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Intuitive Task-Level Programming by Demonstration
through Semantic Skill Recognition

Franz Steinmetz1, Verena Nitsch2, and Freek Stulp1

Abstract—Intuitive robot programming for non-experts will
be essential to increasing automation in small and medium-sized
enterprises (SMEs). Programming by Demonstration (PbD) is
a fast and intuitive approach, whereas programs created with
Task-Level Programming (TLP) are easy to understand and
flexible in their execution. In this paper, we propose an approach
which combines these complementary advantages of PbD and
TLP. Users define complete task-level programs including all
parameters through PbD alone. Therefore, we call this approach
Task-Level Programming by Demonstration (TLPbD). TLPbD
extends skill-based approaches by enabling experts to semanti-
cally annotate robot skills with their conditions and effects, which
facilitates online skill recognition from pure demonstrations by a
non-expert. In a user study with 21 participants, the approach is
compared with an existing intuitive TLP approach. The results
show that the new approach drastically reduces the programming
time while at the same time being more intuitive, reducing mental
load, and achieving the same or even better skill sequences.

Index Terms—Human-Centered Automation, Learning from
Demonstration, Intelligent and Flexible Manufacturing, Cogni-
tive Human-Robot Interaction

I. INTRODUCTION

INTUITIVE robot programming for non-experts will be
essential to increasing automation and productivity in small

and medium-sized enterprises (SMEs). For instance, kines-
thetic teaching of collaborative robots (cobots) to perform
repetitive and physically demanding tasks would alleviate
shop-floor workers. A growing number of companies de-
velop therefore software that enables robot task programming
without requiring expertise in programming or robotics. For
instance, graphical user interfaces (GUIs) use wizards to
guide the user in composing, sequencing and parameterizing
existing robot skills to solve a task. Examples for such Task-
Level Programming (TLP) approaches are Franka Desk [1],
ArtiMinds RPS [2], and our own software RAZER [3].

TLP is intuitive, as skills and the subgoals they achieve
correspond to a user’s mental model of how tasks are solved.
The resulting programs are also robust (as error-handling can
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Fig. 1. When using TLP (orange line, right side), the user often has to switch
between inputs at a GUI and demonstrations at the robot. With the presented
TLPbD approach (green line, left side), pure kinesthetic teaching is sufficient
for specifying task-level programs. Thy system automatically recognizes
online the demonstrated skills and parameters using PDDL descriptions of
available skills.

be built into the individual skills), safe (as individual skills
can be certified) and general (as individual skills can be
parameterized for variations of a task). A disadvantage is that
TLP, though intuitive, can be time-consuming.

An alternative to non-expert programming of robots is
Programming by Demonstration (PbD), e. g. by guiding the
robot through kinesthetic teaching [4]. This approach is intu-
itive and fast. A disadvantage is that the recorded trajectories
do not represent semantic knowledge about the underlying
task, e. g. its ultimate aim, the relevant subgoals and subtasks,
etc. This makes it more difficult to generalize the motion, and
also causes a mismatch between the user’s representation (aims
and subgoals) and that of the robot (trajectories).

The main contribution of this paper is to present a pro-
gramming concept for cobots that merges the complementary
advantages of TLP and PbD, which we call Task-Level Pro-
gramming by Demonstration (TLPbD), as illustrated in Fig. 1.
In TLPbD, the only input modality is PbD. But the output
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result (and also the visual feedback during programming) is a
task-level program including all parameters. We achieve this
by the automatic recognition of skills and their parameters
online during the demonstration. With TLPbD, programming
is fast and intuitive (advantages of PbD), and the generated
program is easy to understand and flexible in the execution
(advantages of TLP). This makes the approach highly suitable
for industrial scenarios.

As an example, let us describe the process of appending
a Pick skill to an existing task: First, the user moves the
gripper of the robot to a desired object (e. g. Box1), closes
the gripper (using a foot pedal) and lifts the box. Thanks to
Planning Domain Definition Language (PDDL) descriptions
of the available skills, the system correctly identifies the
demonstration online as a pick operation and adds it with the
object parameter set to Box1 to the current task.

