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Abstract: This paper presents a state-feedback algorithm with adaptive gains, designed to solve
the typical gain tuning trade-off between accurate tracking in a neighborhood of the working
points and large control inputs far from their proximity. The main idea is to use a Gaussian
function to specify a “trust” region around the working point. For values outside this region, the
gain decays exponentially and therefore the actuation input is limited. On the other hand, the
variance of the Gaussian is constantly adapted, so that the attractive region around the working
point will expand and eventually allow the convergence to the desired value. The stability of
the algorithm is analyzed and simulations are used to validate the theoretical results.
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1. INTRODUCTION

A proportional state-feedback action is one of the most
fundamental and ubiquitous control scheme used in indus-
try and research. In the robotics community, for example,
many different and sophisticated control schemes are in
some sense related to a classic proportional-differential
(PD) control law, i.e., to a proportional feedback of the
robot state. This is the case in the seminal work of
Takegaki and Arimoto (1981) and many of the schemes
in Siciliano et al. (2008). A typical trade-off that control
engineers are faced with is to design the control gains lead-
ing to a good compromise between tracking performance
and noise rejection. Moreover, the gains are typically tuned
to guarantee the desired performance in a neighborhood
of the working point and configurations starting far away
from it could often lead to a control variable that saturates
the actuators. This issue is so pressing in applications, that
many works can be found in the robotics literature, like
Burkov and Freidovich (1997); Kelly et al. (1997); Dixon
et al. (1999); Zavala-Rio and Santibanez (2007) or the
results of Teel (1996) in the more general contest of input-
to-state stability (ISS). All of these references analyze the
presence of saturation in the control scheme, which can
otherwise lead to undesirable effects in the closed loop.

A relative common procedure is also to interpolate a
smooth trajectory between the starting and final points,
that the controller is later required to track. This is typi-
cally realized using some kind of low-pass filter, similar to
those in Farrell et al. (2009). The drawback of such ap-
proach is that the interpolation requires additional tuning
and might decrease the performance of the system when
tracking rapid trajectories. In the worst scenario, one ends
up tuning the parameters of the low-pass filter depending
on each specific desired behavior of the system. Most
importantly, the low-pass filter will affect the behavior of
the system both in the proximity of the working point

and far away from it, even though it is not necessary (and
actually undesirable) to modify the behavior of the system
near the equilibrium point. In other words, only when large
control errors are amplified by the controller gains, the
behavior should be altered.

The main contribution of this paper is the design of a
dynamic state feedback, which allows smooth transitions
between a high-gain behavior in a neighborhood of the
working point and a low-gain behavior when the system is
far from it. This is possible by using state-dependent gains
rather then a more classic constant value. The nominal
constant gain is multiplied by an adjustable windowing
function, which adapts the value of the gain in an expand-
ing or contracting neighborhood of the equilibrium point.
As the windowing effect is realized by means of a not-
normalized Gaussian function with an adaptive variance,
the control algorithm is referred to as Adaptive Variance
Algorithm (AVA).

Varying gains is at the basic of gain-scheduling approaches
surveyed in Leith and Leithead (2000). The design prin-
ciple in gain scheduling is typically to use different gains
to decompose the nonlinear design task in a number of
linear sub-tasks. Adaptation is the key feature of adaptive
control schemes like those in Sastry and Bodson (1994).
Compared to those, the goal here is not to guarantee the
control specifications despite varying or initially uncertain
parameters, but rather to adapt the behavior of the control
variable depending on a measure of the distance between
the system state and the final goal. Unlike all previously
mentioned works on saturated PD schemes, the proposed
control law does not aim at guaranteeing that the hard-
ware limitations are not exceeded, but rather to automat-
ically adjust the gains depending on the error. This will
reduce, as byproduct, the likelihood of saturation. On the
other hand, unlike those schemes which have predefined
regions where the saturation acts, the adaptive nature



of AVA allows the controller to automatically change its
behavior. To visualize this phenomenon, imagine having
a saturated proportional action in a mechanical system.
The local stiffness for the saturated scheme would always
be (nearly) zero far from the equilibrium, while with AVA
the stiffness is allowed to increase if it is within the
limitations of the system. Related to the schemes with
bounded output is also Model Predictive Control, thanks
to its ability to satisfy a set of constraints, see Allgöwer
et al. (1999). Nevertheless, the drawback is the necessity
of repeatedly optimizing a possibly complex problem and
stability cannot be always easily guaranteed.

