · AF · σuts (58)

Where nl represents the number of shear planes in the bolt, equal to 1 in single-lap
and 2 in double-lap joints and AF is the cross section area of the bolt. The value
σuts for the considered bolts was presented in Table 7.
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11.6 Mesh sensitivity study for a single-lap joint

Table 54: Monitored variables for Plate mesh refinements in single-lap

Mesh P [kN] Fsum [kN] f1 [-] f2 [-] f3 [-]
Simulation
time [min]

P1-W2-BN2 19.3 16.7 22.7 37.1 40.2 24.1
P2-W2-BN2 19.2 16.6 22.8 37.0 40.2 23.8
P3-W2-BN2 19.2 16.5 22.8 37.0 40.2 35.7
P4-W2-BN2 19.2 16.5 22.7 37.0 40.2 43.4

Table 55: Monitored variables for Washer mesh refinements in single-lap

Mesh P [kN] Fsum [kN] f1 [-] f2 [-] f3 [-]
Simulation
time [min]

P2-W1-BN2 19.2 16.5 22.6 37.1 40.3 22.0
P2-W2-BN2 19.2 16.6 22.8 37.0 40.2 23.8
P2-W3-BN2 19.2 16.6 22.8 37.0 40.2 34.9

Table 56: Monitored variables for Bolt and nut mesh refinements in single-lap

Mesh P [kN] Fsum [kN] f1 [-] f2 [-] f3 [-]
Simulation
time [min]

P2-W2-BN1 19.2 16.5 22.8 37.0 40.2 25.6
P2-W2-BN2 19.2 16.6 22.8 37.0 40.2 23.8
P2-W2-BN3 19.3 16.6 22.7 37.1 40.2 34.6
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11.7 Additional information for Section 6.2

Figure 62: Mesh for the FE model of the joint considered in Section 6.2

Figure 63: Bolt 2 - hole contact status at 27 kN of applied load for
λ = {40, 100, 40}
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Figure 64: Bolt 2 - hole contact status at 42 kN of applied load for
λ = {40, 100, 40}
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11.8 Additional information for Section 6.3

Figure 65: Top view of the rectangular plate from Section 6.3.1

Figure 66: P2-W2-BN2 mesh for sensitivity study with thermal loading

Figure 67: P3-W2-BN3 mesh for sensitivity study with thermal loading
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11.9 Additional information for Section 7.1

Figure 68: Mesh for the FE model of the joint considered in Section 7.1

Table 57: Bolt loads comparison for ∆high=0.01 mm (P=2 kN)

FEM Modified ICoR Elastic

FS [kN] fS [%] FS [kN] fS [%] FS [kN] fS [%]

Bolt 1 1.40 24.0 1.54 22.3 1.31 20.3
Bolt 2 1.34 23.1 1.54 22.3 1.31 20.3
Bolt 3 1.53 26.4 1.92 27.7 1.91 29.7
Bolt 4 1.54 26.5 1.92 27.7 1.91 29.7

Table 58: Bolt loads comparison for ∆high=2.86 mm (P=35 kN)

FEM Modified ICoR Elastic

FS [kN] fS [%] FS [kN] fS [%] FS [kN] fS [%]

Bolt 1 25.2 23.8 25.8 23.0 22.9 20.3
Bolt 2 24.9 23.4 25.8 23.0 22.9 20.3
Bolt 3 28.1 26.5 30.3 27.0 33.5 29.7
Bolt 4 28.0 26.3 30.3 27.0 33.5 29.7
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Table 59: Bolt loads comparison for ∆high=8.636 mm (P=47.7 kN)

FEM Modified ICoR Elastic

FS [kN] fS [%] FS [kN] fS [%] FS [kN] fS [%]

Bolt 1 35.0 24.2 34.7 24.2 31.2 20.3
Bolt 2 35.1 24.3 34.7 24.2 31.2 20.3
Bolt 3 37.2 25.8 36.9 25.8 45.7 29.7
Bolt 4 37.0 25.7 36.9 25.8 45.7 29.7

Table 60: Global plate stiffness for considered layups from CLT

Ex [GPa] Ey [GPa]

M-DL-D-C 86.7 29.8
M-DL-Q-C 48.0 48.0

Table 61: Elastic model loads prediction with CFRP plates for ∆high=0.409 mm
(P=15 kN)

Elastic

FS [kN] fS [%]

Bolt 1 9.82 20.3
Bolt 2 9.82 20.3
Bolt 3 14.4 29.7
Bolt 4 14.4 29.7
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11.10 Additional load-distribution calculation for Section
7.2.2

To obtain reactions F1 and F4 on one hand and F2 and F3 on the other, two separate
FE models with single-column approach were employed. In both cases, a displace-
ment ux=0.3 mm was imposed to the free end of the joint. This displacement value
corresponds to different applied loads for the two columns, for example 27.4 kN and
21.3 kN in Table 62. This discrepancy is a consequence of the presence of bolt-hole
clearance only in one of the two single-column models.