Further contributions are the implementation of the ap-
proach, its integration into our software architecture RAZER,
and application to a typical low-batch-size scenario. Finally,
we empirically evaluate the advantages of our TLPbD ap-
proach over pure TLP in a user study with 21 subjects.

II. RELATED WORK

Programming by Demonstration is a popular approach to
teach a robot skills [4]. Methods such as teleoperation, obser-
vational learning and kinesthetic teaching allow for natural
and intuitive demonstrations of trajectories and force pro-
files. Popular approaches for modeling the recorded motions
into motion primitives include Dynamic Movement Primitives
(DMPs) [5] and Gaussian Mixture Models (GMMs) [6].

Various techniques have been developed that extend the
basic replay of trajectories recorded during PbD. For instance,
it is possible to adapt a learned motion velocity or final
position [7]. Furthermore, important task frames can be iden-
tified, which allows to execute the motion relative to varying
coordinate systems [6]. With several trajectories for the same
demonstration, [8] showed how motions can be automatically
segmented and collected in a movement primitive library.
Meier et al. [9] probabilistically recognize motion primitives
online during the recording. One shortcoming of motion
primitive approaches is that the primitives, being based on
trajectories, lack an inherent logic and semantics resulting
from a deeper understanding of the underlying problem.
Furthermore, they usually do not include failure-handling and
safety verification routines.

Verifying safety and reliability is more straight-forward with
skill-based approaches, where a robot expert predefines and
generically implements the capabilities of a robot system into
specific software modules called skills [10]–[13]. Skills are
executable programs with logic for e. g. strategies and failure-
handling designed for solving specific tasks (such as peg-
in-hole), and are crafted by an expert. This logic may be
represented in various forms, such as Behavior Trees [14],
state machines [3] and specialized controllers [11].

Task-Level Programming builds on the skills developed for
a robot, by providing user interfaces (e. g. a GUI) to non-
experts to create tasks consisting of skills [1]–[3], [11], [14],

[15]. These interfaces enable users to sequence the appropriate
skills and specify relevant parameter values in order to tailor
them to the task at hand. As a visual programming language,
task-level approaches are superior to textual programming
languages regarding its intuitive use [16].

The user interfaces of TLP approaches have come in var-
ious forms. Two commercial software products, already used
in industries are Franka Desk [1] and ArtiMinds RPS [2].
Two examples for research software prototypes are described
in [11], [12]. Both allow skills to be composed through drag
& drop, and parameterized through kinesthetic teaching. The
work described in this paper builds on RAZER [3], our frame-
work for TLP. Another example is CoSTAR, which utilizes
Behavior Trees [14]. CoSTAR lowers the complexity for the
user by increasingly integrating the logic into the available
building blocks. The programming paradigm in [15] combines
TLP with semantic process descriptions. By exploiting domain
knowledge and CAD models, tasks can be intuitively specified.

Note that PbD can be used as a specific interaction modality
within TLP. That is, most interactions are through a GUI, but
occasionally skills will be parameterized by physical inter-
action with the robot in gravity compensation mode, e. g. to
demonstrate the location where drilling should take place [3],
[11]–[13].

Even with the most refined interfaces, creating a robot
program using PbD within TLP can still be cumbersome. It re-
quires many clicks with the mouse (or tabs on a touch device),
frequent switches between the programming device and the
robot, and context switches between physical interaction with
the robot and focused reading and following of instructions
on the screen (see Fig. 1).

Four further input modalities besides PbD (touch, gesture,
speech and 3D tracking device) have been evaluated in [17] for
their perceived suitability for different parameter types. Which
modality is preferred depends both on the user and the type
of the parameter. We leave the choice of the input modality
(PbD or touch) up to the user.

PbD and TLP are both powerful approaches, with com-
plementary advantages. PbD is more intuitive and efficient
to use, as there are no context switches for the user. But
programs created with TLP are easier to read and modify
and more appropriate to be executed in an industrial context.
Therefore, with TLPbD, we propose a combination where
PbD is the only input modality, but the movements a user
makes are automatically translated into parameterized skills.
The result of the interaction is a sequence of parameterized
skills, presented in a GUI for further editing and execution
in industrial tasks. The user essentially performs Task-Level
Programming through Programming by Demonstration.