The paper is organized as follows. Section 2 presents the
main idea of the paper in the case of two very simple sys-
tems. In Section 3, the control objective is described and
the results are formalized in a theorem, which represents
the main result of the paper. The behavior of the control
laws is shown with simulations in Section 4. Additionally,
practical considerations and a discussion about the role
of the parameters are considered in that section. Finally,
Section 5 summarizes the work and points to possible
extensions of the proposed method.

1.1 Preliminaries

The usual Euclidean norm will be denoted by |·|.
A function γ : [0, ∞)→ [0, ∞) is a class K function if it is
continuous, strictly increasing and γ(0) = 0. It belongs to
class K∞ if in addition 1 γ(r)→∞ as r →∞. A function
β : [0, ∞)× [0, ∞)→ [0, ∞) is a class KL function if
given β(r, t) then for each fixed t ≥ 0, β(·, t) is a class K∞
function and for each fixed r ≥ 0, β(r, ·) is decreasing to
zero as t→∞.

Local and global asymptotic stability will be denoted in
short as LAS and GAS, respectively. By 0-GAS it is meant
that the system ẋ = f(x, 0) is GAS. This is the unforced
system associated to the system with inputs ẋ = f(x, u).
Finally, ISS denotes input-to-state stability. When not
specifically stated, these properties are always meant to
hold for the origin of the state space.

2. SIMPLE CANONICAL EXAMPLES

In this section, the main idea of the control law is derived
using a single and double integrator as canonical examples
of first and second-order control systems, respectively.
In the remainder, it will be considered (without loss of
generality) the regulation to the origin of the state space.

2.1 Single integrator

Consider the single input integrator with state ξ1 ∈ R
ξ̇1 = v , (1)

where v ∈ R is the control input to be chosen such that
ξ1 → 0 as t→∞. Clearly, v = −k1ξ1, with k1 > 0 achieves
the goal and renders the system GAS. The following
theorem states that the same can be guaranteed also with
a dynamic state feedback, which modifies the gain by an
adaptive windowing function.
1 The class K∞ notation is often used also for functions that are
defined only on bounded intervals [0, r]. In this case, the function is
bounded, but it can always be extended to a K∞ function on [0, ∞).

Theorem 1. For the integrator system (1), the dynamic
state feedback with internal state σ ∈ R

v = −k1e
−V (ξ1,σ)ξ1 (2a)

σ̇ =
(
k3 − k2e

−V (ξ1,σ)
)
σ , (2b)

where, given the constant σ̄ > 0, V : R2 → R is defined as

V (ξ1, σ) =
ξ2
1

2(σ̄2 + σ2)
(3)

leads to a GAS closed-loop system, provided that the gains
ki, with i ∈ {1, 2, 3}, satisfy the inequalities k1 > 0 and
k2 > k3 > 0.

Proof. See Appendix B.

Given the expression of V (ξ1, σ), the term e−V (ξ1,σ) is
a not-normalized unimodal Gaussian function with zero
mean and variance σ̄2 + σ2. The idea behind (2) is to
use a smooth windowing function to reduce the control
effort far from the equilibrium point, i.e., for large control
errors. Additionally, the internal state of the controller
evolves to automatically adapt the windowing size and still
yield a GAS system. The condition k2 > k3 > 0 intuitively
guarantees that the windowing size starts shrinking back
to its original value as the system approaches the goal.
Although σ will eventually converge to zero, the dynamic
in (2b) implies an exponential growth of σ for values
that are far from ξ1 = 0. Here by “far” it is understood
values outside the region defined by the variance of the
Gaussian. Given an initial condition ξ1,0 far from the

origin, then k1e
−V (ξ1,σ) will be initially small and, as σ

increases, it will tend to the nominal value k1. On the
other hand, the controller will always behave almost as a
static state feedback within a neighborhood of the origin.
The amplitude of such neighborhood is adjustable via σ̄.