The results for the case 1-col (Bolts 1-4) were scaled, maintaining the same propor-
tionality, to consider the same Fsum value as in 1-col (Bolts 2-3), thus yielding the
line 1-col (Bolts 1-4)*. This is equivalent to consider that the load distribution for
the single-column joint with bolts 1 and 4 remains the same for different applied
loads. This approach is justified by considering the elastic nature of material defor-
mation, the absence of clearance in bolts 1 and 4 and the fact that the slip-critical
friction force has been overcome.

Table 62: Bolt reactions scaling for 1-col with M-DL-D-C and λ = {0, 100, 0, 0}

Joint P [kN] Fsum [kN] F1 [-] F2 [-] F3 [-] F4 [-]

1-col (Bolts 1-4) 27.4 27.0 15.2 11.8
1-col (Bolts 2-3) 21.3 20.8 4.7 16.1

1-col (Bolts 1-4)* 20.8 11.7 9.13

Based on these scalings, the results could be compared to obtain the load distribution
at the four fasteners for the single-column approach, as shown in Tables 63 and 65
and reported in Section 7.2.2.

Table 63: Load distribution for 1-col with M-DL-D-C and λ = {0, 100, 0, 0}

Joint P [kN] Fsum [kN] f1 [-] f2 [-] f3 [-] f4 [-]

1-col 21.3 (20.8) 28.1 11.3 38.7 21.9

The scaling procedure for comparison of the results described above was equally
applied to the quasi-isotropic laminate case. The results are presented in Tables 64
and 65.
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Table 64: Bolt reactions scaling for 1-col with M-DL-Q-C and λ = {0, 100, 0, 0}

Joint P [kN] Fsum [kN] F1 [-] F2 [-] F3 [-] F4 [-]

1-col (Bolts 1-4) 20.9 20.5 12.3 8.16
1-col (Bolts 2-3) 15.9 15.5 2.85 12.6

1-col (Bolts 1-4)* 15.5 9.30 6.17

Table 65: Load distribution for 1-col with M-DL-Q-C and λ = {0, 100, 0, 0}

Joint P [kN] Fsum [kN] f1 [-] f2 [-] f3 [-] f4 [-]

1-col 15.9 (15.5) 30.1 8.9 39.6 19.9
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11.11 Parametric study on the effect of boundary condition
distance

A parametric study was carried out to validate the hypothesis that the two modelling
approaches 1D BCs and 2D BCs tend to give equal results when the fasteners are
far from the plate edges. The study was carried out for the joint geometry presented
in Fig.53 by considering five different values for the length s. It was not necessary to
modify the joint geometry also in the other direction since only a load along the X
direction is considered. This makes it easy to monitor the impact of edge distance
since, for 1D BCs conditions, an equal distribution at 1-2 and 3-4 is known to be
observed. The results are summarized in Table 66.

Table 66: Influence of boundary conditions distance for uniaxial tensile loading

s f1 f2 f3 f4 Xre

[mm] [%] [%] [%] [%] BCX [%] BCY [%]

1D BCs 40 28.3 28.3 21.7 21.7 100 0

2D BCs 10 30.1 23.8 18.6 27.5 66.0 34.0
2D BCs 40 29.4 26.1 19.9 24.6 84.6 15.4
2D BCs 160 28.5 27.9 22.3 21.3 98.7 1.34
2D BCs 240 28.4 28.1 21.5 22.0 99.6 0.37
2D BCs 320 28.3 28.1 21.6 21.9 99.9 0.10

For large s values, the load distribution prediction with the 2D BCs approach tends
to the prediction obtained with 1D BCs, as had been anticipated. Modifying s with
the latter approach is not expected to modify the load distribution and only the case
with s=40 mm was considered. For the case s=160 mm, roughly four times the bolt
pitch, the difference between the two approaches at the two most loaded bolts is of
0.2%.

Based on these results, it is believed that repeating the study by considering loads
in two directions would lead to the same trends. However, it is possible that the
variations of load fraction between 1D BCs and 2D BCs would be larger with biaxial
loading than with uniaxial loading for the same edge distance. This fact should, of
course, be kept in mind when interpreting these findings for loading in two directions.
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