Using PbD to infer previously known and described actions
has previously been proposed in [18]. Hereby, Object-Action
Complexes (OACs) and semantic event chains (SECs) are
utilized. However, the approach is limited in the definition
of conditions and effects, as only object relations (touching or
non-touching) can be specified. In contrast to our approach,
this approach works offline. PbD in combination with a GUI
and voice commands is used in [19], enabling users to define
new skills which can later be used in tasks. They use semantics
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Fig. 2. The diagram depicts the main components of the semantic skill recognition system and the communication between them. The semantic skill
recognizer sends parameterized skills to the TLP interface, when the latter signalizes to be in the correct status. The recognizer creates the skills based on
the world model, updated by the world observer, and the PDDL descriptions of the available skills.

in the sense that all primitives and parameters are typed.
As an alternative to enabling users specify the process of

how to reach a goal, automated task planning tools create
a plan from a goal by respecting given conditions. This has
been combined with PbD to propose possible solutions to the
planner [20] and to identify constraints [21].

III. SEMANTIC SKILL RECOGNITION

An overview of our Task-Level Programming by Demon-
stration approach is shown in Fig. 2. The user interacts with
the robot through kinesthetic teaching as a PbD interface.
The core component in our approach is the semantic skill
recognizer, which extracts skills and their parameterization
online during the interaction. To do so, the algorithm uses not
only the raw trajectories, but also more abstract representations
stored in a world model. During the interaction, the world
model is continually updated by the world observer. The
semantic skill recognition algorithm queries the world model
for relationships between objects (connections, relative and
absolute poses). These relationships are used to recognize and
select skills based on their conditions and effects, which are
annotated in PDDL [22]. Finally, the TLP interface shows the
sequence of skills which have been recognized so far. Thus,
the input modality of our approach is PbD, but the result and
visual feedback is given with a TLP interface. In the following
sections, we describe the implementation of the components
in Fig. 2 in more detail.

A. Robot PbD Interface

The main mode of interaction with the LWR IV+ robot used
in the evaluation is kinesthetic teaching of tasks in gravity
compensation mode. Furthermore, a foot pedal with buttons
was used as an interface to the robot. The left button toggled
the gravity compensation mode between on and off. The right
button causes the gripper to open and close. For example,
the user presses the left pedal to bring the robot in gravity
compensation mode, moves the gripper above Box1, uses the
right pedal to close the gripper (grasping the box) and lifts the
box with the robot arm.

B. World model

The semantic skill recognition algorithm makes frequent
queries about conditions that hold in the current state of the
world. To facilitate and speed up these queries, we maintain

Fig. 3. The world model used for the user study. The colors indicate the type.
Yellow stands for SURFACE, red for ROBOT, green for HOLLOWCYLINDER,
purple for CYLINDER, and rose for CUBOID. In this instance of the world,
Box 2 is stacked on Box 3, which itself is stacked on Box 4.

a world model as an abstraction layer to the continuous data
streams in the real world.

The world model is implemented using a Neo4j graph
database. Its nodes represent entities in the world and the edges
are the relative poses between them. The world model used in
the user study (Section IV-A) is visualized in Fig. 3.

There are different types of nodes with distinct properties
and methods. Node types can inherit from each other. All
nodes (except for the root) inherit from the type RIGIDBODY,
and by this automatically carry information e. g. about their
bounding box. Methods of nodes can be used to further process
and query this information.

If predicates of conditions or effects are evaluated, they
are grounded on the data in the world model, not the real
world data (except for readings from the force-torque sen-
sor). Parameters of predicates are always nodes within the
world. Several predicates can be found in Listing 1, the
PDDL description of the Peg-in-Hole skill. Consider as an ex-
ample the predicate (close_to ?object ?gripper).
The first parameter is ?object, which is a node of type
WORLDMODEL.HCR.OBJECT (see parameter definition, types
in PDDL may not contain dots). When the predicate is
evaluated, the method close_to of the instantiated Object
node is called with the instantiated Gripper node as parameter:
object.close_to(gripper). The method close_to
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calculates and checks the distance between the bounding boxes
of the two nodes. This way, predicates are only limited by
the implementation of the methods. One cannot only write
predicates or methods based on geometric information, but
also access sensor data, such as force-torque sensor readings.