Remark: The function V (ξ1, σ) could be used as a
semidefinite Lyapunov function as in Iggidr et al. (1996), if
additionally k1 ≥ k2. Computing the derivative of V (ξ1, σ)
along the flow of the closed-loop system leads to

V̇ = −2
[(
k1 − k2α(σ)

)
e−V (ξ1,σ) + k3α(σ)

]
V (ξ1, σ) , (4)

where α(σ) = σ2

σ̄2+σ2 assumes values within the inter-

val [0, 1), while e−V (ξ1,σ) has value in (0, 1]. Choos-
ing the constants such that k1 ≥ k2 > k3 > 0, guarantees
that V̇ = 0 ⇐⇒ ξ1 = 0 and with ξ1 = 0, (2b) reduces to
σ̇ = −(k2 − k3)σ. Besides imposing stronger restrictions
on the gains, this allows to show only LAS and not GAS.

2.2 Double integrator

As example of a second-order control system, the canonical
double integrator is considered

ξ̇1 = ξ2 (5a)

ξ̇2 = v , (5b)

which can be thought of as the simplest model of a mass in
a one-dimensional space under the effect of a time-varying
force input v. As before, the control input has to be chosen
such that the closed-loop system is GAS. To this end, let
s be the variable defined as

s = ξ2 + k1e
−V (ξ1,σ)ξ1 , (6)

with V (ξ1, σ) given in (3). The previously derived results
are extended to the second-order system (5) by designing



a second-order dynamic feedback with state (σ, ρ) ∈ R2.
The controller is provided in the following theorem.

Theorem 2. For the double integrator system (5), the
dynamic state feedback with internal state (σ, ρ) ∈ R2

v = −k1e
−V (ξ1,σ)

(
ξ2 − ξ1 V̇ (ξ1, σ)

)
− h1e

−V (s,ρ)s (7a)

σ̇ =
(
k3 − k2e

−V (ξ1,σ)
)
σ (7b)

ρ̇ =
(
h3 − h2e

−V (s,ρ)
)
ρ , (7c)

where s is defined in (6) and V (·, ·) is given in (3), leads to
a GAS closed-loop system provided that the control gains
ki, hi, with i ∈ {1, 2, 3} satisfy the inequalities k1 > 0,
k2 > k3 > 0 and h1 > 0, h2 > h3 > 0.

Proof. See Appendix B.

3. MAIN RESULT

Since the focus of the paper is to provide first results
for global asymptotic stabilization with smooth high-
gain/low-gain transitions, a class of systems with trivial
zero dynamics will be considered.

Consider a system described by the nonlinear equations
(e.g., a mechanical system)

ẋ = f(x) +

n∑
i=1

gi(x)ui (8a)

y = λ(x) , (8b)

where x ∈ R2n is an available state vector, u ∈ Rn is the
control input and y ∈ Rn is the output of interest. As
in Isidori (1995), the vector fields f(x), gi(x) and the
functions λi(x), i ∈ {1, . . . , n}, are smooth and defined on
an open set of R2n. Additionally, the matrix g(x) has full-
rank in the domain of interest and the system has (vector)
relative degree {r1, . . . , rn} with ri = 2.

In the above conditions, the State Space Exact Lineariza-
tion Problem is solvable, see Isidori (1995). The control
goal is to design an asymptotically stabilizing control input
for the controllable feedback linearized system satisfying
the following requirements. The aim of the control law
is to fulfill the main stabilizing objective and smoothly
pass from a high-gain behavior in a neighborhood of the
equilibrium point to a low-gain behavior for large control
errors, in order to avoid large values of the control input.