A separate process, the world observer, is responsible for
keeping the world model up to date, after it has been initialized
at the beginning with the correct data. For this, the robot pose
and the gripper status are checked frequently (>50 Hz). The
robot pose is directly used in the world model as relative pose
between the Base and the Gripper node (see Fig. 3). If the
gripper was closed and signals that it is grasping something,
the node of the object closest to the gripper is attached to the
node of latter with the current relative pose stored in the edge.
Upon opening the gripper, the node of the previously grasped
object is attached to the node of the closest surface or object.
If no surface or object is nearby, the node is detached.

C. Skills

The aim of our work is to extract a sequence of skills
from the PbD interaction with the robot. For this, six skills
have been provided for the evaluation (Section IV), namely
Pick, Place, Stack, Peg-in-hole, Push and Hand-over. Before
explaining the semantic skill recognizer, we first describe
the underlying skill representation it builds upon. A general
description of skills in the context of TLP can be found
in Section II and [10]. Skills in our RAZER framework
follow these principles, in that skills have an execution block
and parameters [3]. These parameters have names and types.
The execution logic of the skills is implemented with RAF-
CON1 [23].

The only difference to the skill design as described in [3]
is the additional semantic skill description in form of PDDL.
PDDL 2.1 was enriched with so-called durative actions [24].
Durative actions can have timed conditions, which explicitly
hold AT START, AT END or OVER ALL. These actions can
also have timed effects that take place AT START or AT END.
The PDDL annotations of skills symbolically describe their
conditions and effects. Parameters specify the variables and
their types used within conditions and effects. Each parameter
in the semantic description maps to a parameter of the skill.
As an example, see the PDDL description of the Peg-in-hole
skill in Listing 1. To parse such PDDL strings, the open-source
project pddl-lib2 was extended to support durative actions.

D. Semantic skill recognizer algorithm

The skill recognizer monitors changes in the world (caused
by PbD), and maps them to the conditions and effects of all
available skills. This is necessary to determine which skill is
active, and what its parameters are. To do so, the recognizer
identifies all possible combinations of parameter values for
each skill. Consider for example the Peg-in-hole skill in
Listing 1 with the parameters ?object and ?target, both
of type OBJECT, and ?gripper of type LOCATION. If there

1https://github.com/DLR-RM/RAFCON/
2https://github.com/hfoffani/pddl-lib

( define (domain peg−in−hole−domain)
(: durative−action peg−in−hole

:parameters (
?object − worldmodel hcr Object
? target − worldmodel hcr Object
?gripper − worldmodel hcr Gripper)

:condition (and
(at start (not (equal ?object ? target ) ) )
(at start (not (at ?object ? target ) ) )
(at start (not ( bounding box intersection ?object ? target ) ) )
(at start (at ?object ?gripper ) )
(at start ( grasping ?gripper ) )
(at start ( close to ?object ? target ) )
(at start ( close to ?object ?gripper ) )
(over all ( close to ?object ? target ) )
(over all ( close to ?object ?gripper ) ) )

: effect (and
(at end (at ?object ? target ) )
(at end ( bounding box intersection ?object ? target ) )
(at end (not (at ?object ?gripper ) ) )
(at end (not ( grasping ?gripper ) ) )
(at end (not ( close to ?object ?gripper ) ) ) ) ) )

Listing 1. PDDL definition of the Peg-in-hole skill

exists ten objects and one gripper (as in our world model,
see Fig. 3), then in sum 10× 10× 1 = 100 combinations
are possible. The skill could be instantiated with each of
these combinations. We call a skill together with a certain
combination of values a skill-value combination (SVC).