In view of Theorem 2, a possible solution to the previ-
ously stated problem is provided by the following result.
Therein, Lkfλ(x) denotes that λ is differentiated k times
along f .

Theorem 3. Given the system (8), let u = a(x) + b(x)v
be the linearizing feedback leading to n controllable linear
systems in the form

ξ̇i1 = ξi2 (9a)

ξ̇i2 = vi , (9b)

with linearizing coordinates ξ and ξik = Lk−1
f λi(x) for

1 ≤ k ≤ 2, 1 ≤ i ≤ n. Then choosing vi as in (7), with
variables si as in (6) and V i(ξi1, σ

i) as in (3), renders
the origin ξ = 0 GAS provided that the gains ki1, ki2, ki3
and hi1, hi2, hi3 satisfy the inequalities ki1 > 0, ki2 > ki3 > 0
and hi1 > 0, hi2 > hi3 > 0. Moreover, σ̄i allows to influence
the region for the transition from high to low gain.
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Fig. 1. Internal state σ and its derivative for the controller
(2) of system (1).
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Fig. 2. State ξ1 of the system (1) in feedback with (2),
together with the control input v.

Proof. The proof consists in repeatedly applying Theo-
rem 2 for each of the n double integrators.

4. SIMULATIONS AND DISCUSSION

In this section, the behavior of the control laws is shown
with simulations, which provide also an overview on the
role of the parameters.

The effects of the different gain values will be analyzed
first. The simple integrator system will be considered for
this, as the role of the parameters is the same also for (5).
The way k1 influences the system response is analogous to
what happens in a more standard state feedback. Starting,
instead, from (2b), one can recognize that k3 and k2 will
influence how rapidly the windowing function expands and
contracts, respectively. For the system (1), with k1 = 2,
the choice k3 = 0.5 k2 leads to an almost symmetrical
behavior. Fig. 1 shows the different evolution of σ and
σ̇, for gains k1 = 2, k2 = 2 and k3 ∈ {0.4, 1, 1.6}.
As a result of a faster increase of σ, the state will more
rapidly reach the goal as the gain will transition more
quickly towards the high gain value. This effect is visible
in Fig. 2, where the state ξ1 and the control input v from
the previous simulation are plotted, and also in Fig. 4.

Looking at the control input v in Fig. 2, it is possible to
observe that the initial state ξ1,0 = 7, given σ̄ = 2, is so
far from the origin that the control gain is close to zero.
On the contrary, in Fig. 3 the initial state ξ1,0 = 1 is close
enough (given σ̄ = 2) to have a system response analogous
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Fig. 3. Evolution of the state of the closed-loop system
given by (1) and (2), when the initial condition is
close to the goal.
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Fig. 4. State ξ1 of the system (1) in feedback with (2) and
the control input v, for slow and fast evolution of σ.

to a linear system. Accordingly, the different evolution of
σ, due to the different gain values, has no influence on ξ1.

A last consideration about the gains is that the condition
k1 ≥ k2 that would be required when using V (ξ1, σ) as
semidefinite Lyapunov function is rather conservative. In
Fig. 4, for example, both k2 = k1 and k2 = 10 k1 have been
used. The plots in blue in Fig. 2 and Fig. 4 are identical,
as all the parameters are the same. The plots in purple,
instead, were obtained with k2 = 20 and k3 = 10. As
already noticed in Fig. 2, the higher k3 will lead to a faster
increase of σ and the state will reach the goal faster.