The skill recognizer checks for changes in the world that
could lead to a status change of a SVC at approximately
30 Hz (see Section IV-C for details on the performance). The
recognizer keeps a list with all SVCs and their status, which
is either IDLE, AT START, OVER ALL, or AT END. Initially, all
SVCs are IDLE. In each iteration, the status of all SVCs is
updated according to Algorithm 1. If, e. g., a SVC is currently
IDLE and the AT START conditions of the skill are fulfilled for
the value combination, then its status is set to AT START (see
Lines 15 to 17). If a SVC reaches the status AT END, it is
assumed that the according skill has just been demonstrated
with the corresponding values. The TLP interface is notified
(see Section III-E for details) and the SVC is reset to IDLE
(see Lines 5 to 9).

1: procedure LOOP
2: for skill in skills do
3: for SV C in skillValueCombinations(skill) do
4: if SV C.status = OVER ALL and ←↩

effectOccured(SV C, AT END) then
5: SV C.status← AT END
6: skillparameterized = parameterize(SV C)
7: append(task, skillparameterized)
8: SV C.status← IDLE
9: break

10: if SV C.status = AT START or ←↩
SV C.status = OVER ALL then

11: if conditionFulfilled(SV C, OVER ALL)
12: SV C.status← OVER ALL
13: else
14: SV C.status← IDLE
15: else if SVC.status = IDLE
16: if conditionFulfilled(SV C, AT START)
17: SV C.status← AT START

Algorithm 1. Skill recognizer loop

The algorithm uses some additional functions. The function
skillValueCombinations determines all SVCs for a

https://github.com/DLR-RM/RAFCON/
https://github.com/hfoffani/pddl-lib
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given skill. conditionFulfilled checks if the specified
timed condition of the given skill currently holds. Likewise,
effectOccured tests if the specified timed effect of the
given skill took place.

The recognizer can evaluate arbitrary condition and effect
statements. For example, the not operator leads to a negation
and if multiple AT START conditions are defined, their boolean
results are bitwise ANDed together. The predicates of condi-
tions and effects are grounded using the world model, as it is
described in Section III-B.

E. Communication with TLP interface

The semantic skill recognizer directly communicates with
the TLP interface of RAZER, called frontend [3]. This is
where the “TLP” in “TLPbD” comes from. When a task
(a robot program) is open in the frontend, it notifies the
skill recognizer that it currently accepts skills. The recognizer
automatically starts the detection loop (Algorithm 1). If a skill
has been identified, it is propagated to the frontend.

This communication is achieved using a component called
the input/output manager (IO manager), which provides ded-
icated communication channels. All components can publish
their current status (e. g. “task open”) together with possible
actions (e. g. “add skill”, “save task”) over a channel and
receive action requests from other components on the same
channel. For this, a component (in this case the frontend) opens
a new channel on which it sends its status together with all
currently available actions or commands. Other components
(in this case the semantic skill recognizer) can listen on that
channel and trigger an applicable action, such as “add skill”,
together with some payload, which would for this command
be the parameterized skill.

The frontend expects a parameterized skill entity for the
task. For this, the skill recognizer needs to convert the iden-
tified SVC. This is done by the parameterize function
(Algorithm 1, Line 6). It creates a new skill and sets the
parameters using the corresponding values from the SVC.
In addition, skills can have parameters with special names
“trajectory” and “force profile”. If these are present, they
retrieve the robot data recorded during the time interval of
the skill demonstration. A ParameterDeducer (see [3])
extracts from this additional information relevant for the
execution, such as pre-pick or post-place poses. After the
parameterization, the append function (Line 7) sends the skill
as payload of the “add skill” action to the frontend using the
IO manager as described above.

F. Integration in RAZER

Our implementation builds upon the RAZER architec-
ture [3]. If a skill is added to the task by the semantic skill
recognizer as described in Section III-E, it appears in the TLP
interface (the frontend) as if it was added manually using the
skill wizard of the GUI.