The next simulations show the different response of the
system (5) when in feedback interconnection with the pro-
posed approach (AVA), a classic proportional-derivative
control (PD) and the combination of an interpolator and
a PD controller (IP). The particular expressions of the PD
controller and the interpolator are

vPD = −2k1

(
ξ2 − ξ2,d

)
− k2

1

(
ξ1 − ξ1,d

)
(10)

...
ξ IP = −3k1ξ̈IP − 3k2

1 ξ̇IP − k3
1ξIP , (11)

where ξ1,d = ξ2,d = 0 for the PD scheme, while ξ1,d = ξIP ,

ξ2,d = ξ̇IP for the scheme with inpterpolator and PD
controller. In particular, to show a difference between the
last two methods, for the latter a third-order filter is used.
In this way, the scheme is effectively realizing a sort of
dynamic extension, which is detailly explained in Zhan
et al. (1991). Fig. 5 and Fig. 6 show the comparison of the
three methods far from and close to the goal, respectively.
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Fig. 5. Behavior of (5) in feedback with three different
schemes, starting far from the goal.
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Fig. 6. Behavior of (5) in feedback with three different
schemes, starting close to the goal.

The PD controller and the IP scheme are at the antipodes;
the first always starts with a nonzero input (which in Fig. 5
is considerably high due to the large initial error), while
the second always starts from zero (due to the fact that
it behaves as a third-order system). AVA is a compromise
between the two as it performs the gain transition that
allows it to have a high gain near the equilibrium point and
a low gain far from it. AVA can reproduce the behavior of
the PD and IP via the limiting cases of σ̄ →∞ and σ̄ → 0,
respectively. Finally, notice that it has been chosen to limit
the gain tuning of all the methods by using multiples and
powers of k1. While a different tuning of the parameters
allows to change the responses (e.g., AVA could converge
more rapidly to the goal as shown in Fig. 4), the overall
behavior will remain unchanged.

A possible critical situation for the AVA scheme could
occur when a change of the desired goal is commanded
before σ has converged back to its desired value. In this
case, if the new desired goal would have normally required
a low gain, the controller cannot guarantee the correct
transition of the gain, i.e., the control input might still
result in a large value as a result of a high control error. A
possible solution, if applicable, could be to reset the control



state σ in case of a change of the desired goal before the
latter has been reached and σ has converged.

5. CONCLUSION

In this paper, a dynamic state feedback with adaptive
state-dependent gains has been presented. The main fo-
cus of the paper was on developing an automatic high-
gain/low-gain transition depending on the distance be-
tween the current system state and the final goal. This
is realized while still guaranteeing the global asymptotic
stability of the equilibrium point in the origin. The basic
Adaptive Variance Algorithm (AVA) in its first and second-
order variants has been used in combination with feedback
linearization for systems with trivial zero dynamics. The
stability of the algorithm is analyzed and simulations are
used to validate the theoretical results, as well as to high-
light the role of the different parameters.

Future work will consider the possibility of finding condi-
tions under which a stabilizing controller for a nonlinear
system can be modified with an AVA scheme in order to
guarantee in general the high-gain/low-gain transitions.
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Appendix A

Useful theorems for the derivation of the results presented
in this paper are reported here for completeness. All the
vector fields are assumed to be locally Lipschitz and to be
zero when evaluated in zero.

The following results from Seibert and Suarez (1990) hold
for the cascaded system

ẋ = f(x) (A.1a)

ẏ = g(y, x) . (A.1b)

Theorem 4. If the systems (A.1a) and (A.1b) are GAS
and 0-GAS, respectively and if every orbit of (A.1) is
bounded in the future, then (A.1) is GAS.

Theorem 5. If the positive real-valued, differentiable func-
tion W , defined on B, is unbounded on any unbounded set
and Ẇ ≤ 0 holds on the intersection of an end set with
some set of the form {(x, y) | |(x, y)| ≥M > 0}, then all
orbits starting in B are bounded for t > 0.

It is reported a version of the main result in Jiang et al.
(1996) in absence of inputs and for the case of GAS, which
is sufficient for the purpose of this paper.