This has the advantage that the user profits from all features
of the TLP. For instance, if after the demonstration the user
decides that a slightly different order of the skills may be more
efficient in practice, she can simply drag & drop the skill in

Fig. 4. The setup of the user study. The left area is for task 1 (box stacking),
the middle for task 2 (peg-in-hole) and the right for task 3 (push button). The
LWR is mounted on a linear axis for greater reach.

the GUI. This is much more efficient than showing the updated
sequence again through PbD. If a skill parameter, such as the
object to pick, needs to be modified to generalize to a new task
(or because the object was not recognized correctly during the
demonstration), the skill can be opened and the parameter be
adjusted with a single click. Therefore, TLPbD inherits all the
advantages of TLP.

IV. EVALUATION

To evaluate the system, we conducted an experimental user
study and tested the scalability of the system. The setup for
the study is shown in Fig. 4.

A. User Study

This user study compares the existing TLP approach [3] to
the TLPbD approach proposed in this paper3. Our aim was
to determine how the skill recognition system in the TLPbD
approach supports the user in the programming process. Our
hypothesis was that the programming time is reduced, while
at the same time the usability is improved.

Using an a priori power analysis (α = 0.05, large expected
effect size), we determined the minimum sample size to be
20. The user study had 21 participants, 4 female and 17
male, aged between 25 and 59. All stated to have experience
with touch devices. The expertise with robots and PbD was
mixed and ranged between “no experience at all” and “highly
experienced”. The perceived technical affinity of each user
regarding enthusiasm and expertise was measured using a
subset of the TA-EG questionnaire [25].

The procedure of the study was as follows. A two-minute
introduction was given to every participant for the usage of
the tablet interface, the gravity compensation mode and the
gripper. Then, the participants were asked to perform three
different tasks, once with TLP and once with TLPbD (in ran-
dom order, within-subject design). After performing the first
task of each approach, the users filled in two questionnaires.
The questionnaire for the subjective consequences of intuitive
use (QUESI) was used to measure the intuitive use with the
five subscales subjective mental load, perceived achievement of

3Note that our TLP approach (described in detail in [3]) makes use of PbD
as an interaction modality for the specification of single parameters. But this
is PbD within TLP, and not TLPbD, as discussed in Section II.
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Fig. 5. The parameterized skill sequences of task 1 (top), task 2 (middle)
and task 3 (bottom) in the RAZER TLP interface. A tick stands for a specified
trajectory. The sequences are the same for both approaches.

goals, perceived effort of learning, familiarity, and perceived
error rate [26], [27]. This was complemented by the NASA
Task Load Index (TLX) measuring the workload-related factors
mental demand, physical demand, temporal demand, effort,
performance and frustration [28]. Furthermore, the times the
users required for programming each task was measured. At
the end, the participants could give further oral feedback.
Fig. 5 shows the desired skill sequences for the following three
used tasks:

1) Stack the three boxes on top of each other (from large
to small)

2) Slide three rings onto the rod (from large to small)
3) Grasp the cylinder, push the button with it twice, and

hand it over
The experimental setup of the tasks is pictured in Fig. 4. A

demonstration of these tasks with a comparison between TLP
and TLPbD can be found in the accompanying video.

B. Results

The results regarding the intuitive use of the system are
summarized in Fig. 6. On average, users rated the intuitive
use of TLPbD 35% better than TLP. People felt more familiar
with the approach (by 41%) while requiring less mental
workload (42%).

Fig. 7 summarizes the results regarding the workload-
related factors of the TLX. While the physical demand for
both approaches is similar, there is a statistically significant
improvement on all other scales. For example, the frustration

Fig. 6. Results regarding the intuitive use determined by the QUESI. The
plot shows the mean of the overall score and the subscales, for TLP (orange)
and TLPbD (green). The scores are values between 1 (worst) and 5 (best).
The value above the brackets is the asymptotic significance p, ** means
p � 0.001. ANCOVA was used for the calculations of the variance and
significances with the technical enthusiasm and expertise as covariates.

Fig. 7. Mean values regarding the workload-related factors using the NASA
TLX. The TLX score is a value between 1 and 20. Except for performance,
lower values are better. See Fig. 6 for details on the bracket values and the
calculations.

is reduced by 66% and the mental demand by 59%, which is
in accordance to the results of the QUESI.