Theorem 6. Given the interconnected systems

ẋ1 = f1(x1, x2) (A.2a)

ẋ2 = f2(x1, x2) , (A.2b)

where, for i = 1, 2, xi ∈ Rni and fi : Rn1 × Rn2 → Rni is
locally Lipschitz. Assume that, for i = 1, 2, there exists an
ISS-Lyapunov function Ui for the xi-subsystem such that
the following holds:

(1) there exist functions ψi1, ψi2 ∈ K∞ so that

ψi1(|xi|) ≤ Ui(xi) ≤ ψi2(|xi|) , ∀xi ∈ Rni (A.3)

(2) there exist functions αi ∈ K∞, χi ∈ K so that
U1 ≥ χ1(U2(x2)) implies

∂U1

∂x1
f1(x1, x2) ≤ −α1(U1(x1)) (A.4)

and U2(x2) ≥ χ2(U1(x1)) implies

∂U2

∂x2
f2(x1, x2) ≤ −α2(U2(x2)) (A.5)

and χ1 ◦ χ2(r) < r or equivalently χ2 ◦ χ1(r) < r, ∀r > 0,
then the zero solution of (A.2) is GAS.



Appendix B

This appendix contains the proofs of Theorems 1-2.

The closed-loop system given by (1) and (2) is

ξ̇1 = f1(ξ1, σ) = −k1e
−V (ξ1,σ)ξ1 (B.1a)

σ̇ = f2(ξ1, σ) =
(
k3 − k2e

−V (ξ1,σ)
)
σ . (B.1b)

The proof of Theorem 1 relies on Theorem 6.

Proof. [Theorem 1] Consider the following ISS-Lyapunov

functions U1(ξ1) = eV (ξ1,0)−1
2k1

and U2(σ) = σ2

2k2
.

For the system ξ̇1 = f1(ξ1, σ), define the class K∞ function
α1(r) = ln(2k1r + 1). Then V (ξ1, 0) = α1(U1(ξ1)) and

∂U1

∂ξ1
f1(ξ1, σ) = −V (ξ1, 0)e

ξ2
1
σ2

2σ̄2(σ̄2+σ2) ≤ −α1(U1(ξ1))

(B.2)

holds for all σ ∈ R. Therefore, it must hold also for
U1(ξ1) ≥ χ1U2(σ) and any χ1 > 0.

For the system σ̇ = f2(ξ1, σ),

∂U2

∂σ
f2(ξ1, σ) =

σ2

k2

(
k3 − k2e

−V (ξ1,σ)
)
≤ −α2U2(σ) ,

(B.3)

with 0 < α2 < 2(k2 − k3), holds whenever

σ2 ≥ ξ2
1

2
∣∣∣ln 2k3+α2

2k2

∣∣∣ − σ̄2 . (B.4)

Remember that k2 > k3. Given (B.4), then (B.3) will hold
also for U2(σ) ≥ χ2(U1(ξ1)), with

χ2(r) =
σ̄2

2k2

∣∣∣ln 2k3+α2

2k2

∣∣∣α1(r) . (B.5)

Since ln(r + 1) ≤ r for all r ≥ 0, then α1(r) ≤ 2k1r and
one can always choose χ1 > 0 such that χ1 χ2(r) < r,
∀r > 0. Therefore, (B.1) is GAS by virtue of Theorem 6.

The closed-loop system given by (5) and (7) is

ṡ = −h1e
−V (s,ρ)s (B.6a)

ρ̇ =
(
h3 − h2e

−V (s,ρ)
)
ρ (B.6b)

ξ̇1 = −k1e
−V (ξ1,σ)ξ1 + s (B.6c)

σ̇ =
(
k3 − k2e

−V (ξ1,σ)
)
σ . (B.6d)

The proof of Theorem 2 will use the results formulated in
Seibert and Suarez (1990) and reported in Theorems 4-
5. Denoting by S1 the subsystem (B.6a) - (B.6b) and by
S2 the subsystem (B.6c) - (B.6d), then (B.6) can be seen
as the cascade of S1 and the system S2 with input s.
Moreover, Fig. B.1 can be used to visualize the regions
defined within the proof.