Regarding the results of the QUESI and TLX, we were
interested whether the perceived technical affinity had any in-
fluence on the different scores. We used analysis of covariance
(ANCOVA) to determine the partial eta-squared (η2p) values as
measure for the effect size. For enthusiasm, we get an average
effect size of 0.019 (TLP) and 0.035 (TLPbD); for expertise
we get 0.172 (TLP) and 0.060 (TLPbD). Thus, the technical
enthusiasm has less influence than the technical expertise and
there is less influence of the expertise on the TLPbD approach
than on the TLP approach.

The mean programming times for the two approaches and
three tasks are plotted in Fig. 8. The times for task 2 and 3
were normalized to task 1, i. e. the different requirements of
each task are respected by measuring the time for each task re-
quired by an expert with no learning effect. The results showed
two statistically significant effects (p� 0.001). First, using
TLPbD, the time is reduced by a factor of over 5. Second, there
is a learning effect for both approaches. This effect mainly
took place between task 1 and 2, which are relatively similar in
their structure. There is a significant interaction effect between
the factors approach and task number (p = 0.02, determined
using two-way analysis of variance (ANOVA)). However, this
is not relevant for the interpretation of the two main effects,
as the interaction was ordinal (the two lines in Fig. 8 show
the same trend).

When comparing the achieved skill sequences of the two
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Fig. 8. The plot shows the mean task programming times and standard
deviations. TLPbD (green) is about five times faster than TLP (orange).

programming approaches, the results of TLP showed more
errors. Many users did not make use of the Stack and Peg-
in-hole skill for task 1 and 2, respectively, but instead used
the Place skill. This led to tasks being less generic and
fault tolerant in the execution. In case of TLPbD, the system
decided on the proper choice of skills. The only error that
occurred here was in task 2: When users released the disc
above the rod (and not slid onto it), the skill recognizer utilized
the Stack instead of the Peg-in-hole skill.

The oral feedback of the participants revealed a clear
preference for TLPbD. Despite the system choosing the skills,
the participants felt to have the “decision-making sovereignty”.
They stated that they would require less reading and less
knowledge regarding the skills. They described the process
as “one flow”, as it needed fewer clicks and “less fiddling”
compared to TLP.

C. Scalability

In another test, we evaluated the scalability of the system.
The user study made use of six skills with in total ten objects.
To check if the system can handle more skills and objects
in the world, we increased both numbers and measured the
average loop time of the semantic skill recognizer. The results
are plotted in Fig. 9. The test was run on a basic office
computer on six cores (the calculations for each skill can run
in a separate process). It can be seen that the loop time is
increases linearly with the number of skills, and polynomial
(2nd order) with the number of objects.

V. DISCUSSION

Both the results of the two questionnaires and the program-
ming time support our hypothesis that TLPbD substantially
outperforms TLP on all scales regarding the intuitive use
and the workload. This is also corroborated by the oral
feedback. With a time reduction by a factor of five and absolute
programming times of less than a minute, the new approach is
suitable for automating processes with lot sizes of just a few
items. The valuable feedback received during the user study
could be used to improve the task-level interface substantially,
making its usage more intuitive and maybe faster. However,
we highly doubt that this would make the TLP approach as
intuitive and fast as TLPbD.

Fig. 9. The two plots show the average loop time of the semantic skill
recognizer as a function of the number of skills (left) and objects (right).

Furthermore, TLPbD does not require tech-savvy users and
is less error-prone. In contrast to TLP, the (perceived) technical
expertise has only a small influence on the performance.
Together with the lower mental load and frustration, this
reduces the demands on the robotics expertise of the shop-
floor workers. With process knowledge encoded in the PDDL
annotations of the skills, the semantic skill recognizer was
able to select more appropriate skills than the average human
operator did (e. g. Stack instead of Place; the consequences of
this are described below). This leads to programs being more
reliable under changing conditions.