Proof. [Theorem 2] The subsystem S1 is GAS and S2 is
0-GAS by virtue of Theorem 1. Therefore, according to
Theorem 4, it is enough to show that every orbit of (B.6)
is bounded in the future to conclude that (B.6) is GAS.
This will be shown using Theorem 5, consequently an end
set and for the system (B.6) is needed. Remember that,
since S1 is GAS, any set of the form{

(s, ρ, ξ1, σ) ∈ R4 | |(s, ρ)| ≤ N, (ξ1, σ) ∈ R2
}

(B.7)

−5 0 5

−5

0

5

M

ξ1

σ

Ω+

Ω−

Fig. B.1. Regions of the state space of the system (B.1)
for parameter values: k1 = 2, k2 = 2, k3 = 1, σ̄ = 2.
In absence of input, the trajectories of the system will
always go from Ω+ to Ω−.

is an end set for the system (B.6). A tighter end set will
be given next. Let w(ξ1, σ) = k3 − k2e

−V (ξ1,σ), then the
set Ω+ cannot be part of the end set for small enough s,
where Ω+ =

{
(ξ1, σ) ∈ R2 | w(ξ1, σ) ≥ 0

}
. In fact, assume

w(ξ1, σ) = w̄ ≥ 0, then given Young’s inequality

ẇ =
k2e
−V (ξ1,σ)

σ̄2 + σ2

(
ξ1s− k1e

−V (ξ1,σ)ξ2
1 −

ξ2
1σ

2w̄

σ̄2 + σ2

)
≤ k3 − w̄
σ̄2 + σ2

[
s2

2ε+
−
(
k1
k3 − w̄
k2

− ε+
2

)
ξ2
1

]
,

(B.8)

∀(ξ1, σ) ∈ Ω+. Since 0 ≤ w(ξ1, σ) < k3 and ξ2
1 ≥ ξ̄2

1 > 0
in Ω+, then ẇ < 0 is satisfied with ε+ = k1

k3−w̄
k2

and

s2 ≤ N2, N2 =
ε2+
2 ξ̄

2
1 . Therefore, w(ξ1, σ) decreases and

ẇ will in turn become even more negative, until the
trajectories of the system leave from Ω+.

The second step consists in finding a functionW (s, ρ, ξ1, σ)
satisfying the conditions of Theorem 5. Given the function

W2(ξ1, σ) =
ξ2
1

2k1
+ U2(σ) , (B.9)

there exists M > 0 such that Ẇ2 ≤ 0 for all (ξ1, σ)
in Ω− ∩ ΩM and with s2 ≤ N2, where the set ΩM is
ΩM =

{
(ξ1, σ) ∈ R2 | |(ξ1, σ)| ≥M

}
. In fact, given the

sets and using Young’s inequality for products, with
ε− = k1k3

k2
, one gets

Ẇ2 = −e−V (ξ1,σ)ξ2
1 +

ξ1s

k1
+ w(ξ1, σ)

σ2

k2

≤ −
(
k3

k2
− ε−

2k1

)
ξ2
1 +

N2

2ε−k1

≤ k3

2k2

(
σ2

0 −M2
)

+
N2

2ε−k1
,

(B.10)

where σ0 is the value of σ when the trajectory of the system
first entered in Ω− and σ < σ0 since σ is strictly decreasing

in Ω−. Therefore, Ẇ2 ≤ 0 in Ω− ∩ ΩM and with s2 ≤ N2

holds for M2 = k2N
2

k1k3ε−
+ σ2

0 .

Finally, since S1 is GAS, let W1(s, ρ) be a Lyapunov
function for S1 obtained by a converse Lyapunov the-
orem. Then W (s, ρ, ξ1, σ) = W1(s, ρ) +W2(ξ1, σ) satisfies
the hypothesis of Theorem 5.