What makes the approach especially advantageous is that
it has been incorporated into the existing TLP interface.
Therefore, it inherits all possibilities of the current system,
such as editing or reordering of skills after programming.
Skills can still be added to a task using the TLP approach,
if it might not be possible with TLPbD. This is the case for
skills not requiring the robot, such as a simple wait skill.

One limitation of the approach is the restricted observability
of the world. The world observer (Section III-B) requires an
accurate model of the initial world state and can only register
changes if the gripper properly grasps and releases objects. If
the robot slides or tilts an object during a motion, this cannot
be registered. This would require a physical simulation of the
world, as it is suggested in [29]. However, changes in the
world triggered by a human worker, for instance, would still
not be reflected in the world model. Therefore, camera-based
scene recognition is one of our current aims.

A critical aspect of the semantic skill recognition is its
reliability in the detection of skills. We have shown that
the system can identify six different skills. Yet, these are
only a subset of what one would require for a full-scale
industrial scenario (Bøgh et al. define 15 essential industrial
skills of which we provide 3 [10]). However, the used skills
Place, Stack and Peg-in-hole are similar (which can be seen
in the choice of skills of the user) and can still clearly be
discriminated by the system. There was only one failure case,
in which the recognizer chose Stack instead of Peg-in-hole, see
Section IV-B. Therefore, we do not expect that adding further
skills will influence the success rate of the skill recognizer.

An important requirement for skills to be recognized by the
system is that their conditions and effects are observable. Yet,
this does not prevent the user from adding the skill manually,
as mentioned above. There are also situations, in which a skill
can be identified, but not all of its parameters, as these might
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not be fully observable. In this case, the correct skill can still
be added, but the user needs to provide further information
using the TLP interface. Nevertheless, this saves time for the
user. The only source of error that has occurred so far is when
the robot is moved too fast, compared to the loop rate of the
recognizer.

In theory, it is possible that two skills fulfill all their
conditions and effects at the same time. At the moment, the
semantics of our skills used within the user study do not allow
for such a situation and the skill recognizer would not be able
to handle this properly. In the future, with more skill being
added to the system, such a constellation could possibly occur.
For this, we plan to extend the system and query the user to
select the desired skill.

Of course, for TLPbD to work, an expert needs to provide
the relevant skills, as well as appropriate semantic descriptions.
But TLP approaches also require the definition of relevant
skills. And in our experience, once the definition of a skill’s
execution has been programmed, the additional effort required
for the PDDL description is negligible.

During the user study, the programmed tasks were not
executed. However, we programmed and executed task 1 in
another test to proof the effectiveness and capability of the
whole chain from demonstration to execution. This is also
presented in the video accompanying this paper. It is shown
that the execution of the programmed task is successful and
the robot stacks the three boxes autonomously. Furthermore,
the advantage of using a Stack skill compared to a Place
skill is highlighted: It allows for a box to be moved, while
further boxes are still stacked on top of it instead of the
box’ original position. For this, the ParameterDeducers
convert the recorded absolute poses into relative poses. During
the execution, the current poses of the objects are queried from
the world model. Details on this conversion and execution are
found in [3].

The results of Section IV-C show that the recognizer
loop becomes slower with an increasing number of skills
and objects. When assuming the aforementioned 15 essential
skills [10], and typical assembly tasks with less than 30 items,
a single loop in the current implementation would take less
than 100 ms. Through code optimization and using a compiled
language (rather than Python), it may well be sped up by a
factor of 100.

VI. CONCLUSION

This paper has introduced Task-Level Programming by
Demonstration (TLPbD), a novel intuitive programming ap-
proach which combines Programming by Demonstration
(PbD) and Task-Level Programming (TLP). In TLPbD, users
demonstrate tasks purely through PbD, and parameterized skill
sequences are automatical identified on-line with a semantic
skill recognition algorithm. The resulting skill sequences are
sent to a TLP interface, where they can be further modified.
As the results of a user study confirm, TLPbD is as fast and
intuitive as PbD and yet as reliable and easy to use as TLP.
Thus, we believe that TLPbD is highly suitable for automating
processes with collaborative robots (cobots) in small and
medium-sized enterprise (SME) with low batch sizes.
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